1 //===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file VarLocBasedImpl.cpp 10 /// 11 /// LiveDebugValues is an optimistic "available expressions" dataflow 12 /// algorithm. The set of expressions is the set of machine locations 13 /// (registers, spill slots, constants) that a variable fragment might be 14 /// located, qualified by a DIExpression and indirect-ness flag, while each 15 /// variable is identified by a DebugVariable object. The availability of an 16 /// expression begins when a DBG_VALUE instruction specifies the location of a 17 /// DebugVariable, and continues until that location is clobbered or 18 /// re-specified by a different DBG_VALUE for the same DebugVariable. 19 /// 20 /// The output of LiveDebugValues is additional DBG_VALUE instructions, 21 /// placed to extend variable locations as far they're available. This file 22 /// and the VarLocBasedLDV class is an implementation that explicitly tracks 23 /// locations, using the VarLoc class. 24 /// 25 /// The canonical "available expressions" problem doesn't have expression 26 /// clobbering, instead when a variable is re-assigned, any expressions using 27 /// that variable get invalidated. LiveDebugValues can map onto "available 28 /// expressions" by having every register represented by a variable, which is 29 /// used in an expression that becomes available at a DBG_VALUE instruction. 30 /// When the register is clobbered, its variable is effectively reassigned, and 31 /// expressions computed from it become unavailable. A similar construct is 32 /// needed when a DebugVariable has its location re-specified, to invalidate 33 /// all other locations for that DebugVariable. 34 /// 35 /// Using the dataflow analysis to compute the available expressions, we create 36 /// a DBG_VALUE at the beginning of each block where the expression is 37 /// live-in. This propagates variable locations into every basic block where 38 /// the location can be determined, rather than only having DBG_VALUEs in blocks 39 /// where locations are specified due to an assignment or some optimization. 40 /// Movements of values between registers and spill slots are annotated with 41 /// DBG_VALUEs too to track variable values bewteen locations. All this allows 42 /// DbgEntityHistoryCalculator to focus on only the locations within individual 43 /// blocks, facilitating testing and improving modularity. 44 /// 45 /// We follow an optimisic dataflow approach, with this lattice: 46 /// 47 /// \verbatim 48 /// ┬ "Unknown" 49 /// | 50 /// v 51 /// True 52 /// | 53 /// v 54 /// ⊥ False 55 /// \endverbatim With "True" signifying that the expression is available (and 56 /// thus a DebugVariable's location is the corresponding register), while 57 /// "False" signifies that the expression is unavailable. "Unknown"s never 58 /// survive to the end of the analysis (see below). 59 /// 60 /// Formally, all DebugVariable locations that are live-out of a block are 61 /// initialized to \top. A blocks live-in values take the meet of the lattice 62 /// value for every predecessors live-outs, except for the entry block, where 63 /// all live-ins are \bot. The usual dataflow propagation occurs: the transfer 64 /// function for a block assigns an expression for a DebugVariable to be "True" 65 /// if a DBG_VALUE in the block specifies it; "False" if the location is 66 /// clobbered; or the live-in value if it is unaffected by the block. We 67 /// visit each block in reverse post order until a fixedpoint is reached. The 68 /// solution produced is maximal. 69 /// 70 /// Intuitively, we start by assuming that every expression / variable location 71 /// is at least "True", and then propagate "False" from the entry block and any 72 /// clobbers until there are no more changes to make. This gives us an accurate 73 /// solution because all incorrect locations will have a "False" propagated into 74 /// them. It also gives us a solution that copes well with loops by assuming 75 /// that variable locations are live-through every loop, and then removing those 76 /// that are not through dataflow. 77 /// 78 /// Within LiveDebugValues: each variable location is represented by a 79 /// VarLoc object that identifies the source variable, its current 80 /// machine-location, and the DBG_VALUE inst that specifies the location. Each 81 /// VarLoc is indexed in the (function-scope) \p VarLocMap, giving each VarLoc a 82 /// unique index. Rather than operate directly on machine locations, the 83 /// dataflow analysis in this pass identifies locations by their index in the 84 /// VarLocMap, meaning all the variable locations in a block can be described 85 /// by a sparse vector of VarLocMap indicies. 86 /// 87 /// All the storage for the dataflow analysis is local to the ExtendRanges 88 /// method and passed down to helper methods. "OutLocs" and "InLocs" record the 89 /// in and out lattice values for each block. "OpenRanges" maintains a list of 90 /// variable locations and, with the "process" method, evaluates the transfer 91 /// function of each block. "flushPendingLocs" installs DBG_VALUEs for each 92 /// live-in location at the start of blocks, while "Transfers" records 93 /// transfers of values between machine-locations. 94 /// 95 /// We avoid explicitly representing the "Unknown" (\top) lattice value in the 96 /// implementation. Instead, unvisited blocks implicitly have all lattice 97 /// values set as "Unknown". After being visited, there will be path back to 98 /// the entry block where the lattice value is "False", and as the transfer 99 /// function cannot make new "Unknown" locations, there are no scenarios where 100 /// a block can have an "Unknown" location after being visited. Similarly, we 101 /// don't enumerate all possible variable locations before exploring the 102 /// function: when a new location is discovered, all blocks previously explored 103 /// were implicitly "False" but unrecorded, and become explicitly "False" when 104 /// a new VarLoc is created with its bit not set in predecessor InLocs or 105 /// OutLocs. 106 /// 107 //===----------------------------------------------------------------------===// 108 109 #include "LiveDebugValues.h" 110 111 #include "llvm/ADT/CoalescingBitVector.h" 112 #include "llvm/ADT/DenseMap.h" 113 #include "llvm/ADT/PostOrderIterator.h" 114 #include "llvm/ADT/SmallPtrSet.h" 115 #include "llvm/ADT/SmallSet.h" 116 #include "llvm/ADT/SmallVector.h" 117 #include "llvm/ADT/Statistic.h" 118 #include "llvm/ADT/UniqueVector.h" 119 #include "llvm/CodeGen/LexicalScopes.h" 120 #include "llvm/CodeGen/MachineBasicBlock.h" 121 #include "llvm/CodeGen/MachineFrameInfo.h" 122 #include "llvm/CodeGen/MachineFunction.h" 123 #include "llvm/CodeGen/MachineFunctionPass.h" 124 #include "llvm/CodeGen/MachineInstr.h" 125 #include "llvm/CodeGen/MachineInstrBuilder.h" 126 #include "llvm/CodeGen/MachineMemOperand.h" 127 #include "llvm/CodeGen/MachineOperand.h" 128 #include "llvm/CodeGen/PseudoSourceValue.h" 129 #include "llvm/CodeGen/RegisterScavenging.h" 130 #include "llvm/CodeGen/TargetFrameLowering.h" 131 #include "llvm/CodeGen/TargetInstrInfo.h" 132 #include "llvm/CodeGen/TargetLowering.h" 133 #include "llvm/CodeGen/TargetPassConfig.h" 134 #include "llvm/CodeGen/TargetRegisterInfo.h" 135 #include "llvm/CodeGen/TargetSubtargetInfo.h" 136 #include "llvm/Config/llvm-config.h" 137 #include "llvm/IR/DIBuilder.h" 138 #include "llvm/IR/DebugInfoMetadata.h" 139 #include "llvm/IR/DebugLoc.h" 140 #include "llvm/IR/Function.h" 141 #include "llvm/IR/Module.h" 142 #include "llvm/InitializePasses.h" 143 #include "llvm/MC/MCRegisterInfo.h" 144 #include "llvm/Pass.h" 145 #include "llvm/Support/Casting.h" 146 #include "llvm/Support/Compiler.h" 147 #include "llvm/Support/Debug.h" 148 #include "llvm/Support/TypeSize.h" 149 #include "llvm/Support/raw_ostream.h" 150 #include "llvm/Target/TargetMachine.h" 151 #include <algorithm> 152 #include <cassert> 153 #include <cstdint> 154 #include <functional> 155 #include <queue> 156 #include <tuple> 157 #include <utility> 158 #include <vector> 159 160 using namespace llvm; 161 162 #define DEBUG_TYPE "livedebugvalues" 163 164 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); 165 166 // Options to prevent pathological compile-time behavior. If InputBBLimit and 167 // InputDbgValueLimit are both exceeded, range extension is disabled. 168 static cl::opt<unsigned> InputBBLimit( 169 "livedebugvalues-input-bb-limit", 170 cl::desc("Maximum input basic blocks before DBG_VALUE limit applies"), 171 cl::init(10000), cl::Hidden); 172 static cl::opt<unsigned> InputDbgValueLimit( 173 "livedebugvalues-input-dbg-value-limit", 174 cl::desc( 175 "Maximum input DBG_VALUE insts supported by debug range extension"), 176 cl::init(50000), cl::Hidden); 177 178 // If @MI is a DBG_VALUE with debug value described by a defined 179 // register, returns the number of this register. In the other case, returns 0. 