1 //===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file VarLocBasedImpl.cpp 10 /// 11 /// LiveDebugValues is an optimistic "available expressions" dataflow 12 /// algorithm. The set of expressions is the set of machine locations 13 /// (registers, spill slots, constants) that a variable fragment might be 14 /// located, qualified by a DIExpression and indirect-ness flag, while each 15 /// variable is identified by a DebugVariable object. The availability of an 16 /// expression begins when a DBG_VALUE instruction specifies the location of a 17 /// DebugVariable, and continues until that location is clobbered or 18 /// re-specified by a different DBG_VALUE for the same DebugVariable. 19 /// 20 /// The output of LiveDebugValues is additional DBG_VALUE instructions, 21 /// placed to extend variable locations as far they're available. This file 22 /// and the VarLocBasedLDV class is an implementation that explicitly tracks 23 /// locations, using the VarLoc class. 24 /// 25 /// The canonical "available expressions" problem doesn't have expression 26 /// clobbering, instead when a variable is re-assigned, any expressions using 27 /// that variable get invalidated. LiveDebugValues can map onto "available 28 /// expressions" by having every register represented by a variable, which is 29 /// used in an expression that becomes available at a DBG_VALUE instruction. 30 /// When the register is clobbered, its variable is effectively reassigned, and 31 /// expressions computed from it become unavailable. A similar construct is 32 /// needed when a DebugVariable has its location re-specified, to invalidate 33 /// all other locations for that DebugVariable. 34 /// 35 /// Using the dataflow analysis to compute the available expressions, we create 36 /// a DBG_VALUE at the beginning of each block where the expression is 37 /// live-in. This propagates variable locations into every basic block where 38 /// the location can be determined, rather than only having DBG_VALUEs in blocks 39 /// where locations are specified due to an assignment or some optimization. 40 /// Movements of values between registers and spill slots are annotated with 41 /// DBG_VALUEs too to track variable values bewteen locations. All this allows 42 /// DbgEntityHistoryCalculator to focus on only the locations within individual 43 /// blocks, facilitating testing and improving modularity. 44 /// 45 /// We follow an optimisic dataflow approach, with this lattice: 46 /// 47 /// \verbatim 48 /// ┬ "Unknown" 49 /// | 50 /// v 51 /// True 52 /// | 53 /// v 54 /// ⊥ False 55 /// \endverbatim With "True" signifying that the expression is available (and 56 /// thus a DebugVariable's location is the corresponding register), while 57 /// "False" signifies that the expression is unavailable. "Unknown"s never 58 /// survive to the end of the analysis (see below). 59 /// 60 /// Formally, all DebugVariable locations that are live-out of a block are 61 /// initialized to \top. A blocks live-in values take the meet of the lattice 62 /// value for every predecessors live-outs, except for the entry block, where 63 /// all live-ins are \bot. The usual dataflow propagation occurs: the transfer 64 /// function for a block assigns an expression for a DebugVariable to be "True" 65 /// if a DBG_VALUE in the block specifies it; "False" if the location is 66 /// clobbered; or the live-in value if it is unaffected by the block. We 67 /// visit each block in reverse post order until a fixedpoint is reached. The 68 /// solution produced is maximal. 69 /// 70 /// Intuitively, we start by assuming that every expression / variable location 71 /// is at least "True", and then propagate "False" from the entry block and any 72 /// clobbers until there are no more changes to make. This gives us an accurate 73 /// solution because all incorrect locations will have a "False" propagated into 74 /// them. It also gives us a solution that copes well with loops by assuming 75 /// that variable locations are live-through every loop, and then removing those 76 /// that are not through dataflow. 77 /// 78 /// Within LiveDebugValues: each variable location is represented by a 79 /// VarLoc object that identifies the source variable, the set of 80 /// machine-locations that currently describe it (a single location for 81 /// DBG_VALUE or multiple for DBG_VALUE_LIST), and the DBG_VALUE inst that 82 /// specifies the location. Each VarLoc is indexed in the (function-scope) \p 83 /// VarLocMap, giving each VarLoc a set of unique indexes, each of which 84 /// corresponds to one of the VarLoc's machine-locations and can be used to 85 /// lookup the VarLoc in the VarLocMap. Rather than operate directly on machine 86 /// locations, the dataflow analysis in this pass identifies locations by their 87 /// indices in the VarLocMap, meaning all the variable locations in a block can 88 /// be described by a sparse vector of VarLocMap indicies. 89 /// 90 /// All the storage for the dataflow analysis is local to the ExtendRanges 91 /// method and passed down to helper methods. "OutLocs" and "InLocs" record the 92 /// in and out lattice values for each block. "OpenRanges" maintains a list of 93 /// variable locations and, with the "process" method, evaluates the transfer 94 /// function of each block. "flushPendingLocs" installs debug value instructions 95 /// for each live-in location at the start of blocks, while "Transfers" records 96 /// transfers of values between machine-locations. 97 /// 98 /// We avoid explicitly representing the "Unknown" (\top) lattice value in the 99 /// implementation. Instead, unvisited blocks implicitly have all lattice 100 /// values set as "Unknown". After being visited, there will be path back to 101 /// the entry block where the lattice value is "False", and as the transfer 102 /// function cannot make new "Unknown" locations, there are no scenarios where 103 /// a block can have an "Unknown" location after being visited. Similarly, we 104 /// don't enumerate all possible variable locations before exploring the 105 /// function: when a new location is discovered, all blocks previously explored 106 /// were implicitly "False" but unrecorded, and become explicitly "False" when 107 /// a new VarLoc is created with its bit not set in predecessor InLocs or 108 /// OutLocs. 109 /// 110 //===----------------------------------------------------------------------===// 111 112 #include "LiveDebugValues.h" 113 114 #include "llvm/ADT/CoalescingBitVector.h" 115 #include "llvm/ADT/DenseMap.h" 116 #include "llvm/ADT/PostOrderIterator.h" 117 #include "llvm/ADT/SmallPtrSet.h" 118 #include "llvm/ADT/SmallSet.h" 119 #include "llvm/ADT/SmallVector.h" 120 #include "llvm/ADT/Statistic.h" 121 #include "llvm/ADT/UniqueVector.h" 122 #include "llvm/CodeGen/LexicalScopes.h" 123 #include "llvm/CodeGen/MachineBasicBlock.h" 124 #include "llvm/CodeGen/MachineFrameInfo.h" 125 #include "llvm/CodeGen/MachineFunction.h" 126 #include "llvm/CodeGen/MachineFunctionPass.h" 127 #include "llvm/CodeGen/MachineInstr.h" 128 #include "llvm/CodeGen/MachineInstrBuilder.h" 129 #include "llvm/CodeGen/MachineMemOperand.h" 130 #include "llvm/CodeGen/MachineOperand.h" 131 #include "llvm/CodeGen/PseudoSourceValue.h" 132 #include "llvm/CodeGen/RegisterScavenging.h" 133 #include "llvm/CodeGen/TargetFrameLowering.h" 134 #include "llvm/CodeGen/TargetInstrInfo.h" 135 #include "llvm/CodeGen/TargetLowering.h" 136 #include "llvm/CodeGen/TargetPassConfig.h" 137 #include "llvm/CodeGen/TargetRegisterInfo.h" 138 #include "llvm/CodeGen/TargetSubtargetInfo.h" 139 #include "llvm/Config/llvm-config.h" 140 #include "llvm/IR/DIBuilder.h" 141 #include "llvm/IR/DebugInfoMetadata.h" 142 #include "llvm/IR/DebugLoc.h" 143 #include "llvm/IR/Function.h" 144 #include "llvm/IR/Module.h" 145 #include "llvm/InitializePasses.h" 146 #include "llvm/MC/MCRegisterInfo.h" 147 #include "llvm/Pass.h" 148 #include "llvm/Support/Casting.h" 149 #include "llvm/Support/Compiler.h" 150 #include "llvm/Support/Debug.h" 151 #include "llvm/Support/TypeSize.h" 152 #include "llvm/Support/raw_ostream.h" 153 #include "llvm/Target/TargetMachine.h" 154 #include <algorithm> 155 #include <cassert> 156 #include <cstdint> 157 #include <functional> 158 #include <queue> 159 #include <tuple> 160 #include <utility> 161 #include <vector> 162 163 using namespace llvm; 164 165 #define DEBUG_TYPE "livedebugvalues" 166 167 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); 168 169 // Options to prevent pathological compile-time behavior. If InputBBLimit and 170 // InputDbgValueLimit are both exceeded, range extension is disabled. 171 static cl::opt<unsigned> InputBBLimit( 172 "livedebugvalues-input-bb-limit", 173 cl::desc("Maximum input basic blocks before DBG_VALUE limit applies"), 174 cl::init(10000), cl::Hidden); 175 static cl::opt<unsigned> InputDbgValueLimit( 176 "livedebugvalues-input-dbg-value-limit", 177 cl::desc( 178 "Maximum input DBG_VALUE insts supported by debug range extension"), 179 cl::init(50000), cl::Hidden); 180 181 /// If \p Op is a stack or frame register return true, otherwise return false. 182 /// This is used to avoid basing the debug entry values on the registers, since 183 /// we do not support it at the moment. 184 static bool isRegOtherThanSPAndFP(const MachineOperand &Op, 185 const MachineInstr &MI, 186 const TargetRegisterInfo *TRI) { 187 if (!Op.isReg()) 188 return false; 189 190 const MachineFunction *MF = MI.getParent()->getParent(); 191 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 192 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 193 Register FP = TRI->getFrameRegister(*MF); 194 Register Reg = Op.getReg(); 195 196 return Reg && Reg != SP && Reg != FP; 197 } 198 199 namespace { 200 201 // Max out the number of statically allocated elements in DefinedRegsSet, as 202 // this prevents fallback to std::set::count() operations. 203 using DefinedRegsSet = SmallSet<Register, 32>; 204 205 // The IDs in this set correspond to MachineLocs in VarLocs, as well as VarLocs 206 // that represent Entry Values; every VarLoc in the set will also appear 207 // exactly once at Location=0. 208 // As a result, each VarLoc may appear more than once in this "set", but each 209 // range corresponding to a Reg, SpillLoc, or EntryValue type will still be a 210 // "true" set (i.e. each VarLoc may appear only once), and the range Location=0 211 // is the set of all VarLocs. 212 using VarLocSet = CoalescingBitVector<uint64_t>; 213 214 /// A type-checked pair of {Register Location (or 0), Index}, used to index 215 /// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int 216 /// for insertion into a \ref VarLocSet, and efficiently converted back. The 217 /// type-checker helps ensure that the conversions aren't lossy. 218 /// 219 /// Why encode a location /into/ the VarLocMap index? This makes it possible 220 /// to find the open VarLocs killed by a register def very quickly. This is a 221 /// performance-critical operation for LiveDebugValues. 222 struct LocIndex { 223 using u32_location_t = uint32_t; 224 using u32_index_t = uint32_t; 225 226 u32_location_t Location; // Physical registers live in the range [1;2^30) (see 227 // \ref MCRegister), so we have plenty of range left 228 // here to encode non-register locations. 