1 //===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file VarLocBasedImpl.cpp 10 /// 11 /// LiveDebugValues is an optimistic "available expressions" dataflow 12 /// algorithm. The set of expressions is the set of machine locations 13 /// (registers, spill slots, constants) that a variable fragment might be 14 /// located, qualified by a DIExpression and indirect-ness flag, while each 15 /// variable is identified by a DebugVariable object. The availability of an 16 /// expression begins when a DBG_VALUE instruction specifies the location of a 17 /// DebugVariable, and continues until that location is clobbered or 18 /// re-specified by a different DBG_VALUE for the same DebugVariable. 19 /// 20 /// The output of LiveDebugValues is additional DBG_VALUE instructions, 21 /// placed to extend variable locations as far they're available. This file 22 /// and the VarLocBasedLDV class is an implementation that explicitly tracks 23 /// locations, using the VarLoc class. 24 /// 25 /// The canonical "available expressions" problem doesn't have expression 26 /// clobbering, instead when a variable is re-assigned, any expressions using 27 /// that variable get invalidated. LiveDebugValues can map onto "available 28 /// expressions" by having every register represented by a variable, which is 29 /// used in an expression that becomes available at a DBG_VALUE instruction. 30 /// When the register is clobbered, its variable is effectively reassigned, and 31 /// expressions computed from it become unavailable. A similar construct is 32 /// needed when a DebugVariable has its location re-specified, to invalidate 33 /// all other locations for that DebugVariable. 34 /// 35 /// Using the dataflow analysis to compute the available expressions, we create 36 /// a DBG_VALUE at the beginning of each block where the expression is 37 /// live-in. This propagates variable locations into every basic block where 38 /// the location can be determined, rather than only having DBG_VALUEs in blocks 39 /// where locations are specified due to an assignment or some optimization. 40 /// Movements of values between registers and spill slots are annotated with 41 /// DBG_VALUEs too to track variable values bewteen locations. All this allows 42 /// DbgEntityHistoryCalculator to focus on only the locations within individual 43 /// blocks, facilitating testing and improving modularity. 44 /// 45 /// We follow an optimisic dataflow approach, with this lattice: 46 /// 47 /// \verbatim 48 /// ┬ "Unknown" 49 /// | 50 /// v 51 /// True 52 /// | 53 /// v 54 /// ⊥ False 55 /// \endverbatim With "True" signifying that the expression is available (and 56 /// thus a DebugVariable's location is the corresponding register), while 57 /// "False" signifies that the expression is unavailable. "Unknown"s never 58 /// survive to the end of the analysis (see below). 59 /// 60 /// Formally, all DebugVariable locations that are live-out of a block are 61 /// initialized to \top. A blocks live-in values take the meet of the lattice 62 /// value for every predecessors live-outs, except for the entry block, where 63 /// all live-ins are \bot. The usual dataflow propagation occurs: the transfer 64 /// function for a block assigns an expression for a DebugVariable to be "True" 65 /// if a DBG_VALUE in the block specifies it; "False" if the location is 66 /// clobbered; or the live-in value if it is unaffected by the block. We 67 /// visit each block in reverse post order until a fixedpoint is reached. The 68 /// solution produced is maximal. 69 /// 70 /// Intuitively, we start by assuming that every expression / variable location 71 /// is at least "True", and then propagate "False" from the entry block and any 72 /// clobbers until there are no more changes to make. This gives us an accurate 73 /// solution because all incorrect locations will have a "False" propagated into 74 /// them. It also gives us a solution that copes well with loops by assuming 75 /// that variable locations are live-through every loop, and then removing those 76 /// that are not through dataflow. 77 /// 78 /// Within LiveDebugValues: each variable location is represented by a 79 /// VarLoc object that identifies the source variable, the set of 80 /// machine-locations that currently describe it (a single location for 81 /// DBG_VALUE or multiple for DBG_VALUE_LIST), and the DBG_VALUE inst that 82 /// specifies the location. Each VarLoc is indexed in the (function-scope) \p 83 /// VarLocMap, giving each VarLoc a set of unique indexes, each of which 84 /// corresponds to one of the VarLoc's machine-locations and can be used to 85 /// lookup the VarLoc in the VarLocMap. Rather than operate directly on machine 86 /// locations, the dataflow analysis in this pass identifies locations by their 87 /// indices in the VarLocMap, meaning all the variable locations in a block can 88 /// be described by a sparse vector of VarLocMap indicies. 89 /// 90 /// All the storage for the dataflow analysis is local to the ExtendRanges 91 /// method and passed down to helper methods. "OutLocs" and "InLocs" record the 92 /// in and out lattice values for each block. "OpenRanges" maintains a list of 93 /// variable locations and, with the "process" method, evaluates the transfer 94 /// function of each block. "flushPendingLocs" installs debug value instructions 95 /// for each live-in location at the start of blocks, while "Transfers" records 96 /// transfers of values between machine-locations. 97 /// 98 /// We avoid explicitly representing the "Unknown" (\top) lattice value in the 99 /// implementation. Instead, unvisited blocks implicitly have all lattice 100 /// values set as "Unknown". After being visited, there will be path back to 101 /// the entry block where the lattice value is "False", and as the transfer 102 /// function cannot make new "Unknown" locations, there are no scenarios where 103 /// a block can have an "Unknown" location after being visited. Similarly, we 104 /// don't enumerate all possible variable locations before exploring the 105 /// function: when a new location is discovered, all blocks previously explored 106 /// were implicitly "False" but unrecorded, and become explicitly "False" when 107 /// a new VarLoc is created with its bit not set in predecessor InLocs or 108 /// OutLocs. 109 /// 110 //===----------------------------------------------------------------------===// 111 112 #include "LiveDebugValues.h" 113 114 #include "llvm/ADT/CoalescingBitVector.h" 115 #include "llvm/ADT/DenseMap.h" 116 #include "llvm/ADT/PostOrderIterator.h" 117 #include "llvm/ADT/SmallPtrSet.h" 118 #include "llvm/ADT/SmallSet.h" 119 #include "llvm/ADT/SmallVector.h" 120 #include "llvm/ADT/Statistic.h" 121 #include "llvm/ADT/UniqueVector.h" 122 #include "llvm/CodeGen/LexicalScopes.h" 123 #include "llvm/CodeGen/MachineBasicBlock.h" 124 #include "llvm/CodeGen/MachineFrameInfo.h" 125 #include "llvm/CodeGen/MachineFunction.h" 126 #include "llvm/CodeGen/MachineFunctionPass.h" 127 #include "llvm/CodeGen/MachineInstr.h" 128 #include "llvm/CodeGen/MachineInstrBuilder.h" 129 #include "llvm/CodeGen/MachineMemOperand.h" 130 #include "llvm/CodeGen/MachineOperand.h" 131 #include "llvm/CodeGen/PseudoSourceValue.h" 132 #include "llvm/CodeGen/RegisterScavenging.h" 133 #include "llvm/CodeGen/TargetFrameLowering.h" 134 #include "llvm/CodeGen/TargetInstrInfo.h" 135 #include "llvm/CodeGen/TargetLowering.h" 136 #include "llvm/CodeGen/TargetPassConfig.h" 137 #include "llvm/CodeGen/TargetRegisterInfo.h" 138 #include "llvm/CodeGen/TargetSubtargetInfo.h" 139 #include "llvm/Config/llvm-config.h" 140 #include "llvm/IR/DIBuilder.h" 141 #include "llvm/IR/DebugInfoMetadata.h" 142 #include "llvm/IR/DebugLoc.h" 143 #include "llvm/IR/Function.h" 144 #include "llvm/IR/Module.h" 145 #include "llvm/InitializePasses.h" 146 #include "llvm/MC/MCRegisterInfo.h" 147 #include "llvm/Pass.h" 148 #include "llvm/Support/Casting.h" 149 #include "llvm/Support/Compiler.h" 150 #include "llvm/Support/Debug.h" 151 #include "llvm/Support/TypeSize.h" 152 #include "llvm/Support/raw_ostream.h" 153 #include "llvm/Target/TargetMachine.h" 154 #include <algorithm> 155 #include <cassert> 156 #include <cstdint> 157 #include <functional> 158 #include <map> 159 #include <queue> 160 #include <tuple> 161 #include <utility> 162 #include <vector> 163 164 using namespace llvm; 165 166 #define DEBUG_TYPE "livedebugvalues" 167 168 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); 169 170 /// If \p Op is a stack or frame register return true, otherwise return false. 171 /// This is used to avoid basing the debug entry values on the registers, since 172 /// we do not support it at the moment. 173 static bool isRegOtherThanSPAndFP(const MachineOperand &Op, 174 const MachineInstr &MI, 175 const TargetRegisterInfo *TRI) { 176 if (!Op.isReg()) 177 return false; 178 179 const MachineFunction *MF = MI.getParent()->getParent(); 180 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 181 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 182 Register FP = TRI->getFrameRegister(*MF); 183 Register Reg = Op.getReg(); 184 185 return Reg && Reg != SP && Reg != FP; 186 } 187 188 namespace { 189 190 // Max out the number of statically allocated elements in DefinedRegsSet, as 191 // this prevents fallback to std::set::count() operations. 192 using DefinedRegsSet = SmallSet<Register, 32>; 193 194 // The IDs in this set correspond to MachineLocs in VarLocs, as well as VarLocs 195 // that represent Entry Values; every VarLoc in the set will also appear 196 // exactly once at Location=0. 197 // As a result, each VarLoc may appear more than once in this "set", but each 198 // range corresponding to a Reg, SpillLoc, or EntryValue type will still be a 199 // "true" set (i.e. each VarLoc may appear only once), and the range Location=0 200 // is the set of all VarLocs. 201 using VarLocSet = CoalescingBitVector<uint64_t>; 202 203 /// A type-checked pair of {Register Location (or 0), Index}, used to index 204 /// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int 205 /// for insertion into a \ref VarLocSet, and efficiently converted back. The 206 /// type-checker helps ensure that the conversions aren't lossy. 207 /// 208 /// Why encode a location /into/ the VarLocMap index? This makes it possible 209 /// to find the open VarLocs killed by a register def very quickly. This is a 210 /// performance-critical operation for LiveDebugValues. 211 struct LocIndex { 212 using u32_location_t = uint32_t; 213 using u32_index_t = uint32_t; 214 215 u32_location_t Location; // Physical registers live in the range [1;2^30) (see 216 // \ref MCRegister), so we have plenty of range left 217 // here to encode non-register locations. 218 u32_index_t Index; 219 220 /// The location that has an entry for every VarLoc in the map. 221 static constexpr u32_location_t kUniversalLocation = 0; 222 223 /// The first location that is reserved for VarLocs with locations of kind 224 /// RegisterKind. 225 static constexpr u32_location_t kFirstRegLocation = 1; 226 227 /// The first location greater than 0 that is not reserved for VarLocs with 228 /// locations of kind RegisterKind. 229 static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30; 230 231 /// A special location reserved for VarLocs with locations of kind 232 /// SpillLocKind. 233 static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation; 234 235 /// A special location reserved for VarLocs of kind EntryValueBackupKind and 236 /// EntryValueCopyBackupKind. 