180 static Register isDbgValueDescribedByReg(const MachineInstr &MI) { 181 assert(MI.isDebugValue() && "expected a DBG_VALUE"); 182 assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE"); 183 // If location of variable is described using a register (directly 184 // or indirectly), this register is always a first operand. 185 return MI.getDebugOperand(0).isReg() ? MI.getDebugOperand(0).getReg() 186 : Register(); 187 } 188 189 /// If \p Op is a stack or frame register return true, otherwise return false. 190 /// This is used to avoid basing the debug entry values on the registers, since 191 /// we do not support it at the moment. 192 static bool isRegOtherThanSPAndFP(const MachineOperand &Op, 193 const MachineInstr &MI, 194 const TargetRegisterInfo *TRI) { 195 if (!Op.isReg()) 196 return false; 197 198 const MachineFunction *MF = MI.getParent()->getParent(); 199 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 200 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 201 Register FP = TRI->getFrameRegister(*MF); 202 Register Reg = Op.getReg(); 203 204 return Reg && Reg != SP && Reg != FP; 205 } 206 207 namespace { 208 209 // Max out the number of statically allocated elements in DefinedRegsSet, as 210 // this prevents fallback to std::set::count() operations. 211 using DefinedRegsSet = SmallSet<Register, 32>; 212 213 using VarLocSet = CoalescingBitVector<uint64_t>; 214 215 /// A type-checked pair of {Register Location (or 0), Index}, used to index 216 /// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int 217 /// for insertion into a \ref VarLocSet, and efficiently converted back. The 218 /// type-checker helps ensure that the conversions aren't lossy. 219 /// 220 /// Why encode a location /into/ the VarLocMap index? This makes it possible 221 /// to find the open VarLocs killed by a register def very quickly. This is a 222 /// performance-critical operation for LiveDebugValues. 223 struct LocIndex { 224 using u32_location_t = uint32_t; 225 using u32_index_t = uint32_t; 226 227 u32_location_t Location; // Physical registers live in the range [1;2^30) (see 228 // \ref MCRegister), so we have plenty of range left 229 // here to encode non-register locations. 230 u32_index_t Index; 231 232 /// The first location greater than 0 that is not reserved for VarLocs of 233 /// kind RegisterKind. 234 static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30; 235 236 /// A special location reserved for VarLocs of kind SpillLocKind. 237 static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation; 238 239 /// A special location reserved for VarLocs of kind EntryValueBackupKind and 240 /// EntryValueCopyBackupKind. 241 static constexpr u32_location_t kEntryValueBackupLocation = 242 kFirstInvalidRegLocation + 1; 243 244 LocIndex(u32_location_t Location, u32_index_t Index) 245 : Location(Location), Index(Index) {} 246 247 uint64_t getAsRawInteger() const { 248 return (static_cast<uint64_t>(Location) << 32) | Index; 249 } 250 251 template<typename IntT> static LocIndex fromRawInteger(IntT ID) { 252 static_assert(std::is_unsigned<IntT>::value && 253 sizeof(ID) == sizeof(uint64_t), 254 "Cannot convert raw integer to LocIndex"); 255 return {static_cast<u32_location_t>(ID >> 32), 256 static_cast<u32_index_t>(ID)}; 257 } 258 259 /// Get the start of the interval reserved for VarLocs of kind RegisterKind 260 /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1. 261 static uint64_t rawIndexForReg(uint32_t Reg) { 262 return LocIndex(Reg, 0).getAsRawInteger(); 263 } 264 265 /// Return a range covering all set indices in the interval reserved for 266 /// \p Location in \p Set. 267 static auto indexRangeForLocation(const VarLocSet &Set, 268 u32_location_t Location) { 269 uint64_t Start = LocIndex(Location, 0).getAsRawInteger(); 270 uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger(); 271 return Set.half_open_range(Start, End); 272 } 273 }; 274 275 class VarLocBasedLDV : public LDVImpl { 276 private: 277 const TargetRegisterInfo *TRI; 278 const TargetInstrInfo *TII; 279 const TargetFrameLowering *TFI; 280 TargetPassConfig *TPC; 281 BitVector CalleeSavedRegs; 282 LexicalScopes LS; 283 VarLocSet::Allocator Alloc; 284 285 enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore }; 286 287 using FragmentInfo = DIExpression::FragmentInfo; 288 using OptFragmentInfo = Optional<DIExpression::FragmentInfo>; 289 290 /// A pair of debug variable and value location. 291 struct VarLoc { 292 // The location at which a spilled variable resides. It consists of a 293 // register and an offset. 294 struct SpillLoc { 295 unsigned SpillBase; 296 StackOffset SpillOffset; 297 bool operator==(const SpillLoc &Other) const { 298 return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset; 299 } 300 bool operator!=(const SpillLoc &Other) const { 301 return !(*this == Other); 302 } 303 }; 304 305 /// Identity of the variable at this location. 306 const DebugVariable Var; 307 308 /// The expression applied to this location. 309 const DIExpression *Expr; 310 311 /// DBG_VALUE to clone var/expr information from if this location 312 /// is moved. 313 const MachineInstr &MI; 314 315 enum VarLocKind { 316 InvalidKind = 0, 317 RegisterKind, 318 SpillLocKind, 319 ImmediateKind, 320 EntryValueKind, 321 EntryValueBackupKind, 322 EntryValueCopyBackupKind 323 } Kind = InvalidKind; 324 325 /// The value location. Stored separately to avoid repeatedly 326 /// extracting it from MI. 327 union LocUnion { 328 uint64_t RegNo; 329 SpillLoc SpillLocation; 330 uint64_t Hash; 331 int64_t Immediate; 332 const ConstantFP *FPImm; 333 const ConstantInt *CImm; 334 LocUnion() : Hash(0) {} 335 } Loc; 336 337 VarLoc(const MachineInstr &MI, LexicalScopes &LS) 338 : Var(MI.getDebugVariable(), MI.getDebugExpression(), 339 MI.getDebugLoc()->getInlinedAt()), 340 Expr(MI.getDebugExpression()), MI(MI) { 341 assert(MI.isDebugValue() && "not a DBG_VALUE"); 342 assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE"); 343 if (int RegNo = isDbgValueDescribedByReg(MI)) { 344 Kind = RegisterKind; 345 Loc.RegNo = RegNo; 346 } else if (MI.getDebugOperand(0).isImm()) { 347 Kind = ImmediateKind; 348 Loc.Immediate = MI.getDebugOperand(0).getImm(); 349 } else if (MI.getDebugOperand(0).isFPImm()) { 350 Kind = ImmediateKind; 351 Loc.FPImm = MI.getDebugOperand(0).getFPImm(); 352 } else if (MI.getDebugOperand(0).isCImm()) { 353 Kind = ImmediateKind; 354 Loc.CImm = MI.getDebugOperand(0).getCImm(); 355 } 356 357 // We create the debug entry values from the factory functions rather than 358 // from this ctor. 359 assert(Kind != EntryValueKind && !isEntryBackupLoc()); 360 } 361 362 /// Take the variable and machine-location in DBG_VALUE MI, and build an 363 /// entry location using the given expression. 364 static VarLoc CreateEntryLoc(const MachineInstr &MI, LexicalScopes &LS, 365 const DIExpression *EntryExpr, Register Reg) { 366 VarLoc VL(MI, LS); 367 assert(VL.Kind == RegisterKind); 368 VL.Kind = EntryValueKind; 369 VL.Expr = EntryExpr; 370 VL.Loc.RegNo = Reg; 371 return VL; 372 } 373 374 /// Take the variable and machine-location from the DBG_VALUE (from the 375 /// function entry), and build an entry value backup location. The backup 376 /// location will turn into the normal location if the backup is valid at 377 /// the time of the primary location clobbering. 378 static VarLoc CreateEntryBackupLoc(const MachineInstr &MI, 379 LexicalScopes &LS, 380 const DIExpression *EntryExpr) { 381 VarLoc VL(MI, LS); 382 assert(VL.Kind == RegisterKind); 383 VL.Kind = EntryValueBackupKind; 384 VL.Expr = EntryExpr; 385 return VL; 386 } 387 388 /// Take the variable and machine-location from the DBG_VALUE (from the 389 /// function entry), and build a copy of an entry value backup location by 390 /// setting the register location to NewReg. 391 static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI, 392 LexicalScopes &LS, 393 const DIExpression *EntryExpr, 394 Register NewReg) { 395 VarLoc VL(MI, LS); 396 assert(VL.Kind == RegisterKind); 397 VL.Kind = EntryValueCopyBackupKind; 398 VL.Expr = EntryExpr; 399 VL.Loc.RegNo = NewReg; 400 return VL; 401 } 402 403 /// Copy the register location in DBG_VALUE MI, updating the register to 404 /// be NewReg. 