229 u32_index_t Index; 230 231 /// The location that has an entry for every VarLoc in the map. 232 static constexpr u32_location_t kUniversalLocation = 0; 233 234 /// The first location that is reserved for VarLocs with locations of kind 235 /// RegisterKind. 236 static constexpr u32_location_t kFirstRegLocation = 1; 237 238 /// The first location greater than 0 that is not reserved for VarLocs with 239 /// locations of kind RegisterKind. 240 static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30; 241 242 /// A special location reserved for VarLocs with locations of kind 243 /// SpillLocKind. 244 static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation; 245 246 /// A special location reserved for VarLocs of kind EntryValueBackupKind and 247 /// EntryValueCopyBackupKind. 248 static constexpr u32_location_t kEntryValueBackupLocation = 249 kFirstInvalidRegLocation + 1; 250 251 LocIndex(u32_location_t Location, u32_index_t Index) 252 : Location(Location), Index(Index) {} 253 254 uint64_t getAsRawInteger() const { 255 return (static_cast<uint64_t>(Location) << 32) | Index; 256 } 257 258 template<typename IntT> static LocIndex fromRawInteger(IntT ID) { 259 static_assert(std::is_unsigned<IntT>::value && 260 sizeof(ID) == sizeof(uint64_t), 261 "Cannot convert raw integer to LocIndex"); 262 return {static_cast<u32_location_t>(ID >> 32), 263 static_cast<u32_index_t>(ID)}; 264 } 265 266 /// Get the start of the interval reserved for VarLocs of kind RegisterKind 267 /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1. 268 static uint64_t rawIndexForReg(Register Reg) { 269 return LocIndex(Reg, 0).getAsRawInteger(); 270 } 271 272 /// Return a range covering all set indices in the interval reserved for 273 /// \p Location in \p Set. 274 static auto indexRangeForLocation(const VarLocSet &Set, 275 u32_location_t Location) { 276 uint64_t Start = LocIndex(Location, 0).getAsRawInteger(); 277 uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger(); 278 return Set.half_open_range(Start, End); 279 } 280 }; 281 282 // Simple Set for storing all the VarLoc Indices at a Location bucket. 283 using VarLocsInRange = SmallSet<LocIndex::u32_index_t, 32>; 284 // Vector of all `LocIndex`s for a given VarLoc; the same Location should not 285 // appear in any two of these, as each VarLoc appears at most once in any 286 // Location bucket. 287 using LocIndices = SmallVector<LocIndex, 2>; 288 289 class VarLocBasedLDV : public LDVImpl { 290 private: 291 const TargetRegisterInfo *TRI; 292 const TargetInstrInfo *TII; 293 const TargetFrameLowering *TFI; 294 TargetPassConfig *TPC; 295 BitVector CalleeSavedRegs; 296 LexicalScopes LS; 297 VarLocSet::Allocator Alloc; 298 299 enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore }; 300 301 using FragmentInfo = DIExpression::FragmentInfo; 302 using OptFragmentInfo = Optional<DIExpression::FragmentInfo>; 303 304 /// A pair of debug variable and value location. 305 struct VarLoc { 306 // The location at which a spilled variable resides. It consists of a 307 // register and an offset. 308 struct SpillLoc { 309 unsigned SpillBase; 310 StackOffset SpillOffset; 311 bool operator==(const SpillLoc &Other) const { 312 return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset; 313 } 314 bool operator!=(const SpillLoc &Other) const { 315 return !(*this == Other); 316 } 317 }; 318 319 /// Identity of the variable at this location. 320 const DebugVariable Var; 321 322 /// The expression applied to this location. 323 const DIExpression *Expr; 324 325 /// DBG_VALUE to clone var/expr information from if this location 326 /// is moved. 327 const MachineInstr &MI; 328 329 enum class MachineLocKind { 330 InvalidKind = 0, 331 RegisterKind, 332 SpillLocKind, 333 ImmediateKind 334 }; 335 336 enum class EntryValueLocKind { 337 NonEntryValueKind = 0, 338 EntryValueKind, 339 EntryValueBackupKind, 340 EntryValueCopyBackupKind 341 } EVKind; 342 343 /// The value location. Stored separately to avoid repeatedly 344 /// extracting it from MI. 345 union MachineLocValue { 346 uint64_t RegNo; 347 SpillLoc SpillLocation; 348 uint64_t Hash; 349 int64_t Immediate; 350 const ConstantFP *FPImm; 351 const ConstantInt *CImm; 352 MachineLocValue() : Hash(0) {} 353 }; 354 355 /// A single machine location; its Kind is either a register, spill 356 /// location, or immediate value. 357 /// If the VarLoc is not a NonEntryValueKind, then it will use only a 358 /// single MachineLoc of RegisterKind. 359 struct MachineLoc { 360 MachineLocKind Kind; 361 MachineLocValue Value; 362 bool operator==(const MachineLoc &Other) const { 363 if (Kind != Other.Kind) 364 return false; 365 switch (Kind) { 366 case MachineLocKind::SpillLocKind: 367 return Value.SpillLocation == Other.Value.SpillLocation; 368 case MachineLocKind::RegisterKind: 369 case MachineLocKind::ImmediateKind: 370 return Value.Hash == Other.Value.Hash; 371 default: 372 llvm_unreachable("Invalid kind"); 373 } 374 } 375 bool operator<(const MachineLoc &Other) const { 376 switch (Kind) { 377 case MachineLocKind::SpillLocKind: 378 return std::make_tuple( 379 Kind, Value.SpillLocation.SpillBase, 380 Value.SpillLocation.SpillOffset.getFixed(), 381 Value.SpillLocation.SpillOffset.getScalable()) < 382 std::make_tuple( 383 Other.Kind, Other.Value.SpillLocation.SpillBase, 384 Other.Value.SpillLocation.SpillOffset.getFixed(), 385 Other.Value.SpillLocation.SpillOffset.getScalable()); 386 case MachineLocKind::RegisterKind: 387 case MachineLocKind::ImmediateKind: 388 return std::tie(Kind, Value.Hash) < 389 std::tie(Other.Kind, Other.Value.Hash); 390 default: 391 llvm_unreachable("Invalid kind"); 392 } 393 } 394 }; 395 396 /// The set of machine locations used to determine the variable's value, in 397 /// conjunction with Expr. Initially populated with MI's debug operands, 398 /// but may be transformed independently afterwards. 399 SmallVector<MachineLoc, 8> Locs; 400 /// Used to map the index of each location in Locs back to the index of its 401 /// original debug operand in MI. Used when multiple location operands are 402 /// coalesced and the original MI's operands need to be accessed while 403 /// emitting a debug value. 404 SmallVector<unsigned, 8> OrigLocMap; 405 406 VarLoc(const MachineInstr &MI, LexicalScopes &LS) 407 : Var(MI.getDebugVariable(), MI.getDebugExpression(), 408 MI.getDebugLoc()->getInlinedAt()), 409 Expr(MI.getDebugExpression()), MI(MI), 410 EVKind(EntryValueLocKind::NonEntryValueKind) { 411 assert(MI.isDebugValue() && "not a DBG_VALUE"); 412 assert((MI.isDebugValueList() || MI.getNumOperands() == 4) && 413 "malformed DBG_VALUE"); 414 for (const MachineOperand &Op : MI.debug_operands()) { 415 MachineLoc ML = GetLocForOp(Op); 416 auto It = find(Locs, ML); 417 if (It == Locs.end()) { 418 Locs.push_back(ML); 419 OrigLocMap.push_back(MI.getDebugOperandIndex(&Op)); 420 } else { 421 // ML duplicates an element in Locs; replace references to Op 422 // with references to the duplicating element. 423 unsigned OpIdx = Locs.size(); 424 unsigned DuplicatingIdx = std::distance(Locs.begin(), It); 425 Expr = DIExpression::replaceArg(Expr, OpIdx, DuplicatingIdx); 426 } 427 } 428 429 // We create the debug entry values from the factory functions rather 430 // than from this ctor. 431 assert(EVKind != EntryValueLocKind::EntryValueKind && 432 !isEntryBackupLoc()); 433 } 434 435 static MachineLoc GetLocForOp(const MachineOperand &Op) { 436 MachineLocKind Kind; 437 MachineLocValue Loc; 438 if (Op.isReg()) { 439 Kind = MachineLocKind::RegisterKind; 440 Loc.RegNo = Op.getReg(); 441 } else if (Op.isImm()) { 442 Kind = MachineLocKind::ImmediateKind; 443 Loc.Immediate = Op.getImm(); 444 } else if (Op.isFPImm()) { 445 Kind = MachineLocKind::ImmediateKind; 446 Loc.FPImm = Op.getFPImm(); 447 } else if (Op.isCImm()) { 448 Kind = MachineLocKind::ImmediateKind; 449 Loc.CImm = Op.getCImm(); 450 } else 451 llvm_unreachable("Invalid Op kind for MachineLoc."); 452 return {Kind, Loc}; 453 } 454 455 /// Take the variable and machine-location in DBG_VALUE MI, and build an 456 /// entry location using the given expression. 457 static VarLoc CreateEntryLoc(const MachineInstr &MI, LexicalScopes &LS, 458 const DIExpression *EntryExpr, Register Reg) { 459 VarLoc VL(MI, LS); 460 assert(VL.Locs.size() == 1 && 461 VL.Locs[0].Kind == MachineLocKind::RegisterKind); 462 VL.EVKind = EntryValueLocKind::EntryValueKind; 463 VL.Expr = EntryExpr; 464 VL.Locs[0].Value.RegNo = Reg; 465 return VL; 466 } 467 468 /// Take the variable and machine-location from the DBG_VALUE (from the 469 /// function entry), and build an entry value backup location. The backup 470 /// location will turn into the normal location if the backup is valid at 471 /// the time of the primary location clobbering. 472 static VarLoc CreateEntryBackupLoc(const MachineInstr &MI, 473 LexicalScopes &LS, 474 const DIExpression *EntryExpr) { 475 VarLoc VL(MI, LS); 476 assert(VL.Locs.size() == 1 && 477 VL.Locs[0].Kind == MachineLocKind::RegisterKind); 478 VL.EVKind = EntryValueLocKind::EntryValueBackupKind; 479 VL.Expr = EntryExpr; 480 return VL; 481 } 482 483 /// Take the variable and machine-location from the DBG_VALUE (from the 484 /// function entry), and build a copy of an entry value backup location by 485 /// setting the register location to NewReg. 486 static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI, 487 LexicalScopes &LS, 488 const DIExpression *EntryExpr, 489 Register NewReg) { 490 VarLoc VL(MI, LS); 491 assert(VL.Locs.size() == 1 && 492 VL.Locs[0].Kind == MachineLocKind::RegisterKind); 493 VL.EVKind = EntryValueLocKind::EntryValueCopyBackupKind; 494 VL.Expr = EntryExpr; 495 VL.Locs[0].Value.RegNo = NewReg; 496 return VL; 497 } 498 499 /// Copy the register location in DBG_VALUE MI, updating the register to 500 /// be NewReg. 501 static VarLoc CreateCopyLoc(const VarLoc &OldVL, const MachineLoc &OldML, 502 Register NewReg) { 503 VarLoc VL = OldVL; 504 for (size_t I = 0, E = VL.Locs.size(); I < E; ++I) 505 if (VL.Locs[I] == OldML) { 506 VL.Locs[I].Kind = MachineLocKind::RegisterKind; 507 VL.Locs[I].Value.RegNo = NewReg; 508 return VL; 509 } 510 llvm_unreachable("Should have found OldML in new VarLoc."); 511 } 512 513 /// Take the variable described by DBG_VALUE* MI, and create a VarLoc 514 /// locating it in the specified spill location. 515 static VarLoc CreateSpillLoc(const VarLoc &OldVL, const MachineLoc &OldML, 516 unsigned SpillBase, StackOffset SpillOffset) { 517 VarLoc VL = OldVL; 518 for (int I = 0, E = VL.Locs.size(); I < E; ++I) 519 if (VL.Locs[I] == OldML) { 520 VL.Locs[I].Kind = MachineLocKind::SpillLocKind; 521 VL.Locs[I].Value.SpillLocation = {SpillBase, SpillOffset}; 522 return VL; 523 } 524 llvm_unreachable("Should have found OldML in new VarLoc."); 525 } 526 527 /// Create a DBG_VALUE representing this VarLoc in the given function. 