237 static constexpr u32_location_t kEntryValueBackupLocation = 238 kFirstInvalidRegLocation + 1; 239 240 LocIndex(u32_location_t Location, u32_index_t Index) 241 : Location(Location), Index(Index) {} 242 243 uint64_t getAsRawInteger() const { 244 return (static_cast<uint64_t>(Location) << 32) | Index; 245 } 246 247 template<typename IntT> static LocIndex fromRawInteger(IntT ID) { 248 static_assert(std::is_unsigned<IntT>::value && 249 sizeof(ID) == sizeof(uint64_t), 250 "Cannot convert raw integer to LocIndex"); 251 return {static_cast<u32_location_t>(ID >> 32), 252 static_cast<u32_index_t>(ID)}; 253 } 254 255 /// Get the start of the interval reserved for VarLocs of kind RegisterKind 256 /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1. 257 static uint64_t rawIndexForReg(Register Reg) { 258 return LocIndex(Reg, 0).getAsRawInteger(); 259 } 260 261 /// Return a range covering all set indices in the interval reserved for 262 /// \p Location in \p Set. 263 static auto indexRangeForLocation(const VarLocSet &Set, 264 u32_location_t Location) { 265 uint64_t Start = LocIndex(Location, 0).getAsRawInteger(); 266 uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger(); 267 return Set.half_open_range(Start, End); 268 } 269 }; 270 271 // Simple Set for storing all the VarLoc Indices at a Location bucket. 272 using VarLocsInRange = SmallSet<LocIndex::u32_index_t, 32>; 273 // Vector of all `LocIndex`s for a given VarLoc; the same Location should not 274 // appear in any two of these, as each VarLoc appears at most once in any 275 // Location bucket. 276 using LocIndices = SmallVector<LocIndex, 2>; 277 278 class VarLocBasedLDV : public LDVImpl { 279 private: 280 const TargetRegisterInfo *TRI; 281 const TargetInstrInfo *TII; 282 const TargetFrameLowering *TFI; 283 TargetPassConfig *TPC; 284 BitVector CalleeSavedRegs; 285 LexicalScopes LS; 286 VarLocSet::Allocator Alloc; 287 288 const MachineInstr *LastNonDbgMI; 289 290 enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore }; 291 292 using FragmentInfo = DIExpression::FragmentInfo; 293 using OptFragmentInfo = Optional<DIExpression::FragmentInfo>; 294 295 /// A pair of debug variable and value location. 296 struct VarLoc { 297 // The location at which a spilled variable resides. It consists of a 298 // register and an offset. 299 struct SpillLoc { 300 unsigned SpillBase; 301 StackOffset SpillOffset; 302 bool operator==(const SpillLoc &Other) const { 303 return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset; 304 } 305 bool operator!=(const SpillLoc &Other) const { 306 return !(*this == Other); 307 } 308 }; 309 310 /// Identity of the variable at this location. 311 const DebugVariable Var; 312 313 /// The expression applied to this location. 314 const DIExpression *Expr; 315 316 /// DBG_VALUE to clone var/expr information from if this location 317 /// is moved. 318 const MachineInstr &MI; 319 320 enum class MachineLocKind { 321 InvalidKind = 0, 322 RegisterKind, 323 SpillLocKind, 324 ImmediateKind 325 }; 326 327 enum class EntryValueLocKind { 328 NonEntryValueKind = 0, 329 EntryValueKind, 330 EntryValueBackupKind, 331 EntryValueCopyBackupKind 332 } EVKind = EntryValueLocKind::NonEntryValueKind; 333 334 /// The value location. Stored separately to avoid repeatedly 335 /// extracting it from MI. 336 union MachineLocValue { 337 uint64_t RegNo; 338 SpillLoc SpillLocation; 339 uint64_t Hash; 340 int64_t Immediate; 341 const ConstantFP *FPImm; 342 const ConstantInt *CImm; 343 MachineLocValue() : Hash(0) {} 344 }; 345 346 /// A single machine location; its Kind is either a register, spill 347 /// location, or immediate value. 348 /// If the VarLoc is not a NonEntryValueKind, then it will use only a 349 /// single MachineLoc of RegisterKind. 350 struct MachineLoc { 351 MachineLocKind Kind; 352 MachineLocValue Value; 353 bool operator==(const MachineLoc &Other) const { 354 if (Kind != Other.Kind) 355 return false; 356 switch (Kind) { 357 case MachineLocKind::SpillLocKind: 358 return Value.SpillLocation == Other.Value.SpillLocation; 359 case MachineLocKind::RegisterKind: 360 case MachineLocKind::ImmediateKind: 361 return Value.Hash == Other.Value.Hash; 362 default: 363 llvm_unreachable("Invalid kind"); 364 } 365 } 366 bool operator<(const MachineLoc &Other) const { 367 switch (Kind) { 368 case MachineLocKind::SpillLocKind: 369 return std::make_tuple( 370 Kind, Value.SpillLocation.SpillBase, 371 Value.SpillLocation.SpillOffset.getFixed(), 372 Value.SpillLocation.SpillOffset.getScalable()) < 373 std::make_tuple( 374 Other.Kind, Other.Value.SpillLocation.SpillBase, 375 Other.Value.SpillLocation.SpillOffset.getFixed(), 376 Other.Value.SpillLocation.SpillOffset.getScalable()); 377 case MachineLocKind::RegisterKind: 378 case MachineLocKind::ImmediateKind: 379 return std::tie(Kind, Value.Hash) < 380 std::tie(Other.Kind, Other.Value.Hash); 381 default: 382 llvm_unreachable("Invalid kind"); 383 } 384 } 385 }; 386 387 /// The set of machine locations used to determine the variable's value, in 388 /// conjunction with Expr. Initially populated with MI's debug operands, 389 /// but may be transformed independently afterwards. 390 SmallVector<MachineLoc, 8> Locs; 391 /// Used to map the index of each location in Locs back to the index of its 392 /// original debug operand in MI. Used when multiple location operands are 393 /// coalesced and the original MI's operands need to be accessed while 394 /// emitting a debug value. 395 SmallVector<unsigned, 8> OrigLocMap; 396 397 VarLoc(const MachineInstr &MI, LexicalScopes &LS) 398 : Var(MI.getDebugVariable(), MI.getDebugExpression(), 399 MI.getDebugLoc()->getInlinedAt()), 400 Expr(MI.getDebugExpression()), MI(MI) { 401 assert(MI.isDebugValue() && "not a DBG_VALUE"); 402 assert((MI.isDebugValueList() || MI.getNumOperands() == 4) && 403 "malformed DBG_VALUE"); 404 for (const MachineOperand &Op : MI.debug_operands()) { 405 MachineLoc ML = GetLocForOp(Op); 406 auto It = find(Locs, ML); 407 if (It == Locs.end()) { 408 Locs.push_back(ML); 409 OrigLocMap.push_back(MI.getDebugOperandIndex(&Op)); 410 } else { 411 // ML duplicates an element in Locs; replace references to Op 412 // with references to the duplicating element. 413 unsigned OpIdx = Locs.size(); 414 unsigned DuplicatingIdx = std::distance(Locs.begin(), It); 415 Expr = DIExpression::replaceArg(Expr, OpIdx, DuplicatingIdx); 416 } 417 } 418 419 // We create the debug entry values from the factory functions rather 420 // than from this ctor. 421 assert(EVKind != EntryValueLocKind::EntryValueKind && 422 !isEntryBackupLoc()); 423 } 424 425 static MachineLoc GetLocForOp(const MachineOperand &Op) { 426 MachineLocKind Kind; 427 MachineLocValue Loc; 428 if (Op.isReg()) { 429 Kind = MachineLocKind::RegisterKind; 430 Loc.RegNo = Op.getReg(); 431 } else if (Op.isImm()) { 432 Kind = MachineLocKind::ImmediateKind; 433 Loc.Immediate = Op.getImm(); 434 } else if (Op.isFPImm()) { 435 Kind = MachineLocKind::ImmediateKind; 436 Loc.FPImm = Op.getFPImm(); 437 } else if (Op.isCImm()) { 438 Kind = MachineLocKind::ImmediateKind; 439 Loc.CImm = Op.getCImm(); 440 } else 441 llvm_unreachable("Invalid Op kind for MachineLoc."); 442 return {Kind, Loc}; 443 } 444 445 /// Take the variable and machine-location in DBG_VALUE MI, and build an 446 /// entry location using the given expression. 447 static VarLoc CreateEntryLoc(const MachineInstr &MI, LexicalScopes &LS, 448 const DIExpression *EntryExpr, Register Reg) { 449 VarLoc VL(MI, LS); 450 assert(VL.Locs.size() == 1 && 451 VL.Locs[0].Kind == MachineLocKind::RegisterKind); 452 VL.EVKind = EntryValueLocKind::EntryValueKind; 453 VL.Expr = EntryExpr; 454 VL.Locs[0].Value.RegNo = Reg; 455 return VL; 456 } 457 458 /// Take the variable and machine-location from the DBG_VALUE (from the 459 /// function entry), and build an entry value backup location. The backup 460 /// location will turn into the normal location if the backup is valid at 461 /// the time of the primary location clobbering. 462 static VarLoc CreateEntryBackupLoc(const MachineInstr &MI, 463 LexicalScopes &LS, 464 const DIExpression *EntryExpr) { 465 VarLoc VL(MI, LS); 466 assert(VL.Locs.size() == 1 && 467 VL.Locs[0].Kind == MachineLocKind::RegisterKind); 468 VL.EVKind = EntryValueLocKind::EntryValueBackupKind; 469 VL.Expr = EntryExpr; 470 return VL; 471 } 472 473 /// Take the variable and machine-location from the DBG_VALUE (from the 474 /// function entry), and build a copy of an entry value backup location by 475 /// setting the register location to NewReg. 476 static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI, 477 LexicalScopes &LS, 478 const DIExpression *EntryExpr, 479 Register NewReg) { 480 VarLoc VL(MI, LS); 481 assert(VL.Locs.size() == 1 && 482 VL.Locs[0].Kind == MachineLocKind::RegisterKind); 483 VL.EVKind = EntryValueLocKind::EntryValueCopyBackupKind; 484 VL.Expr = EntryExpr; 485 VL.Locs[0].Value.RegNo = NewReg; 486 return VL; 487 } 488 489 /// Copy the register location in DBG_VALUE MI, updating the register to 490 /// be NewReg. 491 static VarLoc CreateCopyLoc(const VarLoc &OldVL, const MachineLoc &OldML, 492 Register NewReg) { 493 VarLoc VL = OldVL; 494 for (MachineLoc &ML : VL.Locs) 495 if (ML == OldML) { 496 ML.Kind = MachineLocKind::RegisterKind; 497 ML.Value.RegNo = NewReg; 498 return VL; 499 } 500 llvm_unreachable("Should have found OldML in new VarLoc."); 501 } 502 503 /// Take the variable described by DBG_VALUE* MI, and create a VarLoc 504 /// locating it in the specified spill location. 505 static VarLoc CreateSpillLoc(const VarLoc &OldVL, const MachineLoc &OldML, 506 unsigned SpillBase, StackOffset SpillOffset) { 507 VarLoc VL = OldVL; 508 for (MachineLoc &ML : VL.Locs) 509 if (ML == OldML) { 510 ML.Kind = MachineLocKind::SpillLocKind; 511 ML.Value.SpillLocation = {SpillBase, SpillOffset}; 512 return VL; 513 } 514 llvm_unreachable("Should have found OldML in new VarLoc."); 515 } 516 517 /// Create a DBG_VALUE representing this VarLoc in the given function. 518 /// Copies variable-specific information such as DILocalVariable and 519 /// inlining information from the original DBG_VALUE instruction, which may 520 /// have been several transfers ago. 521 MachineInstr *BuildDbgValue(MachineFunction &MF) const { 522 assert(!isEntryBackupLoc() && 523 "Tried to produce DBG_VALUE for backup VarLoc"); 524 const DebugLoc &DbgLoc = MI.getDebugLoc(); 525 bool Indirect = MI.isIndirectDebugValue(); 526 const auto &IID = MI.getDesc(); 527 const DILocalVariable *Var = MI.getDebugVariable(); 528 NumInserted++; 529 530 const DIExpression *DIExpr = Expr; 531 SmallVector<MachineOperand, 8> MOs; 532 for (unsigned I = 0, E = Locs.size(); I < E; ++I) { 533 MachineLocKind LocKind = Locs[I].Kind; 534 MachineLocValue Loc = Locs[I].Value; 535 const MachineOperand &Orig = MI.getDebugOperand(OrigLocMap[I]); 536 switch (LocKind) { 537 case MachineLocKind::RegisterKind: 538 // An entry value is a register location -- but with an updated 539 // expression. The register location of such DBG_VALUE is always the 540 // one from the entry DBG_VALUE, it does not matter if the entry value 541 // was copied in to another register due to some optimizations. 542 // Non-entry value register locations are like the source 543 // DBG_VALUE, but with the register number from this VarLoc. 544 MOs.push_back(MachineOperand::CreateReg( 545 EVKind == EntryValueLocKind::EntryValueKind ? Orig.getReg() 546 : Register(Loc.RegNo), 547 false)); 548 break; 549 case MachineLocKind::SpillLocKind: { 550 // Spills are indirect DBG_VALUEs, with a base register and offset. 