xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp (revision 1f1e2261e341e6ca6862f82261066ef1705f0a7a)
1 //===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file VarLocBasedImpl.cpp
10 ///
11 /// LiveDebugValues is an optimistic "available expressions" dataflow
12 /// algorithm. The set of expressions is the set of machine locations
13 /// (registers, spill slots, constants) that a variable fragment might be
14 /// located, qualified by a DIExpression and indirect-ness flag, while each
15 /// variable is identified by a DebugVariable object. The availability of an
16 /// expression begins when a DBG_VALUE instruction specifies the location of a
17 /// DebugVariable, and continues until that location is clobbered or
18 /// re-specified by a different DBG_VALUE for the same DebugVariable.
19 ///
20 /// The output of LiveDebugValues is additional DBG_VALUE instructions,
21 /// placed to extend variable locations as far they're available. This file
22 /// and the VarLocBasedLDV class is an implementation that explicitly tracks
23 /// locations, using the VarLoc class.
24 ///
25 /// The canonical "available expressions" problem doesn't have expression
26 /// clobbering, instead when a variable is re-assigned, any expressions using
27 /// that variable get invalidated. LiveDebugValues can map onto "available
28 /// expressions" by having every register represented by a variable, which is
29 /// used in an expression that becomes available at a DBG_VALUE instruction.
30 /// When the register is clobbered, its variable is effectively reassigned, and
31 /// expressions computed from it become unavailable. A similar construct is
32 /// needed when a DebugVariable has its location re-specified, to invalidate
33 /// all other locations for that DebugVariable.
34 ///
35 /// Using the dataflow analysis to compute the available expressions, we create
36 /// a DBG_VALUE at the beginning of each block where the expression is
37 /// live-in. This propagates variable locations into every basic block where
38 /// the location can be determined, rather than only having DBG_VALUEs in blocks
39 /// where locations are specified due to an assignment or some optimization.
40 /// Movements of values between registers and spill slots are annotated with
41 /// DBG_VALUEs too to track variable values bewteen locations. All this allows
42 /// DbgEntityHistoryCalculator to focus on only the locations within individual
43 /// blocks, facilitating testing and improving modularity.
44 ///
45 /// We follow an optimisic dataflow approach, with this lattice:
46 ///
47 /// \verbatim
48 ///                    ┬ "Unknown"
49 ///                          |
50 ///                          v
51 ///                         True
52 ///                          |
53 ///                          v
54 ///                      ⊥ False
55 /// \endverbatim With "True" signifying that the expression is available (and
56 /// thus a DebugVariable's location is the corresponding register), while
57 /// "False" signifies that the expression is unavailable. "Unknown"s never
58 /// survive to the end of the analysis (see below).
59 ///
60 /// Formally, all DebugVariable locations that are live-out of a block are
61 /// initialized to \top.  A blocks live-in values take the meet of the lattice
62 /// value for every predecessors live-outs, except for the entry block, where
63 /// all live-ins are \bot. The usual dataflow propagation occurs: the transfer
64 /// function for a block assigns an expression for a DebugVariable to be "True"
65 /// if a DBG_VALUE in the block specifies it; "False" if the location is
66 /// clobbered; or the live-in value if it is unaffected by the block. We
67 /// visit each block in reverse post order until a fixedpoint is reached. The
68 /// solution produced is maximal.
69 ///
70 /// Intuitively, we start by assuming that every expression / variable location
71 /// is at least "True", and then propagate "False" from the entry block and any
72 /// clobbers until there are no more changes to make. This gives us an accurate
73 /// solution because all incorrect locations will have a "False" propagated into
74 /// them. It also gives us a solution that copes well with loops by assuming
75 /// that variable locations are live-through every loop, and then removing those
76 /// that are not through dataflow.
77 ///
78 /// Within LiveDebugValues: each variable location is represented by a
79 /// VarLoc object that identifies the source variable, the set of
80 /// machine-locations that currently describe it (a single location for
81 /// DBG_VALUE or multiple for DBG_VALUE_LIST), and the DBG_VALUE inst that
82 /// specifies the location. Each VarLoc is indexed in the (function-scope) \p
83 /// VarLocMap, giving each VarLoc a set of unique indexes, each of which
84 /// corresponds to one of the VarLoc's machine-locations and can be used to
85 /// lookup the VarLoc in the VarLocMap. Rather than operate directly on machine
86 /// locations, the dataflow analysis in this pass identifies locations by their
87 /// indices in the VarLocMap, meaning all the variable locations in a block can
88 /// be described by a sparse vector of VarLocMap indicies.
89 ///
90 /// All the storage for the dataflow analysis is local to the ExtendRanges
91 /// method and passed down to helper methods. "OutLocs" and "InLocs" record the
92 /// in and out lattice values for each block. "OpenRanges" maintains a list of
93 /// variable locations and, with the "process" method, evaluates the transfer
94 /// function of each block. "flushPendingLocs" installs debug value instructions
95 /// for each live-in location at the start of blocks, while "Transfers" records
96 /// transfers of values between machine-locations.
97 ///
98 /// We avoid explicitly representing the "Unknown" (\top) lattice value in the
99 /// implementation. Instead, unvisited blocks implicitly have all lattice
100 /// values set as "Unknown". After being visited, there will be path back to
101 /// the entry block where the lattice value is "False", and as the transfer
102 /// function cannot make new "Unknown" locations, there are no scenarios where
103 /// a block can have an "Unknown" location after being visited. Similarly, we
104 /// don't enumerate all possible variable locations before exploring the
105 /// function: when a new location is discovered, all blocks previously explored
106 /// were implicitly "False" but unrecorded, and become explicitly "False" when
107 /// a new VarLoc is created with its bit not set in predecessor InLocs or
108 /// OutLocs.
109 ///
110 //===----------------------------------------------------------------------===//
111 
112 #include "LiveDebugValues.h"
113 
114 #include "llvm/ADT/CoalescingBitVector.h"
115 #include "llvm/ADT/DenseMap.h"
116 #include "llvm/ADT/PostOrderIterator.h"
117 #include "llvm/ADT/SmallPtrSet.h"
118 #include "llvm/ADT/SmallSet.h"
119 #include "llvm/ADT/SmallVector.h"
120 #include "llvm/ADT/Statistic.h"
121 #include "llvm/ADT/UniqueVector.h"
122 #include "llvm/CodeGen/LexicalScopes.h"
123 #include "llvm/CodeGen/MachineBasicBlock.h"
124 #include "llvm/CodeGen/MachineFrameInfo.h"
125 #include "llvm/CodeGen/MachineFunction.h"
126 #include "llvm/CodeGen/MachineFunctionPass.h"
127 #include "llvm/CodeGen/MachineInstr.h"
128 #include "llvm/CodeGen/MachineInstrBuilder.h"
129 #include "llvm/CodeGen/MachineMemOperand.h"
130 #include "llvm/CodeGen/MachineOperand.h"
131 #include "llvm/CodeGen/PseudoSourceValue.h"
132 #include "llvm/CodeGen/RegisterScavenging.h"
133 #include "llvm/CodeGen/TargetFrameLowering.h"
134 #include "llvm/CodeGen/TargetInstrInfo.h"
135 #include "llvm/CodeGen/TargetLowering.h"
136 #include "llvm/CodeGen/TargetPassConfig.h"
137 #include "llvm/CodeGen/TargetRegisterInfo.h"
138 #include "llvm/CodeGen/TargetSubtargetInfo.h"
139 #include "llvm/Config/llvm-config.h"
140 #include "llvm/IR/DIBuilder.h"
141 #include "llvm/IR/DebugInfoMetadata.h"
142 #include "llvm/IR/DebugLoc.h"
143 #include "llvm/IR/Function.h"
144 #include "llvm/IR/Module.h"
145 #include "llvm/InitializePasses.h"
146 #include "llvm/MC/MCRegisterInfo.h"
147 #include "llvm/Pass.h"
148 #include "llvm/Support/Casting.h"
149 #include "llvm/Support/Compiler.h"
150 #include "llvm/Support/Debug.h"
151 #include "llvm/Support/TypeSize.h"
152 #include "llvm/Support/raw_ostream.h"
153 #include "llvm/Target/TargetMachine.h"
154 #include <algorithm>
155 #include <cassert>
156 #include <cstdint>
157 #include <functional>
158 #include <map>
159 #include <queue>
160 #include <tuple>
161 #include <utility>
162 #include <vector>
163 
164 using namespace llvm;
165 
166 #define DEBUG_TYPE "livedebugvalues"
167 
168 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
169 
170 /// If \p Op is a stack or frame register return true, otherwise return false.
171 /// This is used to avoid basing the debug entry values on the registers, since
172 /// we do not support it at the moment.
173 static bool isRegOtherThanSPAndFP(const MachineOperand &Op,
174                                   const MachineInstr &MI,
175                                   const TargetRegisterInfo *TRI) {
176   if (!Op.isReg())
177     return false;
178 
179   const MachineFunction *MF = MI.getParent()->getParent();
180   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
181   Register SP = TLI->getStackPointerRegisterToSaveRestore();
182   Register FP = TRI->getFrameRegister(*MF);
183   Register Reg = Op.getReg();
184 
185   return Reg && Reg != SP && Reg != FP;
186 }
187 
188 namespace {
189 
190 // Max out the number of statically allocated elements in DefinedRegsSet, as
191 // this prevents fallback to std::set::count() operations.
192 using DefinedRegsSet = SmallSet<Register, 32>;
193 
194 // The IDs in this set correspond to MachineLocs in VarLocs, as well as VarLocs
195 // that represent Entry Values; every VarLoc in the set will also appear
196 // exactly once at Location=0.
197 // As a result, each VarLoc may appear more than once in this "set", but each
198 // range corresponding to a Reg, SpillLoc, or EntryValue type will still be a
199 // "true" set (i.e. each VarLoc may appear only once), and the range Location=0
200 // is the set of all VarLocs.
201 using VarLocSet = CoalescingBitVector<uint64_t>;
202 
203 /// A type-checked pair of {Register Location (or 0), Index}, used to index
204 /// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int
205 /// for insertion into a \ref VarLocSet, and efficiently converted back. The
206 /// type-checker helps ensure that the conversions aren't lossy.
207 ///
208 /// Why encode a location /into/ the VarLocMap index? This makes it possible
209 /// to find the open VarLocs killed by a register def very quickly. This is a
210 /// performance-critical operation for LiveDebugValues.
211 struct LocIndex {
212   using u32_location_t = uint32_t;
213   using u32_index_t = uint32_t;
214 
215   u32_location_t Location; // Physical registers live in the range [1;2^30) (see
216                            // \ref MCRegister), so we have plenty of range left
217                            // here to encode non-register locations.
218   u32_index_t Index;
219 
220   /// The location that has an entry for every VarLoc in the map.
221   static constexpr u32_location_t kUniversalLocation = 0;
222 
223   /// The first location that is reserved for VarLocs with locations of kind
224   /// RegisterKind.
225   static constexpr u32_location_t kFirstRegLocation = 1;
226 
227   /// The first location greater than 0 that is not reserved for VarLocs with
228   /// locations of kind RegisterKind.
229   static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30;
230 
231   /// A special location reserved for VarLocs with locations of kind
232   /// SpillLocKind.
233   static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation;
234 
235   /// A special location reserved for VarLocs of kind EntryValueBackupKind and
236   /// EntryValueCopyBackupKind.
237   static constexpr u32_location_t kEntryValueBackupLocation =
238       kFirstInvalidRegLocation + 1;
239 
240   LocIndex(u32_location_t Location, u32_index_t Index)
241       : Location(Location), Index(Index) {}
242 
243   uint64_t getAsRawInteger() const {
244     return (static_cast<uint64_t>(Location) << 32) | Index;
245   }
246 
247   template<typename IntT> static LocIndex fromRawInteger(IntT ID) {
248     static_assert(std::is_unsigned<IntT>::value &&
249                       sizeof(ID) == sizeof(uint64_t),
250                   "Cannot convert raw integer to LocIndex");
251     return {static_cast<u32_location_t>(ID >> 32),
252             static_cast<u32_index_t>(ID)};
253   }
254 
255   /// Get the start of the interval reserved for VarLocs of kind RegisterKind
256   /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1.