528 /// Copies variable-specific information such as DILocalVariable and 529 /// inlining information from the original DBG_VALUE instruction, which may 530 /// have been several transfers ago. 531 MachineInstr *BuildDbgValue(MachineFunction &MF) const { 532 assert(!isEntryBackupLoc() && 533 "Tried to produce DBG_VALUE for backup VarLoc"); 534 const DebugLoc &DbgLoc = MI.getDebugLoc(); 535 bool Indirect = MI.isIndirectDebugValue(); 536 const auto &IID = MI.getDesc(); 537 const DILocalVariable *Var = MI.getDebugVariable(); 538 NumInserted++; 539 540 const DIExpression *DIExpr = Expr; 541 SmallVector<MachineOperand, 8> MOs; 542 for (unsigned I = 0, E = Locs.size(); I < E; ++I) { 543 MachineLocKind LocKind = Locs[I].Kind; 544 MachineLocValue Loc = Locs[I].Value; 545 const MachineOperand &Orig = MI.getDebugOperand(OrigLocMap[I]); 546 switch (LocKind) { 547 case MachineLocKind::RegisterKind: 548 // An entry value is a register location -- but with an updated 549 // expression. The register location of such DBG_VALUE is always the 550 // one from the entry DBG_VALUE, it does not matter if the entry value 551 // was copied in to another register due to some optimizations. 552 // Non-entry value register locations are like the source 553 // DBG_VALUE, but with the register number from this VarLoc. 554 MOs.push_back(MachineOperand::CreateReg( 555 EVKind == EntryValueLocKind::EntryValueKind ? Orig.getReg() 556 : Register(Loc.RegNo), 557 false)); 558 MOs.back().setIsDebug(); 559 break; 560 case MachineLocKind::SpillLocKind: { 561 // Spills are indirect DBG_VALUEs, with a base register and offset. 562 // Use the original DBG_VALUEs expression to build the spilt location 563 // on top of. FIXME: spill locations created before this pass runs 564 // are not recognized, and not handled here. 565 unsigned Base = Loc.SpillLocation.SpillBase; 566 auto *TRI = MF.getSubtarget().getRegisterInfo(); 567 if (MI.isNonListDebugValue()) { 568 DIExpr = 569 TRI->prependOffsetExpression(DIExpr, DIExpression::ApplyOffset, 570 Loc.SpillLocation.SpillOffset); 571 Indirect = true; 572 } else { 573 SmallVector<uint64_t, 4> Ops; 574 TRI->getOffsetOpcodes(Loc.SpillLocation.SpillOffset, Ops); 575 Ops.push_back(dwarf::DW_OP_deref); 576 DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, I); 577 } 578 MOs.push_back(MachineOperand::CreateReg(Base, false)); 579 MOs.back().setIsDebug(); 580 break; 581 } 582 case MachineLocKind::ImmediateKind: { 583 MOs.push_back(Orig); 584 break; 585 } 586 case MachineLocKind::InvalidKind: 587 llvm_unreachable("Tried to produce DBG_VALUE for invalid VarLoc"); 588 } 589 } 590 return BuildMI(MF, DbgLoc, IID, Indirect, MOs, Var, DIExpr); 591 } 592 593 /// Is the Loc field a constant or constant object? 594 bool isConstant(MachineLocKind Kind) const { 595 return Kind == MachineLocKind::ImmediateKind; 596 } 597 598 /// Check if the Loc field is an entry backup location. 599 bool isEntryBackupLoc() const { 600 return EVKind == EntryValueLocKind::EntryValueBackupKind || 601 EVKind == EntryValueLocKind::EntryValueCopyBackupKind; 602 } 603 604 /// If this variable is described by register \p Reg holding the entry 605 /// value, return true. 606 bool isEntryValueBackupReg(Register Reg) const { 607 return EVKind == EntryValueLocKind::EntryValueBackupKind && usesReg(Reg); 608 } 609 610 /// If this variable is described by register \p Reg holding a copy of the 611 /// entry value, return true. 612 bool isEntryValueCopyBackupReg(Register Reg) const { 613 return EVKind == EntryValueLocKind::EntryValueCopyBackupKind && 614 usesReg(Reg); 615 } 616 617 /// If this variable is described in whole or part by \p Reg, return true. 618 bool usesReg(Register Reg) const { 619 MachineLoc RegML; 620 RegML.Kind = MachineLocKind::RegisterKind; 621 RegML.Value.RegNo = Reg; 622 return is_contained(Locs, RegML); 623 } 624 625 /// If this variable is described in whole or part by \p Reg, return true. 626 unsigned getRegIdx(Register Reg) const { 627 for (unsigned Idx = 0; Idx < Locs.size(); ++Idx) 628 if (Locs[Idx].Kind == MachineLocKind::RegisterKind && 629 Locs[Idx].Value.RegNo == Reg) 630 return Idx; 631 llvm_unreachable("Could not find given Reg in Locs"); 632 } 633 634 /// If this variable is described in whole or part by 1 or more registers, 635 /// add each of them to \p Regs and return true. 636 bool getDescribingRegs(SmallVectorImpl<uint32_t> &Regs) const { 637 bool AnyRegs = false; 638 for (auto Loc : Locs) 639 if (Loc.Kind == MachineLocKind::RegisterKind) { 640 Regs.push_back(Loc.Value.RegNo); 641 AnyRegs = true; 642 } 643 return AnyRegs; 644 } 645 646 bool containsSpillLocs() const { 647 return any_of(Locs, [](VarLoc::MachineLoc ML) { 648 return ML.Kind == VarLoc::MachineLocKind::SpillLocKind; 649 }); 650 } 651 652 /// If this variable is described in whole or part by \p SpillLocation, 653 /// return true. 654 bool usesSpillLoc(SpillLoc SpillLocation) const { 655 MachineLoc SpillML; 656 SpillML.Kind = MachineLocKind::SpillLocKind; 657 SpillML.Value.SpillLocation = SpillLocation; 658 return is_contained(Locs, SpillML); 659 } 660 661 /// If this variable is described in whole or part by \p SpillLocation, 662 /// return the index . 663 unsigned getSpillLocIdx(SpillLoc SpillLocation) const { 664 for (unsigned Idx = 0; Idx < Locs.size(); ++Idx) 665 if (Locs[Idx].Kind == MachineLocKind::SpillLocKind && 666 Locs[Idx].Value.SpillLocation == SpillLocation) 667 return Idx; 668 llvm_unreachable("Could not find given SpillLoc in Locs"); 669 } 670 671 /// Determine whether the lexical scope of this value's debug location 672 /// dominates MBB. 673 bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const { 674 return LS.dominates(MI.getDebugLoc().get(), &MBB); 675 } 676 677 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 678 // TRI can be null. 679 void dump(const TargetRegisterInfo *TRI, raw_ostream &Out = dbgs()) const { 680 Out << "VarLoc("; 681 for (const MachineLoc &MLoc : Locs) { 682 if (Locs.begin() != &MLoc) 683 Out << ", "; 684 switch (MLoc.Kind) { 685 case MachineLocKind::RegisterKind: 686 Out << printReg(MLoc.Value.RegNo, TRI); 687 break; 688 case MachineLocKind::SpillLocKind: 689 Out << printReg(MLoc.Value.SpillLocation.SpillBase, TRI); 690 Out << "[" << MLoc.Value.SpillLocation.SpillOffset.getFixed() << " + " 691 << MLoc.Value.SpillLocation.SpillOffset.getScalable() 692 << "x vscale" 693 << "]"; 694 break; 695 case MachineLocKind::ImmediateKind: 696 Out << MLoc.Value.Immediate; 697 break; 698 case MachineLocKind::InvalidKind: 699 llvm_unreachable("Invalid VarLoc in dump method"); 700 } 701 } 702 703 Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", "; 704 if (Var.getInlinedAt()) 705 Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n"; 706 else 707 Out << "(null))"; 708 709 if (isEntryBackupLoc()) 710 Out << " (backup loc)\n"; 711 else 712 Out << "\n"; 713 } 714 #endif 715 716 bool operator==(const VarLoc &Other) const { 717 return std::tie(EVKind, Var, Expr, Locs) == 718 std::tie(Other.EVKind, Other.Var, Other.Expr, Other.Locs); 719 } 720 721 /// This operator guarantees that VarLocs are sorted by Variable first. 722 bool operator<(const VarLoc &Other) const { 723 return std::tie(Var, EVKind, Locs, Expr) < 724 std::tie(Other.Var, Other.EVKind, Other.Locs, Other.Expr); 725 } 726 }; 727 728 #ifndef NDEBUG 729 using VarVec = SmallVector<VarLoc, 32>; 730 #endif 731 732 /// VarLocMap is used for two things: 733 /// 1) Assigning LocIndices to a VarLoc. The LocIndices can be used to 734 /// virtually insert a VarLoc into a VarLocSet. 735 /// 2) Given a LocIndex, look up the unique associated VarLoc. 736 class VarLocMap { 737 /// Map a VarLoc to an index within the vector reserved for its location 738 /// within Loc2Vars. 739 std::map<VarLoc, LocIndices> Var2Indices; 740 741 /// Map a location to a vector which holds VarLocs which live in that 742 /// location. 743 SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars; 744 745 public: 746 /// Retrieve LocIndices for \p VL. 747 LocIndices insert(const VarLoc &VL) { 748 LocIndices &Indices = Var2Indices[VL]; 749 // If Indices is not empty, VL is already in the map. 750 if (!Indices.empty()) 751 return Indices; 752 SmallVector<LocIndex::u32_location_t, 4> Locations; 753 // LocIndices are determined by EVKind and MLs; each Register has a 754 // unique location, while all SpillLocs use a single bucket, and any EV 755 // VarLocs use only the Backup bucket or none at all (except the 756 // compulsory entry at the universal location index). LocIndices will 757 // always have an index at the universal location index as the last index. 758 if (VL.EVKind == VarLoc::EntryValueLocKind::NonEntryValueKind) { 759 VL.getDescribingRegs(Locations); 760 assert(all_of(Locations, 761 [](auto RegNo) { 762 return RegNo < LocIndex::kFirstInvalidRegLocation; 763 }) && 764 "Physreg out of range?"); 765 if (VL.containsSpillLocs()) { 766 LocIndex::u32_location_t Loc = LocIndex::kSpillLocation; 767 Locations.push_back(Loc); 768 } 769 } else if (VL.EVKind != VarLoc::EntryValueLocKind::EntryValueKind) { 770 LocIndex::u32_location_t Loc = LocIndex::kEntryValueBackupLocation; 771 Locations.push_back(Loc); 772 } 773 Locations.push_back(LocIndex::kUniversalLocation); 774 for (LocIndex::u32_location_t Location : Locations) { 775 auto &Vars = Loc2Vars[Location]; 776 Indices.push_back( 777 {Location, static_cast<LocIndex::u32_index_t>(Vars.size())}); 778 Vars.push_back(VL); 779 } 780 return Indices; 781 } 782 783 LocIndices getAllIndices(const VarLoc &VL) const { 784 auto IndIt = Var2Indices.find(VL); 785 assert(IndIt != Var2Indices.end() && "VarLoc not tracked"); 786 return IndIt->second; 787 } 788 789 /// Retrieve the unique VarLoc associated with \p ID. 790 const VarLoc &operator[](LocIndex ID) const { 791 auto LocIt = Loc2Vars.find(ID.Location); 792 assert(LocIt != Loc2Vars.end() && "Location not tracked"); 793 return LocIt->second[ID.Index]; 794 } 795 }; 796 797 using VarLocInMBB = 798 SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>; 799 struct TransferDebugPair { 800 MachineInstr *TransferInst; ///< Instruction where this transfer occurs. 801 LocIndex LocationID; ///< Location number for the transfer dest. 802 }; 803 using TransferMap = SmallVector<TransferDebugPair, 4>; 804 805 // Types for recording sets of variable fragments that overlap. For a given 806 // local variable, we record all other fragments of that variable that could 807 // overlap it, to reduce search time. 808 using FragmentOfVar = 809 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; 810 using OverlapMap = 811 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; 812 813 // Helper while building OverlapMap, a map of all fragments seen for a given 814 // DILocalVariable. 815 using VarToFragments = 816 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; 817 818 /// Collects all VarLocs from \p CollectFrom. Each unique VarLoc is added 819 /// to \p Collected once, in order of insertion into \p VarLocIDs. 820 static void collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected, 821 const VarLocSet &CollectFrom, 822 const VarLocMap &VarLocIDs); 823 824 /// Get the registers which are used by VarLocs of kind RegisterKind tracked 825 /// by \p CollectFrom. 