551 // Use the original DBG_VALUEs expression to build the spilt location 552 // on top of. FIXME: spill locations created before this pass runs 553 // are not recognized, and not handled here. 554 unsigned Base = Loc.SpillLocation.SpillBase; 555 auto *TRI = MF.getSubtarget().getRegisterInfo(); 556 if (MI.isNonListDebugValue()) { 557 auto Deref = Indirect ? DIExpression::DerefAfter : 0; 558 DIExpr = TRI->prependOffsetExpression( 559 DIExpr, DIExpression::ApplyOffset | Deref, 560 Loc.SpillLocation.SpillOffset); 561 Indirect = true; 562 } else { 563 SmallVector<uint64_t, 4> Ops; 564 TRI->getOffsetOpcodes(Loc.SpillLocation.SpillOffset, Ops); 565 Ops.push_back(dwarf::DW_OP_deref); 566 DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, I); 567 } 568 MOs.push_back(MachineOperand::CreateReg(Base, false)); 569 break; 570 } 571 case MachineLocKind::ImmediateKind: { 572 MOs.push_back(Orig); 573 break; 574 } 575 case MachineLocKind::InvalidKind: 576 llvm_unreachable("Tried to produce DBG_VALUE for invalid VarLoc"); 577 } 578 } 579 return BuildMI(MF, DbgLoc, IID, Indirect, MOs, Var, DIExpr); 580 } 581 582 /// Is the Loc field a constant or constant object? 583 bool isConstant(MachineLocKind Kind) const { 584 return Kind == MachineLocKind::ImmediateKind; 585 } 586 587 /// Check if the Loc field is an entry backup location. 588 bool isEntryBackupLoc() const { 589 return EVKind == EntryValueLocKind::EntryValueBackupKind || 590 EVKind == EntryValueLocKind::EntryValueCopyBackupKind; 591 } 592 593 /// If this variable is described by register \p Reg holding the entry 594 /// value, return true. 595 bool isEntryValueBackupReg(Register Reg) const { 596 return EVKind == EntryValueLocKind::EntryValueBackupKind && usesReg(Reg); 597 } 598 599 /// If this variable is described by register \p Reg holding a copy of the 600 /// entry value, return true. 601 bool isEntryValueCopyBackupReg(Register Reg) const { 602 return EVKind == EntryValueLocKind::EntryValueCopyBackupKind && 603 usesReg(Reg); 604 } 605 606 /// If this variable is described in whole or part by \p Reg, return true. 607 bool usesReg(Register Reg) const { 608 MachineLoc RegML; 609 RegML.Kind = MachineLocKind::RegisterKind; 610 RegML.Value.RegNo = Reg; 611 return is_contained(Locs, RegML); 612 } 613 614 /// If this variable is described in whole or part by \p Reg, return true. 615 unsigned getRegIdx(Register Reg) const { 616 for (unsigned Idx = 0; Idx < Locs.size(); ++Idx) 617 if (Locs[Idx].Kind == MachineLocKind::RegisterKind && 618 Register{static_cast<unsigned>(Locs[Idx].Value.RegNo)} == Reg) 619 return Idx; 620 llvm_unreachable("Could not find given Reg in Locs"); 621 } 622 623 /// If this variable is described in whole or part by 1 or more registers, 624 /// add each of them to \p Regs and return true. 625 bool getDescribingRegs(SmallVectorImpl<uint32_t> &Regs) const { 626 bool AnyRegs = false; 627 for (const auto &Loc : Locs) 628 if (Loc.Kind == MachineLocKind::RegisterKind) { 629 Regs.push_back(Loc.Value.RegNo); 630 AnyRegs = true; 631 } 632 return AnyRegs; 633 } 634 635 bool containsSpillLocs() const { 636 return any_of(Locs, [](VarLoc::MachineLoc ML) { 637 return ML.Kind == VarLoc::MachineLocKind::SpillLocKind; 638 }); 639 } 640 641 /// If this variable is described in whole or part by \p SpillLocation, 642 /// return true. 643 bool usesSpillLoc(SpillLoc SpillLocation) const { 644 MachineLoc SpillML; 645 SpillML.Kind = MachineLocKind::SpillLocKind; 646 SpillML.Value.SpillLocation = SpillLocation; 647 return is_contained(Locs, SpillML); 648 } 649 650 /// If this variable is described in whole or part by \p SpillLocation, 651 /// return the index . 652 unsigned getSpillLocIdx(SpillLoc SpillLocation) const { 653 for (unsigned Idx = 0; Idx < Locs.size(); ++Idx) 654 if (Locs[Idx].Kind == MachineLocKind::SpillLocKind && 655 Locs[Idx].Value.SpillLocation == SpillLocation) 656 return Idx; 657 llvm_unreachable("Could not find given SpillLoc in Locs"); 658 } 659 660 /// Determine whether the lexical scope of this value's debug location 661 /// dominates MBB. 662 bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const { 663 return LS.dominates(MI.getDebugLoc().get(), &MBB); 664 } 665 666 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 667 // TRI can be null. 668 void dump(const TargetRegisterInfo *TRI, raw_ostream &Out = dbgs()) const { 669 Out << "VarLoc("; 670 for (const MachineLoc &MLoc : Locs) { 671 if (Locs.begin() != &MLoc) 672 Out << ", "; 673 switch (MLoc.Kind) { 674 case MachineLocKind::RegisterKind: 675 Out << printReg(MLoc.Value.RegNo, TRI); 676 break; 677 case MachineLocKind::SpillLocKind: 678 Out << printReg(MLoc.Value.SpillLocation.SpillBase, TRI); 679 Out << "[" << MLoc.Value.SpillLocation.SpillOffset.getFixed() << " + " 680 << MLoc.Value.SpillLocation.SpillOffset.getScalable() 681 << "x vscale" 682 << "]"; 683 break; 684 case MachineLocKind::ImmediateKind: 685 Out << MLoc.Value.Immediate; 686 break; 687 case MachineLocKind::InvalidKind: 688 llvm_unreachable("Invalid VarLoc in dump method"); 689 } 690 } 691 692 Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", "; 693 if (Var.getInlinedAt()) 694 Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n"; 695 else 696 Out << "(null))"; 697 698 if (isEntryBackupLoc()) 699 Out << " (backup loc)\n"; 700 else 701 Out << "\n"; 702 } 703 #endif 704 705 bool operator==(const VarLoc &Other) const { 706 return std::tie(EVKind, Var, Expr, Locs) == 707 std::tie(Other.EVKind, Other.Var, Other.Expr, Other.Locs); 708 } 709 710 /// This operator guarantees that VarLocs are sorted by Variable first. 711 bool operator<(const VarLoc &Other) const { 712 return std::tie(Var, EVKind, Locs, Expr) < 713 std::tie(Other.Var, Other.EVKind, Other.Locs, Other.Expr); 714 } 715 }; 716 717 #ifndef NDEBUG 718 using VarVec = SmallVector<VarLoc, 32>; 719 #endif 720 721 /// VarLocMap is used for two things: 722 /// 1) Assigning LocIndices to a VarLoc. The LocIndices can be used to 723 /// virtually insert a VarLoc into a VarLocSet. 724 /// 2) Given a LocIndex, look up the unique associated VarLoc. 725 class VarLocMap { 726 /// Map a VarLoc to an index within the vector reserved for its location 727 /// within Loc2Vars. 728 std::map<VarLoc, LocIndices> Var2Indices; 729 730 /// Map a location to a vector which holds VarLocs which live in that 731 /// location. 732 SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars; 733 734 public: 735 /// Retrieve LocIndices for \p VL. 736 LocIndices insert(const VarLoc &VL) { 737 LocIndices &Indices = Var2Indices[VL]; 738 // If Indices is not empty, VL is already in the map. 739 if (!Indices.empty()) 740 return Indices; 741 SmallVector<LocIndex::u32_location_t, 4> Locations; 742 // LocIndices are determined by EVKind and MLs; each Register has a 743 // unique location, while all SpillLocs use a single bucket, and any EV 744 // VarLocs use only the Backup bucket or none at all (except the 745 // compulsory entry at the universal location index). LocIndices will 746 // always have an index at the universal location index as the last index. 747 if (VL.EVKind == VarLoc::EntryValueLocKind::NonEntryValueKind) { 748 VL.getDescribingRegs(Locations); 749 assert(all_of(Locations, 750 [](auto RegNo) { 751 return RegNo < LocIndex::kFirstInvalidRegLocation; 752 }) && 753 "Physreg out of range?"); 754 if (VL.containsSpillLocs()) { 755 LocIndex::u32_location_t Loc = LocIndex::kSpillLocation; 756 Locations.push_back(Loc); 757 } 758 } else if (VL.EVKind != VarLoc::EntryValueLocKind::EntryValueKind) { 759 LocIndex::u32_location_t Loc = LocIndex::kEntryValueBackupLocation; 760 Locations.push_back(Loc); 761 } 762 Locations.push_back(LocIndex::kUniversalLocation); 763 for (LocIndex::u32_location_t Location : Locations) { 764 auto &Vars = Loc2Vars[Location]; 765 Indices.push_back( 766 {Location, static_cast<LocIndex::u32_index_t>(Vars.size())}); 767 Vars.push_back(VL); 768 } 769 return Indices; 770 } 771 772 LocIndices getAllIndices(const VarLoc &VL) const { 773 auto IndIt = Var2Indices.find(VL); 774 assert(IndIt != Var2Indices.end() && "VarLoc not tracked"); 775 return IndIt->second; 776 } 777 778 /// Retrieve the unique VarLoc associated with \p ID. 779 const VarLoc &operator[](LocIndex ID) const { 780 auto LocIt = Loc2Vars.find(ID.Location); 781 assert(LocIt != Loc2Vars.end() && "Location not tracked"); 782 return LocIt->second[ID.Index]; 783 } 784 }; 785 786 using VarLocInMBB = 787 SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>; 788 struct TransferDebugPair { 789 MachineInstr *TransferInst; ///< Instruction where this transfer occurs. 790 LocIndex LocationID; ///< Location number for the transfer dest. 791 }; 792 using TransferMap = SmallVector<TransferDebugPair, 4>; 793 // Types for recording Entry Var Locations emitted by a single MachineInstr, 794 // as well as recording MachineInstr which last defined a register. 795 using InstToEntryLocMap = std::multimap<const MachineInstr *, LocIndex>; 796 using RegDefToInstMap = DenseMap<Register, MachineInstr *>; 797 798 // Types for recording sets of variable fragments that overlap. For a given 799 // local variable, we record all other fragments of that variable that could 800 // overlap it, to reduce search time. 801 using FragmentOfVar = 802 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; 803 using OverlapMap = 804 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; 805 806 // Helper while building OverlapMap, a map of all fragments seen for a given 807 // DILocalVariable. 808 using VarToFragments = 809 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; 810 811 /// Collects all VarLocs from \p CollectFrom. Each unique VarLoc is added 812 /// to \p Collected once, in order of insertion into \p VarLocIDs. 813 static void collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected, 814 const VarLocSet &CollectFrom, 815 const VarLocMap &VarLocIDs); 816 817 /// Get the registers which are used by VarLocs of kind RegisterKind tracked 818 /// by \p CollectFrom. 819 void getUsedRegs(const VarLocSet &CollectFrom, 820 SmallVectorImpl<Register> &UsedRegs) const; 821 822 /// This holds the working set of currently open ranges. For fast 823 /// access, this is done both as a set of VarLocIDs, and a map of 824 /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all 825 /// previous open ranges for the same variable. In addition, we keep 826 /// two different maps (Vars/EntryValuesBackupVars), so erase/insert 827 /// methods act differently depending on whether a VarLoc is primary 828 /// location or backup one. In the case the VarLoc is backup location 829 /// we will erase/insert from the EntryValuesBackupVars map, otherwise 830 /// we perform the operation on the Vars. 831 class OpenRangesSet { 832 VarLocSet::Allocator &Alloc; 833 VarLocSet VarLocs; 834 // Map the DebugVariable to recent primary location ID. 835 SmallDenseMap<DebugVariable, LocIndices, 8> Vars; 836 // Map the DebugVariable to recent backup location ID. 837 SmallDenseMap<DebugVariable, LocIndices, 8> EntryValuesBackupVars; 838 OverlapMap &OverlappingFragments; 839 840 public: 841 OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap) 842 : Alloc(Alloc), VarLocs(Alloc), OverlappingFragments(_OLapMap) {} 843 844 const VarLocSet &getVarLocs() const { return VarLocs; } 845 846 // Fetches all VarLocs in \p VarLocIDs and inserts them into \p Collected. 847 // This method is needed to get every VarLoc once, as each VarLoc may have 848 // multiple indices in a VarLocMap (corresponding to each applicable 849 // location), but all VarLocs appear exactly once at the universal location 850 // index. 