257   static uint64_t rawIndexForReg(Register Reg) {
258     return LocIndex(Reg, 0).getAsRawInteger();
259   }
260 
261   /// Return a range covering all set indices in the interval reserved for
262   /// \p Location in \p Set.
263   static auto indexRangeForLocation(const VarLocSet &Set,
264                                     u32_location_t Location) {
265     uint64_t Start = LocIndex(Location, 0).getAsRawInteger();
266     uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger();
267     return Set.half_open_range(Start, End);
268   }
269 };
270 
271 // Simple Set for storing all the VarLoc Indices at a Location bucket.
272 using VarLocsInRange = SmallSet<LocIndex::u32_index_t, 32>;
273 // Vector of all `LocIndex`s for a given VarLoc; the same Location should not
274 // appear in any two of these, as each VarLoc appears at most once in any
275 // Location bucket.
276 using LocIndices = SmallVector<LocIndex, 2>;
277 
278 class VarLocBasedLDV : public LDVImpl {
279 private:
280   const TargetRegisterInfo *TRI;
281   const TargetInstrInfo *TII;
282   const TargetFrameLowering *TFI;
283   TargetPassConfig *TPC;
284   BitVector CalleeSavedRegs;
285   LexicalScopes LS;
286   VarLocSet::Allocator Alloc;
287 
288   const MachineInstr *LastNonDbgMI;
289 
290   enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore };
291 
292   using FragmentInfo = DIExpression::FragmentInfo;
293   using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
294 
295   /// A pair of debug variable and value location.
296   struct VarLoc {
297     // The location at which a spilled variable resides. It consists of a
298     // register and an offset.
299     struct SpillLoc {
300       unsigned SpillBase;
301       StackOffset SpillOffset;
302       bool operator==(const SpillLoc &Other) const {
303         return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset;
304       }
305       bool operator!=(const SpillLoc &Other) const {
306         return !(*this == Other);
307       }
308     };
309 
310     /// Identity of the variable at this location.
311     const DebugVariable Var;
312 
313     /// The expression applied to this location.
314     const DIExpression *Expr;
315 
316     /// DBG_VALUE to clone var/expr information from if this location
317     /// is moved.
318     const MachineInstr &MI;
319 
320     enum class MachineLocKind {
321       InvalidKind = 0,
322       RegisterKind,
323       SpillLocKind,
324       ImmediateKind
325     };
326 
327     enum class EntryValueLocKind {
328       NonEntryValueKind = 0,
329       EntryValueKind,
330       EntryValueBackupKind,
331       EntryValueCopyBackupKind
332     } EVKind = EntryValueLocKind::NonEntryValueKind;
333 
334     /// The value location. Stored separately to avoid repeatedly
335     /// extracting it from MI.
336     union MachineLocValue {
337       uint64_t RegNo;
338       SpillLoc SpillLocation;
339       uint64_t Hash;
340       int64_t Immediate;
341       const ConstantFP *FPImm;
342       const ConstantInt *CImm;
343       MachineLocValue() : Hash(0) {}
344     };
345 
346     /// A single machine location; its Kind is either a register, spill
347     /// location, or immediate value.
348     /// If the VarLoc is not a NonEntryValueKind, then it will use only a
349     /// single MachineLoc of RegisterKind.
350     struct MachineLoc {
351       MachineLocKind Kind;
352       MachineLocValue Value;
353       bool operator==(const MachineLoc &Other) const {
354         if (Kind != Other.Kind)
355           return false;
356         switch (Kind) {
357         case MachineLocKind::SpillLocKind:
358           return Value.SpillLocation == Other.Value.SpillLocation;
359         case MachineLocKind::RegisterKind:
360         case MachineLocKind::ImmediateKind:
361           return Value.Hash == Other.Value.Hash;
362         default:
363           llvm_unreachable("Invalid kind");
364         }
365       }
366       bool operator<(const MachineLoc &Other) const {
367         switch (Kind) {
368         case MachineLocKind::SpillLocKind:
369           return std::make_tuple(
370                      Kind, Value.SpillLocation.SpillBase,
371                      Value.SpillLocation.SpillOffset.getFixed(),
372                      Value.SpillLocation.SpillOffset.getScalable()) <
373                  std::make_tuple(
374                      Other.Kind, Other.Value.SpillLocation.SpillBase,
375                      Other.Value.SpillLocation.SpillOffset.getFixed(),
376                      Other.Value.SpillLocation.SpillOffset.getScalable());
377         case MachineLocKind::RegisterKind:
378         case MachineLocKind::ImmediateKind:
379           return std::tie(Kind, Value.Hash) <
380                  std::tie(Other.Kind, Other.Value.Hash);
381         default:
382           llvm_unreachable("Invalid kind");
383         }
384       }
385     };
386 
387     /// The set of machine locations used to determine the variable's value, in
388     /// conjunction with Expr. Initially populated with MI's debug operands,
389     /// but may be transformed independently afterwards.
390     SmallVector<MachineLoc, 8> Locs;
391     /// Used to map the index of each location in Locs back to the index of its
392     /// original debug operand in MI. Used when multiple location operands are
393     /// coalesced and the original MI's operands need to be accessed while
394     /// emitting a debug value.
395     SmallVector<unsigned, 8> OrigLocMap;
396 
397     VarLoc(const MachineInstr &MI, LexicalScopes &LS)
398         : Var(MI.getDebugVariable(), MI.getDebugExpression(),
399               MI.getDebugLoc()->getInlinedAt()),
400           Expr(MI.getDebugExpression()), MI(MI) {
401       assert(MI.isDebugValue() && "not a DBG_VALUE");
402       assert((MI.isDebugValueList() || MI.getNumOperands() == 4) &&
403              "malformed DBG_VALUE");
404       for (const MachineOperand &Op : MI.debug_operands()) {
405         MachineLoc ML = GetLocForOp(Op);
406         auto It = find(Locs, ML);
407         if (It == Locs.end()) {
408           Locs.push_back(ML);
409           OrigLocMap.push_back(MI.getDebugOperandIndex(&Op));
410         } else {
411           // ML duplicates an element in Locs; replace references to Op
412           // with references to the duplicating element.
413           unsigned OpIdx = Locs.size();
414           unsigned DuplicatingIdx = std::distance(Locs.begin(), It);
415           Expr = DIExpression::replaceArg(Expr, OpIdx, DuplicatingIdx);
416         }
417       }
418 
419       // We create the debug entry values from the factory functions rather
420       // than from this ctor.
421       assert(EVKind != EntryValueLocKind::EntryValueKind &&
422              !isEntryBackupLoc());
423     }
424 
425     static MachineLoc GetLocForOp(const MachineOperand &Op) {
426       MachineLocKind Kind;
427       MachineLocValue Loc;
428       if (Op.isReg()) {
429         Kind = MachineLocKind::RegisterKind;
430         Loc.RegNo = Op.getReg();
431       } else if (Op.isImm()) {
432         Kind = MachineLocKind::ImmediateKind;
433         Loc.Immediate = Op.getImm();
434       } else if (Op.isFPImm()) {
435         Kind = MachineLocKind::ImmediateKind;
436         Loc.FPImm = Op.getFPImm();
437       } else if (Op.isCImm()) {
438         Kind = MachineLocKind::ImmediateKind;
439         Loc.CImm = Op.getCImm();
440       } else
441         llvm_unreachable("Invalid Op kind for MachineLoc.");
442       return {Kind, Loc};
443     }
444 
445     /// Take the variable and machine-location in DBG_VALUE MI, and build an
446     /// entry location using the given expression.
447     static VarLoc CreateEntryLoc(const MachineInstr &MI, LexicalScopes &LS,
448                                  const DIExpression *EntryExpr, Register Reg) {
449       VarLoc VL(MI, LS);
450       assert(VL.Locs.size() == 1 &&
451              VL.Locs[0].Kind == MachineLocKind::RegisterKind);
452       VL.EVKind = EntryValueLocKind::EntryValueKind;
453       VL.Expr = EntryExpr;
454       VL.Locs[0].Value.RegNo = Reg;
455       return VL;
456     }
457 
458     /// Take the variable and machine-location from the DBG_VALUE (from the
459     /// function entry), and build an entry value backup location. The backup
460     /// location will turn into the normal location if the backup is valid at
461     /// the time of the primary location clobbering.
462     static VarLoc CreateEntryBackupLoc(const MachineInstr &MI,
463                                        LexicalScopes &LS,
464                                        const DIExpression *EntryExpr) {
465       VarLoc VL(MI, LS);
466       assert(VL.Locs.size() == 1 &&
467              VL.Locs[0].Kind == MachineLocKind::RegisterKind);
468       VL.EVKind = EntryValueLocKind::EntryValueBackupKind;
469       VL.Expr = EntryExpr;
470       return VL;
471     }
472 
473     /// Take the variable and machine-location from the DBG_VALUE (from the
474     /// function entry), and build a copy of an entry value backup location by
475     /// setting the register location to NewReg.
476     static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI,
477                                            LexicalScopes &LS,
478                                            const DIExpression *EntryExpr,
479                                            Register NewReg) {
480       VarLoc VL(MI, LS);
481       assert(VL.Locs.size() == 1 &&
482              VL.Locs[0].Kind == MachineLocKind::RegisterKind);
483       VL.EVKind = EntryValueLocKind::EntryValueCopyBackupKind;
484       VL.Expr = EntryExpr;
485       VL.Locs[0].Value.RegNo = NewReg;
486       return VL;
487     }
488 
489     /// Copy the register location in DBG_VALUE MI, updating the register to
490     /// be NewReg.
491     static VarLoc CreateCopyLoc(const VarLoc &OldVL, const MachineLoc &OldML,
492                                 Register NewReg) {
493       VarLoc VL = OldVL;
494       for (MachineLoc &ML : VL.Locs)
495         if (ML == OldML) {
496           ML.Kind = MachineLocKind::RegisterKind;
497           ML.Value.RegNo = NewReg;
498           return VL;
499         }
500       llvm_unreachable("Should have found OldML in new VarLoc.");
501     }
502 
503     /// Take the variable described by DBG_VALUE* MI, and create a VarLoc
504     /// locating it in the specified spill location.
505     static VarLoc CreateSpillLoc(const VarLoc &OldVL, const MachineLoc &OldML,
506                                  unsigned SpillBase, StackOffset SpillOffset) {
507       VarLoc VL = OldVL;
508       for (MachineLoc &ML : VL.Locs)
509         if (ML == OldML) {
510           ML.Kind = MachineLocKind::SpillLocKind;
511           ML.Value.SpillLocation = {SpillBase, SpillOffset};
512           return VL;
513         }
514       llvm_unreachable("Should have found OldML in new VarLoc.");
515     }
516 
517     /// Create a DBG_VALUE representing this VarLoc in the given function.
518     /// Copies variable-specific information such as DILocalVariable and
519     /// inlining information from the original DBG_VALUE instruction, which may
520     /// have been several transfers ago.
521     MachineInstr *BuildDbgValue(MachineFunction &MF) const {
522       assert(!isEntryBackupLoc() &&
523              "Tried to produce DBG_VALUE for backup VarLoc");
524       const DebugLoc &DbgLoc = MI.getDebugLoc();
525       bool Indirect = MI.isIndirectDebugValue();
526       const auto &IID = MI.getDesc();
527       const DILocalVariable *Var = MI.getDebugVariable();
528       NumInserted++;
529 
530       const DIExpression *DIExpr = Expr;
531       SmallVector<MachineOperand, 8> MOs;
532       for (unsigned I = 0, E = Locs.size(); I < E; ++I) {
533         MachineLocKind LocKind = Locs[I].Kind;
534         MachineLocValue Loc = Locs[I].Value;
535         const MachineOperand &Orig = MI.getDebugOperand(OrigLocMap[I]);
536         switch (LocKind) {
537         case MachineLocKind::RegisterKind:
538           // An entry value is a register location -- but with an updated
539           // expression. The register location of such DBG_VALUE is always the
540           // one from the entry DBG_VALUE, it does not matter if the entry value
541           // was copied in to another register due to some optimizations.
542           // Non-entry value register locations are like the source
543           // DBG_VALUE, but with the register number from this VarLoc.
544           MOs.push_back(MachineOperand::CreateReg(
545               EVKind == EntryValueLocKind::EntryValueKind ? Orig.getReg()
546                                                           : Register(Loc.RegNo),
547               false));
548           break;
549         case MachineLocKind::SpillLocKind: {
550           // Spills are indirect DBG_VALUEs, with a base register and offset.