826 void getUsedRegs(const VarLocSet &CollectFrom, 827 SmallVectorImpl<Register> &UsedRegs) const; 828 829 /// This holds the working set of currently open ranges. For fast 830 /// access, this is done both as a set of VarLocIDs, and a map of 831 /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all 832 /// previous open ranges for the same variable. In addition, we keep 833 /// two different maps (Vars/EntryValuesBackupVars), so erase/insert 834 /// methods act differently depending on whether a VarLoc is primary 835 /// location or backup one. In the case the VarLoc is backup location 836 /// we will erase/insert from the EntryValuesBackupVars map, otherwise 837 /// we perform the operation on the Vars. 838 class OpenRangesSet { 839 VarLocSet::Allocator &Alloc; 840 VarLocSet VarLocs; 841 // Map the DebugVariable to recent primary location ID. 842 SmallDenseMap<DebugVariable, LocIndices, 8> Vars; 843 // Map the DebugVariable to recent backup location ID. 844 SmallDenseMap<DebugVariable, LocIndices, 8> EntryValuesBackupVars; 845 OverlapMap &OverlappingFragments; 846 847 public: 848 OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap) 849 : Alloc(Alloc), VarLocs(Alloc), OverlappingFragments(_OLapMap) {} 850 851 const VarLocSet &getVarLocs() const { return VarLocs; } 852 853 // Fetches all VarLocs in \p VarLocIDs and inserts them into \p Collected. 854 // This method is needed to get every VarLoc once, as each VarLoc may have 855 // multiple indices in a VarLocMap (corresponding to each applicable 856 // location), but all VarLocs appear exactly once at the universal location 857 // index. 858 void getUniqueVarLocs(SmallVectorImpl<VarLoc> &Collected, 859 const VarLocMap &VarLocIDs) const { 860 collectAllVarLocs(Collected, VarLocs, VarLocIDs); 861 } 862 863 /// Terminate all open ranges for VL.Var by removing it from the set. 864 void erase(const VarLoc &VL); 865 866 /// Terminate all open ranges listed as indices in \c KillSet with 867 /// \c Location by removing them from the set. 868 void erase(const VarLocsInRange &KillSet, const VarLocMap &VarLocIDs, 869 LocIndex::u32_location_t Location); 870 871 /// Insert a new range into the set. 872 void insert(LocIndices VarLocIDs, const VarLoc &VL); 873 874 /// Insert a set of ranges. 875 void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map); 876 877 llvm::Optional<LocIndices> getEntryValueBackup(DebugVariable Var); 878 879 /// Empty the set. 880 void clear() { 881 VarLocs.clear(); 882 Vars.clear(); 883 EntryValuesBackupVars.clear(); 884 } 885 886 /// Return whether the set is empty or not. 887 bool empty() const { 888 assert(Vars.empty() == EntryValuesBackupVars.empty() && 889 Vars.empty() == VarLocs.empty() && 890 "open ranges are inconsistent"); 891 return VarLocs.empty(); 892 } 893 894 /// Get an empty range of VarLoc IDs. 895 auto getEmptyVarLocRange() const { 896 return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(), 897 getVarLocs().end()); 898 } 899 900 /// Get all set IDs for VarLocs with MLs of kind RegisterKind in \p Reg. 901 auto getRegisterVarLocs(Register Reg) const { 902 return LocIndex::indexRangeForLocation(getVarLocs(), Reg); 903 } 904 905 /// Get all set IDs for VarLocs with MLs of kind SpillLocKind. 906 auto getSpillVarLocs() const { 907 return LocIndex::indexRangeForLocation(getVarLocs(), 908 LocIndex::kSpillLocation); 909 } 910 911 /// Get all set IDs for VarLocs of EVKind EntryValueBackupKind or 912 /// EntryValueCopyBackupKind. 913 auto getEntryValueBackupVarLocs() const { 914 return LocIndex::indexRangeForLocation( 915 getVarLocs(), LocIndex::kEntryValueBackupLocation); 916 } 917 }; 918 919 /// Collect all VarLoc IDs from \p CollectFrom for VarLocs with MLs of kind 920 /// RegisterKind which are located in any reg in \p Regs. The IDs for each 921 /// VarLoc correspond to entries in the universal location bucket, which every 922 /// VarLoc has exactly 1 entry for. Insert collected IDs into \p Collected. 923 static void collectIDsForRegs(VarLocsInRange &Collected, 924 const DefinedRegsSet &Regs, 925 const VarLocSet &CollectFrom, 926 const VarLocMap &VarLocIDs); 927 928 VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) { 929 std::unique_ptr<VarLocSet> &VLS = Locs[MBB]; 930 if (!VLS) 931 VLS = std::make_unique<VarLocSet>(Alloc); 932 return *VLS.get(); 933 } 934 935 const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, 936 const VarLocInMBB &Locs) const { 937 auto It = Locs.find(MBB); 938 assert(It != Locs.end() && "MBB not in map"); 939 return *It->second.get(); 940 } 941 942 /// Tests whether this instruction is a spill to a stack location. 943 bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); 944 945 /// Decide if @MI is a spill instruction and return true if it is. We use 2 946 /// criteria to make this decision: 947 /// - Is this instruction a store to a spill slot? 948 /// - Is there a register operand that is both used and killed? 949 /// TODO: Store optimization can fold spills into other stores (including 950 /// other spills). We do not handle this yet (more than one memory operand). 951 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, 952 Register &Reg); 953 954 /// Returns true if the given machine instruction is a debug value which we 955 /// can emit entry values for. 956 /// 957 /// Currently, we generate debug entry values only for parameters that are 958 /// unmodified throughout the function and located in a register. 959 bool isEntryValueCandidate(const MachineInstr &MI, 960 const DefinedRegsSet &Regs) const; 961 962 /// If a given instruction is identified as a spill, return the spill location 963 /// and set \p Reg to the spilled register. 964 Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI, 965 MachineFunction *MF, 966 Register &Reg); 967 /// Given a spill instruction, extract the register and offset used to 968 /// address the spill location in a target independent way. 969 VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); 970 void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges, 971 TransferMap &Transfers, VarLocMap &VarLocIDs, 972 LocIndex OldVarID, TransferKind Kind, 973 const VarLoc::MachineLoc &OldLoc, 974 Register NewReg = Register()); 975 976 void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, 977 VarLocMap &VarLocIDs); 978 void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges, 979 VarLocMap &VarLocIDs, TransferMap &Transfers); 980 bool removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, 981 VarLocMap &VarLocIDs, const VarLoc &EntryVL); 982 void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges, 983 VarLocMap &VarLocIDs, TransferMap &Transfers, 984 VarLocsInRange &KillSet); 985 void recordEntryValue(const MachineInstr &MI, 986 const DefinedRegsSet &DefinedRegs, 987 OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs); 988 void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges, 989 VarLocMap &VarLocIDs, TransferMap &Transfers); 990 void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges, 991 VarLocMap &VarLocIDs, TransferMap &Transfers); 992 bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges, 993 VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs); 994 995 void process(MachineInstr &MI, OpenRangesSet &OpenRanges, 996 VarLocMap &VarLocIDs, TransferMap &Transfers); 997 998 void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments, 999 OverlapMap &OLapMap); 1000 1001 bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, 1002 const VarLocMap &VarLocIDs, 1003 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1004 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks); 1005 1006 /// Create DBG_VALUE insts for inlocs that have been propagated but 1007 /// had their instruction creation deferred. 1008 void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs); 1009 1010 bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override; 1011 1012 public: 1013 /// Default construct and initialize the pass. 1014 VarLocBasedLDV(); 1015 1016 ~VarLocBasedLDV(); 1017 1018 /// Print to ostream with a message. 1019 void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V, 1020 const VarLocMap &VarLocIDs, const char *msg, 1021 raw_ostream &Out) const; 1022 }; 1023 1024 } // end anonymous namespace 1025 1026 //===----------------------------------------------------------------------===// 1027 // Implementation 1028 //===----------------------------------------------------------------------===// 1029 1030 VarLocBasedLDV::VarLocBasedLDV() { } 1031 1032 VarLocBasedLDV::~VarLocBasedLDV() { } 1033 1034 /// Erase a variable from the set of open ranges, and additionally erase any 1035 /// fragments that may overlap it. If the VarLoc is a backup location, erase 1036 /// the variable from the EntryValuesBackupVars set, indicating we should stop 1037 /// tracking its backup entry location. Otherwise, if the VarLoc is primary 1038 /// location, erase the variable from the Vars set. 1039 void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) { 1040 // Erasure helper. 1041 auto DoErase = [VL, this](DebugVariable VarToErase) { 1042 auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 1043 auto It = EraseFrom->find(VarToErase); 1044 if (It != EraseFrom->end()) { 1045 LocIndices IDs = It->second; 1046 for (LocIndex ID : IDs) 1047 VarLocs.reset(ID.getAsRawInteger()); 1048 EraseFrom->erase(It); 1049 } 1050 }; 1051 1052 DebugVariable Var = VL.Var; 1053 1054 // Erase the variable/fragment that ends here. 1055 DoErase(Var); 1056 1057 // Extract the fragment. Interpret an empty fragment as one that covers all 1058 // possible bits. 1059 FragmentInfo ThisFragment = Var.getFragmentOrDefault(); 1060 1061 // There may be fragments that overlap the designated fragment. Look them up 1062 // in the pre-computed overlap map, and erase them too. 1063 auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment}); 1064 if (MapIt != OverlappingFragments.end()) { 1065 for (auto Fragment : MapIt->second) { 1066 VarLocBasedLDV::OptFragmentInfo FragmentHolder; 1067 if (!DebugVariable::isDefaultFragment(Fragment)) 1068 FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment); 1069 DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()}); 1070 } 1071 } 1072 } 1073 1074 void VarLocBasedLDV::OpenRangesSet::erase(const VarLocsInRange &KillSet, 1075 const VarLocMap &VarLocIDs, 1076 LocIndex::u32_location_t Location) { 1077 VarLocSet RemoveSet(Alloc); 1078 for (LocIndex::u32_index_t ID : KillSet) { 1079 const VarLoc &VL = VarLocIDs[LocIndex(Location, ID)]; 1080 auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 1081 EraseFrom->erase(VL.Var); 1082 LocIndices VLI = VarLocIDs.getAllIndices(VL); 1083 for (LocIndex ID : VLI) 1084 RemoveSet.set(ID.getAsRawInteger()); 1085 } 1086 VarLocs.intersectWithComplement(RemoveSet); 1087 } 1088 1089 void VarLocBasedLDV::OpenRangesSet::insertFromLocSet(const VarLocSet &ToLoad, 1090 const VarLocMap &Map) { 1091 VarLocsInRange UniqueVarLocIDs; 1092 DefinedRegsSet Regs; 1093 Regs.insert(LocIndex::kUniversalLocation); 1094 collectIDsForRegs(UniqueVarLocIDs, Regs, ToLoad, Map); 1095 for (uint64_t ID : UniqueVarLocIDs) { 1096 LocIndex Idx = LocIndex::fromRawInteger(ID); 1097 const VarLoc &VarL = Map[Idx]; 1098 const LocIndices Indices = Map.getAllIndices(VarL); 1099 insert(Indices, VarL); 1100 } 1101 } 1102 1103 void VarLocBasedLDV::OpenRangesSet::insert(LocIndices VarLocIDs, 1104 const VarLoc &VL) { 1105 auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 1106 for (LocIndex ID : VarLocIDs) 1107 VarLocs.set(ID.getAsRawInteger()); 1108 InsertInto->insert({VL.Var, VarLocIDs}); 1109 } 1110 1111 /// Return the Loc ID of an entry value backup location, if it exists for the 1112 /// variable. 