851 void getUniqueVarLocs(SmallVectorImpl<VarLoc> &Collected, 852 const VarLocMap &VarLocIDs) const { 853 collectAllVarLocs(Collected, VarLocs, VarLocIDs); 854 } 855 856 /// Terminate all open ranges for VL.Var by removing it from the set. 857 void erase(const VarLoc &VL); 858 859 /// Terminate all open ranges listed as indices in \c KillSet with 860 /// \c Location by removing them from the set. 861 void erase(const VarLocsInRange &KillSet, const VarLocMap &VarLocIDs, 862 LocIndex::u32_location_t Location); 863 864 /// Insert a new range into the set. 865 void insert(LocIndices VarLocIDs, const VarLoc &VL); 866 867 /// Insert a set of ranges. 868 void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map); 869 870 llvm::Optional<LocIndices> getEntryValueBackup(DebugVariable Var); 871 872 /// Empty the set. 873 void clear() { 874 VarLocs.clear(); 875 Vars.clear(); 876 EntryValuesBackupVars.clear(); 877 } 878 879 /// Return whether the set is empty or not. 880 bool empty() const { 881 assert(Vars.empty() == EntryValuesBackupVars.empty() && 882 Vars.empty() == VarLocs.empty() && 883 "open ranges are inconsistent"); 884 return VarLocs.empty(); 885 } 886 887 /// Get an empty range of VarLoc IDs. 888 auto getEmptyVarLocRange() const { 889 return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(), 890 getVarLocs().end()); 891 } 892 893 /// Get all set IDs for VarLocs with MLs of kind RegisterKind in \p Reg. 894 auto getRegisterVarLocs(Register Reg) const { 895 return LocIndex::indexRangeForLocation(getVarLocs(), Reg); 896 } 897 898 /// Get all set IDs for VarLocs with MLs of kind SpillLocKind. 899 auto getSpillVarLocs() const { 900 return LocIndex::indexRangeForLocation(getVarLocs(), 901 LocIndex::kSpillLocation); 902 } 903 904 /// Get all set IDs for VarLocs of EVKind EntryValueBackupKind or 905 /// EntryValueCopyBackupKind. 906 auto getEntryValueBackupVarLocs() const { 907 return LocIndex::indexRangeForLocation( 908 getVarLocs(), LocIndex::kEntryValueBackupLocation); 909 } 910 }; 911 912 /// Collect all VarLoc IDs from \p CollectFrom for VarLocs with MLs of kind 913 /// RegisterKind which are located in any reg in \p Regs. The IDs for each 914 /// VarLoc correspond to entries in the universal location bucket, which every 915 /// VarLoc has exactly 1 entry for. Insert collected IDs into \p Collected. 916 static void collectIDsForRegs(VarLocsInRange &Collected, 917 const DefinedRegsSet &Regs, 918 const VarLocSet &CollectFrom, 919 const VarLocMap &VarLocIDs); 920 921 VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) { 922 std::unique_ptr<VarLocSet> &VLS = Locs[MBB]; 923 if (!VLS) 924 VLS = std::make_unique<VarLocSet>(Alloc); 925 return *VLS.get(); 926 } 927 928 const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, 929 const VarLocInMBB &Locs) const { 930 auto It = Locs.find(MBB); 931 assert(It != Locs.end() && "MBB not in map"); 932 return *It->second.get(); 933 } 934 935 /// Tests whether this instruction is a spill to a stack location. 936 bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); 937 938 /// Decide if @MI is a spill instruction and return true if it is. We use 2 939 /// criteria to make this decision: 940 /// - Is this instruction a store to a spill slot? 941 /// - Is there a register operand that is both used and killed? 942 /// TODO: Store optimization can fold spills into other stores (including 943 /// other spills). We do not handle this yet (more than one memory operand). 944 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, 945 Register &Reg); 946 947 /// Returns true if the given machine instruction is a debug value which we 948 /// can emit entry values for. 949 /// 950 /// Currently, we generate debug entry values only for parameters that are 951 /// unmodified throughout the function and located in a register. 952 bool isEntryValueCandidate(const MachineInstr &MI, 953 const DefinedRegsSet &Regs) const; 954 955 /// If a given instruction is identified as a spill, return the spill location 956 /// and set \p Reg to the spilled register. 957 Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI, 958 MachineFunction *MF, 959 Register &Reg); 960 /// Given a spill instruction, extract the register and offset used to 961 /// address the spill location in a target independent way. 962 VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); 963 void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges, 964 TransferMap &Transfers, VarLocMap &VarLocIDs, 965 LocIndex OldVarID, TransferKind Kind, 966 const VarLoc::MachineLoc &OldLoc, 967 Register NewReg = Register()); 968 969 void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, 970 VarLocMap &VarLocIDs, 971 InstToEntryLocMap &EntryValTransfers, 972 RegDefToInstMap &RegSetInstrs); 973 void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges, 974 VarLocMap &VarLocIDs, TransferMap &Transfers); 975 void cleanupEntryValueTransfers(const MachineInstr *MI, 976 OpenRangesSet &OpenRanges, 977 VarLocMap &VarLocIDs, const VarLoc &EntryVL, 978 InstToEntryLocMap &EntryValTransfers); 979 void removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, 980 VarLocMap &VarLocIDs, const VarLoc &EntryVL, 981 InstToEntryLocMap &EntryValTransfers, 982 RegDefToInstMap &RegSetInstrs); 983 void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges, 984 VarLocMap &VarLocIDs, 985 InstToEntryLocMap &EntryValTransfers, 986 VarLocsInRange &KillSet); 987 void recordEntryValue(const MachineInstr &MI, 988 const DefinedRegsSet &DefinedRegs, 989 OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs); 990 void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges, 991 VarLocMap &VarLocIDs, TransferMap &Transfers); 992 void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges, 993 VarLocMap &VarLocIDs, 994 InstToEntryLocMap &EntryValTransfers, 995 RegDefToInstMap &RegSetInstrs); 996 bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges, 997 VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs); 998 999 void process(MachineInstr &MI, OpenRangesSet &OpenRanges, 1000 VarLocMap &VarLocIDs, TransferMap &Transfers, 1001 InstToEntryLocMap &EntryValTransfers, 1002 RegDefToInstMap &RegSetInstrs); 1003 1004 void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments, 1005 OverlapMap &OLapMap); 1006 1007 bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, 1008 const VarLocMap &VarLocIDs, 1009 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1010 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks); 1011 1012 /// Create DBG_VALUE insts for inlocs that have been propagated but 1013 /// had their instruction creation deferred. 1014 void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs); 1015 1016 bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree, 1017 TargetPassConfig *TPC, unsigned InputBBLimit, 1018 unsigned InputDbgValLimit) override; 1019 1020 public: 1021 /// Default construct and initialize the pass. 1022 VarLocBasedLDV(); 1023 1024 ~VarLocBasedLDV(); 1025 1026 /// Print to ostream with a message. 1027 void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V, 1028 const VarLocMap &VarLocIDs, const char *msg, 1029 raw_ostream &Out) const; 1030 }; 1031 1032 } // end anonymous namespace 1033 1034 //===----------------------------------------------------------------------===// 1035 // Implementation 1036 //===----------------------------------------------------------------------===// 1037 1038 VarLocBasedLDV::VarLocBasedLDV() { } 1039 1040 VarLocBasedLDV::~VarLocBasedLDV() { } 1041 1042 /// Erase a variable from the set of open ranges, and additionally erase any 1043 /// fragments that may overlap it. If the VarLoc is a backup location, erase 1044 /// the variable from the EntryValuesBackupVars set, indicating we should stop 1045 /// tracking its backup entry location. Otherwise, if the VarLoc is primary 1046 /// location, erase the variable from the Vars set. 1047 void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) { 1048 // Erasure helper. 1049 auto DoErase = [VL, this](DebugVariable VarToErase) { 1050 auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 1051 auto It = EraseFrom->find(VarToErase); 1052 if (It != EraseFrom->end()) { 1053 LocIndices IDs = It->second; 1054 for (LocIndex ID : IDs) 1055 VarLocs.reset(ID.getAsRawInteger()); 1056 EraseFrom->erase(It); 1057 } 1058 }; 1059 1060 DebugVariable Var = VL.Var; 1061 1062 // Erase the variable/fragment that ends here. 1063 DoErase(Var); 1064 1065 // Extract the fragment. Interpret an empty fragment as one that covers all 1066 // possible bits. 1067 FragmentInfo ThisFragment = Var.getFragmentOrDefault(); 1068 1069 // There may be fragments that overlap the designated fragment. Look them up 1070 // in the pre-computed overlap map, and erase them too. 1071 auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment}); 1072 if (MapIt != OverlappingFragments.end()) { 1073 for (auto Fragment : MapIt->second) { 1074 VarLocBasedLDV::OptFragmentInfo FragmentHolder; 1075 if (!DebugVariable::isDefaultFragment(Fragment)) 1076 FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment); 1077 DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()}); 1078 } 1079 } 1080 } 1081 1082 void VarLocBasedLDV::OpenRangesSet::erase(const VarLocsInRange &KillSet, 1083 const VarLocMap &VarLocIDs, 1084 LocIndex::u32_location_t Location) { 1085 VarLocSet RemoveSet(Alloc); 1086 for (LocIndex::u32_index_t ID : KillSet) { 1087 const VarLoc &VL = VarLocIDs[LocIndex(Location, ID)]; 1088 auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 1089 EraseFrom->erase(VL.Var); 1090 LocIndices VLI = VarLocIDs.getAllIndices(VL); 1091 for (LocIndex ID : VLI) 1092 RemoveSet.set(ID.getAsRawInteger()); 1093 } 1094 VarLocs.intersectWithComplement(RemoveSet); 1095 } 1096 1097 void VarLocBasedLDV::OpenRangesSet::insertFromLocSet(const VarLocSet &ToLoad, 1098 const VarLocMap &Map) { 1099 VarLocsInRange UniqueVarLocIDs; 1100 DefinedRegsSet Regs; 1101 Regs.insert(LocIndex::kUniversalLocation); 1102 collectIDsForRegs(UniqueVarLocIDs, Regs, ToLoad, Map); 1103 for (uint64_t ID : UniqueVarLocIDs) { 1104 LocIndex Idx = LocIndex::fromRawInteger(ID); 1105 const VarLoc &VarL = Map[Idx]; 1106 const LocIndices Indices = Map.getAllIndices(VarL); 1107 insert(Indices, VarL); 1108 } 1109 } 1110 1111 void VarLocBasedLDV::OpenRangesSet::insert(LocIndices VarLocIDs, 1112 const VarLoc &VL) { 1113 auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 1114 for (LocIndex ID : VarLocIDs) 1115 VarLocs.set(ID.getAsRawInteger()); 1116 InsertInto->insert({VL.Var, VarLocIDs}); 1117 } 1118 1119 /// Return the Loc ID of an entry value backup location, if it exists for the 1120 /// variable. 1121 llvm::Optional<LocIndices> 1122 VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) { 1123 auto It = EntryValuesBackupVars.find(Var); 1124 if (It != EntryValuesBackupVars.end()) 1125 return It->second; 1126 1127 return llvm::None; 1128 } 1129 1130 void VarLocBasedLDV::collectIDsForRegs(VarLocsInRange &Collected, 1131 const DefinedRegsSet &Regs, 1132 const VarLocSet &CollectFrom, 1133 const VarLocMap &VarLocIDs) { 1134 assert(!Regs.empty() && "Nothing to collect"); 1135 SmallVector<Register, 32> SortedRegs; 1136 append_range(SortedRegs, Regs); 1137 array_pod_sort(SortedRegs.begin(), SortedRegs.end()); 1138 auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front())); 1139 auto End = CollectFrom.end(); 1140 for (Register Reg : SortedRegs) { 1141 // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains 1142 // all possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which 1143 // live in Reg. 1144 uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg); 1145 uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1); 1146 It.advanceToLowerBound(FirstIndexForReg); 1147 1148 // Iterate through that half-open interval and collect all the set IDs. 1149 for (; It != End && *It < FirstInvalidIndex; ++It) { 1150 LocIndex ItIdx = LocIndex::fromRawInteger(*It); 1151 const VarLoc &VL = VarLocIDs[ItIdx]; 1152 LocIndices LI = VarLocIDs.getAllIndices(VL); 1153 // For now, the back index is always the universal location index. 