551           // Use the original DBG_VALUEs expression to build the spilt location
552           // on top of. FIXME: spill locations created before this pass runs
553           // are not recognized, and not handled here.
554           unsigned Base = Loc.SpillLocation.SpillBase;
555           auto *TRI = MF.getSubtarget().getRegisterInfo();
556           if (MI.isNonListDebugValue()) {
557             auto Deref = Indirect ? DIExpression::DerefAfter : 0;
558             DIExpr = TRI->prependOffsetExpression(
559                 DIExpr, DIExpression::ApplyOffset | Deref,
560                 Loc.SpillLocation.SpillOffset);
561             Indirect = true;
562           } else {
563             SmallVector<uint64_t, 4> Ops;
564             TRI->getOffsetOpcodes(Loc.SpillLocation.SpillOffset, Ops);
565             Ops.push_back(dwarf::DW_OP_deref);
566             DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, I);
567           }
568           MOs.push_back(MachineOperand::CreateReg(Base, false));
569           break;
570         }
571         case MachineLocKind::ImmediateKind: {
572           MOs.push_back(Orig);
573           break;
574         }
575         case MachineLocKind::InvalidKind:
576           llvm_unreachable("Tried to produce DBG_VALUE for invalid VarLoc");
577         }
578       }
579       return BuildMI(MF, DbgLoc, IID, Indirect, MOs, Var, DIExpr);
580     }
581 
582     /// Is the Loc field a constant or constant object?
583     bool isConstant(MachineLocKind Kind) const {
584       return Kind == MachineLocKind::ImmediateKind;
585     }
586 
587     /// Check if the Loc field is an entry backup location.
588     bool isEntryBackupLoc() const {
589       return EVKind == EntryValueLocKind::EntryValueBackupKind ||
590              EVKind == EntryValueLocKind::EntryValueCopyBackupKind;
591     }
592 
593     /// If this variable is described by register \p Reg holding the entry
594     /// value, return true.
595     bool isEntryValueBackupReg(Register Reg) const {
596       return EVKind == EntryValueLocKind::EntryValueBackupKind && usesReg(Reg);
597     }
598 
599     /// If this variable is described by register \p Reg holding a copy of the
600     /// entry value, return true.
601     bool isEntryValueCopyBackupReg(Register Reg) const {
602       return EVKind == EntryValueLocKind::EntryValueCopyBackupKind &&
603              usesReg(Reg);
604     }
605 
606     /// If this variable is described in whole or part by \p Reg, return true.
607     bool usesReg(Register Reg) const {
608       MachineLoc RegML;
609       RegML.Kind = MachineLocKind::RegisterKind;
610       RegML.Value.RegNo = Reg;
611       return is_contained(Locs, RegML);
612     }
613 
614     /// If this variable is described in whole or part by \p Reg, return true.
615     unsigned getRegIdx(Register Reg) const {
616       for (unsigned Idx = 0; Idx < Locs.size(); ++Idx)
617         if (Locs[Idx].Kind == MachineLocKind::RegisterKind &&
618             Register{static_cast<unsigned>(Locs[Idx].Value.RegNo)} == Reg)
619           return Idx;
620       llvm_unreachable("Could not find given Reg in Locs");
621     }
622 
623     /// If this variable is described in whole or part by 1 or more registers,
624     /// add each of them to \p Regs and return true.
625     bool getDescribingRegs(SmallVectorImpl<uint32_t> &Regs) const {
626       bool AnyRegs = false;
627       for (const auto &Loc : Locs)
628         if (Loc.Kind == MachineLocKind::RegisterKind) {
629           Regs.push_back(Loc.Value.RegNo);
630           AnyRegs = true;
631         }
632       return AnyRegs;
633     }
634 
635     bool containsSpillLocs() const {
636       return any_of(Locs, [](VarLoc::MachineLoc ML) {
637         return ML.Kind == VarLoc::MachineLocKind::SpillLocKind;
638       });
639     }
640 
641     /// If this variable is described in whole or part by \p SpillLocation,
642     /// return true.
643     bool usesSpillLoc(SpillLoc SpillLocation) const {
644       MachineLoc SpillML;
645       SpillML.Kind = MachineLocKind::SpillLocKind;
646       SpillML.Value.SpillLocation = SpillLocation;
647       return is_contained(Locs, SpillML);
648     }
649 
650     /// If this variable is described in whole or part by \p SpillLocation,
651     /// return the index .
652     unsigned getSpillLocIdx(SpillLoc SpillLocation) const {
653       for (unsigned Idx = 0; Idx < Locs.size(); ++Idx)
654         if (Locs[Idx].Kind == MachineLocKind::SpillLocKind &&
655             Locs[Idx].Value.SpillLocation == SpillLocation)
656           return Idx;
657       llvm_unreachable("Could not find given SpillLoc in Locs");
658     }
659 
660     /// Determine whether the lexical scope of this value's debug location
661     /// dominates MBB.
662     bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const {
663       return LS.dominates(MI.getDebugLoc().get(), &MBB);
664     }
665 
666 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
667     // TRI can be null.
668     void dump(const TargetRegisterInfo *TRI, raw_ostream &Out = dbgs()) const {
669       Out << "VarLoc(";
670       for (const MachineLoc &MLoc : Locs) {
671         if (Locs.begin() != &MLoc)
672           Out << ", ";
673         switch (MLoc.Kind) {
674         case MachineLocKind::RegisterKind:
675           Out << printReg(MLoc.Value.RegNo, TRI);
676           break;
677         case MachineLocKind::SpillLocKind:
678           Out << printReg(MLoc.Value.SpillLocation.SpillBase, TRI);
679           Out << "[" << MLoc.Value.SpillLocation.SpillOffset.getFixed() << " + "
680               << MLoc.Value.SpillLocation.SpillOffset.getScalable()
681               << "x vscale"
682               << "]";
683           break;
684         case MachineLocKind::ImmediateKind:
685           Out << MLoc.Value.Immediate;
686           break;
687         case MachineLocKind::InvalidKind:
688           llvm_unreachable("Invalid VarLoc in dump method");
689         }
690       }
691 
692       Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", ";
693       if (Var.getInlinedAt())
694         Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n";
695       else
696         Out << "(null))";
697 
698       if (isEntryBackupLoc())
699         Out << " (backup loc)\n";
700       else
701         Out << "\n";
702     }
703 #endif
704 
705     bool operator==(const VarLoc &Other) const {
706       return std::tie(EVKind, Var, Expr, Locs) ==
707              std::tie(Other.EVKind, Other.Var, Other.Expr, Other.Locs);
708     }
709 
710     /// This operator guarantees that VarLocs are sorted by Variable first.
711     bool operator<(const VarLoc &Other) const {
712       return std::tie(Var, EVKind, Locs, Expr) <
713              std::tie(Other.Var, Other.EVKind, Other.Locs, Other.Expr);
714     }
715   };
716 
717 #ifndef NDEBUG
718   using VarVec = SmallVector<VarLoc, 32>;
719 #endif
720 
721   /// VarLocMap is used for two things:
722   /// 1) Assigning LocIndices to a VarLoc. The LocIndices can be used to
723   ///    virtually insert a VarLoc into a VarLocSet.
724   /// 2) Given a LocIndex, look up the unique associated VarLoc.
725   class VarLocMap {
726     /// Map a VarLoc to an index within the vector reserved for its location
727     /// within Loc2Vars.
728     std::map<VarLoc, LocIndices> Var2Indices;
729 
730     /// Map a location to a vector which holds VarLocs which live in that
731     /// location.
732     SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars;
733 
734   public:
735     /// Retrieve LocIndices for \p VL.
736     LocIndices insert(const VarLoc &VL) {
737       LocIndices &Indices = Var2Indices[VL];
738       // If Indices is not empty, VL is already in the map.
739       if (!Indices.empty())
740         return Indices;
741       SmallVector<LocIndex::u32_location_t, 4> Locations;
742       // LocIndices are determined by EVKind and MLs; each Register has a
743       // unique location, while all SpillLocs use a single bucket, and any EV
744       // VarLocs use only the Backup bucket or none at all (except the
745       // compulsory entry at the universal location index). LocIndices will
746       // always have an index at the universal location index as the last index.
747       if (VL.EVKind == VarLoc::EntryValueLocKind::NonEntryValueKind) {
748         VL.getDescribingRegs(Locations);
749         assert(all_of(Locations,
750                       [](auto RegNo) {
751                         return RegNo < LocIndex::kFirstInvalidRegLocation;
752                       }) &&
753                "Physreg out of range?");
754         if (VL.containsSpillLocs()) {
755           LocIndex::u32_location_t Loc = LocIndex::kSpillLocation;
756           Locations.push_back(Loc);
757         }
758       } else if (VL.EVKind != VarLoc::EntryValueLocKind::EntryValueKind) {
759         LocIndex::u32_location_t Loc = LocIndex::kEntryValueBackupLocation;
760         Locations.push_back(Loc);
761       }
762       Locations.push_back(LocIndex::kUniversalLocation);
763       for (LocIndex::u32_location_t Location : Locations) {
764         auto &Vars = Loc2Vars[Location];
765         Indices.push_back(
766             {Location, static_cast<LocIndex::u32_index_t>(Vars.size())});
767         Vars.push_back(VL);
768       }
769       return Indices;
770     }
771 
772     LocIndices getAllIndices(const VarLoc &VL) const {
773       auto IndIt = Var2Indices.find(VL);
774       assert(IndIt != Var2Indices.end() && "VarLoc not tracked");
775       return IndIt->second;
776     }
777 
778     /// Retrieve the unique VarLoc associated with \p ID.
779     const VarLoc &operator[](LocIndex ID) const {
780       auto LocIt = Loc2Vars.find(ID.Location);
781       assert(LocIt != Loc2Vars.end() && "Location not tracked");
782       return LocIt->second[ID.Index];
783     }
784   };
785 
786   using VarLocInMBB =
787       SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>;
788   struct TransferDebugPair {
789     MachineInstr *TransferInst; ///< Instruction where this transfer occurs.
790     LocIndex LocationID;        ///< Location number for the transfer dest.
791   };
792   using TransferMap = SmallVector<TransferDebugPair, 4>;
793   // Types for recording Entry Var Locations emitted by a single MachineInstr,
794   // as well as recording MachineInstr which last defined a register.
795   using InstToEntryLocMap = std::multimap<const MachineInstr *, LocIndex>;
796   using RegDefToInstMap = DenseMap<Register, MachineInstr *>;
797 
798   // Types for recording sets of variable fragments that overlap. For a given
799   // local variable, we record all other fragments of that variable that could
800   // overlap it, to reduce search time.
801   using FragmentOfVar =
802       std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
803   using OverlapMap =
804       DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
805 
806   // Helper while building OverlapMap, a map of all fragments seen for a given
807   // DILocalVariable.
808   using VarToFragments =
809       DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
810 
811   /// Collects all VarLocs from \p CollectFrom. Each unique VarLoc is added
812   /// to \p Collected once, in order of insertion into \p VarLocIDs.
813   static void collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected,
814                                 const VarLocSet &CollectFrom,
815                                 const VarLocMap &VarLocIDs);
816 
817   /// Get the registers which are used by VarLocs of kind RegisterKind tracked
818   /// by \p CollectFrom.
819   void getUsedRegs(const VarLocSet &CollectFrom,
820                    SmallVectorImpl<Register> &UsedRegs) const;
821 
822   /// This holds the working set of currently open ranges. For fast
823   /// access, this is done both as a set of VarLocIDs, and a map of
824   /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
825   /// previous open ranges for the same variable. In addition, we keep
826   /// two different maps (Vars/EntryValuesBackupVars), so erase/insert
827   /// methods act differently depending on whether a VarLoc is primary
828   /// location or backup one. In the case the VarLoc is backup location
829   /// we will erase/insert from the EntryValuesBackupVars map, otherwise
830   /// we perform the operation on the Vars.
831   class OpenRangesSet {
832     VarLocSet::Allocator &Alloc;
833     VarLocSet VarLocs;
834     // Map the DebugVariable to recent primary location ID.
835     SmallDenseMap<DebugVariable, LocIndices, 8> Vars;
836     // Map the DebugVariable to recent backup location ID.