405 static VarLoc CreateCopyLoc(const MachineInstr &MI, LexicalScopes &LS, 406 Register NewReg) { 407 VarLoc VL(MI, LS); 408 assert(VL.Kind == RegisterKind); 409 VL.Loc.RegNo = NewReg; 410 return VL; 411 } 412 413 /// Take the variable described by DBG_VALUE MI, and create a VarLoc 414 /// locating it in the specified spill location. 415 static VarLoc CreateSpillLoc(const MachineInstr &MI, unsigned SpillBase, 416 StackOffset SpillOffset, LexicalScopes &LS) { 417 VarLoc VL(MI, LS); 418 assert(VL.Kind == RegisterKind); 419 VL.Kind = SpillLocKind; 420 VL.Loc.SpillLocation = {SpillBase, SpillOffset}; 421 return VL; 422 } 423 424 /// Create a DBG_VALUE representing this VarLoc in the given function. 425 /// Copies variable-specific information such as DILocalVariable and 426 /// inlining information from the original DBG_VALUE instruction, which may 427 /// have been several transfers ago. 428 MachineInstr *BuildDbgValue(MachineFunction &MF) const { 429 const DebugLoc &DbgLoc = MI.getDebugLoc(); 430 bool Indirect = MI.isIndirectDebugValue(); 431 const auto &IID = MI.getDesc(); 432 const DILocalVariable *Var = MI.getDebugVariable(); 433 const DIExpression *DIExpr = MI.getDebugExpression(); 434 NumInserted++; 435 436 switch (Kind) { 437 case EntryValueKind: 438 // An entry value is a register location -- but with an updated 439 // expression. The register location of such DBG_VALUE is always the one 440 // from the entry DBG_VALUE, it does not matter if the entry value was 441 // copied in to another register due to some optimizations. 442 return BuildMI(MF, DbgLoc, IID, Indirect, 443 MI.getDebugOperand(0).getReg(), Var, Expr); 444 case RegisterKind: 445 // Register locations are like the source DBG_VALUE, but with the 446 // register number from this VarLoc. 447 return BuildMI(MF, DbgLoc, IID, Indirect, Loc.RegNo, Var, DIExpr); 448 case SpillLocKind: { 449 // Spills are indirect DBG_VALUEs, with a base register and offset. 450 // Use the original DBG_VALUEs expression to build the spilt location 451 // on top of. FIXME: spill locations created before this pass runs 452 // are not recognized, and not handled here. 453 auto *TRI = MF.getSubtarget().getRegisterInfo(); 454 auto *SpillExpr = TRI->prependOffsetExpression( 455 DIExpr, DIExpression::ApplyOffset, Loc.SpillLocation.SpillOffset); 456 unsigned Base = Loc.SpillLocation.SpillBase; 457 return BuildMI(MF, DbgLoc, IID, true, Base, Var, SpillExpr); 458 } 459 case ImmediateKind: { 460 MachineOperand MO = MI.getDebugOperand(0); 461 return BuildMI(MF, DbgLoc, IID, Indirect, MO, Var, DIExpr); 462 } 463 case EntryValueBackupKind: 464 case EntryValueCopyBackupKind: 465 case InvalidKind: 466 llvm_unreachable( 467 "Tried to produce DBG_VALUE for invalid or backup VarLoc"); 468 } 469 llvm_unreachable("Unrecognized VarLocBasedLDV.VarLoc.Kind enum"); 470 } 471 472 /// Is the Loc field a constant or constant object? 473 bool isConstant() const { return Kind == ImmediateKind; } 474 475 /// Check if the Loc field is an entry backup location. 476 bool isEntryBackupLoc() const { 477 return Kind == EntryValueBackupKind || Kind == EntryValueCopyBackupKind; 478 } 479 480 /// If this variable is described by a register holding the entry value, 481 /// return it, otherwise return 0. 482 unsigned getEntryValueBackupReg() const { 483 if (Kind == EntryValueBackupKind) 484 return Loc.RegNo; 485 return 0; 486 } 487 488 /// If this variable is described by a register holding the copy of the 489 /// entry value, return it, otherwise return 0. 490 unsigned getEntryValueCopyBackupReg() const { 491 if (Kind == EntryValueCopyBackupKind) 492 return Loc.RegNo; 493 return 0; 494 } 495 496 /// If this variable is described by a register, return it, 497 /// otherwise return 0. 498 unsigned isDescribedByReg() const { 499 if (Kind == RegisterKind) 500 return Loc.RegNo; 501 return 0; 502 } 503 504 /// Determine whether the lexical scope of this value's debug location 505 /// dominates MBB. 506 bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const { 507 return LS.dominates(MI.getDebugLoc().get(), &MBB); 508 } 509 510 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 511 // TRI can be null. 512 void dump(const TargetRegisterInfo *TRI, raw_ostream &Out = dbgs()) const { 513 Out << "VarLoc("; 514 switch (Kind) { 515 case RegisterKind: 516 case EntryValueKind: 517 case EntryValueBackupKind: 518 case EntryValueCopyBackupKind: 519 Out << printReg(Loc.RegNo, TRI); 520 break; 521 case SpillLocKind: 522 Out << printReg(Loc.SpillLocation.SpillBase, TRI); 523 Out << "[" << Loc.SpillLocation.SpillOffset.getFixed() << " + " 524 << Loc.SpillLocation.SpillOffset.getScalable() << "x vscale" 525 << "]"; 526 break; 527 case ImmediateKind: 528 Out << Loc.Immediate; 529 break; 530 case InvalidKind: 531 llvm_unreachable("Invalid VarLoc in dump method"); 532 } 533 534 Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", "; 535 if (Var.getInlinedAt()) 536 Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n"; 537 else 538 Out << "(null))"; 539 540 if (isEntryBackupLoc()) 541 Out << " (backup loc)\n"; 542 else 543 Out << "\n"; 544 } 545 #endif 546 547 bool operator==(const VarLoc &Other) const { 548 if (Kind != Other.Kind || !(Var == Other.Var) || Expr != Other.Expr) 549 return false; 550 551 switch (Kind) { 552 case SpillLocKind: 553 return Loc.SpillLocation == Other.Loc.SpillLocation; 554 case RegisterKind: 555 case ImmediateKind: 556 case EntryValueKind: 557 case EntryValueBackupKind: 558 case EntryValueCopyBackupKind: 559 return Loc.Hash == Other.Loc.Hash; 560 default: 561 llvm_unreachable("Invalid kind"); 562 } 563 } 564 565 /// This operator guarantees that VarLocs are sorted by Variable first. 566 bool operator<(const VarLoc &Other) const { 567 switch (Kind) { 568 case SpillLocKind: 569 return std::make_tuple(Var, Kind, Loc.SpillLocation.SpillBase, 570 Loc.SpillLocation.SpillOffset.getFixed(), 571 Loc.SpillLocation.SpillOffset.getScalable(), 572 Expr) < 573 std::make_tuple( 574 Other.Var, Other.Kind, Other.Loc.SpillLocation.SpillBase, 575 Other.Loc.SpillLocation.SpillOffset.getFixed(), 576 Other.Loc.SpillLocation.SpillOffset.getScalable(), 577 Other.Expr); 578 case RegisterKind: 579 case ImmediateKind: 580 case EntryValueKind: 581 case EntryValueBackupKind: 582 case EntryValueCopyBackupKind: 583 return std::tie(Var, Kind, Loc.Hash, Expr) < 584 std::tie(Other.Var, Other.Kind, Other.Loc.Hash, Other.Expr); 585 default: 586 llvm_unreachable("Invalid kind"); 587 } 588 } 589 }; 590 591 /// VarLocMap is used for two things: 592 /// 1) Assigning a unique LocIndex to a VarLoc. This LocIndex can be used to 593 /// virtually insert a VarLoc into a VarLocSet. 594 /// 2) Given a LocIndex, look up the unique associated VarLoc. 595 class VarLocMap { 596 /// Map a VarLoc to an index within the vector reserved for its location 597 /// within Loc2Vars. 598 std::map<VarLoc, LocIndex::u32_index_t> Var2Index; 599 600 /// Map a location to a vector which holds VarLocs which live in that 601 /// location. 602 SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars; 603 604 /// Determine the 32-bit location reserved for \p VL, based on its kind. 605 static LocIndex::u32_location_t getLocationForVar(const VarLoc &VL) { 606 switch (VL.Kind) { 607 case VarLoc::RegisterKind: 608 assert((VL.Loc.RegNo < LocIndex::kFirstInvalidRegLocation) && 609 "Physreg out of range?"); 610 return VL.Loc.RegNo; 611 case VarLoc::SpillLocKind: 612 return LocIndex::kSpillLocation; 613 case VarLoc::EntryValueBackupKind: 614 case VarLoc::EntryValueCopyBackupKind: 615 return LocIndex::kEntryValueBackupLocation; 616 default: 617 return 0; 618 } 619 } 620 621 public: 622 /// Retrieve a unique LocIndex for \p VL. 623 LocIndex insert(const VarLoc &VL) { 624 LocIndex::u32_location_t Location = getLocationForVar(VL); 625 LocIndex::u32_index_t &Index = Var2Index[VL]; 626 if (!Index) { 627 auto &Vars = Loc2Vars[Location]; 628 Vars.push_back(VL); 629 Index = Vars.size(); 630 } 631 return {Location, Index - 1}; 632 } 633 634 /// Retrieve the unique VarLoc associated with \p ID. 635 const VarLoc &operator[](LocIndex ID) const { 636 auto LocIt = Loc2Vars.find(ID.Location); 637 assert(LocIt != Loc2Vars.end() && "Location not tracked"); 638 return LocIt->second[ID.Index]; 639 } 640 }; 641 642 using VarLocInMBB = 643 SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>; 644 struct TransferDebugPair { 645 MachineInstr *TransferInst; ///< Instruction where this transfer occurs. 