1154 assert(LI.back().Location == LocIndex::kUniversalLocation && 1155 "Unexpected order of LocIndices for VarLoc; was it inserted into " 1156 "the VarLocMap correctly?"); 1157 Collected.insert(LI.back().Index); 1158 } 1159 1160 if (It == End) 1161 return; 1162 } 1163 } 1164 1165 void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom, 1166 SmallVectorImpl<Register> &UsedRegs) const { 1167 // All register-based VarLocs are assigned indices greater than or equal to 1168 // FirstRegIndex. 1169 uint64_t FirstRegIndex = 1170 LocIndex::rawIndexForReg(LocIndex::kFirstRegLocation); 1171 uint64_t FirstInvalidIndex = 1172 LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation); 1173 for (auto It = CollectFrom.find(FirstRegIndex), 1174 End = CollectFrom.find(FirstInvalidIndex); 1175 It != End;) { 1176 // We found a VarLoc ID for a VarLoc that lives in a register. Figure out 1177 // which register and add it to UsedRegs. 1178 uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location; 1179 assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) && 1180 "Duplicate used reg"); 1181 UsedRegs.push_back(FoundReg); 1182 1183 // Skip to the next /set/ register. Note that this finds a lower bound, so 1184 // even if there aren't any VarLocs living in `FoundReg+1`, we're still 1185 // guaranteed to move on to the next register (or to end()). 1186 uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1); 1187 It.advanceToLowerBound(NextRegIndex); 1188 } 1189 } 1190 1191 //===----------------------------------------------------------------------===// 1192 // Debug Range Extension Implementation 1193 //===----------------------------------------------------------------------===// 1194 1195 #ifndef NDEBUG 1196 void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF, 1197 const VarLocInMBB &V, 1198 const VarLocMap &VarLocIDs, 1199 const char *msg, 1200 raw_ostream &Out) const { 1201 Out << '\n' << msg << '\n'; 1202 for (const MachineBasicBlock &BB : MF) { 1203 if (!V.count(&BB)) 1204 continue; 1205 const VarLocSet &L = getVarLocsInMBB(&BB, V); 1206 if (L.empty()) 1207 continue; 1208 SmallVector<VarLoc, 32> VarLocs; 1209 collectAllVarLocs(VarLocs, L, VarLocIDs); 1210 Out << "MBB: " << BB.getNumber() << ":\n"; 1211 for (const VarLoc &VL : VarLocs) { 1212 Out << " Var: " << VL.Var.getVariable()->getName(); 1213 Out << " MI: "; 1214 VL.dump(TRI, Out); 1215 } 1216 } 1217 Out << "\n"; 1218 } 1219 #endif 1220 1221 VarLocBasedLDV::VarLoc::SpillLoc 1222 VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { 1223 assert(MI.hasOneMemOperand() && 1224 "Spill instruction does not have exactly one memory operand?"); 1225 auto MMOI = MI.memoperands_begin(); 1226 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 1227 assert(PVal->kind() == PseudoSourceValue::FixedStack && 1228 "Inconsistent memory operand in spill instruction"); 1229 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); 1230 const MachineBasicBlock *MBB = MI.getParent(); 1231 Register Reg; 1232 StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); 1233 return {Reg, Offset}; 1234 } 1235 1236 /// Do cleanup of \p EntryValTransfers created by \p TRInst, by removing the 1237 /// Transfer, which uses the to-be-deleted \p EntryVL. 1238 void VarLocBasedLDV::cleanupEntryValueTransfers( 1239 const MachineInstr *TRInst, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, 1240 const VarLoc &EntryVL, InstToEntryLocMap &EntryValTransfers) { 1241 if (EntryValTransfers.empty() || TRInst == nullptr) 1242 return; 1243 1244 auto TransRange = EntryValTransfers.equal_range(TRInst); 1245 for (auto TDPair : llvm::make_range(TransRange.first, TransRange.second)) { 1246 const VarLoc &EmittedEV = VarLocIDs[TDPair.second]; 1247 if (std::tie(EntryVL.Var, EntryVL.Locs[0].Value.RegNo, EntryVL.Expr) == 1248 std::tie(EmittedEV.Var, EmittedEV.Locs[0].Value.RegNo, 1249 EmittedEV.Expr)) { 1250 OpenRanges.erase(EmittedEV); 1251 EntryValTransfers.erase(TRInst); 1252 break; 1253 } 1254 } 1255 } 1256 1257 /// Try to salvage the debug entry value if we encounter a new debug value 1258 /// describing the same parameter, otherwise stop tracking the value. Return 1259 /// true if we should stop tracking the entry value and do the cleanup of 1260 /// emitted Entry Value Transfers, otherwise return false. 1261 void VarLocBasedLDV::removeEntryValue(const MachineInstr &MI, 1262 OpenRangesSet &OpenRanges, 1263 VarLocMap &VarLocIDs, 1264 const VarLoc &EntryVL, 1265 InstToEntryLocMap &EntryValTransfers, 1266 RegDefToInstMap &RegSetInstrs) { 1267 // Skip the DBG_VALUE which is the debug entry value itself. 1268 if (&MI == &EntryVL.MI) 1269 return; 1270 1271 // If the parameter's location is not register location, we can not track 1272 // the entry value any more. It doesn't have the TransferInst which defines 1273 // register, so no Entry Value Transfers have been emitted already. 1274 if (!MI.getDebugOperand(0).isReg()) 1275 return; 1276 1277 // Try to get non-debug instruction responsible for the DBG_VALUE. 1278 const MachineInstr *TransferInst = nullptr; 1279 Register Reg = MI.getDebugOperand(0).getReg(); 1280 if (Reg.isValid() && RegSetInstrs.find(Reg) != RegSetInstrs.end()) 1281 TransferInst = RegSetInstrs.find(Reg)->second; 1282 1283 // Case of the parameter's DBG_VALUE at the start of entry MBB. 1284 if (!TransferInst && !LastNonDbgMI && MI.getParent()->isEntryBlock()) 1285 return; 1286 1287 // If the debug expression from the DBG_VALUE is not empty, we can assume the 1288 // parameter's value has changed indicating that we should stop tracking its 1289 // entry value as well. 1290 if (MI.getDebugExpression()->getNumElements() == 0 && TransferInst) { 1291 // If the DBG_VALUE comes from a copy instruction that copies the entry 1292 // value, it means the parameter's value has not changed and we should be 1293 // able to use its entry value. 1294 // TODO: Try to keep tracking of an entry value if we encounter a propagated 1295 // DBG_VALUE describing the copy of the entry value. (Propagated entry value 1296 // does not indicate the parameter modification.) 1297 auto DestSrc = TII->isCopyInstr(*TransferInst); 1298 if (DestSrc) { 1299 const MachineOperand *SrcRegOp, *DestRegOp; 1300 SrcRegOp = DestSrc->Source; 1301 DestRegOp = DestSrc->Destination; 1302 if (Reg == DestRegOp->getReg()) { 1303 for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { 1304 const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)]; 1305 if (VL.isEntryValueCopyBackupReg(Reg) && 1306 // Entry Values should not be variadic. 1307 VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg()) 1308 return; 1309 } 1310 } 1311 } 1312 } 1313 1314 LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: "; 1315 MI.print(dbgs(), /*IsStandalone*/ false, 1316 /*SkipOpers*/ false, /*SkipDebugLoc*/ false, 1317 /*AddNewLine*/ true, TII)); 1318 cleanupEntryValueTransfers(TransferInst, OpenRanges, VarLocIDs, EntryVL, 1319 EntryValTransfers); 1320 OpenRanges.erase(EntryVL); 1321 } 1322 1323 /// End all previous ranges related to @MI and start a new range from @MI 1324 /// if it is a DBG_VALUE instr. 1325 void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI, 1326 OpenRangesSet &OpenRanges, 1327 VarLocMap &VarLocIDs, 1328 InstToEntryLocMap &EntryValTransfers, 1329 RegDefToInstMap &RegSetInstrs) { 1330 if (!MI.isDebugValue()) 1331 return; 1332 const DILocalVariable *Var = MI.getDebugVariable(); 1333 const DIExpression *Expr = MI.getDebugExpression(); 1334 const DILocation *DebugLoc = MI.getDebugLoc(); 1335 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 1336 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 1337 "Expected inlined-at fields to agree"); 1338 1339 DebugVariable V(Var, Expr, InlinedAt); 1340 1341 // Check if this DBG_VALUE indicates a parameter's value changing. 1342 // If that is the case, we should stop tracking its entry value. 1343 auto EntryValBackupID = OpenRanges.getEntryValueBackup(V); 1344 if (Var->isParameter() && EntryValBackupID) { 1345 const VarLoc &EntryVL = VarLocIDs[EntryValBackupID->back()]; 1346 removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL, EntryValTransfers, 1347 RegSetInstrs); 1348 } 1349 1350 if (all_of(MI.debug_operands(), [](const MachineOperand &MO) { 1351 return (MO.isReg() && MO.getReg()) || MO.isImm() || MO.isFPImm() || 1352 MO.isCImm(); 1353 })) { 1354 // Use normal VarLoc constructor for registers and immediates. 1355 VarLoc VL(MI, LS); 1356 // End all previous ranges of VL.Var. 1357 OpenRanges.erase(VL); 1358 1359 LocIndices IDs = VarLocIDs.insert(VL); 1360 // Add the VarLoc to OpenRanges from this DBG_VALUE. 1361 OpenRanges.insert(IDs, VL); 1362 } else if (MI.memoperands().size() > 0) { 1363 llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?"); 1364 } else { 1365 // This must be an undefined location. If it has an open range, erase it. 1366 assert(MI.isUndefDebugValue() && 1367 "Unexpected non-undef DBG_VALUE encountered"); 1368 VarLoc VL(MI, LS); 1369 OpenRanges.erase(VL); 1370 } 1371 } 1372 1373 // This should be removed later, doesn't fit the new design. 1374 void VarLocBasedLDV::collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected, 1375 const VarLocSet &CollectFrom, 1376 const VarLocMap &VarLocIDs) { 1377 // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all 1378 // possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which live 1379 // in Reg. 1380 uint64_t FirstIndex = LocIndex::rawIndexForReg(LocIndex::kUniversalLocation); 1381 uint64_t FirstInvalidIndex = 1382 LocIndex::rawIndexForReg(LocIndex::kUniversalLocation + 1); 1383 // Iterate through that half-open interval and collect all the set IDs. 1384 for (auto It = CollectFrom.find(FirstIndex), End = CollectFrom.end(); 1385 It != End && *It < FirstInvalidIndex; ++It) { 1386 LocIndex RegIdx = LocIndex::fromRawInteger(*It); 1387 Collected.push_back(VarLocIDs[RegIdx]); 1388 } 1389 } 1390 1391 /// Turn the entry value backup locations into primary locations. 1392 void VarLocBasedLDV::emitEntryValues(MachineInstr &MI, 1393 OpenRangesSet &OpenRanges, 1394 VarLocMap &VarLocIDs, 1395 InstToEntryLocMap &EntryValTransfers, 1396 VarLocsInRange &KillSet) { 1397 // Do not insert entry value locations after a terminator. 1398 if (MI.isTerminator()) 1399 return; 1400 1401 for (uint32_t ID : KillSet) { 1402 // The KillSet IDs are indices for the universal location bucket. 1403 LocIndex Idx = LocIndex(LocIndex::kUniversalLocation, ID); 1404 const VarLoc &VL = VarLocIDs[Idx]; 1405 if (!VL.Var.getVariable()->isParameter()) 1406 continue; 1407 1408 auto DebugVar = VL.Var; 1409 Optional<LocIndices> EntryValBackupIDs = 1410 OpenRanges.getEntryValueBackup(DebugVar); 1411 1412 // If the parameter has the entry value backup, it means we should 1413 // be able to use its entry value. 