837     SmallDenseMap<DebugVariable, LocIndices, 8> EntryValuesBackupVars;
838     OverlapMap &OverlappingFragments;
839 
840   public:
841     OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap)
842         : Alloc(Alloc), VarLocs(Alloc), OverlappingFragments(_OLapMap) {}
843 
844     const VarLocSet &getVarLocs() const { return VarLocs; }
845 
846     // Fetches all VarLocs in \p VarLocIDs and inserts them into \p Collected.
847     // This method is needed to get every VarLoc once, as each VarLoc may have
848     // multiple indices in a VarLocMap (corresponding to each applicable
849     // location), but all VarLocs appear exactly once at the universal location
850     // index.
851     void getUniqueVarLocs(SmallVectorImpl<VarLoc> &Collected,
852                           const VarLocMap &VarLocIDs) const {
853       collectAllVarLocs(Collected, VarLocs, VarLocIDs);
854     }
855 
856     /// Terminate all open ranges for VL.Var by removing it from the set.
857     void erase(const VarLoc &VL);
858 
859     /// Terminate all open ranges listed as indices in \c KillSet with
860     /// \c Location by removing them from the set.
861     void erase(const VarLocsInRange &KillSet, const VarLocMap &VarLocIDs,
862                LocIndex::u32_location_t Location);
863 
864     /// Insert a new range into the set.
865     void insert(LocIndices VarLocIDs, const VarLoc &VL);
866 
867     /// Insert a set of ranges.
868     void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map);
869 
870     llvm::Optional<LocIndices> getEntryValueBackup(DebugVariable Var);
871 
872     /// Empty the set.
873     void clear() {
874       VarLocs.clear();
875       Vars.clear();
876       EntryValuesBackupVars.clear();
877     }
878 
879     /// Return whether the set is empty or not.
880     bool empty() const {
881       assert(Vars.empty() == EntryValuesBackupVars.empty() &&
882              Vars.empty() == VarLocs.empty() &&
883              "open ranges are inconsistent");
884       return VarLocs.empty();
885     }
886 
887     /// Get an empty range of VarLoc IDs.
888     auto getEmptyVarLocRange() const {
889       return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(),
890                                                        getVarLocs().end());
891     }
892 
893     /// Get all set IDs for VarLocs with MLs of kind RegisterKind in \p Reg.
894     auto getRegisterVarLocs(Register Reg) const {
895       return LocIndex::indexRangeForLocation(getVarLocs(), Reg);
896     }
897 
898     /// Get all set IDs for VarLocs with MLs of kind SpillLocKind.
899     auto getSpillVarLocs() const {
900       return LocIndex::indexRangeForLocation(getVarLocs(),
901                                              LocIndex::kSpillLocation);
902     }
903 
904     /// Get all set IDs for VarLocs of EVKind EntryValueBackupKind or
905     /// EntryValueCopyBackupKind.
906     auto getEntryValueBackupVarLocs() const {
907       return LocIndex::indexRangeForLocation(
908           getVarLocs(), LocIndex::kEntryValueBackupLocation);
909     }
910   };
911 
912   /// Collect all VarLoc IDs from \p CollectFrom for VarLocs with MLs of kind
913   /// RegisterKind which are located in any reg in \p Regs. The IDs for each
914   /// VarLoc correspond to entries in the universal location bucket, which every
915   /// VarLoc has exactly 1 entry for. Insert collected IDs into \p Collected.
916   static void collectIDsForRegs(VarLocsInRange &Collected,
917                                 const DefinedRegsSet &Regs,
918                                 const VarLocSet &CollectFrom,
919                                 const VarLocMap &VarLocIDs);
920 
921   VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) {
922     std::unique_ptr<VarLocSet> &VLS = Locs[MBB];
923     if (!VLS)
924       VLS = std::make_unique<VarLocSet>(Alloc);
925     return *VLS.get();
926   }
927 
928   const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB,
929                                    const VarLocInMBB &Locs) const {
930     auto It = Locs.find(MBB);
931     assert(It != Locs.end() && "MBB not in map");
932     return *It->second.get();
933   }
934 
935   /// Tests whether this instruction is a spill to a stack location.
936   bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
937 
938   /// Decide if @MI is a spill instruction and return true if it is. We use 2
939   /// criteria to make this decision:
940   /// - Is this instruction a store to a spill slot?
941   /// - Is there a register operand that is both used and killed?
942   /// TODO: Store optimization can fold spills into other stores (including
943   /// other spills). We do not handle this yet (more than one memory operand).
944   bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
945                        Register &Reg);
946 
947   /// Returns true if the given machine instruction is a debug value which we
948   /// can emit entry values for.
949   ///
950   /// Currently, we generate debug entry values only for parameters that are
951   /// unmodified throughout the function and located in a register.
952   bool isEntryValueCandidate(const MachineInstr &MI,
953                              const DefinedRegsSet &Regs) const;
954 
955   /// If a given instruction is identified as a spill, return the spill location
956   /// and set \p Reg to the spilled register.
957   Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI,
958                                                   MachineFunction *MF,
959                                                   Register &Reg);
960   /// Given a spill instruction, extract the register and offset used to
961   /// address the spill location in a target independent way.
962   VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
963   void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges,
964                                TransferMap &Transfers, VarLocMap &VarLocIDs,
965                                LocIndex OldVarID, TransferKind Kind,
966                                const VarLoc::MachineLoc &OldLoc,
967                                Register NewReg = Register());
968 
969   void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
970                           VarLocMap &VarLocIDs,
971                           InstToEntryLocMap &EntryValTransfers,
972                           RegDefToInstMap &RegSetInstrs);
973   void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
974                                   VarLocMap &VarLocIDs, TransferMap &Transfers);
975   void cleanupEntryValueTransfers(const MachineInstr *MI,
976                                   OpenRangesSet &OpenRanges,
977                                   VarLocMap &VarLocIDs, const VarLoc &EntryVL,
978                                   InstToEntryLocMap &EntryValTransfers);
979   void removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
980                         VarLocMap &VarLocIDs, const VarLoc &EntryVL,
981                         InstToEntryLocMap &EntryValTransfers,
982                         RegDefToInstMap &RegSetInstrs);
983   void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges,
984                        VarLocMap &VarLocIDs,
985                        InstToEntryLocMap &EntryValTransfers,
986                        VarLocsInRange &KillSet);
987   void recordEntryValue(const MachineInstr &MI,
988                         const DefinedRegsSet &DefinedRegs,
989                         OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs);
990   void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges,
991                             VarLocMap &VarLocIDs, TransferMap &Transfers);
992   void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
993                            VarLocMap &VarLocIDs,
994                            InstToEntryLocMap &EntryValTransfers,
995                            RegDefToInstMap &RegSetInstrs);
996   bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges,
997                           VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs);
998 
999   void process(MachineInstr &MI, OpenRangesSet &OpenRanges,
1000                VarLocMap &VarLocIDs, TransferMap &Transfers,
1001                InstToEntryLocMap &EntryValTransfers,
1002                RegDefToInstMap &RegSetInstrs);
1003 
1004   void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments,
1005                              OverlapMap &OLapMap);
1006 
1007   bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
1008             const VarLocMap &VarLocIDs,
1009             SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1010             SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks);
1011 
1012   /// Create DBG_VALUE insts for inlocs that have been propagated but
1013   /// had their instruction creation deferred.
1014   void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs);
1015 
1016   bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree,
1017                     TargetPassConfig *TPC, unsigned InputBBLimit,
1018                     unsigned InputDbgValLimit) override;
1019 
1020 public:
1021   /// Default construct and initialize the pass.
1022   VarLocBasedLDV();
1023 
1024   ~VarLocBasedLDV();
1025 
1026   /// Print to ostream with a message.
1027   void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V,
1028                         const VarLocMap &VarLocIDs, const char *msg,
1029                         raw_ostream &Out) const;
1030 };
1031 
1032 } // end anonymous namespace
1033 
1034 //===----------------------------------------------------------------------===//
1035 //            Implementation
1036 //===----------------------------------------------------------------------===//
1037 
1038 VarLocBasedLDV::VarLocBasedLDV() { }
1039 
1040 VarLocBasedLDV::~VarLocBasedLDV() { }
1041 
1042 /// Erase a variable from the set of open ranges, and additionally erase any
1043 /// fragments that may overlap it. If the VarLoc is a backup location, erase
1044 /// the variable from the EntryValuesBackupVars set, indicating we should stop
1045 /// tracking its backup entry location. Otherwise, if the VarLoc is primary
1046 /// location, erase the variable from the Vars set.
1047 void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) {
1048   // Erasure helper.
1049   auto DoErase = [VL, this](DebugVariable VarToErase) {
1050     auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
1051     auto It = EraseFrom->find(VarToErase);
1052     if (It != EraseFrom->end()) {
1053       LocIndices IDs = It->second;
1054       for (LocIndex ID : IDs)
1055         VarLocs.reset(ID.getAsRawInteger());
1056       EraseFrom->erase(It);
1057     }
1058   };
1059 
1060   DebugVariable Var = VL.Var;
1061 
1062   // Erase the variable/fragment that ends here.
1063   DoErase(Var);
1064 
1065   // Extract the fragment. Interpret an empty fragment as one that covers all
1066   // possible bits.
1067   FragmentInfo ThisFragment = Var.getFragmentOrDefault();
1068 
1069   // There may be fragments that overlap the designated fragment. Look them up
1070   // in the pre-computed overlap map, and erase them too.
1071   auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment});
1072   if (MapIt != OverlappingFragments.end()) {
1073     for (auto Fragment : MapIt->second) {
1074       VarLocBasedLDV::OptFragmentInfo FragmentHolder;
1075       if (!DebugVariable::isDefaultFragment(Fragment))
1076         FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment);
1077       DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()});
1078     }
1079   }
1080 }
1081 
1082 void VarLocBasedLDV::OpenRangesSet::erase(const VarLocsInRange &KillSet,
1083                                           const VarLocMap &VarLocIDs,
1084                                           LocIndex::u32_location_t Location) {
1085   VarLocSet RemoveSet(Alloc);
1086   for (LocIndex::u32_index_t ID : KillSet) {
1087     const VarLoc &VL = VarLocIDs[LocIndex(Location, ID)];
1088     auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
1089     EraseFrom->erase(VL.Var);
1090     LocIndices VLI = VarLocIDs.getAllIndices(VL);
1091     for (LocIndex ID : VLI)
1092       RemoveSet.set(ID.getAsRawInteger());
1093   }
1094   VarLocs.intersectWithComplement(RemoveSet);
1095 }
1096 
1097 void VarLocBasedLDV::OpenRangesSet::insertFromLocSet(const VarLocSet &ToLoad,
1098                                                      const VarLocMap &Map) {
1099   VarLocsInRange UniqueVarLocIDs;
1100   DefinedRegsSet Regs;
1101   Regs.insert(LocIndex::kUniversalLocation);
1102   collectIDsForRegs(UniqueVarLocIDs, Regs, ToLoad, Map);
1103   for (uint64_t ID : UniqueVarLocIDs) {
1104     LocIndex Idx = LocIndex::fromRawInteger(ID);
1105     const VarLoc &VarL = Map[Idx];
1106     const LocIndices Indices = Map.getAllIndices(VarL);
1107     insert(Indices, VarL);
1108   }
1109 }
1110 
1111 void VarLocBasedLDV::OpenRangesSet::insert(LocIndices VarLocIDs,
1112                                            const VarLoc &VL) {
1113   auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
1114   for (LocIndex ID : VarLocIDs)
1115     VarLocs.set(ID.getAsRawInteger());
1116   InsertInto->insert({VL.Var, VarLocIDs});
1117 }
1118 
1119 /// Return the Loc ID of an entry value backup location, if it exists for the
1120 /// variable.
1121 llvm::Optional<LocIndices>
1122 VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) {
1123   auto It = EntryValuesBackupVars.find(Var);
1124   if (It != EntryValuesBackupVars.end())
1125     return It->second;
1126 
1127   return llvm::None;
1128 }
1129 
1130 void VarLocBasedLDV::collectIDsForRegs(VarLocsInRange &Collected,
1131                                        const DefinedRegsSet &Regs,
1132                                        const VarLocSet &CollectFrom,
1133                                        const VarLocMap &VarLocIDs) {
1134   assert(!Regs.empty() && "Nothing to collect");
1135   SmallVector<Register, 32> SortedRegs;
1136   append_range(SortedRegs, Regs);
1137   array_pod_sort(SortedRegs.begin(), SortedRegs.end());
1138   auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front()));
1139   auto End = CollectFrom.end();
1140   for (Register Reg : SortedRegs) {
1141     // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains
1142     // all possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which
1143     // live in Reg.