1113 llvm::Optional<LocIndices> 1114 VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) { 1115 auto It = EntryValuesBackupVars.find(Var); 1116 if (It != EntryValuesBackupVars.end()) 1117 return It->second; 1118 1119 return llvm::None; 1120 } 1121 1122 void VarLocBasedLDV::collectIDsForRegs(VarLocsInRange &Collected, 1123 const DefinedRegsSet &Regs, 1124 const VarLocSet &CollectFrom, 1125 const VarLocMap &VarLocIDs) { 1126 assert(!Regs.empty() && "Nothing to collect"); 1127 SmallVector<Register, 32> SortedRegs; 1128 append_range(SortedRegs, Regs); 1129 array_pod_sort(SortedRegs.begin(), SortedRegs.end()); 1130 auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front())); 1131 auto End = CollectFrom.end(); 1132 for (Register Reg : SortedRegs) { 1133 // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains 1134 // all possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which 1135 // live in Reg. 1136 uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg); 1137 uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1); 1138 It.advanceToLowerBound(FirstIndexForReg); 1139 1140 // Iterate through that half-open interval and collect all the set IDs. 1141 for (; It != End && *It < FirstInvalidIndex; ++It) { 1142 LocIndex ItIdx = LocIndex::fromRawInteger(*It); 1143 const VarLoc &VL = VarLocIDs[ItIdx]; 1144 LocIndices LI = VarLocIDs.getAllIndices(VL); 1145 // For now, the back index is always the universal location index. 1146 assert(LI.back().Location == LocIndex::kUniversalLocation && 1147 "Unexpected order of LocIndices for VarLoc; was it inserted into " 1148 "the VarLocMap correctly?"); 1149 Collected.insert(LI.back().Index); 1150 } 1151 1152 if (It == End) 1153 return; 1154 } 1155 } 1156 1157 void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom, 1158 SmallVectorImpl<Register> &UsedRegs) const { 1159 // All register-based VarLocs are assigned indices greater than or equal to 1160 // FirstRegIndex. 1161 uint64_t FirstRegIndex = 1162 LocIndex::rawIndexForReg(LocIndex::kFirstRegLocation); 1163 uint64_t FirstInvalidIndex = 1164 LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation); 1165 for (auto It = CollectFrom.find(FirstRegIndex), 1166 End = CollectFrom.find(FirstInvalidIndex); 1167 It != End;) { 1168 // We found a VarLoc ID for a VarLoc that lives in a register. Figure out 1169 // which register and add it to UsedRegs. 1170 uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location; 1171 assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) && 1172 "Duplicate used reg"); 1173 UsedRegs.push_back(FoundReg); 1174 1175 // Skip to the next /set/ register. Note that this finds a lower bound, so 1176 // even if there aren't any VarLocs living in `FoundReg+1`, we're still 1177 // guaranteed to move on to the next register (or to end()). 1178 uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1); 1179 It.advanceToLowerBound(NextRegIndex); 1180 } 1181 } 1182 1183 //===----------------------------------------------------------------------===// 1184 // Debug Range Extension Implementation 1185 //===----------------------------------------------------------------------===// 1186 1187 #ifndef NDEBUG 1188 void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF, 1189 const VarLocInMBB &V, 1190 const VarLocMap &VarLocIDs, 1191 const char *msg, 1192 raw_ostream &Out) const { 1193 Out << '\n' << msg << '\n'; 1194 for (const MachineBasicBlock &BB : MF) { 1195 if (!V.count(&BB)) 1196 continue; 1197 const VarLocSet &L = getVarLocsInMBB(&BB, V); 1198 if (L.empty()) 1199 continue; 1200 SmallVector<VarLoc, 32> VarLocs; 1201 collectAllVarLocs(VarLocs, L, VarLocIDs); 1202 Out << "MBB: " << BB.getNumber() << ":\n"; 1203 for (const VarLoc &VL : VarLocs) { 1204 Out << " Var: " << VL.Var.getVariable()->getName(); 1205 Out << " MI: "; 1206 VL.dump(TRI, Out); 1207 } 1208 } 1209 Out << "\n"; 1210 } 1211 #endif 1212 1213 VarLocBasedLDV::VarLoc::SpillLoc 1214 VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { 1215 assert(MI.hasOneMemOperand() && 1216 "Spill instruction does not have exactly one memory operand?"); 1217 auto MMOI = MI.memoperands_begin(); 1218 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 1219 assert(PVal->kind() == PseudoSourceValue::FixedStack && 1220 "Inconsistent memory operand in spill instruction"); 1221 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); 1222 const MachineBasicBlock *MBB = MI.getParent(); 1223 Register Reg; 1224 StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); 1225 return {Reg, Offset}; 1226 } 1227 1228 /// Try to salvage the debug entry value if we encounter a new debug value 1229 /// describing the same parameter, otherwise stop tracking the value. Return 1230 /// true if we should stop tracking the entry value, otherwise return false. 1231 bool VarLocBasedLDV::removeEntryValue(const MachineInstr &MI, 1232 OpenRangesSet &OpenRanges, 1233 VarLocMap &VarLocIDs, 1234 const VarLoc &EntryVL) { 1235 // Skip the DBG_VALUE which is the debug entry value itself. 1236 if (MI.isIdenticalTo(EntryVL.MI)) 1237 return false; 1238 1239 // If the parameter's location is not register location, we can not track 1240 // the entry value any more. In addition, if the debug expression from the 1241 // DBG_VALUE is not empty, we can assume the parameter's value has changed 1242 // indicating that we should stop tracking its entry value as well. 1243 if (!MI.getDebugOperand(0).isReg() || 1244 MI.getDebugExpression()->getNumElements() != 0) 1245 return true; 1246 1247 // If the DBG_VALUE comes from a copy instruction that copies the entry value, 1248 // it means the parameter's value has not changed and we should be able to use 1249 // its entry value. 1250 Register Reg = MI.getDebugOperand(0).getReg(); 1251 auto I = std::next(MI.getReverseIterator()); 1252 const MachineOperand *SrcRegOp, *DestRegOp; 1253 if (I != MI.getParent()->rend()) { 1254 1255 // TODO: Try to keep tracking of an entry value if we encounter a propagated 1256 // DBG_VALUE describing the copy of the entry value. (Propagated entry value 1257 // does not indicate the parameter modification.) 1258 auto DestSrc = TII->isCopyInstr(*I); 1259 if (!DestSrc) 1260 return true; 1261 1262 SrcRegOp = DestSrc->Source; 1263 DestRegOp = DestSrc->Destination; 1264 if (Reg != DestRegOp->getReg()) 1265 return true; 1266 1267 for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { 1268 const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)]; 1269 if (VL.isEntryValueCopyBackupReg(Reg) && 1270 // Entry Values should not be variadic. 1271 VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg()) 1272 return false; 1273 } 1274 } 1275 1276 return true; 1277 } 1278 1279 /// End all previous ranges related to @MI and start a new range from @MI 1280 /// if it is a DBG_VALUE instr. 1281 void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI, 1282 OpenRangesSet &OpenRanges, 1283 VarLocMap &VarLocIDs) { 1284 if (!MI.isDebugValue()) 1285 return; 1286 const DILocalVariable *Var = MI.getDebugVariable(); 1287 const DIExpression *Expr = MI.getDebugExpression(); 1288 const DILocation *DebugLoc = MI.getDebugLoc(); 1289 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 1290 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 1291 "Expected inlined-at fields to agree"); 1292 1293 DebugVariable V(Var, Expr, InlinedAt); 1294 1295 // Check if this DBG_VALUE indicates a parameter's value changing. 1296 // If that is the case, we should stop tracking its entry value. 1297 auto EntryValBackupID = OpenRanges.getEntryValueBackup(V); 1298 if (Var->isParameter() && EntryValBackupID) { 1299 const VarLoc &EntryVL = VarLocIDs[EntryValBackupID->back()]; 1300 if (removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL)) { 1301 LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: "; 1302 MI.print(dbgs(), /*IsStandalone*/ false, 1303 /*SkipOpers*/ false, /*SkipDebugLoc*/ false, 1304 /*AddNewLine*/ true, TII)); 1305 OpenRanges.erase(EntryVL); 1306 } 1307 } 1308 1309 if (all_of(MI.debug_operands(), [](const MachineOperand &MO) { 1310 return (MO.isReg() && MO.getReg()) || MO.isImm() || MO.isFPImm() || 1311 MO.isCImm(); 1312 })) { 1313 // Use normal VarLoc constructor for registers and immediates. 1314 VarLoc VL(MI, LS); 1315 // End all previous ranges of VL.Var. 1316 OpenRanges.erase(VL); 1317 1318 LocIndices IDs = VarLocIDs.insert(VL); 1319 // Add the VarLoc to OpenRanges from this DBG_VALUE. 1320 OpenRanges.insert(IDs, VL); 1321 } else if (MI.memoperands().size() > 0) { 1322 llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?"); 1323 } else { 1324 // This must be an undefined location. If it has an open range, erase it. 1325 assert(MI.isUndefDebugValue() && 1326 "Unexpected non-undef DBG_VALUE encountered"); 1327 VarLoc VL(MI, LS); 1328 OpenRanges.erase(VL); 1329 } 1330 } 1331 1332 // This should be removed later, doesn't fit the new design. 1333 void VarLocBasedLDV::collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected, 1334 const VarLocSet &CollectFrom, 1335 const VarLocMap &VarLocIDs) { 1336 // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all 1337 // possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which live 1338 // in Reg. 1339 uint64_t FirstIndex = LocIndex::rawIndexForReg(LocIndex::kUniversalLocation); 1340 uint64_t FirstInvalidIndex = 1341 LocIndex::rawIndexForReg(LocIndex::kUniversalLocation + 1); 1342 // Iterate through that half-open interval and collect all the set IDs. 1343 for (auto It = CollectFrom.find(FirstIndex), End = CollectFrom.end(); 1344 It != End && *It < FirstInvalidIndex; ++It) { 1345 LocIndex RegIdx = LocIndex::fromRawInteger(*It); 1346 Collected.push_back(VarLocIDs[RegIdx]); 1347 } 1348 } 1349 1350 /// Turn the entry value backup locations into primary locations. 1351 void VarLocBasedLDV::emitEntryValues(MachineInstr &MI, 1352 OpenRangesSet &OpenRanges, 1353 VarLocMap &VarLocIDs, 1354 TransferMap &Transfers, 1355 VarLocsInRange &KillSet) { 1356 // Do not insert entry value locations after a terminator. 1357 if (MI.isTerminator()) 1358 return; 1359 1360 for (uint32_t ID : KillSet) { 1361 // The KillSet IDs are indices for the universal location bucket. 1362 LocIndex Idx = LocIndex(LocIndex::kUniversalLocation, ID); 1363 const VarLoc &VL = VarLocIDs[Idx]; 1364 if (!VL.Var.getVariable()->isParameter()) 1365 continue; 1366 1367 auto DebugVar = VL.Var; 1368 Optional<LocIndices> EntryValBackupIDs = 1369 OpenRanges.getEntryValueBackup(DebugVar); 1370 1371 // If the parameter has the entry value backup, it means we should 1372 // be able to use its entry value. 