646 LocIndex LocationID; ///< Location number for the transfer dest. 647 }; 648 using TransferMap = SmallVector<TransferDebugPair, 4>; 649 650 // Types for recording sets of variable fragments that overlap. For a given 651 // local variable, we record all other fragments of that variable that could 652 // overlap it, to reduce search time. 653 using FragmentOfVar = 654 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; 655 using OverlapMap = 656 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; 657 658 // Helper while building OverlapMap, a map of all fragments seen for a given 659 // DILocalVariable. 660 using VarToFragments = 661 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; 662 663 /// This holds the working set of currently open ranges. For fast 664 /// access, this is done both as a set of VarLocIDs, and a map of 665 /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all 666 /// previous open ranges for the same variable. In addition, we keep 667 /// two different maps (Vars/EntryValuesBackupVars), so erase/insert 668 /// methods act differently depending on whether a VarLoc is primary 669 /// location or backup one. In the case the VarLoc is backup location 670 /// we will erase/insert from the EntryValuesBackupVars map, otherwise 671 /// we perform the operation on the Vars. 672 class OpenRangesSet { 673 VarLocSet VarLocs; 674 // Map the DebugVariable to recent primary location ID. 675 SmallDenseMap<DebugVariable, LocIndex, 8> Vars; 676 // Map the DebugVariable to recent backup location ID. 677 SmallDenseMap<DebugVariable, LocIndex, 8> EntryValuesBackupVars; 678 OverlapMap &OverlappingFragments; 679 680 public: 681 OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap) 682 : VarLocs(Alloc), OverlappingFragments(_OLapMap) {} 683 684 const VarLocSet &getVarLocs() const { return VarLocs; } 685 686 /// Terminate all open ranges for VL.Var by removing it from the set. 687 void erase(const VarLoc &VL); 688 689 /// Terminate all open ranges listed in \c KillSet by removing 690 /// them from the set. 691 void erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs); 692 693 /// Insert a new range into the set. 694 void insert(LocIndex VarLocID, const VarLoc &VL); 695 696 /// Insert a set of ranges. 697 void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map) { 698 for (uint64_t ID : ToLoad) { 699 LocIndex Idx = LocIndex::fromRawInteger(ID); 700 const VarLoc &VarL = Map[Idx]; 701 insert(Idx, VarL); 702 } 703 } 704 705 llvm::Optional<LocIndex> getEntryValueBackup(DebugVariable Var); 706 707 /// Empty the set. 708 void clear() { 709 VarLocs.clear(); 710 Vars.clear(); 711 EntryValuesBackupVars.clear(); 712 } 713 714 /// Return whether the set is empty or not. 715 bool empty() const { 716 assert(Vars.empty() == EntryValuesBackupVars.empty() && 717 Vars.empty() == VarLocs.empty() && 718 "open ranges are inconsistent"); 719 return VarLocs.empty(); 720 } 721 722 /// Get an empty range of VarLoc IDs. 723 auto getEmptyVarLocRange() const { 724 return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(), 725 getVarLocs().end()); 726 } 727 728 /// Get all set IDs for VarLocs of kind RegisterKind in \p Reg. 729 auto getRegisterVarLocs(Register Reg) const { 730 return LocIndex::indexRangeForLocation(getVarLocs(), Reg); 731 } 732 733 /// Get all set IDs for VarLocs of kind SpillLocKind. 734 auto getSpillVarLocs() const { 735 return LocIndex::indexRangeForLocation(getVarLocs(), 736 LocIndex::kSpillLocation); 737 } 738 739 /// Get all set IDs for VarLocs of kind EntryValueBackupKind or 740 /// EntryValueCopyBackupKind. 741 auto getEntryValueBackupVarLocs() const { 742 return LocIndex::indexRangeForLocation( 743 getVarLocs(), LocIndex::kEntryValueBackupLocation); 744 } 745 }; 746 747 /// Collect all VarLoc IDs from \p CollectFrom for VarLocs of kind 748 /// RegisterKind which are located in any reg in \p Regs. Insert collected IDs 749 /// into \p Collected. 750 void collectIDsForRegs(VarLocSet &Collected, const DefinedRegsSet &Regs, 751 const VarLocSet &CollectFrom) const; 752 753 /// Get the registers which are used by VarLocs of kind RegisterKind tracked 754 /// by \p CollectFrom. 755 void getUsedRegs(const VarLocSet &CollectFrom, 756 SmallVectorImpl<uint32_t> &UsedRegs) const; 757 758 VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) { 759 std::unique_ptr<VarLocSet> &VLS = Locs[MBB]; 760 if (!VLS) 761 VLS = std::make_unique<VarLocSet>(Alloc); 762 return *VLS.get(); 763 } 764 765 const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, 766 const VarLocInMBB &Locs) const { 767 auto It = Locs.find(MBB); 768 assert(It != Locs.end() && "MBB not in map"); 769 return *It->second.get(); 770 } 771 772 /// Tests whether this instruction is a spill to a stack location. 773 bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); 774 775 /// Decide if @MI is a spill instruction and return true if it is. We use 2 776 /// criteria to make this decision: 777 /// - Is this instruction a store to a spill slot? 778 /// - Is there a register operand that is both used and killed? 779 /// TODO: Store optimization can fold spills into other stores (including 780 /// other spills). We do not handle this yet (more than one memory operand). 781 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, 782 Register &Reg); 783 784 /// Returns true if the given machine instruction is a debug value which we 785 /// can emit entry values for. 786 /// 787 /// Currently, we generate debug entry values only for parameters that are 788 /// unmodified throughout the function and located in a register. 789 bool isEntryValueCandidate(const MachineInstr &MI, 790 const DefinedRegsSet &Regs) const; 791 792 /// If a given instruction is identified as a spill, return the spill location 793 /// and set \p Reg to the spilled register. 794 Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI, 795 MachineFunction *MF, 796 Register &Reg); 797 /// Given a spill instruction, extract the register and offset used to 798 /// address the spill location in a target independent way. 799 VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); 800 void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges, 801 TransferMap &Transfers, VarLocMap &VarLocIDs, 802 LocIndex OldVarID, TransferKind Kind, 803 Register NewReg = Register()); 804 805 void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, 806 VarLocMap &VarLocIDs); 807 void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges, 808 VarLocMap &VarLocIDs, TransferMap &Transfers); 809 bool removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, 810 VarLocMap &VarLocIDs, const VarLoc &EntryVL); 811 void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges, 812 VarLocMap &VarLocIDs, TransferMap &Transfers, 813 VarLocSet &KillSet); 814 void recordEntryValue(const MachineInstr &MI, 815 const DefinedRegsSet &DefinedRegs, 816 OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs); 817 void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges, 818 VarLocMap &VarLocIDs, TransferMap &Transfers); 819 void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges, 820 VarLocMap &VarLocIDs, TransferMap &Transfers); 821 bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges, 822 VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs); 823 824 void process(MachineInstr &MI, OpenRangesSet &OpenRanges, 825 VarLocMap &VarLocIDs, TransferMap &Transfers); 826 827 void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments, 828 OverlapMap &OLapMap); 829 830 bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, 831 const VarLocMap &VarLocIDs, 832 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 833 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks); 834 835 /// Create DBG_VALUE insts for inlocs that have been propagated but 836 /// had their instruction creation deferred. 837 void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs); 838 839 bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override; 840 841 public: 842 /// Default construct and initialize the pass. 843 VarLocBasedLDV(); 844 845 ~VarLocBasedLDV(); 846 847 /// Print to ostream with a message. 848 void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V, 849 const VarLocMap &VarLocIDs, const char *msg, 850 raw_ostream &Out) const; 851 }; 852 853 } // end anonymous namespace 854 855 //===----------------------------------------------------------------------===// 856 // Implementation 857 //===----------------------------------------------------------------------===// 858 859 VarLocBasedLDV::VarLocBasedLDV() { } 860 861 VarLocBasedLDV::~VarLocBasedLDV() { } 862 863 /// Erase a variable from the set of open ranges, and additionally erase any 864 /// fragments that may overlap it. If the VarLoc is a backup location, erase 865 /// the variable from the EntryValuesBackupVars set, indicating we should stop 866 /// tracking its backup entry location. Otherwise, if the VarLoc is primary 867 /// location, erase the variable from the Vars set. 868 void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) { 869 // Erasure helper. 