1144     uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg);
1145     uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1);
1146     It.advanceToLowerBound(FirstIndexForReg);
1147 
1148     // Iterate through that half-open interval and collect all the set IDs.
1149     for (; It != End && *It < FirstInvalidIndex; ++It) {
1150       LocIndex ItIdx = LocIndex::fromRawInteger(*It);
1151       const VarLoc &VL = VarLocIDs[ItIdx];
1152       LocIndices LI = VarLocIDs.getAllIndices(VL);
1153       // For now, the back index is always the universal location index.
1154       assert(LI.back().Location == LocIndex::kUniversalLocation &&
1155              "Unexpected order of LocIndices for VarLoc; was it inserted into "
1156              "the VarLocMap correctly?");
1157       Collected.insert(LI.back().Index);
1158     }
1159 
1160     if (It == End)
1161       return;
1162   }
1163 }
1164 
1165 void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom,
1166                                  SmallVectorImpl<Register> &UsedRegs) const {
1167   // All register-based VarLocs are assigned indices greater than or equal to
1168   // FirstRegIndex.
1169   uint64_t FirstRegIndex =
1170       LocIndex::rawIndexForReg(LocIndex::kFirstRegLocation);
1171   uint64_t FirstInvalidIndex =
1172       LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation);
1173   for (auto It = CollectFrom.find(FirstRegIndex),
1174             End = CollectFrom.find(FirstInvalidIndex);
1175        It != End;) {
1176     // We found a VarLoc ID for a VarLoc that lives in a register. Figure out
1177     // which register and add it to UsedRegs.
1178     uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location;
1179     assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) &&
1180            "Duplicate used reg");
1181     UsedRegs.push_back(FoundReg);
1182 
1183     // Skip to the next /set/ register. Note that this finds a lower bound, so
1184     // even if there aren't any VarLocs living in `FoundReg+1`, we're still
1185     // guaranteed to move on to the next register (or to end()).
1186     uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1);
1187     It.advanceToLowerBound(NextRegIndex);
1188   }
1189 }
1190 
1191 //===----------------------------------------------------------------------===//
1192 //            Debug Range Extension Implementation
1193 //===----------------------------------------------------------------------===//
1194 
1195 #ifndef NDEBUG
1196 void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF,
1197                                        const VarLocInMBB &V,
1198                                        const VarLocMap &VarLocIDs,
1199                                        const char *msg,
1200                                        raw_ostream &Out) const {
1201   Out << '\n' << msg << '\n';
1202   for (const MachineBasicBlock &BB : MF) {
1203     if (!V.count(&BB))
1204       continue;
1205     const VarLocSet &L = getVarLocsInMBB(&BB, V);
1206     if (L.empty())
1207       continue;
1208     SmallVector<VarLoc, 32> VarLocs;
1209     collectAllVarLocs(VarLocs, L, VarLocIDs);
1210     Out << "MBB: " << BB.getNumber() << ":\n";
1211     for (const VarLoc &VL : VarLocs) {
1212       Out << " Var: " << VL.Var.getVariable()->getName();
1213       Out << " MI: ";
1214       VL.dump(TRI, Out);
1215     }
1216   }
1217   Out << "\n";
1218 }
1219 #endif
1220 
1221 VarLocBasedLDV::VarLoc::SpillLoc
1222 VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
1223   assert(MI.hasOneMemOperand() &&
1224          "Spill instruction does not have exactly one memory operand?");
1225   auto MMOI = MI.memoperands_begin();
1226   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1227   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
1228          "Inconsistent memory operand in spill instruction");
1229   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
1230   const MachineBasicBlock *MBB = MI.getParent();
1231   Register Reg;
1232   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
1233   return {Reg, Offset};
1234 }
1235 
1236 /// Do cleanup of \p EntryValTransfers created by \p TRInst, by removing the
1237 /// Transfer, which uses the to-be-deleted \p EntryVL.
1238 void VarLocBasedLDV::cleanupEntryValueTransfers(
1239     const MachineInstr *TRInst, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs,
1240     const VarLoc &EntryVL, InstToEntryLocMap &EntryValTransfers) {
1241   if (EntryValTransfers.empty() || TRInst == nullptr)
1242     return;
1243 
1244   auto TransRange = EntryValTransfers.equal_range(TRInst);
1245   for (auto TDPair : llvm::make_range(TransRange.first, TransRange.second)) {
1246     const VarLoc &EmittedEV = VarLocIDs[TDPair.second];
1247     if (std::tie(EntryVL.Var, EntryVL.Locs[0].Value.RegNo, EntryVL.Expr) ==
1248         std::tie(EmittedEV.Var, EmittedEV.Locs[0].Value.RegNo,
1249                  EmittedEV.Expr)) {
1250       OpenRanges.erase(EmittedEV);
1251       EntryValTransfers.erase(TRInst);
1252       break;
1253     }
1254   }
1255 }
1256 
1257 /// Try to salvage the debug entry value if we encounter a new debug value
1258 /// describing the same parameter, otherwise stop tracking the value. Return
1259 /// true if we should stop tracking the entry value and do the cleanup of
1260 /// emitted Entry Value Transfers, otherwise return false.
1261 void VarLocBasedLDV::removeEntryValue(const MachineInstr &MI,
1262                                       OpenRangesSet &OpenRanges,
1263                                       VarLocMap &VarLocIDs,
1264                                       const VarLoc &EntryVL,
1265                                       InstToEntryLocMap &EntryValTransfers,
1266                                       RegDefToInstMap &RegSetInstrs) {
1267   // Skip the DBG_VALUE which is the debug entry value itself.
1268   if (&MI == &EntryVL.MI)
1269     return;
1270 
1271   // If the parameter's location is not register location, we can not track
1272   // the entry value any more. It doesn't have the TransferInst which defines
1273   // register, so no Entry Value Transfers have been emitted already.
1274   if (!MI.getDebugOperand(0).isReg())
1275     return;
1276 
1277   // Try to get non-debug instruction responsible for the DBG_VALUE.
1278   const MachineInstr *TransferInst = nullptr;
1279   Register Reg = MI.getDebugOperand(0).getReg();
1280   if (Reg.isValid() && RegSetInstrs.find(Reg) != RegSetInstrs.end())
1281     TransferInst = RegSetInstrs.find(Reg)->second;
1282 
1283   // Case of the parameter's DBG_VALUE at the start of entry MBB.
1284   if (!TransferInst && !LastNonDbgMI && MI.getParent()->isEntryBlock())
1285     return;
1286 
1287   // If the debug expression from the DBG_VALUE is not empty, we can assume the
1288   // parameter's value has changed indicating that we should stop tracking its
1289   // entry value as well.
1290   if (MI.getDebugExpression()->getNumElements() == 0 && TransferInst) {
1291     // If the DBG_VALUE comes from a copy instruction that copies the entry
1292     // value, it means the parameter's value has not changed and we should be
1293     // able to use its entry value.
1294     // TODO: Try to keep tracking of an entry value if we encounter a propagated
1295     // DBG_VALUE describing the copy of the entry value. (Propagated entry value
1296     // does not indicate the parameter modification.)
1297     auto DestSrc = TII->isCopyInstr(*TransferInst);
1298     if (DestSrc) {
1299       const MachineOperand *SrcRegOp, *DestRegOp;
1300       SrcRegOp = DestSrc->Source;
1301       DestRegOp = DestSrc->Destination;
1302       if (Reg == DestRegOp->getReg()) {
1303         for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
1304           const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)];
1305           if (VL.isEntryValueCopyBackupReg(Reg) &&
1306               // Entry Values should not be variadic.
1307               VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg())
1308             return;
1309         }
1310       }
1311     }
1312   }
1313 
1314   LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: ";
1315              MI.print(dbgs(), /*IsStandalone*/ false,
1316                       /*SkipOpers*/ false, /*SkipDebugLoc*/ false,
1317                       /*AddNewLine*/ true, TII));
1318   cleanupEntryValueTransfers(TransferInst, OpenRanges, VarLocIDs, EntryVL,
1319                              EntryValTransfers);
1320   OpenRanges.erase(EntryVL);
1321 }
1322 
1323 /// End all previous ranges related to @MI and start a new range from @MI
1324 /// if it is a DBG_VALUE instr.
1325 void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI,
1326                                         OpenRangesSet &OpenRanges,
1327                                         VarLocMap &VarLocIDs,
1328                                         InstToEntryLocMap &EntryValTransfers,
1329                                         RegDefToInstMap &RegSetInstrs) {
1330   if (!MI.isDebugValue())
1331     return;
1332   const DILocalVariable *Var = MI.getDebugVariable();
1333   const DIExpression *Expr = MI.getDebugExpression();
1334   const DILocation *DebugLoc = MI.getDebugLoc();
1335   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1336   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1337          "Expected inlined-at fields to agree");
1338 
1339   DebugVariable V(Var, Expr, InlinedAt);
1340 
1341   // Check if this DBG_VALUE indicates a parameter's value changing.
1342   // If that is the case, we should stop tracking its entry value.
1343   auto EntryValBackupID = OpenRanges.getEntryValueBackup(V);
1344   if (Var->isParameter() && EntryValBackupID) {
1345     const VarLoc &EntryVL = VarLocIDs[EntryValBackupID->back()];
1346     removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL, EntryValTransfers,
1347                      RegSetInstrs);
1348   }
1349 
1350   if (all_of(MI.debug_operands(), [](const MachineOperand &MO) {
1351         return (MO.isReg() && MO.getReg()) || MO.isImm() || MO.isFPImm() ||
1352                MO.isCImm();
1353       })) {
1354     // Use normal VarLoc constructor for registers and immediates.
1355     VarLoc VL(MI, LS);
1356     // End all previous ranges of VL.Var.
1357     OpenRanges.erase(VL);
1358 
1359     LocIndices IDs = VarLocIDs.insert(VL);
1360     // Add the VarLoc to OpenRanges from this DBG_VALUE.
1361     OpenRanges.insert(IDs, VL);
1362   } else if (MI.memoperands().size() > 0) {
1363     llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?");
1364   } else {
1365     // This must be an undefined location. If it has an open range, erase it.
1366     assert(MI.isUndefDebugValue() &&
1367            "Unexpected non-undef DBG_VALUE encountered");
1368     VarLoc VL(MI, LS);
1369     OpenRanges.erase(VL);
1370   }
1371 }
1372 
1373 // This should be removed later, doesn't fit the new design.
1374 void VarLocBasedLDV::collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected,
1375                                        const VarLocSet &CollectFrom,
1376                                        const VarLocMap &VarLocIDs) {
1377   // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all
1378   // possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which live
1379   // in Reg.
1380   uint64_t FirstIndex = LocIndex::rawIndexForReg(LocIndex::kUniversalLocation);
1381   uint64_t FirstInvalidIndex =
1382       LocIndex::rawIndexForReg(LocIndex::kUniversalLocation + 1);
1383   // Iterate through that half-open interval and collect all the set IDs.
1384   for (auto It = CollectFrom.find(FirstIndex), End = CollectFrom.end();
1385        It != End && *It < FirstInvalidIndex; ++It) {
1386     LocIndex RegIdx = LocIndex::fromRawInteger(*It);
1387     Collected.push_back(VarLocIDs[RegIdx]);
1388   }
1389 }
1390 
1391 /// Turn the entry value backup locations into primary locations.
1392 void VarLocBasedLDV::emitEntryValues(MachineInstr &MI,
1393                                      OpenRangesSet &OpenRanges,
1394                                      VarLocMap &VarLocIDs,
1395                                      InstToEntryLocMap &EntryValTransfers,
1396                                      VarLocsInRange &KillSet) {
1397   // Do not insert entry value locations after a terminator.
1398   if (MI.isTerminator())
1399     return;
1400 
1401   for (uint32_t ID : KillSet) {
1402     // The KillSet IDs are indices for the universal location bucket.