1373 if (!EntryValBackupIDs) 1374 continue; 1375 1376 const VarLoc &EntryVL = VarLocIDs[EntryValBackupIDs->back()]; 1377 VarLoc EntryLoc = VarLoc::CreateEntryLoc(EntryVL.MI, LS, EntryVL.Expr, 1378 EntryVL.Locs[0].Value.RegNo); 1379 LocIndices EntryValueIDs = VarLocIDs.insert(EntryLoc); 1380 Transfers.push_back({&MI, EntryValueIDs.back()}); 1381 OpenRanges.insert(EntryValueIDs, EntryLoc); 1382 } 1383 } 1384 1385 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc 1386 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with 1387 /// new VarLoc. If \p NewReg is different than default zero value then the 1388 /// new location will be register location created by the copy like instruction, 1389 /// otherwise it is variable's location on the stack. 1390 void VarLocBasedLDV::insertTransferDebugPair( 1391 MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers, 1392 VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind, 1393 const VarLoc::MachineLoc &OldLoc, Register NewReg) { 1394 const VarLoc &OldVarLoc = VarLocIDs[OldVarID]; 1395 1396 auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) { 1397 LocIndices LocIds = VarLocIDs.insert(VL); 1398 1399 // Close this variable's previous location range. 1400 OpenRanges.erase(VL); 1401 1402 // Record the new location as an open range, and a postponed transfer 1403 // inserting a DBG_VALUE for this location. 1404 OpenRanges.insert(LocIds, VL); 1405 assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator"); 1406 TransferDebugPair MIP = {&MI, LocIds.back()}; 1407 Transfers.push_back(MIP); 1408 }; 1409 1410 // End all previous ranges of VL.Var. 1411 OpenRanges.erase(VarLocIDs[OldVarID]); 1412 switch (Kind) { 1413 case TransferKind::TransferCopy: { 1414 assert(NewReg && 1415 "No register supplied when handling a copy of a debug value"); 1416 // Create a DBG_VALUE instruction to describe the Var in its new 1417 // register location. 1418 VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg); 1419 ProcessVarLoc(VL); 1420 LLVM_DEBUG({ 1421 dbgs() << "Creating VarLoc for register copy:"; 1422 VL.dump(TRI); 1423 }); 1424 return; 1425 } 1426 case TransferKind::TransferSpill: { 1427 // Create a DBG_VALUE instruction to describe the Var in its spilled 1428 // location. 1429 VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI); 1430 VarLoc VL = VarLoc::CreateSpillLoc( 1431 OldVarLoc, OldLoc, SpillLocation.SpillBase, SpillLocation.SpillOffset); 1432 ProcessVarLoc(VL); 1433 LLVM_DEBUG({ 1434 dbgs() << "Creating VarLoc for spill:"; 1435 VL.dump(TRI); 1436 }); 1437 return; 1438 } 1439 case TransferKind::TransferRestore: { 1440 assert(NewReg && 1441 "No register supplied when handling a restore of a debug value"); 1442 // DebugInstr refers to the pre-spill location, therefore we can reuse 1443 // its expression. 1444 VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg); 1445 ProcessVarLoc(VL); 1446 LLVM_DEBUG({ 1447 dbgs() << "Creating VarLoc for restore:"; 1448 VL.dump(TRI); 1449 }); 1450 return; 1451 } 1452 } 1453 llvm_unreachable("Invalid transfer kind"); 1454 } 1455 1456 /// A definition of a register may mark the end of a range. 1457 void VarLocBasedLDV::transferRegisterDef( 1458 MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, 1459 TransferMap &Transfers) { 1460 1461 // Meta Instructions do not affect the debug liveness of any register they 1462 // define. 1463 if (MI.isMetaInstruction()) 1464 return; 1465 1466 MachineFunction *MF = MI.getMF(); 1467 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1468 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 1469 1470 // Find the regs killed by MI, and find regmasks of preserved regs. 1471 DefinedRegsSet DeadRegs; 1472 SmallVector<const uint32_t *, 4> RegMasks; 1473 for (const MachineOperand &MO : MI.operands()) { 1474 // Determine whether the operand is a register def. 1475 if (MO.isReg() && MO.isDef() && MO.getReg() && 1476 Register::isPhysicalRegister(MO.getReg()) && 1477 !(MI.isCall() && MO.getReg() == SP)) { 1478 // Remove ranges of all aliased registers. 1479 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1480 // FIXME: Can we break out of this loop early if no insertion occurs? 1481 DeadRegs.insert(*RAI); 1482 } else if (MO.isRegMask()) { 1483 RegMasks.push_back(MO.getRegMask()); 1484 } 1485 } 1486 1487 // Erase VarLocs which reside in one of the dead registers. For performance 1488 // reasons, it's critical to not iterate over the full set of open VarLocs. 1489 // Iterate over the set of dying/used regs instead. 1490 if (!RegMasks.empty()) { 1491 SmallVector<Register, 32> UsedRegs; 1492 getUsedRegs(OpenRanges.getVarLocs(), UsedRegs); 1493 for (Register Reg : UsedRegs) { 1494 // Remove ranges of all clobbered registers. Register masks don't usually 1495 // list SP as preserved. Assume that call instructions never clobber SP, 1496 // because some backends (e.g., AArch64) never list SP in the regmask. 1497 // While the debug info may be off for an instruction or two around 1498 // callee-cleanup calls, transferring the DEBUG_VALUE across the call is 1499 // still a better user experience. 1500 if (Reg == SP) 1501 continue; 1502 bool AnyRegMaskKillsReg = 1503 any_of(RegMasks, [Reg](const uint32_t *RegMask) { 1504 return MachineOperand::clobbersPhysReg(RegMask, Reg); 1505 }); 1506 if (AnyRegMaskKillsReg) 1507 DeadRegs.insert(Reg); 1508 } 1509 } 1510 1511 if (DeadRegs.empty()) 1512 return; 1513 1514 VarLocsInRange KillSet; 1515 collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs(), VarLocIDs); 1516 OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kUniversalLocation); 1517 1518 if (TPC) { 1519 auto &TM = TPC->getTM<TargetMachine>(); 1520 if (TM.Options.ShouldEmitDebugEntryValues()) 1521 emitEntryValues(MI, OpenRanges, VarLocIDs, Transfers, KillSet); 1522 } 1523 } 1524 1525 bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI, 1526 MachineFunction *MF) { 1527 // TODO: Handle multiple stores folded into one. 1528 if (!MI.hasOneMemOperand()) 1529 return false; 1530 1531 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) 1532 return false; // This is not a spill instruction, since no valid size was 1533 // returned from either function. 1534 1535 return true; 1536 } 1537 1538 bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI, 1539 MachineFunction *MF, Register &Reg) { 1540 if (!isSpillInstruction(MI, MF)) 1541 return false; 1542 1543 auto isKilledReg = [&](const MachineOperand MO, Register &Reg) { 1544 if (!MO.isReg() || !MO.isUse()) { 1545 Reg = 0; 1546 return false; 1547 } 1548 Reg = MO.getReg(); 1549 return MO.isKill(); 1550 }; 1551 1552 for (const MachineOperand &MO : MI.operands()) { 1553 // In a spill instruction generated by the InlineSpiller the spilled 1554 // register has its kill flag set. 1555 if (isKilledReg(MO, Reg)) 1556 return true; 1557 if (Reg != 0) { 1558 // Check whether next instruction kills the spilled register. 1559 // FIXME: Current solution does not cover search for killed register in 1560 // bundles and instructions further down the chain. 1561 auto NextI = std::next(MI.getIterator()); 1562 // Skip next instruction that points to basic block end iterator. 1563 if (MI.getParent()->end() == NextI) 1564 continue; 1565 Register RegNext; 1566 for (const MachineOperand &MONext : NextI->operands()) { 1567 // Return true if we came across the register from the 1568 // previous spill instruction that is killed in NextI. 1569 if (isKilledReg(MONext, RegNext) && RegNext == Reg) 1570 return true; 1571 } 1572 } 1573 } 1574 // Return false if we didn't find spilled register. 1575 return false; 1576 } 1577 1578 Optional<VarLocBasedLDV::VarLoc::SpillLoc> 1579 VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI, 1580 MachineFunction *MF, Register &Reg) { 1581 if (!MI.hasOneMemOperand()) 1582 return None; 1583 1584 // FIXME: Handle folded restore instructions with more than one memory 1585 // operand. 1586 if (MI.getRestoreSize(TII)) { 1587 Reg = MI.getOperand(0).getReg(); 1588 return extractSpillBaseRegAndOffset(MI); 1589 } 1590 return None; 1591 } 1592 1593 /// A spilled register may indicate that we have to end the current range of 1594 /// a variable and create a new one for the spill location. 1595 /// A restored register may indicate the reverse situation. 1596 /// We don't want to insert any instructions in process(), so we just create 1597 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers. 1598 /// It will be inserted into the BB when we're done iterating over the 1599 /// instructions. 1600 void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI, 1601 OpenRangesSet &OpenRanges, 1602 VarLocMap &VarLocIDs, 1603 TransferMap &Transfers) { 1604 MachineFunction *MF = MI.getMF(); 1605 TransferKind TKind; 1606 Register Reg; 1607 Optional<VarLoc::SpillLoc> Loc; 1608 1609 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); 1610 1611 // First, if there are any DBG_VALUEs pointing at a spill slot that is 1612 // written to, then close the variable location. The value in memory 1613 // will have changed. 1614 VarLocsInRange KillSet; 1615 if (isSpillInstruction(MI, MF)) { 1616 Loc = extractSpillBaseRegAndOffset(MI); 1617 for (uint64_t ID : OpenRanges.getSpillVarLocs()) { 1618 LocIndex Idx = LocIndex::fromRawInteger(ID); 1619 const VarLoc &VL = VarLocIDs[Idx]; 1620 assert(VL.containsSpillLocs() && "Broken VarLocSet?"); 1621 if (VL.usesSpillLoc(*Loc)) { 1622 // This location is overwritten by the current instruction -- terminate 1623 // the open range, and insert an explicit DBG_VALUE $noreg. 1624 // 1625 // Doing this at a later stage would require re-interpreting all 1626 // DBG_VALUes and DIExpressions to identify whether they point at 1627 // memory, and then analysing all memory writes to see if they 1628 // overwrite that memory, which is expensive. 1629 // 1630 // At this stage, we already know which DBG_VALUEs are for spills and 1631 // where they are located; it's best to fix handle overwrites now. 1632 KillSet.insert(ID); 1633 unsigned SpillLocIdx = VL.getSpillLocIdx(*Loc); 1634 VarLoc::MachineLoc OldLoc = VL.Locs[SpillLocIdx]; 1635 VarLoc UndefVL = VarLoc::CreateCopyLoc(VL, OldLoc, 0); 1636 LocIndices UndefLocIDs = VarLocIDs.insert(UndefVL); 1637 Transfers.push_back({&MI, UndefLocIDs.back()}); 1638 } 1639 } 1640 OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kSpillLocation); 1641 } 1642 1643 // Try to recognise spill and restore instructions that may create a new 1644 // variable location. 1645 if (isLocationSpill(MI, MF, Reg)) { 1646 TKind = TransferKind::TransferSpill; 1647 LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump();); 1648 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) 1649 << "\n"); 1650 } else { 1651 if (!(Loc = isRestoreInstruction(MI, MF, Reg))) 1652 return; 1653 TKind = TransferKind::TransferRestore; 1654 LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump();); 1655 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) 1656 << "\n"); 1657 } 1658 // Check if the register or spill location is the location of a debug value. 