870 auto DoErase = [VL, this](DebugVariable VarToErase) { 871 auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 872 auto It = EraseFrom->find(VarToErase); 873 if (It != EraseFrom->end()) { 874 LocIndex ID = It->second; 875 VarLocs.reset(ID.getAsRawInteger()); 876 EraseFrom->erase(It); 877 } 878 }; 879 880 DebugVariable Var = VL.Var; 881 882 // Erase the variable/fragment that ends here. 883 DoErase(Var); 884 885 // Extract the fragment. Interpret an empty fragment as one that covers all 886 // possible bits. 887 FragmentInfo ThisFragment = Var.getFragmentOrDefault(); 888 889 // There may be fragments that overlap the designated fragment. Look them up 890 // in the pre-computed overlap map, and erase them too. 891 auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment}); 892 if (MapIt != OverlappingFragments.end()) { 893 for (auto Fragment : MapIt->second) { 894 VarLocBasedLDV::OptFragmentInfo FragmentHolder; 895 if (!DebugVariable::isDefaultFragment(Fragment)) 896 FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment); 897 DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()}); 898 } 899 } 900 } 901 902 void VarLocBasedLDV::OpenRangesSet::erase(const VarLocSet &KillSet, 903 const VarLocMap &VarLocIDs) { 904 VarLocs.intersectWithComplement(KillSet); 905 for (uint64_t ID : KillSet) { 906 const VarLoc *VL = &VarLocIDs[LocIndex::fromRawInteger(ID)]; 907 auto *EraseFrom = VL->isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 908 EraseFrom->erase(VL->Var); 909 } 910 } 911 912 void VarLocBasedLDV::OpenRangesSet::insert(LocIndex VarLocID, 913 const VarLoc &VL) { 914 auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 915 VarLocs.set(VarLocID.getAsRawInteger()); 916 InsertInto->insert({VL.Var, VarLocID}); 917 } 918 919 /// Return the Loc ID of an entry value backup location, if it exists for the 920 /// variable. 921 llvm::Optional<LocIndex> 922 VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) { 923 auto It = EntryValuesBackupVars.find(Var); 924 if (It != EntryValuesBackupVars.end()) 925 return It->second; 926 927 return llvm::None; 928 } 929 930 void VarLocBasedLDV::collectIDsForRegs(VarLocSet &Collected, 931 const DefinedRegsSet &Regs, 932 const VarLocSet &CollectFrom) const { 933 assert(!Regs.empty() && "Nothing to collect"); 934 SmallVector<uint32_t, 32> SortedRegs; 935 for (Register Reg : Regs) 936 SortedRegs.push_back(Reg); 937 array_pod_sort(SortedRegs.begin(), SortedRegs.end()); 938 auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front())); 939 auto End = CollectFrom.end(); 940 for (uint32_t Reg : SortedRegs) { 941 // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all 942 // possible VarLoc IDs for VarLocs of kind RegisterKind which live in Reg. 943 uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg); 944 uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1); 945 It.advanceToLowerBound(FirstIndexForReg); 946 947 // Iterate through that half-open interval and collect all the set IDs. 948 for (; It != End && *It < FirstInvalidIndex; ++It) 949 Collected.set(*It); 950 951 if (It == End) 952 return; 953 } 954 } 955 956 void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom, 957 SmallVectorImpl<uint32_t> &UsedRegs) const { 958 // All register-based VarLocs are assigned indices greater than or equal to 959 // FirstRegIndex. 960 uint64_t FirstRegIndex = LocIndex::rawIndexForReg(1); 961 uint64_t FirstInvalidIndex = 962 LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation); 963 for (auto It = CollectFrom.find(FirstRegIndex), 964 End = CollectFrom.find(FirstInvalidIndex); 965 It != End;) { 966 // We found a VarLoc ID for a VarLoc that lives in a register. Figure out 967 // which register and add it to UsedRegs. 968 uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location; 969 assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) && 970 "Duplicate used reg"); 971 UsedRegs.push_back(FoundReg); 972 973 // Skip to the next /set/ register. Note that this finds a lower bound, so 974 // even if there aren't any VarLocs living in `FoundReg+1`, we're still 975 // guaranteed to move on to the next register (or to end()). 976 uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1); 977 It.advanceToLowerBound(NextRegIndex); 978 } 979 } 980 981 //===----------------------------------------------------------------------===// 982 // Debug Range Extension Implementation 983 //===----------------------------------------------------------------------===// 984 985 #ifndef NDEBUG 986 void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF, 987 const VarLocInMBB &V, 988 const VarLocMap &VarLocIDs, 989 const char *msg, 990 raw_ostream &Out) const { 991 Out << '\n' << msg << '\n'; 992 for (const MachineBasicBlock &BB : MF) { 993 if (!V.count(&BB)) 994 continue; 995 const VarLocSet &L = getVarLocsInMBB(&BB, V); 996 if (L.empty()) 997 continue; 998 Out << "MBB: " << BB.getNumber() << ":\n"; 999 for (uint64_t VLL : L) { 1000 const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(VLL)]; 1001 Out << " Var: " << VL.Var.getVariable()->getName(); 1002 Out << " MI: "; 1003 VL.dump(TRI, Out); 1004 } 1005 } 1006 Out << "\n"; 1007 } 1008 #endif 1009 1010 VarLocBasedLDV::VarLoc::SpillLoc 1011 VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { 1012 assert(MI.hasOneMemOperand() && 1013 "Spill instruction does not have exactly one memory operand?"); 1014 auto MMOI = MI.memoperands_begin(); 1015 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 1016 assert(PVal->kind() == PseudoSourceValue::FixedStack && 1017 "Inconsistent memory operand in spill instruction"); 1018 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); 1019 const MachineBasicBlock *MBB = MI.getParent(); 1020 Register Reg; 1021 StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); 1022 return {Reg, Offset}; 1023 } 1024 1025 /// Try to salvage the debug entry value if we encounter a new debug value 1026 /// describing the same parameter, otherwise stop tracking the value. Return 1027 /// true if we should stop tracking the entry value, otherwise return false. 1028 bool VarLocBasedLDV::removeEntryValue(const MachineInstr &MI, 1029 OpenRangesSet &OpenRanges, 1030 VarLocMap &VarLocIDs, 1031 const VarLoc &EntryVL) { 1032 // Skip the DBG_VALUE which is the debug entry value itself. 1033 if (MI.isIdenticalTo(EntryVL.MI)) 1034 return false; 1035 1036 // If the parameter's location is not register location, we can not track 1037 // the entry value any more. In addition, if the debug expression from the 1038 // DBG_VALUE is not empty, we can assume the parameter's value has changed 1039 // indicating that we should stop tracking its entry value as well. 1040 if (!MI.getDebugOperand(0).isReg() || 1041 MI.getDebugExpression()->getNumElements() != 0) 1042 return true; 1043 1044 // If the DBG_VALUE comes from a copy instruction that copies the entry value, 1045 // it means the parameter's value has not changed and we should be able to use 1046 // its entry value. 1047 bool TrySalvageEntryValue = false; 1048 Register Reg = MI.getDebugOperand(0).getReg(); 1049 auto I = std::next(MI.getReverseIterator()); 1050 const MachineOperand *SrcRegOp, *DestRegOp; 1051 if (I != MI.getParent()->rend()) { 1052 // TODO: Try to keep tracking of an entry value if we encounter a propagated 1053 // DBG_VALUE describing the copy of the entry value. (Propagated entry value 1054 // does not indicate the parameter modification.) 1055 auto DestSrc = TII->isCopyInstr(*I); 1056 if (!DestSrc) 1057 return true; 1058 1059 SrcRegOp = DestSrc->Source; 1060 DestRegOp = DestSrc->Destination; 1061 if (Reg != DestRegOp->getReg()) 1062 return true; 1063 TrySalvageEntryValue = true; 1064 } 1065 1066 if (TrySalvageEntryValue) { 1067 for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { 1068 const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)]; 1069 if (VL.getEntryValueCopyBackupReg() == Reg && 1070 VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg()) 1071 return false; 1072 } 1073 } 1074 1075 return true; 1076 } 1077 1078 /// End all previous ranges related to @MI and start a new range from @MI 1079 /// if it is a DBG_VALUE instr. 