1403     LocIndex Idx = LocIndex(LocIndex::kUniversalLocation, ID);
1404     const VarLoc &VL = VarLocIDs[Idx];
1405     if (!VL.Var.getVariable()->isParameter())
1406       continue;
1407 
1408     auto DebugVar = VL.Var;
1409     Optional<LocIndices> EntryValBackupIDs =
1410         OpenRanges.getEntryValueBackup(DebugVar);
1411 
1412     // If the parameter has the entry value backup, it means we should
1413     // be able to use its entry value.
1414     if (!EntryValBackupIDs)
1415       continue;
1416 
1417     const VarLoc &EntryVL = VarLocIDs[EntryValBackupIDs->back()];
1418     VarLoc EntryLoc = VarLoc::CreateEntryLoc(EntryVL.MI, LS, EntryVL.Expr,
1419                                              EntryVL.Locs[0].Value.RegNo);
1420     LocIndices EntryValueIDs = VarLocIDs.insert(EntryLoc);
1421     assert(EntryValueIDs.size() == 1 &&
1422            "EntryValue loc should not be variadic");
1423     EntryValTransfers.insert({&MI, EntryValueIDs.back()});
1424     OpenRanges.insert(EntryValueIDs, EntryLoc);
1425   }
1426 }
1427 
1428 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
1429 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with
1430 /// new VarLoc. If \p NewReg is different than default zero value then the
1431 /// new location will be register location created by the copy like instruction,
1432 /// otherwise it is variable's location on the stack.
1433 void VarLocBasedLDV::insertTransferDebugPair(
1434     MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers,
1435     VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind,
1436     const VarLoc::MachineLoc &OldLoc, Register NewReg) {
1437   const VarLoc &OldVarLoc = VarLocIDs[OldVarID];
1438 
1439   auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) {
1440     LocIndices LocIds = VarLocIDs.insert(VL);
1441 
1442     // Close this variable's previous location range.
1443     OpenRanges.erase(VL);
1444 
1445     // Record the new location as an open range, and a postponed transfer
1446     // inserting a DBG_VALUE for this location.
1447     OpenRanges.insert(LocIds, VL);
1448     assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator");
1449     TransferDebugPair MIP = {&MI, LocIds.back()};
1450     Transfers.push_back(MIP);
1451   };
1452 
1453   // End all previous ranges of VL.Var.
1454   OpenRanges.erase(VarLocIDs[OldVarID]);
1455   switch (Kind) {
1456   case TransferKind::TransferCopy: {
1457     assert(NewReg &&
1458            "No register supplied when handling a copy of a debug value");
1459     // Create a DBG_VALUE instruction to describe the Var in its new
1460     // register location.
1461     VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg);
1462     ProcessVarLoc(VL);
1463     LLVM_DEBUG({
1464       dbgs() << "Creating VarLoc for register copy:";
1465       VL.dump(TRI);
1466     });
1467     return;
1468   }
1469   case TransferKind::TransferSpill: {
1470     // Create a DBG_VALUE instruction to describe the Var in its spilled
1471     // location.
1472     VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI);
1473     VarLoc VL = VarLoc::CreateSpillLoc(
1474         OldVarLoc, OldLoc, SpillLocation.SpillBase, SpillLocation.SpillOffset);
1475     ProcessVarLoc(VL);
1476     LLVM_DEBUG({
1477       dbgs() << "Creating VarLoc for spill:";
1478       VL.dump(TRI);
1479     });
1480     return;
1481   }
1482   case TransferKind::TransferRestore: {
1483     assert(NewReg &&
1484            "No register supplied when handling a restore of a debug value");
1485     // DebugInstr refers to the pre-spill location, therefore we can reuse
1486     // its expression.
1487     VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg);
1488     ProcessVarLoc(VL);
1489     LLVM_DEBUG({
1490       dbgs() << "Creating VarLoc for restore:";
1491       VL.dump(TRI);
1492     });
1493     return;
1494   }
1495   }
1496   llvm_unreachable("Invalid transfer kind");
1497 }
1498 
1499 /// A definition of a register may mark the end of a range.
1500 void VarLocBasedLDV::transferRegisterDef(MachineInstr &MI,
1501                                          OpenRangesSet &OpenRanges,
1502                                          VarLocMap &VarLocIDs,
1503                                          InstToEntryLocMap &EntryValTransfers,
1504                                          RegDefToInstMap &RegSetInstrs) {
1505 
1506   // Meta Instructions do not affect the debug liveness of any register they
1507   // define.
1508   if (MI.isMetaInstruction())
1509     return;
1510 
1511   MachineFunction *MF = MI.getMF();
1512   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1513   Register SP = TLI->getStackPointerRegisterToSaveRestore();
1514 
1515   // Find the regs killed by MI, and find regmasks of preserved regs.
1516   DefinedRegsSet DeadRegs;
1517   SmallVector<const uint32_t *, 4> RegMasks;
1518   for (const MachineOperand &MO : MI.operands()) {
1519     // Determine whether the operand is a register def.
1520     if (MO.isReg() && MO.isDef() && MO.getReg() &&
1521         Register::isPhysicalRegister(MO.getReg()) &&
1522         !(MI.isCall() && MO.getReg() == SP)) {
1523       // Remove ranges of all aliased registers.
1524       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1525         // FIXME: Can we break out of this loop early if no insertion occurs?
1526         DeadRegs.insert(*RAI);
1527       RegSetInstrs.erase(MO.getReg());
1528       RegSetInstrs.insert({MO.getReg(), &MI});
1529     } else if (MO.isRegMask()) {
1530       RegMasks.push_back(MO.getRegMask());
1531     }
1532   }
1533 
1534   // Erase VarLocs which reside in one of the dead registers. For performance
1535   // reasons, it's critical to not iterate over the full set of open VarLocs.
1536   // Iterate over the set of dying/used regs instead.
1537   if (!RegMasks.empty()) {
1538     SmallVector<Register, 32> UsedRegs;
1539     getUsedRegs(OpenRanges.getVarLocs(), UsedRegs);
1540     for (Register Reg : UsedRegs) {
1541       // Remove ranges of all clobbered registers. Register masks don't usually
1542       // list SP as preserved. Assume that call instructions never clobber SP,
1543       // because some backends (e.g., AArch64) never list SP in the regmask.
1544       // While the debug info may be off for an instruction or two around
1545       // callee-cleanup calls, transferring the DEBUG_VALUE across the call is
1546       // still a better user experience.
1547       if (Reg == SP)
1548         continue;
1549       bool AnyRegMaskKillsReg =
1550           any_of(RegMasks, [Reg](const uint32_t *RegMask) {
1551             return MachineOperand::clobbersPhysReg(RegMask, Reg);
1552           });
1553       if (AnyRegMaskKillsReg)
1554         DeadRegs.insert(Reg);
1555       if (AnyRegMaskKillsReg) {
1556         RegSetInstrs.erase(Reg);
1557         RegSetInstrs.insert({Reg, &MI});
1558       }
1559     }
1560   }
1561 
1562   if (DeadRegs.empty())
1563     return;
1564 
1565   VarLocsInRange KillSet;
1566   collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs(), VarLocIDs);
1567   OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kUniversalLocation);
1568 
1569   if (TPC) {
1570     auto &TM = TPC->getTM<TargetMachine>();
1571     if (TM.Options.ShouldEmitDebugEntryValues())
1572       emitEntryValues(MI, OpenRanges, VarLocIDs, EntryValTransfers, KillSet);
1573   }
1574 }
1575 
1576 bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI,
1577                                          MachineFunction *MF) {
1578   // TODO: Handle multiple stores folded into one.
1579   if (!MI.hasOneMemOperand())
1580     return false;
1581 
1582   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1583     return false; // This is not a spill instruction, since no valid size was
1584                   // returned from either function.
1585 
1586   return true;
1587 }
1588 
1589 bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI,
1590                                       MachineFunction *MF, Register &Reg) {
1591   if (!isSpillInstruction(MI, MF))
1592     return false;
1593 
1594   auto isKilledReg = [&](const MachineOperand MO, Register &Reg) {
1595     if (!MO.isReg() || !MO.isUse()) {
1596       Reg = 0;
1597       return false;
1598     }
1599     Reg = MO.getReg();
1600     return MO.isKill();
1601   };
1602 
1603   for (const MachineOperand &MO : MI.operands()) {
1604     // In a spill instruction generated by the InlineSpiller the spilled
1605     // register has its kill flag set.
1606     if (isKilledReg(MO, Reg))
1607       return true;
1608     if (Reg != 0) {
1609       // Check whether next instruction kills the spilled register.
1610       // FIXME: Current solution does not cover search for killed register in
1611       // bundles and instructions further down the chain.
1612       auto NextI = std::next(MI.getIterator());
1613       // Skip next instruction that points to basic block end iterator.
1614       if (MI.getParent()->end() == NextI)
1615         continue;
1616       Register RegNext;
1617       for (const MachineOperand &MONext : NextI->operands()) {
1618         // Return true if we came across the register from the
1619         // previous spill instruction that is killed in NextI.
1620         if (isKilledReg(MONext, RegNext) && RegNext == Reg)
1621           return true;
1622       }
1623     }
1624   }
1625   // Return false if we didn't find spilled register.
1626   return false;
1627 }
1628 
1629 Optional<VarLocBasedLDV::VarLoc::SpillLoc>
1630 VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1631                                       MachineFunction *MF, Register &Reg) {
1632   if (!MI.hasOneMemOperand())
1633     return None;
1634 
1635   // FIXME: Handle folded restore instructions with more than one memory
1636   // operand.
1637   if (MI.getRestoreSize(TII)) {
1638     Reg = MI.getOperand(0).getReg();
1639     return extractSpillBaseRegAndOffset(MI);
1640   }
1641   return None;
1642 }
1643 
1644 /// A spilled register may indicate that we have to end the current range of
1645 /// a variable and create a new one for the spill location.
1646 /// A restored register may indicate the reverse situation.
1647 /// We don't want to insert any instructions in process(), so we just create
1648 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
1649 /// It will be inserted into the BB when we're done iterating over the
1650 /// instructions.
1651 void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI,
1652                                                  OpenRangesSet &OpenRanges,
1653                                                  VarLocMap &VarLocIDs,
1654                                                  TransferMap &Transfers) {
1655   MachineFunction *MF = MI.getMF();
1656   TransferKind TKind;
1657   Register Reg;
1658   Optional<VarLoc::SpillLoc> Loc;
1659 
1660   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
1661 
1662   // First, if there are any DBG_VALUEs pointing at a spill slot that is
1663   // written to, then close the variable location. The value in memory
1664   // will have changed.
1665   VarLocsInRange KillSet;
1666   if (isSpillInstruction(MI, MF)) {
1667     Loc = extractSpillBaseRegAndOffset(MI);
1668     for (uint64_t ID : OpenRanges.getSpillVarLocs()) {
1669       LocIndex Idx = LocIndex::fromRawInteger(ID);
1670       const VarLoc &VL = VarLocIDs[Idx];
1671       assert(VL.containsSpillLocs() && "Broken VarLocSet?");
1672       if (VL.usesSpillLoc(*Loc)) {
1673         // This location is overwritten by the current instruction -- terminate
1674         // the open range, and insert an explicit DBG_VALUE $noreg.
1675         //
1676         // Doing this at a later stage would require re-interpreting all
1677         // DBG_VALUes and DIExpressions to identify whether they point at
1678         // memory, and then analysing all memory writes to see if they
1679         // overwrite that memory, which is expensive.
1680         //
1681         // At this stage, we already know which DBG_VALUEs are for spills and
1682         // where they are located; it's best to fix handle overwrites now.
1683         KillSet.insert(ID);
1684         unsigned SpillLocIdx = VL.getSpillLocIdx(*Loc);
1685         VarLoc::MachineLoc OldLoc = VL.Locs[SpillLocIdx];
1686         VarLoc UndefVL = VarLoc::CreateCopyLoc(VL, OldLoc, 0);
1687         LocIndices UndefLocIDs = VarLocIDs.insert(UndefVL);
1688         Transfers.push_back({&MI, UndefLocIDs.back()});
1689       }
1690     }
1691     OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kSpillLocation);
1692   }
1693 
1694   // Try to recognise spill and restore instructions that may create a new
1695   // variable location.
1696   if (isLocationSpill(MI, MF, Reg)) {
1697     TKind = TransferKind::TransferSpill;
1698     LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump(););
1699     LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
1700                       << "\n");
1701   } else {
1702     if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
1703       return;
1704     TKind = TransferKind::TransferRestore;
1705     LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump(););
1706     LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
1707                       << "\n");
1708   }
1709   // Check if the register or spill location is the location of a debug value.