1659 auto TransferCandidates = OpenRanges.getEmptyVarLocRange(); 1660 if (TKind == TransferKind::TransferSpill) 1661 TransferCandidates = OpenRanges.getRegisterVarLocs(Reg); 1662 else if (TKind == TransferKind::TransferRestore) 1663 TransferCandidates = OpenRanges.getSpillVarLocs(); 1664 for (uint64_t ID : TransferCandidates) { 1665 LocIndex Idx = LocIndex::fromRawInteger(ID); 1666 const VarLoc &VL = VarLocIDs[Idx]; 1667 unsigned LocIdx; 1668 if (TKind == TransferKind::TransferSpill) { 1669 assert(VL.usesReg(Reg) && "Broken VarLocSet?"); 1670 LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '(' 1671 << VL.Var.getVariable()->getName() << ")\n"); 1672 LocIdx = VL.getRegIdx(Reg); 1673 } else { 1674 assert(TKind == TransferKind::TransferRestore && VL.containsSpillLocs() && 1675 "Broken VarLocSet?"); 1676 if (!VL.usesSpillLoc(*Loc)) 1677 // The spill location is not the location of a debug value. 1678 continue; 1679 LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '(' 1680 << VL.Var.getVariable()->getName() << ")\n"); 1681 LocIdx = VL.getSpillLocIdx(*Loc); 1682 } 1683 VarLoc::MachineLoc MLoc = VL.Locs[LocIdx]; 1684 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind, 1685 MLoc, Reg); 1686 // FIXME: A comment should explain why it's correct to return early here, 1687 // if that is in fact correct. 1688 return; 1689 } 1690 } 1691 1692 /// If \p MI is a register copy instruction, that copies a previously tracked 1693 /// value from one register to another register that is callee saved, we 1694 /// create new DBG_VALUE instruction described with copy destination register. 1695 void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI, 1696 OpenRangesSet &OpenRanges, 1697 VarLocMap &VarLocIDs, 1698 TransferMap &Transfers) { 1699 auto DestSrc = TII->isCopyInstr(MI); 1700 if (!DestSrc) 1701 return; 1702 1703 const MachineOperand *DestRegOp = DestSrc->Destination; 1704 const MachineOperand *SrcRegOp = DestSrc->Source; 1705 1706 if (!DestRegOp->isDef()) 1707 return; 1708 1709 auto isCalleeSavedReg = [&](Register Reg) { 1710 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1711 if (CalleeSavedRegs.test(*RAI)) 1712 return true; 1713 return false; 1714 }; 1715 1716 Register SrcReg = SrcRegOp->getReg(); 1717 Register DestReg = DestRegOp->getReg(); 1718 1719 // We want to recognize instructions where destination register is callee 1720 // saved register. If register that could be clobbered by the call is 1721 // included, there would be a great chance that it is going to be clobbered 1722 // soon. It is more likely that previous register location, which is callee 1723 // saved, is going to stay unclobbered longer, even if it is killed. 1724 if (!isCalleeSavedReg(DestReg)) 1725 return; 1726 1727 // Remember an entry value movement. If we encounter a new debug value of 1728 // a parameter describing only a moving of the value around, rather then 1729 // modifying it, we are still able to use the entry value if needed. 1730 if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) { 1731 for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { 1732 LocIndex Idx = LocIndex::fromRawInteger(ID); 1733 const VarLoc &VL = VarLocIDs[Idx]; 1734 if (VL.isEntryValueBackupReg(SrcReg)) { 1735 LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump();); 1736 VarLoc EntryValLocCopyBackup = 1737 VarLoc::CreateEntryCopyBackupLoc(VL.MI, LS, VL.Expr, DestReg); 1738 // Stop tracking the original entry value. 1739 OpenRanges.erase(VL); 1740 1741 // Start tracking the entry value copy. 1742 LocIndices EntryValCopyLocIDs = VarLocIDs.insert(EntryValLocCopyBackup); 1743 OpenRanges.insert(EntryValCopyLocIDs, EntryValLocCopyBackup); 1744 break; 1745 } 1746 } 1747 } 1748 1749 if (!SrcRegOp->isKill()) 1750 return; 1751 1752 for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) { 1753 LocIndex Idx = LocIndex::fromRawInteger(ID); 1754 assert(VarLocIDs[Idx].usesReg(SrcReg) && "Broken VarLocSet?"); 1755 VarLoc::MachineLocValue Loc; 1756 Loc.RegNo = SrcReg; 1757 VarLoc::MachineLoc MLoc{VarLoc::MachineLocKind::RegisterKind, Loc}; 1758 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, 1759 TransferKind::TransferCopy, MLoc, DestReg); 1760 // FIXME: A comment should explain why it's correct to return early here, 1761 // if that is in fact correct. 1762 return; 1763 } 1764 } 1765 1766 /// Terminate all open ranges at the end of the current basic block. 1767 bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB, 1768 OpenRangesSet &OpenRanges, 1769 VarLocInMBB &OutLocs, 1770 const VarLocMap &VarLocIDs) { 1771 bool Changed = false; 1772 LLVM_DEBUG({ 1773 VarVec VarLocs; 1774 OpenRanges.getUniqueVarLocs(VarLocs, VarLocIDs); 1775 for (VarLoc &VL : VarLocs) { 1776 // Copy OpenRanges to OutLocs, if not already present. 1777 dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": "; 1778 VL.dump(TRI); 1779 } 1780 }); 1781 VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs); 1782 Changed = VLS != OpenRanges.getVarLocs(); 1783 // New OutLocs set may be different due to spill, restore or register 1784 // copy instruction processing. 1785 if (Changed) 1786 VLS = OpenRanges.getVarLocs(); 1787 OpenRanges.clear(); 1788 return Changed; 1789 } 1790 1791 /// Accumulate a mapping between each DILocalVariable fragment and other 1792 /// fragments of that DILocalVariable which overlap. This reduces work during 1793 /// the data-flow stage from "Find any overlapping fragments" to "Check if the 1794 /// known-to-overlap fragments are present". 1795 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for 1796 /// fragment usage. 1797 /// \param SeenFragments Map from DILocalVariable to all fragments of that 1798 /// Variable which are known to exist. 1799 /// \param OverlappingFragments The overlap map being constructed, from one 1800 /// Var/Fragment pair to a vector of fragments known to overlap. 1801 void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI, 1802 VarToFragments &SeenFragments, 1803 OverlapMap &OverlappingFragments) { 1804 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), 1805 MI.getDebugLoc()->getInlinedAt()); 1806 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); 1807 1808 // If this is the first sighting of this variable, then we are guaranteed 1809 // there are currently no overlapping fragments either. Initialize the set 1810 // of seen fragments, record no overlaps for the current one, and return. 1811 auto SeenIt = SeenFragments.find(MIVar.getVariable()); 1812 if (SeenIt == SeenFragments.end()) { 1813 SmallSet<FragmentInfo, 4> OneFragment; 1814 OneFragment.insert(ThisFragment); 1815 SeenFragments.insert({MIVar.getVariable(), OneFragment}); 1816 1817 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1818 return; 1819 } 1820 1821 // If this particular Variable/Fragment pair already exists in the overlap 1822 // map, it has already been accounted for. 1823 auto IsInOLapMap = 1824 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1825 if (!IsInOLapMap.second) 1826 return; 1827 1828 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; 1829 auto &AllSeenFragments = SeenIt->second; 1830 1831 // Otherwise, examine all other seen fragments for this variable, with "this" 1832 // fragment being a previously unseen fragment. Record any pair of 1833 // overlapping fragments. 1834 for (auto &ASeenFragment : AllSeenFragments) { 1835 // Does this previously seen fragment overlap? 1836 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { 1837 // Yes: Mark the current fragment as being overlapped. 1838 ThisFragmentsOverlaps.push_back(ASeenFragment); 1839 // Mark the previously seen fragment as being overlapped by the current 1840 // one. 1841 auto ASeenFragmentsOverlaps = 1842 OverlappingFragments.find({MIVar.getVariable(), ASeenFragment}); 1843 assert(ASeenFragmentsOverlaps != OverlappingFragments.end() && 1844 "Previously seen var fragment has no vector of overlaps"); 1845 ASeenFragmentsOverlaps->second.push_back(ThisFragment); 1846 } 1847 } 1848 1849 AllSeenFragments.insert(ThisFragment); 1850 } 1851 1852 /// This routine creates OpenRanges. 1853 void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges, 1854 VarLocMap &VarLocIDs, TransferMap &Transfers) { 1855 transferDebugValue(MI, OpenRanges, VarLocIDs); 1856 transferRegisterDef(MI, OpenRanges, VarLocIDs, Transfers); 1857 transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers); 1858 transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers); 1859 } 1860 1861 /// This routine joins the analysis results of all incoming edges in @MBB by 1862 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same 1863 /// source variable in all the predecessors of @MBB reside in the same location. 1864 bool VarLocBasedLDV::join( 1865 MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, 1866 const VarLocMap &VarLocIDs, 1867 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1868 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) { 1869 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 1870 1871 VarLocSet InLocsT(Alloc); // Temporary incoming locations. 1872 1873 // For all predecessors of this MBB, find the set of VarLocs that 1874 // can be joined. 1875 int NumVisited = 0; 1876 for (auto p : MBB.predecessors()) { 1877 // Ignore backedges if we have not visited the predecessor yet. As the 1878 // predecessor hasn't yet had locations propagated into it, most locations 1879 // will not yet be valid, so treat them as all being uninitialized and 1880 // potentially valid. If a location guessed to be correct here is 1881 // invalidated later, we will remove it when we revisit this block. 1882 if (!Visited.count(p)) { 1883 LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber() 1884 << "\n"); 1885 continue; 1886 } 1887 auto OL = OutLocs.find(p); 1888 // Join is null in case of empty OutLocs from any of the pred. 1889 if (OL == OutLocs.end()) 1890 return false; 1891 1892 // Just copy over the Out locs to incoming locs for the first visited 1893 // predecessor, and for all other predecessors join the Out locs. 1894 VarLocSet &OutLocVLS = *OL->second.get(); 1895 if (!NumVisited) 1896 InLocsT = OutLocVLS; 1897 else 1898 InLocsT &= OutLocVLS; 1899 1900 LLVM_DEBUG({ 1901 if (!InLocsT.empty()) { 1902 VarVec VarLocs; 1903 collectAllVarLocs(VarLocs, InLocsT, VarLocIDs); 1904 for (const VarLoc &VL : VarLocs) 1905 dbgs() << " gathered candidate incoming var: " 1906 << VL.Var.getVariable()->getName() << "\n"; 1907 } 1908 }); 1909 1910 NumVisited++; 1911 } 1912 1913 // Filter out DBG_VALUES that are out of scope. 1914 VarLocSet KillSet(Alloc); 1915 bool IsArtificial = ArtificialBlocks.count(&MBB); 1916 if (!IsArtificial) { 1917 for (uint64_t ID : InLocsT) { 1918 LocIndex Idx = LocIndex::fromRawInteger(ID); 1919 if (!VarLocIDs[Idx].dominates(LS, MBB)) { 1920 KillSet.set(ID); 1921 LLVM_DEBUG({ 1922 auto Name = VarLocIDs[Idx].Var.getVariable()->getName(); 1923 dbgs() << " killing " << Name << ", it doesn't dominate MBB\n"; 1924 }); 1925 } 1926 } 1927 } 1928 InLocsT.intersectWithComplement(KillSet); 1929 1930 // As we are processing blocks in reverse post-order we 1931 // should have processed at least one predecessor, unless it 1932 // is the entry block which has no predecessor. 