1080 void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI, 1081 OpenRangesSet &OpenRanges, 1082 VarLocMap &VarLocIDs) { 1083 if (!MI.isDebugValue()) 1084 return; 1085 const DILocalVariable *Var = MI.getDebugVariable(); 1086 const DIExpression *Expr = MI.getDebugExpression(); 1087 const DILocation *DebugLoc = MI.getDebugLoc(); 1088 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 1089 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 1090 "Expected inlined-at fields to agree"); 1091 1092 DebugVariable V(Var, Expr, InlinedAt); 1093 1094 // Check if this DBG_VALUE indicates a parameter's value changing. 1095 // If that is the case, we should stop tracking its entry value. 1096 auto EntryValBackupID = OpenRanges.getEntryValueBackup(V); 1097 if (Var->isParameter() && EntryValBackupID) { 1098 const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID]; 1099 if (removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL)) { 1100 LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: "; 1101 MI.print(dbgs(), /*IsStandalone*/ false, 1102 /*SkipOpers*/ false, /*SkipDebugLoc*/ false, 1103 /*AddNewLine*/ true, TII)); 1104 OpenRanges.erase(EntryVL); 1105 } 1106 } 1107 1108 if (isDbgValueDescribedByReg(MI) || MI.getDebugOperand(0).isImm() || 1109 MI.getDebugOperand(0).isFPImm() || MI.getDebugOperand(0).isCImm()) { 1110 // Use normal VarLoc constructor for registers and immediates. 1111 VarLoc VL(MI, LS); 1112 // End all previous ranges of VL.Var. 1113 OpenRanges.erase(VL); 1114 1115 LocIndex ID = VarLocIDs.insert(VL); 1116 // Add the VarLoc to OpenRanges from this DBG_VALUE. 1117 OpenRanges.insert(ID, VL); 1118 } else if (MI.hasOneMemOperand()) { 1119 llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?"); 1120 } else { 1121 // This must be an undefined location. If it has an open range, erase it. 1122 assert(MI.getDebugOperand(0).isReg() && 1123 MI.getDebugOperand(0).getReg() == 0 && 1124 "Unexpected non-undef DBG_VALUE encountered"); 1125 VarLoc VL(MI, LS); 1126 OpenRanges.erase(VL); 1127 } 1128 } 1129 1130 /// Turn the entry value backup locations into primary locations. 1131 void VarLocBasedLDV::emitEntryValues(MachineInstr &MI, 1132 OpenRangesSet &OpenRanges, 1133 VarLocMap &VarLocIDs, 1134 TransferMap &Transfers, 1135 VarLocSet &KillSet) { 1136 // Do not insert entry value locations after a terminator. 1137 if (MI.isTerminator()) 1138 return; 1139 1140 for (uint64_t ID : KillSet) { 1141 LocIndex Idx = LocIndex::fromRawInteger(ID); 1142 const VarLoc &VL = VarLocIDs[Idx]; 1143 if (!VL.Var.getVariable()->isParameter()) 1144 continue; 1145 1146 auto DebugVar = VL.Var; 1147 Optional<LocIndex> EntryValBackupID = 1148 OpenRanges.getEntryValueBackup(DebugVar); 1149 1150 // If the parameter has the entry value backup, it means we should 1151 // be able to use its entry value. 1152 if (!EntryValBackupID) 1153 continue; 1154 1155 const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID]; 1156 VarLoc EntryLoc = 1157 VarLoc::CreateEntryLoc(EntryVL.MI, LS, EntryVL.Expr, EntryVL.Loc.RegNo); 1158 LocIndex EntryValueID = VarLocIDs.insert(EntryLoc); 1159 Transfers.push_back({&MI, EntryValueID}); 1160 OpenRanges.insert(EntryValueID, EntryLoc); 1161 } 1162 } 1163 1164 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc 1165 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with 1166 /// new VarLoc. If \p NewReg is different than default zero value then the 1167 /// new location will be register location created by the copy like instruction, 1168 /// otherwise it is variable's location on the stack. 1169 void VarLocBasedLDV::insertTransferDebugPair( 1170 MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers, 1171 VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind, 1172 Register NewReg) { 1173 const MachineInstr *DebugInstr = &VarLocIDs[OldVarID].MI; 1174 1175 auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) { 1176 LocIndex LocId = VarLocIDs.insert(VL); 1177 1178 // Close this variable's previous location range. 1179 OpenRanges.erase(VL); 1180 1181 // Record the new location as an open range, and a postponed transfer 1182 // inserting a DBG_VALUE for this location. 1183 OpenRanges.insert(LocId, VL); 1184 assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator"); 1185 TransferDebugPair MIP = {&MI, LocId}; 1186 Transfers.push_back(MIP); 1187 }; 1188 1189 // End all previous ranges of VL.Var. 1190 OpenRanges.erase(VarLocIDs[OldVarID]); 1191 switch (Kind) { 1192 case TransferKind::TransferCopy: { 1193 assert(NewReg && 1194 "No register supplied when handling a copy of a debug value"); 1195 // Create a DBG_VALUE instruction to describe the Var in its new 1196 // register location. 1197 VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg); 1198 ProcessVarLoc(VL); 1199 LLVM_DEBUG({ 1200 dbgs() << "Creating VarLoc for register copy:"; 1201 VL.dump(TRI); 1202 }); 1203 return; 1204 } 1205 case TransferKind::TransferSpill: { 1206 // Create a DBG_VALUE instruction to describe the Var in its spilled 1207 // location. 1208 VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI); 1209 VarLoc VL = VarLoc::CreateSpillLoc(*DebugInstr, SpillLocation.SpillBase, 1210 SpillLocation.SpillOffset, LS); 1211 ProcessVarLoc(VL); 1212 LLVM_DEBUG({ 1213 dbgs() << "Creating VarLoc for spill:"; 1214 VL.dump(TRI); 1215 }); 1216 return; 1217 } 1218 case TransferKind::TransferRestore: { 1219 assert(NewReg && 1220 "No register supplied when handling a restore of a debug value"); 1221 // DebugInstr refers to the pre-spill location, therefore we can reuse 1222 // its expression. 1223 VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg); 1224 ProcessVarLoc(VL); 1225 LLVM_DEBUG({ 1226 dbgs() << "Creating VarLoc for restore:"; 1227 VL.dump(TRI); 1228 }); 1229 return; 1230 } 1231 } 1232 llvm_unreachable("Invalid transfer kind"); 1233 } 1234 1235 /// A definition of a register may mark the end of a range. 1236 void VarLocBasedLDV::transferRegisterDef( 1237 MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, 1238 TransferMap &Transfers) { 1239 1240 // Meta Instructions do not affect the debug liveness of any register they 1241 // define. 1242 if (MI.isMetaInstruction()) 1243 return; 1244 1245 MachineFunction *MF = MI.getMF(); 1246 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1247 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 1248 1249 // Find the regs killed by MI, and find regmasks of preserved regs. 1250 DefinedRegsSet DeadRegs; 1251 SmallVector<const uint32_t *, 4> RegMasks; 1252 for (const MachineOperand &MO : MI.operands()) { 1253 // Determine whether the operand is a register def. 1254 if (MO.isReg() && MO.isDef() && MO.getReg() && 1255 Register::isPhysicalRegister(MO.getReg()) && 1256 !(MI.isCall() && MO.getReg() == SP)) { 1257 // Remove ranges of all aliased registers. 1258 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1259 // FIXME: Can we break out of this loop early if no insertion occurs? 1260 DeadRegs.insert(*RAI); 1261 } else if (MO.isRegMask()) { 1262 RegMasks.push_back(MO.getRegMask()); 1263 } 1264 } 1265 1266 // Erase VarLocs which reside in one of the dead registers. For performance 1267 // reasons, it's critical to not iterate over the full set of open VarLocs. 1268 // Iterate over the set of dying/used regs instead. 1269 if (!RegMasks.empty()) { 1270 SmallVector<uint32_t, 32> UsedRegs; 1271 getUsedRegs(OpenRanges.getVarLocs(), UsedRegs); 1272 for (uint32_t Reg : UsedRegs) { 1273 // Remove ranges of all clobbered registers. Register masks don't usually 1274 // list SP as preserved. Assume that call instructions never clobber SP, 1275 // because some backends (e.g., AArch64) never list SP in the regmask. 1276 // While the debug info may be off for an instruction or two around 1277 // callee-cleanup calls, transferring the DEBUG_VALUE across the call is 1278 // still a better user experience. 1279 if (Reg == SP) 1280 continue; 1281 bool AnyRegMaskKillsReg = 1282 any_of(RegMasks, [Reg](const uint32_t *RegMask) { 1283 return MachineOperand::clobbersPhysReg(RegMask, Reg); 1284 }); 1285 if (AnyRegMaskKillsReg) 1286 DeadRegs.insert(Reg); 1287 } 1288 } 1289 1290 if (DeadRegs.empty()) 1291 return; 1292 1293 VarLocSet KillSet(Alloc); 1294 collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs()); 1295 OpenRanges.erase(KillSet, VarLocIDs); 1296 1297 if (TPC) { 1298 auto &TM = TPC->getTM<TargetMachine>(); 1299 if (TM.Options.ShouldEmitDebugEntryValues()) 1300 emitEntryValues(MI, OpenRanges, VarLocIDs, Transfers, KillSet); 1301 } 1302 } 1303 1304 bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI, 1305 MachineFunction *MF) { 1306 // TODO: Handle multiple stores folded into one. 1307 if (!MI.hasOneMemOperand()) 1308 return false; 1309 1310 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) 1311 return false; // This is not a spill instruction, since no valid size was 1312 // returned from either function. 