1710   auto TransferCandidates = OpenRanges.getEmptyVarLocRange();
1711   if (TKind == TransferKind::TransferSpill)
1712     TransferCandidates = OpenRanges.getRegisterVarLocs(Reg);
1713   else if (TKind == TransferKind::TransferRestore)
1714     TransferCandidates = OpenRanges.getSpillVarLocs();
1715   for (uint64_t ID : TransferCandidates) {
1716     LocIndex Idx = LocIndex::fromRawInteger(ID);
1717     const VarLoc &VL = VarLocIDs[Idx];
1718     unsigned LocIdx;
1719     if (TKind == TransferKind::TransferSpill) {
1720       assert(VL.usesReg(Reg) && "Broken VarLocSet?");
1721       LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '('
1722                         << VL.Var.getVariable()->getName() << ")\n");
1723       LocIdx = VL.getRegIdx(Reg);
1724     } else {
1725       assert(TKind == TransferKind::TransferRestore && VL.containsSpillLocs() &&
1726              "Broken VarLocSet?");
1727       if (!VL.usesSpillLoc(*Loc))
1728         // The spill location is not the location of a debug value.
1729         continue;
1730       LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '('
1731                         << VL.Var.getVariable()->getName() << ")\n");
1732       LocIdx = VL.getSpillLocIdx(*Loc);
1733     }
1734     VarLoc::MachineLoc MLoc = VL.Locs[LocIdx];
1735     insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind,
1736                             MLoc, Reg);
1737     // FIXME: A comment should explain why it's correct to return early here,
1738     // if that is in fact correct.
1739     return;
1740   }
1741 }
1742 
1743 /// If \p MI is a register copy instruction, that copies a previously tracked
1744 /// value from one register to another register that is callee saved, we
1745 /// create new DBG_VALUE instruction  described with copy destination register.
1746 void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI,
1747                                            OpenRangesSet &OpenRanges,
1748                                            VarLocMap &VarLocIDs,
1749                                            TransferMap &Transfers) {
1750   auto DestSrc = TII->isCopyInstr(MI);
1751   if (!DestSrc)
1752     return;
1753 
1754   const MachineOperand *DestRegOp = DestSrc->Destination;
1755   const MachineOperand *SrcRegOp = DestSrc->Source;
1756 
1757   if (!DestRegOp->isDef())
1758     return;
1759 
1760   auto isCalleeSavedReg = [&](Register Reg) {
1761     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1762       if (CalleeSavedRegs.test(*RAI))
1763         return true;
1764     return false;
1765   };
1766 
1767   Register SrcReg = SrcRegOp->getReg();
1768   Register DestReg = DestRegOp->getReg();
1769 
1770   // We want to recognize instructions where destination register is callee
1771   // saved register. If register that could be clobbered by the call is
1772   // included, there would be a great chance that it is going to be clobbered
1773   // soon. It is more likely that previous register location, which is callee
1774   // saved, is going to stay unclobbered longer, even if it is killed.
1775   if (!isCalleeSavedReg(DestReg))
1776     return;
1777 
1778   // Remember an entry value movement. If we encounter a new debug value of
1779   // a parameter describing only a moving of the value around, rather then
1780   // modifying it, we are still able to use the entry value if needed.
1781   if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) {
1782     for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
1783       LocIndex Idx = LocIndex::fromRawInteger(ID);
1784       const VarLoc &VL = VarLocIDs[Idx];
1785       if (VL.isEntryValueBackupReg(SrcReg)) {
1786         LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump(););
1787         VarLoc EntryValLocCopyBackup =
1788             VarLoc::CreateEntryCopyBackupLoc(VL.MI, LS, VL.Expr, DestReg);
1789         // Stop tracking the original entry value.
1790         OpenRanges.erase(VL);
1791 
1792         // Start tracking the entry value copy.
1793         LocIndices EntryValCopyLocIDs = VarLocIDs.insert(EntryValLocCopyBackup);
1794         OpenRanges.insert(EntryValCopyLocIDs, EntryValLocCopyBackup);
1795         break;
1796       }
1797     }
1798   }
1799 
1800   if (!SrcRegOp->isKill())
1801     return;
1802 
1803   for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) {
1804     LocIndex Idx = LocIndex::fromRawInteger(ID);
1805     assert(VarLocIDs[Idx].usesReg(SrcReg) && "Broken VarLocSet?");
1806     VarLoc::MachineLocValue Loc;
1807     Loc.RegNo = SrcReg;
1808     VarLoc::MachineLoc MLoc{VarLoc::MachineLocKind::RegisterKind, Loc};
1809     insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx,
1810                             TransferKind::TransferCopy, MLoc, DestReg);
1811     // FIXME: A comment should explain why it's correct to return early here,
1812     // if that is in fact correct.
1813     return;
1814   }
1815 }
1816 
1817 /// Terminate all open ranges at the end of the current basic block.
1818 bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB,
1819                                          OpenRangesSet &OpenRanges,
1820                                          VarLocInMBB &OutLocs,
1821                                          const VarLocMap &VarLocIDs) {
1822   bool Changed = false;
1823   LLVM_DEBUG({
1824     VarVec VarLocs;
1825     OpenRanges.getUniqueVarLocs(VarLocs, VarLocIDs);
1826     for (VarLoc &VL : VarLocs) {
1827       // Copy OpenRanges to OutLocs, if not already present.
1828       dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ":  ";
1829       VL.dump(TRI);
1830     }
1831   });
1832   VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs);
1833   Changed = VLS != OpenRanges.getVarLocs();
1834   // New OutLocs set may be different due to spill, restore or register
1835   // copy instruction processing.
1836   if (Changed)
1837     VLS = OpenRanges.getVarLocs();
1838   OpenRanges.clear();
1839   return Changed;
1840 }
1841 
1842 /// Accumulate a mapping between each DILocalVariable fragment and other
1843 /// fragments of that DILocalVariable which overlap. This reduces work during
1844 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1845 /// known-to-overlap fragments are present".
1846 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
1847 ///           fragment usage.
1848 /// \param SeenFragments Map from DILocalVariable to all fragments of that
1849 ///           Variable which are known to exist.
1850 /// \param OverlappingFragments The overlap map being constructed, from one
1851 ///           Var/Fragment pair to a vector of fragments known to overlap.
1852 void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI,
1853                                             VarToFragments &SeenFragments,
1854                                             OverlapMap &OverlappingFragments) {
1855   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
1856                       MI.getDebugLoc()->getInlinedAt());
1857   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
1858 
1859   // If this is the first sighting of this variable, then we are guaranteed
1860   // there are currently no overlapping fragments either. Initialize the set
1861   // of seen fragments, record no overlaps for the current one, and return.
1862   auto SeenIt = SeenFragments.find(MIVar.getVariable());
1863   if (SeenIt == SeenFragments.end()) {
1864     SmallSet<FragmentInfo, 4> OneFragment;
1865     OneFragment.insert(ThisFragment);
1866     SeenFragments.insert({MIVar.getVariable(), OneFragment});
1867 
1868     OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1869     return;
1870   }
1871 
1872   // If this particular Variable/Fragment pair already exists in the overlap
1873   // map, it has already been accounted for.
1874   auto IsInOLapMap =
1875       OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1876   if (!IsInOLapMap.second)
1877     return;
1878 
1879   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
1880   auto &AllSeenFragments = SeenIt->second;
1881 
1882   // Otherwise, examine all other seen fragments for this variable, with "this"
1883   // fragment being a previously unseen fragment. Record any pair of
1884   // overlapping fragments.
1885   for (auto &ASeenFragment : AllSeenFragments) {
1886     // Does this previously seen fragment overlap?
1887     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
1888       // Yes: Mark the current fragment as being overlapped.
1889       ThisFragmentsOverlaps.push_back(ASeenFragment);
1890       // Mark the previously seen fragment as being overlapped by the current
1891       // one.
1892       auto ASeenFragmentsOverlaps =
1893           OverlappingFragments.find({MIVar.getVariable(), ASeenFragment});
1894       assert(ASeenFragmentsOverlaps != OverlappingFragments.end() &&
1895              "Previously seen var fragment has no vector of overlaps");
1896       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
1897     }
1898   }
1899 
1900   AllSeenFragments.insert(ThisFragment);
1901 }
1902 
1903 /// This routine creates OpenRanges.
1904 void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges,
1905                              VarLocMap &VarLocIDs, TransferMap &Transfers,
1906                              InstToEntryLocMap &EntryValTransfers,
1907                              RegDefToInstMap &RegSetInstrs) {
1908   if (!MI.isDebugInstr())
1909     LastNonDbgMI = &MI;
1910   transferDebugValue(MI, OpenRanges, VarLocIDs, EntryValTransfers,
1911                      RegSetInstrs);
1912   transferRegisterDef(MI, OpenRanges, VarLocIDs, EntryValTransfers,
1913                       RegSetInstrs);
1914   transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers);
1915   transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers);
1916 }
1917 
1918 /// This routine joins the analysis results of all incoming edges in @MBB by
1919 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
1920 /// source variable in all the predecessors of @MBB reside in the same location.
1921 bool VarLocBasedLDV::join(
1922     MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
1923     const VarLocMap &VarLocIDs,
1924     SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1925     SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) {
1926   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
1927 
1928   VarLocSet InLocsT(Alloc); // Temporary incoming locations.
1929 
1930   // For all predecessors of this MBB, find the set of VarLocs that
1931   // can be joined.
1932   int NumVisited = 0;
1933   for (auto p : MBB.predecessors()) {
1934     // Ignore backedges if we have not visited the predecessor yet. As the
1935     // predecessor hasn't yet had locations propagated into it, most locations
1936     // will not yet be valid, so treat them as all being uninitialized and
1937     // potentially valid. If a location guessed to be correct here is
1938     // invalidated later, we will remove it when we revisit this block.
1939     if (!Visited.count(p)) {
1940       LLVM_DEBUG(dbgs() << "  ignoring unvisited pred MBB: " << p->getNumber()
1941                         << "\n");
1942       continue;
1943     }
1944     auto OL = OutLocs.find(p);
1945     // Join is null in case of empty OutLocs from any of the pred.
1946     if (OL == OutLocs.end())
1947       return false;
1948 
1949     // Just copy over the Out locs to incoming locs for the first visited
1950     // predecessor, and for all other predecessors join the Out locs.
1951     VarLocSet &OutLocVLS = *OL->second.get();
1952     if (!NumVisited)
1953       InLocsT = OutLocVLS;
1954     else
1955       InLocsT &= OutLocVLS;
1956 
1957     LLVM_DEBUG({
1958       if (!InLocsT.empty()) {
1959         VarVec VarLocs;
1960         collectAllVarLocs(VarLocs, InLocsT, VarLocIDs);
1961         for (const VarLoc &VL : VarLocs)
1962           dbgs() << "  gathered candidate incoming var: "
1963                  << VL.Var.getVariable()->getName() << "\n";
1964       }
1965     });
1966 
1967     NumVisited++;
1968   }
1969 
1970   // Filter out DBG_VALUES that are out of scope.
1971   VarLocSet KillSet(Alloc);
1972   bool IsArtificial = ArtificialBlocks.count(&MBB);
1973   if (!IsArtificial) {
1974     for (uint64_t ID : InLocsT) {
1975       LocIndex Idx = LocIndex::fromRawInteger(ID);
1976       if (!VarLocIDs[Idx].dominates(LS, MBB)) {
1977         KillSet.set(ID);
1978         LLVM_DEBUG({
1979           auto Name = VarLocIDs[Idx].Var.getVariable()->getName();
1980           dbgs() << "  killing " << Name << ", it doesn't dominate MBB\n";
1981         });
1982       }
1983     }
1984   }
1985   InLocsT.intersectWithComplement(KillSet);
1986 
1987   // As we are processing blocks in reverse post-order we
1988   // should have processed at least one predecessor, unless it
1989   // is the entry block which has no predecessor.