1414 if (!EntryValBackupIDs) 1415 continue; 1416 1417 const VarLoc &EntryVL = VarLocIDs[EntryValBackupIDs->back()]; 1418 VarLoc EntryLoc = VarLoc::CreateEntryLoc(EntryVL.MI, LS, EntryVL.Expr, 1419 EntryVL.Locs[0].Value.RegNo); 1420 LocIndices EntryValueIDs = VarLocIDs.insert(EntryLoc); 1421 assert(EntryValueIDs.size() == 1 && 1422 "EntryValue loc should not be variadic"); 1423 EntryValTransfers.insert({&MI, EntryValueIDs.back()}); 1424 OpenRanges.insert(EntryValueIDs, EntryLoc); 1425 } 1426 } 1427 1428 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc 1429 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with 1430 /// new VarLoc. If \p NewReg is different than default zero value then the 1431 /// new location will be register location created by the copy like instruction, 1432 /// otherwise it is variable's location on the stack. 1433 void VarLocBasedLDV::insertTransferDebugPair( 1434 MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers, 1435 VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind, 1436 const VarLoc::MachineLoc &OldLoc, Register NewReg) { 1437 const VarLoc &OldVarLoc = VarLocIDs[OldVarID]; 1438 1439 auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) { 1440 LocIndices LocIds = VarLocIDs.insert(VL); 1441 1442 // Close this variable's previous location range. 1443 OpenRanges.erase(VL); 1444 1445 // Record the new location as an open range, and a postponed transfer 1446 // inserting a DBG_VALUE for this location. 1447 OpenRanges.insert(LocIds, VL); 1448 assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator"); 1449 TransferDebugPair MIP = {&MI, LocIds.back()}; 1450 Transfers.push_back(MIP); 1451 }; 1452 1453 // End all previous ranges of VL.Var. 1454 OpenRanges.erase(VarLocIDs[OldVarID]); 1455 switch (Kind) { 1456 case TransferKind::TransferCopy: { 1457 assert(NewReg && 1458 "No register supplied when handling a copy of a debug value"); 1459 // Create a DBG_VALUE instruction to describe the Var in its new 1460 // register location. 1461 VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg); 1462 ProcessVarLoc(VL); 1463 LLVM_DEBUG({ 1464 dbgs() << "Creating VarLoc for register copy:"; 1465 VL.dump(TRI); 1466 }); 1467 return; 1468 } 1469 case TransferKind::TransferSpill: { 1470 // Create a DBG_VALUE instruction to describe the Var in its spilled 1471 // location. 1472 VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI); 1473 VarLoc VL = VarLoc::CreateSpillLoc( 1474 OldVarLoc, OldLoc, SpillLocation.SpillBase, SpillLocation.SpillOffset); 1475 ProcessVarLoc(VL); 1476 LLVM_DEBUG({ 1477 dbgs() << "Creating VarLoc for spill:"; 1478 VL.dump(TRI); 1479 }); 1480 return; 1481 } 1482 case TransferKind::TransferRestore: { 1483 assert(NewReg && 1484 "No register supplied when handling a restore of a debug value"); 1485 // DebugInstr refers to the pre-spill location, therefore we can reuse 1486 // its expression. 1487 VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg); 1488 ProcessVarLoc(VL); 1489 LLVM_DEBUG({ 1490 dbgs() << "Creating VarLoc for restore:"; 1491 VL.dump(TRI); 1492 }); 1493 return; 1494 } 1495 } 1496 llvm_unreachable("Invalid transfer kind"); 1497 } 1498 1499 /// A definition of a register may mark the end of a range. 1500 void VarLocBasedLDV::transferRegisterDef(MachineInstr &MI, 1501 OpenRangesSet &OpenRanges, 1502 VarLocMap &VarLocIDs, 1503 InstToEntryLocMap &EntryValTransfers, 1504 RegDefToInstMap &RegSetInstrs) { 1505 1506 // Meta Instructions do not affect the debug liveness of any register they 1507 // define. 1508 if (MI.isMetaInstruction()) 1509 return; 1510 1511 MachineFunction *MF = MI.getMF(); 1512 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1513 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 1514 1515 // Find the regs killed by MI, and find regmasks of preserved regs. 1516 DefinedRegsSet DeadRegs; 1517 SmallVector<const uint32_t *, 4> RegMasks; 1518 for (const MachineOperand &MO : MI.operands()) { 1519 // Determine whether the operand is a register def. 1520 if (MO.isReg() && MO.isDef() && MO.getReg() && 1521 Register::isPhysicalRegister(MO.getReg()) && 1522 !(MI.isCall() && MO.getReg() == SP)) { 1523 // Remove ranges of all aliased registers. 1524 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1525 // FIXME: Can we break out of this loop early if no insertion occurs? 1526 DeadRegs.insert(*RAI); 1527 RegSetInstrs.erase(MO.getReg()); 1528 RegSetInstrs.insert({MO.getReg(), &MI}); 1529 } else if (MO.isRegMask()) { 1530 RegMasks.push_back(MO.getRegMask()); 1531 } 1532 } 1533 1534 // Erase VarLocs which reside in one of the dead registers. For performance 1535 // reasons, it's critical to not iterate over the full set of open VarLocs. 1536 // Iterate over the set of dying/used regs instead. 1537 if (!RegMasks.empty()) { 1538 SmallVector<Register, 32> UsedRegs; 1539 getUsedRegs(OpenRanges.getVarLocs(), UsedRegs); 1540 for (Register Reg : UsedRegs) { 1541 // Remove ranges of all clobbered registers. Register masks don't usually 1542 // list SP as preserved. Assume that call instructions never clobber SP, 1543 // because some backends (e.g., AArch64) never list SP in the regmask. 1544 // While the debug info may be off for an instruction or two around 1545 // callee-cleanup calls, transferring the DEBUG_VALUE across the call is 1546 // still a better user experience. 1547 if (Reg == SP) 1548 continue; 1549 bool AnyRegMaskKillsReg = 1550 any_of(RegMasks, [Reg](const uint32_t *RegMask) { 1551 return MachineOperand::clobbersPhysReg(RegMask, Reg); 1552 }); 1553 if (AnyRegMaskKillsReg) 1554 DeadRegs.insert(Reg); 1555 if (AnyRegMaskKillsReg) { 1556 RegSetInstrs.erase(Reg); 1557 RegSetInstrs.insert({Reg, &MI}); 1558 } 1559 } 1560 } 1561 1562 if (DeadRegs.empty()) 1563 return; 1564 1565 VarLocsInRange KillSet; 1566 collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs(), VarLocIDs); 1567 OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kUniversalLocation); 1568 1569 if (TPC) { 1570 auto &TM = TPC->getTM<TargetMachine>(); 1571 if (TM.Options.ShouldEmitDebugEntryValues()) 1572 emitEntryValues(MI, OpenRanges, VarLocIDs, EntryValTransfers, KillSet); 1573 } 1574 } 1575 1576 bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI, 1577 MachineFunction *MF) { 1578 // TODO: Handle multiple stores folded into one. 1579 if (!MI.hasOneMemOperand()) 1580 return false; 1581 1582 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) 1583 return false; // This is not a spill instruction, since no valid size was 1584 // returned from either function. 1585 1586 return true; 1587 } 1588 1589 bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI, 1590 MachineFunction *MF, Register &Reg) { 1591 if (!isSpillInstruction(MI, MF)) 1592 return false; 1593 1594 auto isKilledReg = [&](const MachineOperand MO, Register &Reg) { 1595 if (!MO.isReg() || !MO.isUse()) { 1596 Reg = 0; 1597 return false; 1598 } 1599 Reg = MO.getReg(); 1600 return MO.isKill(); 1601 }; 1602 1603 for (const MachineOperand &MO : MI.operands()) { 1604 // In a spill instruction generated by the InlineSpiller the spilled 1605 // register has its kill flag set. 1606 if (isKilledReg(MO, Reg)) 1607 return true; 1608 if (Reg != 0) { 1609 // Check whether next instruction kills the spilled register. 1610 // FIXME: Current solution does not cover search for killed register in 1611 // bundles and instructions further down the chain. 1612 auto NextI = std::next(MI.getIterator()); 1613 // Skip next instruction that points to basic block end iterator. 1614 if (MI.getParent()->end() == NextI) 1615 continue; 1616 Register RegNext; 1617 for (const MachineOperand &MONext : NextI->operands()) { 1618 // Return true if we came across the register from the 1619 // previous spill instruction that is killed in NextI. 1620 if (isKilledReg(MONext, RegNext) && RegNext == Reg) 1621 return true; 1622 } 1623 } 1624 } 1625 // Return false if we didn't find spilled register. 1626 return false; 1627 } 1628 1629 Optional<VarLocBasedLDV::VarLoc::SpillLoc> 1630 VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI, 1631 MachineFunction *MF, Register &Reg) { 1632 if (!MI.hasOneMemOperand()) 1633 return None; 1634 1635 // FIXME: Handle folded restore instructions with more than one memory 1636 // operand. 1637 if (MI.getRestoreSize(TII)) { 1638 Reg = MI.getOperand(0).getReg(); 1639 return extractSpillBaseRegAndOffset(MI); 1640 } 1641 return None; 1642 } 1643 1644 /// A spilled register may indicate that we have to end the current range of 1645 /// a variable and create a new one for the spill location. 1646 /// A restored register may indicate the reverse situation. 1647 /// We don't want to insert any instructions in process(), so we just create 1648 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers. 1649 /// It will be inserted into the BB when we're done iterating over the 1650 /// instructions. 1651 void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI, 1652 OpenRangesSet &OpenRanges, 1653 VarLocMap &VarLocIDs, 1654 TransferMap &Transfers) { 1655 MachineFunction *MF = MI.getMF(); 1656 TransferKind TKind; 1657 Register Reg; 1658 Optional<VarLoc::SpillLoc> Loc; 1659 1660 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); 1661 1662 // First, if there are any DBG_VALUEs pointing at a spill slot that is 1663 // written to, then close the variable location. The value in memory 1664 // will have changed. 1665 VarLocsInRange KillSet; 1666 if (isSpillInstruction(MI, MF)) { 1667 Loc = extractSpillBaseRegAndOffset(MI); 1668 for (uint64_t ID : OpenRanges.getSpillVarLocs()) { 1669 LocIndex Idx = LocIndex::fromRawInteger(ID); 1670 const VarLoc &VL = VarLocIDs[Idx]; 1671 assert(VL.containsSpillLocs() && "Broken VarLocSet?"); 1672 if (VL.usesSpillLoc(*Loc)) { 1673 // This location is overwritten by the current instruction -- terminate 1674 // the open range, and insert an explicit DBG_VALUE $noreg. 1675 // 1676 // Doing this at a later stage would require re-interpreting all 1677 // DBG_VALUes and DIExpressions to identify whether they point at 1678 // memory, and then analysing all memory writes to see if they 1679 // overwrite that memory, which is expensive. 1680 // 1681 // At this stage, we already know which DBG_VALUEs are for spills and 1682 // where they are located; it's best to fix handle overwrites now. 1683 KillSet.insert(ID); 1684 unsigned SpillLocIdx = VL.getSpillLocIdx(*Loc); 1685 VarLoc::MachineLoc OldLoc = VL.Locs[SpillLocIdx]; 1686 VarLoc UndefVL = VarLoc::CreateCopyLoc(VL, OldLoc, 0); 1687 LocIndices UndefLocIDs = VarLocIDs.insert(UndefVL); 1688 Transfers.push_back({&MI, UndefLocIDs.back()}); 1689 } 1690 } 1691 OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kSpillLocation); 1692 } 1693 1694 // Try to recognise spill and restore instructions that may create a new 1695 // variable location. 1696 if (isLocationSpill(MI, MF, Reg)) { 1697 TKind = TransferKind::TransferSpill; 1698 LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump();); 1699 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) 1700 << "\n"); 1701 } else { 1702 if (!(Loc = isRestoreInstruction(MI, MF, Reg))) 1703 return; 1704 TKind = TransferKind::TransferRestore; 1705 LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump();); 1706 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) 1707 << "\n"); 1708 } 1709 // Check if the register or spill location is the location of a debug value. 1710 auto TransferCandidates = OpenRanges.getEmptyVarLocRange(); 1711 if (TKind == TransferKind::TransferSpill) 1712 TransferCandidates = OpenRanges.getRegisterVarLocs(Reg); 1713 else if (TKind == TransferKind::TransferRestore) 1714 TransferCandidates = OpenRanges.getSpillVarLocs(); 1715 for (uint64_t ID : TransferCandidates) { 1716 LocIndex Idx = LocIndex::fromRawInteger(ID); 1717 const VarLoc &VL = VarLocIDs[Idx]; 1718 unsigned LocIdx; 1719 if (TKind == TransferKind::TransferSpill) { 1720 assert(VL.usesReg(Reg) && "Broken VarLocSet?"); 1721 LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '(' 1722 << VL.Var.getVariable()->getName() << ")\n"); 1723 LocIdx = VL.getRegIdx(Reg); 1724 } else { 1725 assert(TKind == TransferKind::TransferRestore && VL.containsSpillLocs() && 1726 "Broken VarLocSet?"); 1727 if (!VL.usesSpillLoc(*Loc)) 1728 // The spill location is not the location of a debug value. 