1313 1314 return true; 1315 } 1316 1317 bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI, 1318 MachineFunction *MF, Register &Reg) { 1319 if (!isSpillInstruction(MI, MF)) 1320 return false; 1321 1322 auto isKilledReg = [&](const MachineOperand MO, Register &Reg) { 1323 if (!MO.isReg() || !MO.isUse()) { 1324 Reg = 0; 1325 return false; 1326 } 1327 Reg = MO.getReg(); 1328 return MO.isKill(); 1329 }; 1330 1331 for (const MachineOperand &MO : MI.operands()) { 1332 // In a spill instruction generated by the InlineSpiller the spilled 1333 // register has its kill flag set. 1334 if (isKilledReg(MO, Reg)) 1335 return true; 1336 if (Reg != 0) { 1337 // Check whether next instruction kills the spilled register. 1338 // FIXME: Current solution does not cover search for killed register in 1339 // bundles and instructions further down the chain. 1340 auto NextI = std::next(MI.getIterator()); 1341 // Skip next instruction that points to basic block end iterator. 1342 if (MI.getParent()->end() == NextI) 1343 continue; 1344 Register RegNext; 1345 for (const MachineOperand &MONext : NextI->operands()) { 1346 // Return true if we came across the register from the 1347 // previous spill instruction that is killed in NextI. 1348 if (isKilledReg(MONext, RegNext) && RegNext == Reg) 1349 return true; 1350 } 1351 } 1352 } 1353 // Return false if we didn't find spilled register. 1354 return false; 1355 } 1356 1357 Optional<VarLocBasedLDV::VarLoc::SpillLoc> 1358 VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI, 1359 MachineFunction *MF, Register &Reg) { 1360 if (!MI.hasOneMemOperand()) 1361 return None; 1362 1363 // FIXME: Handle folded restore instructions with more than one memory 1364 // operand. 1365 if (MI.getRestoreSize(TII)) { 1366 Reg = MI.getOperand(0).getReg(); 1367 return extractSpillBaseRegAndOffset(MI); 1368 } 1369 return None; 1370 } 1371 1372 /// A spilled register may indicate that we have to end the current range of 1373 /// a variable and create a new one for the spill location. 1374 /// A restored register may indicate the reverse situation. 1375 /// We don't want to insert any instructions in process(), so we just create 1376 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers. 1377 /// It will be inserted into the BB when we're done iterating over the 1378 /// instructions. 1379 void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI, 1380 OpenRangesSet &OpenRanges, 1381 VarLocMap &VarLocIDs, 1382 TransferMap &Transfers) { 1383 MachineFunction *MF = MI.getMF(); 1384 TransferKind TKind; 1385 Register Reg; 1386 Optional<VarLoc::SpillLoc> Loc; 1387 1388 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); 1389 1390 // First, if there are any DBG_VALUEs pointing at a spill slot that is 1391 // written to, then close the variable location. The value in memory 1392 // will have changed. 1393 VarLocSet KillSet(Alloc); 1394 if (isSpillInstruction(MI, MF)) { 1395 Loc = extractSpillBaseRegAndOffset(MI); 1396 for (uint64_t ID : OpenRanges.getSpillVarLocs()) { 1397 LocIndex Idx = LocIndex::fromRawInteger(ID); 1398 const VarLoc &VL = VarLocIDs[Idx]; 1399 assert(VL.Kind == VarLoc::SpillLocKind && "Broken VarLocSet?"); 1400 if (VL.Loc.SpillLocation == *Loc) { 1401 // This location is overwritten by the current instruction -- terminate 1402 // the open range, and insert an explicit DBG_VALUE $noreg. 1403 // 1404 // Doing this at a later stage would require re-interpreting all 1405 // DBG_VALUes and DIExpressions to identify whether they point at 1406 // memory, and then analysing all memory writes to see if they 1407 // overwrite that memory, which is expensive. 1408 // 1409 // At this stage, we already know which DBG_VALUEs are for spills and 1410 // where they are located; it's best to fix handle overwrites now. 1411 KillSet.set(ID); 1412 VarLoc UndefVL = VarLoc::CreateCopyLoc(VL.MI, LS, 0); 1413 LocIndex UndefLocID = VarLocIDs.insert(UndefVL); 1414 Transfers.push_back({&MI, UndefLocID}); 1415 } 1416 } 1417 OpenRanges.erase(KillSet, VarLocIDs); 1418 } 1419 1420 // Try to recognise spill and restore instructions that may create a new 1421 // variable location. 1422 if (isLocationSpill(MI, MF, Reg)) { 1423 TKind = TransferKind::TransferSpill; 1424 LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump();); 1425 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) 1426 << "\n"); 1427 } else { 1428 if (!(Loc = isRestoreInstruction(MI, MF, Reg))) 1429 return; 1430 TKind = TransferKind::TransferRestore; 1431 LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump();); 1432 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) 1433 << "\n"); 1434 } 1435 // Check if the register or spill location is the location of a debug value. 1436 auto TransferCandidates = OpenRanges.getEmptyVarLocRange(); 1437 if (TKind == TransferKind::TransferSpill) 1438 TransferCandidates = OpenRanges.getRegisterVarLocs(Reg); 1439 else if (TKind == TransferKind::TransferRestore) 1440 TransferCandidates = OpenRanges.getSpillVarLocs(); 1441 for (uint64_t ID : TransferCandidates) { 1442 LocIndex Idx = LocIndex::fromRawInteger(ID); 1443 const VarLoc &VL = VarLocIDs[Idx]; 1444 if (TKind == TransferKind::TransferSpill) { 1445 assert(VL.isDescribedByReg() == Reg && "Broken VarLocSet?"); 1446 LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '(' 1447 << VL.Var.getVariable()->getName() << ")\n"); 1448 } else { 1449 assert(TKind == TransferKind::TransferRestore && 1450 VL.Kind == VarLoc::SpillLocKind && "Broken VarLocSet?"); 1451 if (VL.Loc.SpillLocation != *Loc) 1452 // The spill location is not the location of a debug value. 1453 continue; 1454 LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '(' 1455 << VL.Var.getVariable()->getName() << ")\n"); 1456 } 1457 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind, 1458 Reg); 1459 // FIXME: A comment should explain why it's correct to return early here, 1460 // if that is in fact correct. 1461 return; 1462 } 1463 } 1464 1465 /// If \p MI is a register copy instruction, that copies a previously tracked 1466 /// value from one register to another register that is callee saved, we 1467 /// create new DBG_VALUE instruction described with copy destination register. 1468 void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI, 1469 OpenRangesSet &OpenRanges, 1470 VarLocMap &VarLocIDs, 1471 TransferMap &Transfers) { 1472 auto DestSrc = TII->isCopyInstr(MI); 1473 if (!DestSrc) 1474 return; 1475 1476 const MachineOperand *DestRegOp = DestSrc->Destination; 1477 const MachineOperand *SrcRegOp = DestSrc->Source; 1478 1479 if (!DestRegOp->isDef()) 1480 return; 1481 1482 auto isCalleeSavedReg = [&](Register Reg) { 1483 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1484 if (CalleeSavedRegs.test(*RAI)) 1485 return true; 1486 return false; 1487 }; 1488 1489 Register SrcReg = SrcRegOp->getReg(); 1490 Register DestReg = DestRegOp->getReg(); 1491 1492 // We want to recognize instructions where destination register is callee 1493 // saved register. If register that could be clobbered by the call is 1494 // included, there would be a great chance that it is going to be clobbered 1495 // soon. It is more likely that previous register location, which is callee 1496 // saved, is going to stay unclobbered longer, even if it is killed. 1497 if (!isCalleeSavedReg(DestReg)) 1498 return; 1499 1500 // Remember an entry value movement. If we encounter a new debug value of 1501 // a parameter describing only a moving of the value around, rather then 1502 // modifying it, we are still able to use the entry value if needed. 1503 if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) { 1504 for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { 1505 LocIndex Idx = LocIndex::fromRawInteger(ID); 1506 const VarLoc &VL = VarLocIDs[Idx]; 1507 if (VL.getEntryValueBackupReg() == SrcReg) { 1508 LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump();); 1509 VarLoc EntryValLocCopyBackup = 1510 VarLoc::CreateEntryCopyBackupLoc(VL.MI, LS, VL.Expr, DestReg); 1511 1512 // Stop tracking the original entry value. 1513 OpenRanges.erase(VL); 1514 1515 // Start tracking the entry value copy. 1516 LocIndex EntryValCopyLocID = VarLocIDs.insert(EntryValLocCopyBackup); 1517 OpenRanges.insert(EntryValCopyLocID, EntryValLocCopyBackup); 1518 break; 1519 } 1520 } 1521 } 1522 1523 if (!SrcRegOp->isKill()) 1524 return; 1525 1526 for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) { 1527 LocIndex Idx = LocIndex::fromRawInteger(ID); 1528 assert(VarLocIDs[Idx].isDescribedByReg() == SrcReg && "Broken VarLocSet?"); 1529 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, 1530 TransferKind::TransferCopy, DestReg); 1531 // FIXME: A comment should explain why it's correct to return early here, 1532 // if that is in fact correct. 