1990   assert((NumVisited || MBB.pred_empty()) &&
1991          "Should have processed at least one predecessor");
1992 
1993   VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs);
1994   bool Changed = false;
1995   if (ILS != InLocsT) {
1996     ILS = InLocsT;
1997     Changed = true;
1998   }
1999 
2000   return Changed;
2001 }
2002 
2003 void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs,
2004                                        VarLocMap &VarLocIDs) {
2005   // PendingInLocs records all locations propagated into blocks, which have
2006   // not had DBG_VALUE insts created. Go through and create those insts now.
2007   for (auto &Iter : PendingInLocs) {
2008     // Map is keyed on a constant pointer, unwrap it so we can insert insts.
2009     auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first);
2010     VarLocSet &Pending = *Iter.second.get();
2011 
2012     SmallVector<VarLoc, 32> VarLocs;
2013     collectAllVarLocs(VarLocs, Pending, VarLocIDs);
2014 
2015     for (VarLoc DiffIt : VarLocs) {
2016       // The ID location is live-in to MBB -- work out what kind of machine
2017       // location it is and create a DBG_VALUE.
2018       if (DiffIt.isEntryBackupLoc())
2019         continue;
2020       MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent());
2021       MBB.insert(MBB.instr_begin(), MI);
2022 
2023       (void)MI;
2024       LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump(););
2025     }
2026   }
2027 }
2028 
2029 bool VarLocBasedLDV::isEntryValueCandidate(
2030     const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const {
2031   assert(MI.isDebugValue() && "This must be DBG_VALUE.");
2032 
2033   // TODO: Add support for local variables that are expressed in terms of
2034   // parameters entry values.
2035   // TODO: Add support for modified arguments that can be expressed
2036   // by using its entry value.
2037   auto *DIVar = MI.getDebugVariable();
2038   if (!DIVar->isParameter())
2039     return false;
2040 
2041   // Do not consider parameters that belong to an inlined function.
2042   if (MI.getDebugLoc()->getInlinedAt())
2043     return false;
2044 
2045   // Only consider parameters that are described using registers. Parameters
2046   // that are passed on the stack are not yet supported, so ignore debug
2047   // values that are described by the frame or stack pointer.
2048   if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI))
2049     return false;
2050 
2051   // If a parameter's value has been propagated from the caller, then the
2052   // parameter's DBG_VALUE may be described using a register defined by some
2053   // instruction in the entry block, in which case we shouldn't create an
2054   // entry value.
2055   if (DefinedRegs.count(MI.getDebugOperand(0).getReg()))
2056     return false;
2057 
2058   // TODO: Add support for parameters that have a pre-existing debug expressions
2059   // (e.g. fragments).
2060   if (MI.getDebugExpression()->getNumElements() > 0)
2061     return false;
2062 
2063   return true;
2064 }
2065 
2066 /// Collect all register defines (including aliases) for the given instruction.
2067 static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs,
2068                            const TargetRegisterInfo *TRI) {
2069   for (const MachineOperand &MO : MI.operands())
2070     if (MO.isReg() && MO.isDef() && MO.getReg())
2071       for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
2072         Regs.insert(*AI);
2073 }
2074 
2075 /// This routine records the entry values of function parameters. The values
2076 /// could be used as backup values. If we loose the track of some unmodified
2077 /// parameters, the backup values will be used as a primary locations.
2078 void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI,
2079                                        const DefinedRegsSet &DefinedRegs,
2080                                        OpenRangesSet &OpenRanges,
2081                                        VarLocMap &VarLocIDs) {
2082   if (TPC) {
2083     auto &TM = TPC->getTM<TargetMachine>();
2084     if (!TM.Options.ShouldEmitDebugEntryValues())
2085       return;
2086   }
2087 
2088   DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(),
2089                   MI.getDebugLoc()->getInlinedAt());
2090 
2091   if (!isEntryValueCandidate(MI, DefinedRegs) ||
2092       OpenRanges.getEntryValueBackup(V))
2093     return;
2094 
2095   LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump(););
2096 
2097   // Create the entry value and use it as a backup location until it is
2098   // valid. It is valid until a parameter is not changed.
2099   DIExpression *NewExpr =
2100       DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue);
2101   VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, LS, NewExpr);
2102   LocIndices EntryValLocIDs = VarLocIDs.insert(EntryValLocAsBackup);
2103   OpenRanges.insert(EntryValLocIDs, EntryValLocAsBackup);
2104 }
2105 
2106 /// Calculate the liveness information for the given machine function and
2107 /// extend ranges across basic blocks.
2108 bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF,
2109                                   MachineDominatorTree *DomTree,
2110                                   TargetPassConfig *TPC, unsigned InputBBLimit,
2111                                   unsigned InputDbgValLimit) {
2112   (void)DomTree;
2113   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
2114 
2115   if (!MF.getFunction().getSubprogram())
2116     // VarLocBaseLDV will already have removed all DBG_VALUEs.
2117     return false;
2118 
2119   // Skip functions from NoDebug compilation units.
2120   if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
2121       DICompileUnit::NoDebug)
2122     return false;
2123 
2124   TRI = MF.getSubtarget().getRegisterInfo();
2125   TII = MF.getSubtarget().getInstrInfo();
2126   TFI = MF.getSubtarget().getFrameLowering();
2127   TFI->getCalleeSaves(MF, CalleeSavedRegs);
2128   this->TPC = TPC;
2129   LS.initialize(MF);
2130 
2131   bool Changed = false;
2132   bool OLChanged = false;
2133   bool MBBJoined = false;
2134 
2135   VarLocMap VarLocIDs;         // Map VarLoc<>unique ID for use in bitvectors.
2136   OverlapMap OverlapFragments; // Map of overlapping variable fragments.
2137   OpenRangesSet OpenRanges(Alloc, OverlapFragments);
2138                               // Ranges that are open until end of bb.
2139   VarLocInMBB OutLocs;        // Ranges that exist beyond bb.
2140   VarLocInMBB InLocs;         // Ranges that are incoming after joining.
2141   TransferMap Transfers;      // DBG_VALUEs associated with transfers (such as
2142                               // spills, copies and restores).
2143   // Map responsible MI to attached Transfer emitted from Backup Entry Value.
2144   InstToEntryLocMap EntryValTransfers;
2145   // Map a Register to the last MI which clobbered it.
2146   RegDefToInstMap RegSetInstrs;
2147 
2148   VarToFragments SeenFragments;
2149 
2150   // Blocks which are artificial, i.e. blocks which exclusively contain
2151   // instructions without locations, or with line 0 locations.
2152   SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
2153 
2154   DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
2155   DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
2156   std::priority_queue<unsigned int, std::vector<unsigned int>,
2157                       std::greater<unsigned int>>
2158       Worklist;
2159   std::priority_queue<unsigned int, std::vector<unsigned int>,
2160                       std::greater<unsigned int>>
2161       Pending;
2162 
2163   // Set of register defines that are seen when traversing the entry block
2164   // looking for debug entry value candidates.
2165   DefinedRegsSet DefinedRegs;
2166 
2167   // Only in the case of entry MBB collect DBG_VALUEs representing
2168   // function parameters in order to generate debug entry values for them.
2169   MachineBasicBlock &First_MBB = *(MF.begin());
2170   for (auto &MI : First_MBB) {
2171     collectRegDefs(MI, DefinedRegs, TRI);
2172     if (MI.isDebugValue())
2173       recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs);
2174   }
2175 
2176   // Initialize per-block structures and scan for fragment overlaps.
2177   for (auto &MBB : MF)
2178     for (auto &MI : MBB)
2179       if (MI.isDebugValue())
2180         accumulateFragmentMap(MI, SeenFragments, OverlapFragments);
2181 
2182   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
2183     if (const DebugLoc &DL = MI.getDebugLoc())
2184       return DL.getLine() != 0;
2185     return false;
2186   };
2187   for (auto &MBB : MF)
2188     if (none_of(MBB.instrs(), hasNonArtificialLocation))
2189       ArtificialBlocks.insert(&MBB);
2190 
2191   LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
2192                               "OutLocs after initialization", dbgs()));
2193 
2194   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
2195   unsigned int RPONumber = 0;
2196   for (MachineBasicBlock *MBB : RPOT) {
2197     OrderToBB[RPONumber] = MBB;
2198     BBToOrder[MBB] = RPONumber;
2199     Worklist.push(RPONumber);
2200     ++RPONumber;
2201   }
2202 
2203   if (RPONumber > InputBBLimit) {
2204     unsigned NumInputDbgValues = 0;
2205     for (auto &MBB : MF)
2206       for (auto &MI : MBB)
2207         if (MI.isDebugValue())
2208           ++NumInputDbgValues;
2209     if (NumInputDbgValues > InputDbgValLimit) {
2210       LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName()
2211                         << " has " << RPONumber << " basic blocks and "
2212                         << NumInputDbgValues
2213                         << " input DBG_VALUEs, exceeding limits.\n");
2214       return false;
2215     }
2216   }
2217 
2218   // This is a standard "union of predecessor outs" dataflow problem.
2219   // To solve it, we perform join() and process() using the two worklist method
2220   // until the ranges converge.
2221   // Ranges have converged when both worklists are empty.
2222   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2223   while (!Worklist.empty() || !Pending.empty()) {
2224     // We track what is on the pending worklist to avoid inserting the same
2225     // thing twice.  We could avoid this with a custom priority queue, but this
2226     // is probably not worth it.
2227     SmallPtrSet<MachineBasicBlock *, 16> OnPending;
2228     LLVM_DEBUG(dbgs() << "Processing Worklist\n");
2229     while (!Worklist.empty()) {
2230       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2231       Worklist.pop();
2232       MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited,
2233                        ArtificialBlocks);
2234       MBBJoined |= Visited.insert(MBB).second;
2235       if (MBBJoined) {
2236         MBBJoined = false;
2237         Changed = true;
2238         // Now that we have started to extend ranges across BBs we need to
2239         // examine spill, copy and restore instructions to see whether they
2240         // operate with registers that correspond to user variables.
2241         // First load any pending inlocs.
2242         OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs);
2243         LastNonDbgMI = nullptr;
2244         RegSetInstrs.clear();
2245         for (auto &MI : *MBB)
2246           process(MI, OpenRanges, VarLocIDs, Transfers, EntryValTransfers,
2247                   RegSetInstrs);
2248         OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs);
2249 
2250         LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
2251                                     "OutLocs after propagating", dbgs()));
2252         LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs,
2253                                     "InLocs after propagating", dbgs()));
2254 
2255         if (OLChanged) {
2256           OLChanged = false;
2257           for (auto s : MBB->successors())
2258             if (OnPending.insert(s).second) {
2259               Pending.push(BBToOrder[s]);
2260             }
2261         }
2262       }
2263     }
2264     Worklist.swap(Pending);
2265     // At this point, pending must be empty, since it was just the empty
2266     // worklist
2267     assert(Pending.empty() && "Pending should be empty");
2268   }
2269 
2270   // Add any DBG_VALUE instructions created by location transfers.
2271   for (auto &TR : Transfers) {
2272     assert(!TR.TransferInst->isTerminator() &&
2273            "Cannot insert DBG_VALUE after terminator");
2274     MachineBasicBlock *MBB = TR.TransferInst->getParent();
2275     const VarLoc &VL = VarLocIDs[TR.LocationID];
2276     MachineInstr *MI = VL.BuildDbgValue(MF);
2277     MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI);
2278   }
2279   Transfers.clear();
2280 
2281   // Add DBG_VALUEs created using Backup Entry Value location.
2282   for (auto &TR : EntryValTransfers) {
2283     MachineInstr *TRInst = const_cast<MachineInstr *>(TR.first);
2284     assert(!TRInst->isTerminator() &&
2285            "Cannot insert DBG_VALUE after terminator");
2286     MachineBasicBlock *MBB = TRInst->getParent();
2287     const VarLoc &VL = VarLocIDs[TR.second];
2288     MachineInstr *MI = VL.BuildDbgValue(MF);
2289     MBB->insertAfterBundle(TRInst->getIterator(), MI);
2290   }
2291   EntryValTransfers.clear();
2292 
2293   // Deferred inlocs will not have had any DBG_VALUE insts created; do
2294   // that now.
2295   flushPendingLocs(InLocs, VarLocIDs);
2296 
2297   LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs()));
2298   LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs()));
2299   return Changed;
2300 }
2301 
2302 LDVImpl *
2303 llvm::makeVarLocBasedLiveDebugValues()
2304 {
2305   return new VarLocBasedLDV();
2306 }
2307