1729 continue; 1730 LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '(' 1731 << VL.Var.getVariable()->getName() << ")\n"); 1732 LocIdx = VL.getSpillLocIdx(*Loc); 1733 } 1734 VarLoc::MachineLoc MLoc = VL.Locs[LocIdx]; 1735 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind, 1736 MLoc, Reg); 1737 // FIXME: A comment should explain why it's correct to return early here, 1738 // if that is in fact correct. 1739 return; 1740 } 1741 } 1742 1743 /// If \p MI is a register copy instruction, that copies a previously tracked 1744 /// value from one register to another register that is callee saved, we 1745 /// create new DBG_VALUE instruction described with copy destination register. 1746 void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI, 1747 OpenRangesSet &OpenRanges, 1748 VarLocMap &VarLocIDs, 1749 TransferMap &Transfers) { 1750 auto DestSrc = TII->isCopyInstr(MI); 1751 if (!DestSrc) 1752 return; 1753 1754 const MachineOperand *DestRegOp = DestSrc->Destination; 1755 const MachineOperand *SrcRegOp = DestSrc->Source; 1756 1757 if (!DestRegOp->isDef()) 1758 return; 1759 1760 auto isCalleeSavedReg = [&](Register Reg) { 1761 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1762 if (CalleeSavedRegs.test(*RAI)) 1763 return true; 1764 return false; 1765 }; 1766 1767 Register SrcReg = SrcRegOp->getReg(); 1768 Register DestReg = DestRegOp->getReg(); 1769 1770 // We want to recognize instructions where destination register is callee 1771 // saved register. If register that could be clobbered by the call is 1772 // included, there would be a great chance that it is going to be clobbered 1773 // soon. It is more likely that previous register location, which is callee 1774 // saved, is going to stay unclobbered longer, even if it is killed. 1775 if (!isCalleeSavedReg(DestReg)) 1776 return; 1777 1778 // Remember an entry value movement. If we encounter a new debug value of 1779 // a parameter describing only a moving of the value around, rather then 1780 // modifying it, we are still able to use the entry value if needed. 1781 if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) { 1782 for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { 1783 LocIndex Idx = LocIndex::fromRawInteger(ID); 1784 const VarLoc &VL = VarLocIDs[Idx]; 1785 if (VL.isEntryValueBackupReg(SrcReg)) { 1786 LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump();); 1787 VarLoc EntryValLocCopyBackup = 1788 VarLoc::CreateEntryCopyBackupLoc(VL.MI, LS, VL.Expr, DestReg); 1789 // Stop tracking the original entry value. 1790 OpenRanges.erase(VL); 1791 1792 // Start tracking the entry value copy. 1793 LocIndices EntryValCopyLocIDs = VarLocIDs.insert(EntryValLocCopyBackup); 1794 OpenRanges.insert(EntryValCopyLocIDs, EntryValLocCopyBackup); 1795 break; 1796 } 1797 } 1798 } 1799 1800 if (!SrcRegOp->isKill()) 1801 return; 1802 1803 for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) { 1804 LocIndex Idx = LocIndex::fromRawInteger(ID); 1805 assert(VarLocIDs[Idx].usesReg(SrcReg) && "Broken VarLocSet?"); 1806 VarLoc::MachineLocValue Loc; 1807 Loc.RegNo = SrcReg; 1808 VarLoc::MachineLoc MLoc{VarLoc::MachineLocKind::RegisterKind, Loc}; 1809 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, 1810 TransferKind::TransferCopy, MLoc, DestReg); 1811 // FIXME: A comment should explain why it's correct to return early here, 1812 // if that is in fact correct. 1813 return; 1814 } 1815 } 1816 1817 /// Terminate all open ranges at the end of the current basic block. 1818 bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB, 1819 OpenRangesSet &OpenRanges, 1820 VarLocInMBB &OutLocs, 1821 const VarLocMap &VarLocIDs) { 1822 bool Changed = false; 1823 LLVM_DEBUG({ 1824 VarVec VarLocs; 1825 OpenRanges.getUniqueVarLocs(VarLocs, VarLocIDs); 1826 for (VarLoc &VL : VarLocs) { 1827 // Copy OpenRanges to OutLocs, if not already present. 1828 dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": "; 1829 VL.dump(TRI); 1830 } 1831 }); 1832 VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs); 1833 Changed = VLS != OpenRanges.getVarLocs(); 1834 // New OutLocs set may be different due to spill, restore or register 1835 // copy instruction processing. 1836 if (Changed) 1837 VLS = OpenRanges.getVarLocs(); 1838 OpenRanges.clear(); 1839 return Changed; 1840 } 1841 1842 /// Accumulate a mapping between each DILocalVariable fragment and other 1843 /// fragments of that DILocalVariable which overlap. This reduces work during 1844 /// the data-flow stage from "Find any overlapping fragments" to "Check if the 1845 /// known-to-overlap fragments are present". 1846 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for 1847 /// fragment usage. 1848 /// \param SeenFragments Map from DILocalVariable to all fragments of that 1849 /// Variable which are known to exist. 1850 /// \param OverlappingFragments The overlap map being constructed, from one 1851 /// Var/Fragment pair to a vector of fragments known to overlap. 1852 void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI, 1853 VarToFragments &SeenFragments, 1854 OverlapMap &OverlappingFragments) { 1855 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), 1856 MI.getDebugLoc()->getInlinedAt()); 1857 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); 1858 1859 // If this is the first sighting of this variable, then we are guaranteed 1860 // there are currently no overlapping fragments either. Initialize the set 1861 // of seen fragments, record no overlaps for the current one, and return. 1862 auto SeenIt = SeenFragments.find(MIVar.getVariable()); 1863 if (SeenIt == SeenFragments.end()) { 1864 SmallSet<FragmentInfo, 4> OneFragment; 1865 OneFragment.insert(ThisFragment); 1866 SeenFragments.insert({MIVar.getVariable(), OneFragment}); 1867 1868 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1869 return; 1870 } 1871 1872 // If this particular Variable/Fragment pair already exists in the overlap 1873 // map, it has already been accounted for. 1874 auto IsInOLapMap = 1875 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1876 if (!IsInOLapMap.second) 1877 return; 1878 1879 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; 1880 auto &AllSeenFragments = SeenIt->second; 1881 1882 // Otherwise, examine all other seen fragments for this variable, with "this" 1883 // fragment being a previously unseen fragment. Record any pair of 1884 // overlapping fragments. 1885 for (auto &ASeenFragment : AllSeenFragments) { 1886 // Does this previously seen fragment overlap? 1887 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { 1888 // Yes: Mark the current fragment as being overlapped. 1889 ThisFragmentsOverlaps.push_back(ASeenFragment); 1890 // Mark the previously seen fragment as being overlapped by the current 1891 // one. 1892 auto ASeenFragmentsOverlaps = 1893 OverlappingFragments.find({MIVar.getVariable(), ASeenFragment}); 1894 assert(ASeenFragmentsOverlaps != OverlappingFragments.end() && 1895 "Previously seen var fragment has no vector of overlaps"); 1896 ASeenFragmentsOverlaps->second.push_back(ThisFragment); 1897 } 1898 } 1899 1900 AllSeenFragments.insert(ThisFragment); 1901 } 1902 1903 /// This routine creates OpenRanges. 1904 void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges, 1905 VarLocMap &VarLocIDs, TransferMap &Transfers, 1906 InstToEntryLocMap &EntryValTransfers, 1907 RegDefToInstMap &RegSetInstrs) { 1908 if (!MI.isDebugInstr()) 1909 LastNonDbgMI = &MI; 1910 transferDebugValue(MI, OpenRanges, VarLocIDs, EntryValTransfers, 1911 RegSetInstrs); 1912 transferRegisterDef(MI, OpenRanges, VarLocIDs, EntryValTransfers, 1913 RegSetInstrs); 1914 transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers); 1915 transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers); 1916 } 1917 1918 /// This routine joins the analysis results of all incoming edges in @MBB by 1919 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same 1920 /// source variable in all the predecessors of @MBB reside in the same location. 1921 bool VarLocBasedLDV::join( 1922 MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, 1923 const VarLocMap &VarLocIDs, 1924 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1925 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) { 1926 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 1927 1928 VarLocSet InLocsT(Alloc); // Temporary incoming locations. 1929 1930 // For all predecessors of this MBB, find the set of VarLocs that 1931 // can be joined. 1932 int NumVisited = 0; 1933 for (auto p : MBB.predecessors()) { 1934 // Ignore backedges if we have not visited the predecessor yet. As the 1935 // predecessor hasn't yet had locations propagated into it, most locations 1936 // will not yet be valid, so treat them as all being uninitialized and 1937 // potentially valid. If a location guessed to be correct here is 1938 // invalidated later, we will remove it when we revisit this block. 1939 if (!Visited.count(p)) { 1940 LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber() 1941 << "\n"); 1942 continue; 1943 } 1944 auto OL = OutLocs.find(p); 1945 // Join is null in case of empty OutLocs from any of the pred. 1946 if (OL == OutLocs.end()) 1947 return false; 1948 1949 // Just copy over the Out locs to incoming locs for the first visited 1950 // predecessor, and for all other predecessors join the Out locs. 1951 VarLocSet &OutLocVLS = *OL->second.get(); 1952 if (!NumVisited) 1953 InLocsT = OutLocVLS; 1954 else 1955 InLocsT &= OutLocVLS; 1956 1957 LLVM_DEBUG({ 1958 if (!InLocsT.empty()) { 1959 VarVec VarLocs; 1960 collectAllVarLocs(VarLocs, InLocsT, VarLocIDs); 1961 for (const VarLoc &VL : VarLocs) 1962 dbgs() << " gathered candidate incoming var: " 1963 << VL.Var.getVariable()->getName() << "\n"; 1964 } 1965 }); 1966 1967 NumVisited++; 1968 } 1969 1970 // Filter out DBG_VALUES that are out of scope. 1971 VarLocSet KillSet(Alloc); 1972 bool IsArtificial = ArtificialBlocks.count(&MBB); 1973 if (!IsArtificial) { 1974 for (uint64_t ID : InLocsT) { 1975 LocIndex Idx = LocIndex::fromRawInteger(ID); 1976 if (!VarLocIDs[Idx].dominates(LS, MBB)) { 1977 KillSet.set(ID); 1978 LLVM_DEBUG({ 1979 auto Name = VarLocIDs[Idx].Var.getVariable()->getName(); 1980 dbgs() << " killing " << Name << ", it doesn't dominate MBB\n"; 1981 }); 1982 } 1983 } 1984 } 1985 InLocsT.intersectWithComplement(KillSet); 1986 1987 // As we are processing blocks in reverse post-order we 1988 // should have processed at least one predecessor, unless it 1989 // is the entry block which has no predecessor. 1990 assert((NumVisited || MBB.pred_empty()) && 1991 "Should have processed at least one predecessor"); 1992 1993 VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs); 1994 bool Changed = false; 1995 if (ILS != InLocsT) { 1996 ILS = InLocsT; 1997 Changed = true; 1998 } 1999 2000 return Changed; 2001 } 2002 2003 void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs, 2004 VarLocMap &VarLocIDs) { 2005 // PendingInLocs records all locations propagated into blocks, which have 2006 // not had DBG_VALUE insts created. Go through and create those insts now. 2007 for (auto &Iter : PendingInLocs) { 2008 // Map is keyed on a constant pointer, unwrap it so we can insert insts. 