1933 assert((NumVisited || MBB.pred_empty()) && 1934 "Should have processed at least one predecessor"); 1935 1936 VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs); 1937 bool Changed = false; 1938 if (ILS != InLocsT) { 1939 ILS = InLocsT; 1940 Changed = true; 1941 } 1942 1943 return Changed; 1944 } 1945 1946 void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs, 1947 VarLocMap &VarLocIDs) { 1948 // PendingInLocs records all locations propagated into blocks, which have 1949 // not had DBG_VALUE insts created. Go through and create those insts now. 1950 for (auto &Iter : PendingInLocs) { 1951 // Map is keyed on a constant pointer, unwrap it so we can insert insts. 1952 auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first); 1953 VarLocSet &Pending = *Iter.second.get(); 1954 1955 SmallVector<VarLoc, 32> VarLocs; 1956 collectAllVarLocs(VarLocs, Pending, VarLocIDs); 1957 1958 for (VarLoc DiffIt : VarLocs) { 1959 // The ID location is live-in to MBB -- work out what kind of machine 1960 // location it is and create a DBG_VALUE. 1961 if (DiffIt.isEntryBackupLoc()) 1962 continue; 1963 MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent()); 1964 MBB.insert(MBB.instr_begin(), MI); 1965 1966 (void)MI; 1967 LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump();); 1968 } 1969 } 1970 } 1971 1972 bool VarLocBasedLDV::isEntryValueCandidate( 1973 const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const { 1974 assert(MI.isDebugValue() && "This must be DBG_VALUE."); 1975 1976 // TODO: Add support for local variables that are expressed in terms of 1977 // parameters entry values. 1978 // TODO: Add support for modified arguments that can be expressed 1979 // by using its entry value. 1980 auto *DIVar = MI.getDebugVariable(); 1981 if (!DIVar->isParameter()) 1982 return false; 1983 1984 // Do not consider parameters that belong to an inlined function. 1985 if (MI.getDebugLoc()->getInlinedAt()) 1986 return false; 1987 1988 // Only consider parameters that are described using registers. Parameters 1989 // that are passed on the stack are not yet supported, so ignore debug 1990 // values that are described by the frame or stack pointer. 1991 if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI)) 1992 return false; 1993 1994 // If a parameter's value has been propagated from the caller, then the 1995 // parameter's DBG_VALUE may be described using a register defined by some 1996 // instruction in the entry block, in which case we shouldn't create an 1997 // entry value. 1998 if (DefinedRegs.count(MI.getDebugOperand(0).getReg())) 1999 return false; 2000 2001 // TODO: Add support for parameters that have a pre-existing debug expressions 2002 // (e.g. fragments). 2003 if (MI.getDebugExpression()->getNumElements() > 0) 2004 return false; 2005 2006 return true; 2007 } 2008 2009 /// Collect all register defines (including aliases) for the given instruction. 2010 static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs, 2011 const TargetRegisterInfo *TRI) { 2012 for (const MachineOperand &MO : MI.operands()) 2013 if (MO.isReg() && MO.isDef() && MO.getReg()) 2014 for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) 2015 Regs.insert(*AI); 2016 } 2017 2018 /// This routine records the entry values of function parameters. The values 2019 /// could be used as backup values. If we loose the track of some unmodified 2020 /// parameters, the backup values will be used as a primary locations. 2021 void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI, 2022 const DefinedRegsSet &DefinedRegs, 2023 OpenRangesSet &OpenRanges, 2024 VarLocMap &VarLocIDs) { 2025 if (TPC) { 2026 auto &TM = TPC->getTM<TargetMachine>(); 2027 if (!TM.Options.ShouldEmitDebugEntryValues()) 2028 return; 2029 } 2030 2031 DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(), 2032 MI.getDebugLoc()->getInlinedAt()); 2033 2034 if (!isEntryValueCandidate(MI, DefinedRegs) || 2035 OpenRanges.getEntryValueBackup(V)) 2036 return; 2037 2038 LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump();); 2039 2040 // Create the entry value and use it as a backup location until it is 2041 // valid. It is valid until a parameter is not changed. 2042 DIExpression *NewExpr = 2043 DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue); 2044 VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, LS, NewExpr); 2045 LocIndices EntryValLocIDs = VarLocIDs.insert(EntryValLocAsBackup); 2046 OpenRanges.insert(EntryValLocIDs, EntryValLocAsBackup); 2047 } 2048 2049 /// Calculate the liveness information for the given machine function and 2050 /// extend ranges across basic blocks. 2051 bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) { 2052 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); 2053 2054 if (!MF.getFunction().getSubprogram()) 2055 // VarLocBaseLDV will already have removed all DBG_VALUEs. 2056 return false; 2057 2058 // Skip functions from NoDebug compilation units. 2059 if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() == 2060 DICompileUnit::NoDebug) 2061 return false; 2062 2063 TRI = MF.getSubtarget().getRegisterInfo(); 2064 TII = MF.getSubtarget().getInstrInfo(); 2065 TFI = MF.getSubtarget().getFrameLowering(); 2066 TFI->getCalleeSaves(MF, CalleeSavedRegs); 2067 this->TPC = TPC; 2068 LS.initialize(MF); 2069 2070 bool Changed = false; 2071 bool OLChanged = false; 2072 bool MBBJoined = false; 2073 2074 VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors. 2075 OverlapMap OverlapFragments; // Map of overlapping variable fragments. 2076 OpenRangesSet OpenRanges(Alloc, OverlapFragments); 2077 // Ranges that are open until end of bb. 2078 VarLocInMBB OutLocs; // Ranges that exist beyond bb. 2079 VarLocInMBB InLocs; // Ranges that are incoming after joining. 2080 TransferMap Transfers; // DBG_VALUEs associated with transfers (such as 2081 // spills, copies and restores). 2082 2083 VarToFragments SeenFragments; 2084 2085 // Blocks which are artificial, i.e. blocks which exclusively contain 2086 // instructions without locations, or with line 0 locations. 2087 SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks; 2088 2089 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; 2090 DenseMap<MachineBasicBlock *, unsigned int> BBToOrder; 2091 std::priority_queue<unsigned int, std::vector<unsigned int>, 2092 std::greater<unsigned int>> 2093 Worklist; 2094 std::priority_queue<unsigned int, std::vector<unsigned int>, 2095 std::greater<unsigned int>> 2096 Pending; 2097 2098 // Set of register defines that are seen when traversing the entry block 2099 // looking for debug entry value candidates. 2100 DefinedRegsSet DefinedRegs; 2101 2102 // Only in the case of entry MBB collect DBG_VALUEs representing 2103 // function parameters in order to generate debug entry values for them. 2104 MachineBasicBlock &First_MBB = *(MF.begin()); 2105 for (auto &MI : First_MBB) { 2106 collectRegDefs(MI, DefinedRegs, TRI); 2107 if (MI.isDebugValue()) 2108 recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs); 2109 } 2110 2111 // Initialize per-block structures and scan for fragment overlaps. 2112 for (auto &MBB : MF) 2113 for (auto &MI : MBB) 2114 if (MI.isDebugValue()) 2115 accumulateFragmentMap(MI, SeenFragments, OverlapFragments); 2116 2117 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { 2118 if (const DebugLoc &DL = MI.getDebugLoc()) 2119 return DL.getLine() != 0; 2120 return false; 2121 }; 2122 for (auto &MBB : MF) 2123 if (none_of(MBB.instrs(), hasNonArtificialLocation)) 2124 ArtificialBlocks.insert(&MBB); 2125 2126 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, 2127 "OutLocs after initialization", dbgs())); 2128 2129 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 2130 unsigned int RPONumber = 0; 2131 for (MachineBasicBlock *MBB : RPOT) { 2132 OrderToBB[RPONumber] = MBB; 2133 BBToOrder[MBB] = RPONumber; 2134 Worklist.push(RPONumber); 2135 ++RPONumber; 2136 } 2137 2138 if (RPONumber > InputBBLimit) { 2139 unsigned NumInputDbgValues = 0; 2140 for (auto &MBB : MF) 2141 for (auto &MI : MBB) 2142 if (MI.isDebugValue()) 2143 ++NumInputDbgValues; 2144 if (NumInputDbgValues > InputDbgValueLimit) { 2145 LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName() 2146 << " has " << RPONumber << " basic blocks and " 2147 << NumInputDbgValues 2148 << " input DBG_VALUEs, exceeding limits.\n"); 2149 return false; 2150 } 2151 } 2152 2153 // This is a standard "union of predecessor outs" dataflow problem. 2154 // To solve it, we perform join() and process() using the two worklist method 2155 // until the ranges converge. 2156 // Ranges have converged when both worklists are empty. 2157 SmallPtrSet<const MachineBasicBlock *, 16> Visited; 2158 while (!Worklist.empty() || !Pending.empty()) { 2159 // We track what is on the pending worklist to avoid inserting the same 2160 // thing twice. We could avoid this with a custom priority queue, but this 2161 // is probably not worth it. 2162 SmallPtrSet<MachineBasicBlock *, 16> OnPending; 2163 LLVM_DEBUG(dbgs() << "Processing Worklist\n"); 2164 while (!Worklist.empty()) { 2165 MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; 2166 Worklist.pop(); 2167 MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited, 2168 ArtificialBlocks); 2169 MBBJoined |= Visited.insert(MBB).second; 2170 if (MBBJoined) { 2171 MBBJoined = false; 2172 Changed = true; 2173 // Now that we have started to extend ranges across BBs we need to 2174 // examine spill, copy and restore instructions to see whether they 2175 // operate with registers that correspond to user variables. 2176 // First load any pending inlocs. 2177 OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs); 2178 for (auto &MI : *MBB) 2179 process(MI, OpenRanges, VarLocIDs, Transfers); 2180 OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs); 2181 2182 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, 2183 "OutLocs after propagating", dbgs())); 2184 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, 2185 "InLocs after propagating", dbgs())); 2186 2187 if (OLChanged) { 2188 OLChanged = false; 2189 for (auto s : MBB->successors()) 2190 if (OnPending.insert(s).second) { 2191 Pending.push(BBToOrder[s]); 2192 } 2193 } 2194 } 2195 } 2196 Worklist.swap(Pending); 2197 // At this point, pending must be empty, since it was just the empty 2198 // worklist 2199 assert(Pending.empty() && "Pending should be empty"); 2200 } 2201 2202 // Add any DBG_VALUE instructions created by location transfers. 2203 for (auto &TR : Transfers) { 2204 assert(!TR.TransferInst->isTerminator() && 2205 "Cannot insert DBG_VALUE after terminator"); 2206 MachineBasicBlock *MBB = TR.TransferInst->getParent(); 2207 const VarLoc &VL = VarLocIDs[TR.LocationID]; 2208 MachineInstr *MI = VL.BuildDbgValue(MF); 2209 MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI); 2210 } 2211 Transfers.clear(); 2212 2213 // Deferred inlocs will not have had any DBG_VALUE insts created; do 2214 // that now. 2215 flushPendingLocs(InLocs, VarLocIDs); 2216 2217 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs())); 2218 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs())); 2219 return Changed; 2220 } 2221 2222 LDVImpl * 2223 llvm::makeVarLocBasedLiveDebugValues() 2224 { 2225 return new VarLocBasedLDV(); 2226 } 2227