2009 auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first); 2010 VarLocSet &Pending = *Iter.second.get(); 2011 2012 SmallVector<VarLoc, 32> VarLocs; 2013 collectAllVarLocs(VarLocs, Pending, VarLocIDs); 2014 2015 for (VarLoc DiffIt : VarLocs) { 2016 // The ID location is live-in to MBB -- work out what kind of machine 2017 // location it is and create a DBG_VALUE. 2018 if (DiffIt.isEntryBackupLoc()) 2019 continue; 2020 MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent()); 2021 MBB.insert(MBB.instr_begin(), MI); 2022 2023 (void)MI; 2024 LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump();); 2025 } 2026 } 2027 } 2028 2029 bool VarLocBasedLDV::isEntryValueCandidate( 2030 const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const { 2031 assert(MI.isDebugValue() && "This must be DBG_VALUE."); 2032 2033 // TODO: Add support for local variables that are expressed in terms of 2034 // parameters entry values. 2035 // TODO: Add support for modified arguments that can be expressed 2036 // by using its entry value. 2037 auto *DIVar = MI.getDebugVariable(); 2038 if (!DIVar->isParameter()) 2039 return false; 2040 2041 // Do not consider parameters that belong to an inlined function. 2042 if (MI.getDebugLoc()->getInlinedAt()) 2043 return false; 2044 2045 // Only consider parameters that are described using registers. Parameters 2046 // that are passed on the stack are not yet supported, so ignore debug 2047 // values that are described by the frame or stack pointer. 2048 if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI)) 2049 return false; 2050 2051 // If a parameter's value has been propagated from the caller, then the 2052 // parameter's DBG_VALUE may be described using a register defined by some 2053 // instruction in the entry block, in which case we shouldn't create an 2054 // entry value. 2055 if (DefinedRegs.count(MI.getDebugOperand(0).getReg())) 2056 return false; 2057 2058 // TODO: Add support for parameters that have a pre-existing debug expressions 2059 // (e.g. fragments). 2060 if (MI.getDebugExpression()->getNumElements() > 0) 2061 return false; 2062 2063 return true; 2064 } 2065 2066 /// Collect all register defines (including aliases) for the given instruction. 2067 static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs, 2068 const TargetRegisterInfo *TRI) { 2069 for (const MachineOperand &MO : MI.operands()) 2070 if (MO.isReg() && MO.isDef() && MO.getReg()) 2071 for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) 2072 Regs.insert(*AI); 2073 } 2074 2075 /// This routine records the entry values of function parameters. The values 2076 /// could be used as backup values. If we loose the track of some unmodified 2077 /// parameters, the backup values will be used as a primary locations. 2078 void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI, 2079 const DefinedRegsSet &DefinedRegs, 2080 OpenRangesSet &OpenRanges, 2081 VarLocMap &VarLocIDs) { 2082 if (TPC) { 2083 auto &TM = TPC->getTM<TargetMachine>(); 2084 if (!TM.Options.ShouldEmitDebugEntryValues()) 2085 return; 2086 } 2087 2088 DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(), 2089 MI.getDebugLoc()->getInlinedAt()); 2090 2091 if (!isEntryValueCandidate(MI, DefinedRegs) || 2092 OpenRanges.getEntryValueBackup(V)) 2093 return; 2094 2095 LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump();); 2096 2097 // Create the entry value and use it as a backup location until it is 2098 // valid. It is valid until a parameter is not changed. 2099 DIExpression *NewExpr = 2100 DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue); 2101 VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, LS, NewExpr); 2102 LocIndices EntryValLocIDs = VarLocIDs.insert(EntryValLocAsBackup); 2103 OpenRanges.insert(EntryValLocIDs, EntryValLocAsBackup); 2104 } 2105 2106 /// Calculate the liveness information for the given machine function and 2107 /// extend ranges across basic blocks. 2108 bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF, 2109 MachineDominatorTree *DomTree, 2110 TargetPassConfig *TPC, unsigned InputBBLimit, 2111 unsigned InputDbgValLimit) { 2112 (void)DomTree; 2113 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); 2114 2115 if (!MF.getFunction().getSubprogram()) 2116 // VarLocBaseLDV will already have removed all DBG_VALUEs. 2117 return false; 2118 2119 // Skip functions from NoDebug compilation units. 2120 if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() == 2121 DICompileUnit::NoDebug) 2122 return false; 2123 2124 TRI = MF.getSubtarget().getRegisterInfo(); 2125 TII = MF.getSubtarget().getInstrInfo(); 2126 TFI = MF.getSubtarget().getFrameLowering(); 2127 TFI->getCalleeSaves(MF, CalleeSavedRegs); 2128 this->TPC = TPC; 2129 LS.initialize(MF); 2130 2131 bool Changed = false; 2132 bool OLChanged = false; 2133 bool MBBJoined = false; 2134 2135 VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors. 2136 OverlapMap OverlapFragments; // Map of overlapping variable fragments. 2137 OpenRangesSet OpenRanges(Alloc, OverlapFragments); 2138 // Ranges that are open until end of bb. 2139 VarLocInMBB OutLocs; // Ranges that exist beyond bb. 2140 VarLocInMBB InLocs; // Ranges that are incoming after joining. 2141 TransferMap Transfers; // DBG_VALUEs associated with transfers (such as 2142 // spills, copies and restores). 2143 // Map responsible MI to attached Transfer emitted from Backup Entry Value. 2144 InstToEntryLocMap EntryValTransfers; 2145 // Map a Register to the last MI which clobbered it. 2146 RegDefToInstMap RegSetInstrs; 2147 2148 VarToFragments SeenFragments; 2149 2150 // Blocks which are artificial, i.e. blocks which exclusively contain 2151 // instructions without locations, or with line 0 locations. 2152 SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks; 2153 2154 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; 2155 DenseMap<MachineBasicBlock *, unsigned int> BBToOrder; 2156 std::priority_queue<unsigned int, std::vector<unsigned int>, 2157 std::greater<unsigned int>> 2158 Worklist; 2159 std::priority_queue<unsigned int, std::vector<unsigned int>, 2160 std::greater<unsigned int>> 2161 Pending; 2162 2163 // Set of register defines that are seen when traversing the entry block 2164 // looking for debug entry value candidates. 2165 DefinedRegsSet DefinedRegs; 2166 2167 // Only in the case of entry MBB collect DBG_VALUEs representing 2168 // function parameters in order to generate debug entry values for them. 2169 MachineBasicBlock &First_MBB = *(MF.begin()); 2170 for (auto &MI : First_MBB) { 2171 collectRegDefs(MI, DefinedRegs, TRI); 2172 if (MI.isDebugValue()) 2173 recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs); 2174 } 2175 2176 // Initialize per-block structures and scan for fragment overlaps. 2177 for (auto &MBB : MF) 2178 for (auto &MI : MBB) 2179 if (MI.isDebugValue()) 2180 accumulateFragmentMap(MI, SeenFragments, OverlapFragments); 2181 2182 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { 2183 if (const DebugLoc &DL = MI.getDebugLoc()) 2184 return DL.getLine() != 0; 2185 return false; 2186 }; 2187 for (auto &MBB : MF) 2188 if (none_of(MBB.instrs(), hasNonArtificialLocation)) 2189 ArtificialBlocks.insert(&MBB); 2190 2191 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, 2192 "OutLocs after initialization", dbgs())); 2193 2194 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 2195 unsigned int RPONumber = 0; 2196 for (MachineBasicBlock *MBB : RPOT) { 2197 OrderToBB[RPONumber] = MBB; 2198 BBToOrder[MBB] = RPONumber; 2199 Worklist.push(RPONumber); 2200 ++RPONumber; 2201 } 2202 2203 if (RPONumber > InputBBLimit) { 2204 unsigned NumInputDbgValues = 0; 2205 for (auto &MBB : MF) 2206 for (auto &MI : MBB) 2207 if (MI.isDebugValue()) 2208 ++NumInputDbgValues; 2209 if (NumInputDbgValues > InputDbgValLimit) { 2210 LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName() 2211 << " has " << RPONumber << " basic blocks and " 2212 << NumInputDbgValues 2213 << " input DBG_VALUEs, exceeding limits.\n"); 2214 return false; 2215 } 2216 } 2217 2218 // This is a standard "union of predecessor outs" dataflow problem. 2219 // To solve it, we perform join() and process() using the two worklist method 2220 // until the ranges converge. 2221 // Ranges have converged when both worklists are empty. 2222 SmallPtrSet<const MachineBasicBlock *, 16> Visited; 2223 while (!Worklist.empty() || !Pending.empty()) { 2224 // We track what is on the pending worklist to avoid inserting the same 2225 // thing twice. We could avoid this with a custom priority queue, but this 2226 // is probably not worth it. 2227 SmallPtrSet<MachineBasicBlock *, 16> OnPending; 2228 LLVM_DEBUG(dbgs() << "Processing Worklist\n"); 2229 while (!Worklist.empty()) { 2230 MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; 2231 Worklist.pop(); 2232 MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited, 2233 ArtificialBlocks); 2234 MBBJoined |= Visited.insert(MBB).second; 2235 if (MBBJoined) { 2236 MBBJoined = false; 2237 Changed = true; 2238 // Now that we have started to extend ranges across BBs we need to 2239 // examine spill, copy and restore instructions to see whether they 2240 // operate with registers that correspond to user variables. 2241 // First load any pending inlocs. 2242 OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs); 2243 LastNonDbgMI = nullptr; 2244 RegSetInstrs.clear(); 2245 for (auto &MI : *MBB) 2246 process(MI, OpenRanges, VarLocIDs, Transfers, EntryValTransfers, 2247 RegSetInstrs); 2248 OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs); 2249 2250 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, 2251 "OutLocs after propagating", dbgs())); 2252 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, 2253 "InLocs after propagating", dbgs())); 2254 2255 if (OLChanged) { 2256 OLChanged = false; 2257 for (auto s : MBB->successors()) 2258 if (OnPending.insert(s).second) { 2259 Pending.push(BBToOrder[s]); 2260 } 2261 } 2262 } 2263 } 2264 Worklist.swap(Pending); 2265 // At this point, pending must be empty, since it was just the empty 2266 // worklist 2267 assert(Pending.empty() && "Pending should be empty"); 2268 } 2269 2270 // Add any DBG_VALUE instructions created by location transfers. 2271 for (auto &TR : Transfers) { 2272 assert(!TR.TransferInst->isTerminator() && 2273 "Cannot insert DBG_VALUE after terminator"); 2274 MachineBasicBlock *MBB = TR.TransferInst->getParent(); 2275 const VarLoc &VL = VarLocIDs[TR.LocationID]; 2276 MachineInstr *MI = VL.BuildDbgValue(MF); 2277 MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI); 2278 } 2279 Transfers.clear(); 2280 2281 // Add DBG_VALUEs created using Backup Entry Value location. 2282 for (auto &TR : EntryValTransfers) { 2283 MachineInstr *TRInst = const_cast<MachineInstr *>(TR.first); 2284 assert(!TRInst->isTerminator() && 2285 "Cannot insert DBG_VALUE after terminator"); 2286 MachineBasicBlock *MBB = TRInst->getParent(); 2287 const VarLoc &VL = VarLocIDs[TR.second]; 2288 MachineInstr *MI = VL.BuildDbgValue(MF); 2289 MBB->insertAfterBundle(TRInst->getIterator(), MI); 2290 } 2291 EntryValTransfers.clear(); 2292 2293 // Deferred inlocs will not have had any DBG_VALUE insts created; do 2294 // that now. 2295 flushPendingLocs(InLocs, VarLocIDs); 2296 2297 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs())); 2298 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs())); 2299 return Changed; 2300 } 2301 2302 LDVImpl * 2303 llvm::makeVarLocBasedLiveDebugValues() 2304 { 2305 return new VarLocBasedLDV(); 2306 } 2307