1533 return; 1534 } 1535 } 1536 1537 /// Terminate all open ranges at the end of the current basic block. 1538 bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB, 1539 OpenRangesSet &OpenRanges, 1540 VarLocInMBB &OutLocs, 1541 const VarLocMap &VarLocIDs) { 1542 bool Changed = false; 1543 1544 LLVM_DEBUG(for (uint64_t ID 1545 : OpenRanges.getVarLocs()) { 1546 // Copy OpenRanges to OutLocs, if not already present. 1547 dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": "; 1548 VarLocIDs[LocIndex::fromRawInteger(ID)].dump(TRI); 1549 }); 1550 VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs); 1551 Changed = VLS != OpenRanges.getVarLocs(); 1552 // New OutLocs set may be different due to spill, restore or register 1553 // copy instruction processing. 1554 if (Changed) 1555 VLS = OpenRanges.getVarLocs(); 1556 OpenRanges.clear(); 1557 return Changed; 1558 } 1559 1560 /// Accumulate a mapping between each DILocalVariable fragment and other 1561 /// fragments of that DILocalVariable which overlap. This reduces work during 1562 /// the data-flow stage from "Find any overlapping fragments" to "Check if the 1563 /// known-to-overlap fragments are present". 1564 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for 1565 /// fragment usage. 1566 /// \param SeenFragments Map from DILocalVariable to all fragments of that 1567 /// Variable which are known to exist. 1568 /// \param OverlappingFragments The overlap map being constructed, from one 1569 /// Var/Fragment pair to a vector of fragments known to overlap. 1570 void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI, 1571 VarToFragments &SeenFragments, 1572 OverlapMap &OverlappingFragments) { 1573 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), 1574 MI.getDebugLoc()->getInlinedAt()); 1575 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); 1576 1577 // If this is the first sighting of this variable, then we are guaranteed 1578 // there are currently no overlapping fragments either. Initialize the set 1579 // of seen fragments, record no overlaps for the current one, and return. 1580 auto SeenIt = SeenFragments.find(MIVar.getVariable()); 1581 if (SeenIt == SeenFragments.end()) { 1582 SmallSet<FragmentInfo, 4> OneFragment; 1583 OneFragment.insert(ThisFragment); 1584 SeenFragments.insert({MIVar.getVariable(), OneFragment}); 1585 1586 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1587 return; 1588 } 1589 1590 // If this particular Variable/Fragment pair already exists in the overlap 1591 // map, it has already been accounted for. 1592 auto IsInOLapMap = 1593 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1594 if (!IsInOLapMap.second) 1595 return; 1596 1597 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; 1598 auto &AllSeenFragments = SeenIt->second; 1599 1600 // Otherwise, examine all other seen fragments for this variable, with "this" 1601 // fragment being a previously unseen fragment. Record any pair of 1602 // overlapping fragments. 1603 for (auto &ASeenFragment : AllSeenFragments) { 1604 // Does this previously seen fragment overlap? 1605 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { 1606 // Yes: Mark the current fragment as being overlapped. 1607 ThisFragmentsOverlaps.push_back(ASeenFragment); 1608 // Mark the previously seen fragment as being overlapped by the current 1609 // one. 1610 auto ASeenFragmentsOverlaps = 1611 OverlappingFragments.find({MIVar.getVariable(), ASeenFragment}); 1612 assert(ASeenFragmentsOverlaps != OverlappingFragments.end() && 1613 "Previously seen var fragment has no vector of overlaps"); 1614 ASeenFragmentsOverlaps->second.push_back(ThisFragment); 1615 } 1616 } 1617 1618 AllSeenFragments.insert(ThisFragment); 1619 } 1620 1621 /// This routine creates OpenRanges. 1622 void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges, 1623 VarLocMap &VarLocIDs, TransferMap &Transfers) { 1624 transferDebugValue(MI, OpenRanges, VarLocIDs); 1625 transferRegisterDef(MI, OpenRanges, VarLocIDs, Transfers); 1626 transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers); 1627 transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers); 1628 } 1629 1630 /// This routine joins the analysis results of all incoming edges in @MBB by 1631 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same 1632 /// source variable in all the predecessors of @MBB reside in the same location. 1633 bool VarLocBasedLDV::join( 1634 MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, 1635 const VarLocMap &VarLocIDs, 1636 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1637 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) { 1638 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 1639 1640 VarLocSet InLocsT(Alloc); // Temporary incoming locations. 1641 1642 // For all predecessors of this MBB, find the set of VarLocs that 1643 // can be joined. 1644 int NumVisited = 0; 1645 for (auto p : MBB.predecessors()) { 1646 // Ignore backedges if we have not visited the predecessor yet. As the 1647 // predecessor hasn't yet had locations propagated into it, most locations 1648 // will not yet be valid, so treat them as all being uninitialized and 1649 // potentially valid. If a location guessed to be correct here is 1650 // invalidated later, we will remove it when we revisit this block. 1651 if (!Visited.count(p)) { 1652 LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber() 1653 << "\n"); 1654 continue; 1655 } 1656 auto OL = OutLocs.find(p); 1657 // Join is null in case of empty OutLocs from any of the pred. 1658 if (OL == OutLocs.end()) 1659 return false; 1660 1661 // Just copy over the Out locs to incoming locs for the first visited 1662 // predecessor, and for all other predecessors join the Out locs. 1663 VarLocSet &OutLocVLS = *OL->second.get(); 1664 if (!NumVisited) 1665 InLocsT = OutLocVLS; 1666 else 1667 InLocsT &= OutLocVLS; 1668 1669 LLVM_DEBUG({ 1670 if (!InLocsT.empty()) { 1671 for (uint64_t ID : InLocsT) 1672 dbgs() << " gathered candidate incoming var: " 1673 << VarLocIDs[LocIndex::fromRawInteger(ID)] 1674 .Var.getVariable() 1675 ->getName() 1676 << "\n"; 1677 } 1678 }); 1679 1680 NumVisited++; 1681 } 1682 1683 // Filter out DBG_VALUES that are out of scope. 1684 VarLocSet KillSet(Alloc); 1685 bool IsArtificial = ArtificialBlocks.count(&MBB); 1686 if (!IsArtificial) { 1687 for (uint64_t ID : InLocsT) { 1688 LocIndex Idx = LocIndex::fromRawInteger(ID); 1689 if (!VarLocIDs[Idx].dominates(LS, MBB)) { 1690 KillSet.set(ID); 1691 LLVM_DEBUG({ 1692 auto Name = VarLocIDs[Idx].Var.getVariable()->getName(); 1693 dbgs() << " killing " << Name << ", it doesn't dominate MBB\n"; 1694 }); 1695 } 1696 } 1697 } 1698 InLocsT.intersectWithComplement(KillSet); 1699 1700 // As we are processing blocks in reverse post-order we 1701 // should have processed at least one predecessor, unless it 1702 // is the entry block which has no predecessor. 1703 assert((NumVisited || MBB.pred_empty()) && 1704 "Should have processed at least one predecessor"); 1705 1706 VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs); 1707 bool Changed = false; 1708 if (ILS != InLocsT) { 1709 ILS = InLocsT; 1710 Changed = true; 1711 } 1712 1713 return Changed; 1714 } 1715 1716 void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs, 1717 VarLocMap &VarLocIDs) { 1718 // PendingInLocs records all locations propagated into blocks, which have 1719 // not had DBG_VALUE insts created. Go through and create those insts now. 1720 for (auto &Iter : PendingInLocs) { 1721 // Map is keyed on a constant pointer, unwrap it so we can insert insts. 1722 auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first); 1723 VarLocSet &Pending = *Iter.second.get(); 1724 1725 for (uint64_t ID : Pending) { 1726 // The ID location is live-in to MBB -- work out what kind of machine 1727 // location it is and create a DBG_VALUE. 1728 const VarLoc &DiffIt = VarLocIDs[LocIndex::fromRawInteger(ID)]; 1729 if (DiffIt.isEntryBackupLoc()) 1730 continue; 1731 MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent()); 1732 MBB.insert(MBB.instr_begin(), MI); 1733 1734 (void)MI; 1735 LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump();); 1736 } 1737 } 1738 } 1739 1740 bool VarLocBasedLDV::isEntryValueCandidate( 1741 const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const { 1742 assert(MI.isDebugValue() && "This must be DBG_VALUE."); 1743 1744 // TODO: Add support for local variables that are expressed in terms of 1745 // parameters entry values. 1746 // TODO: Add support for modified arguments that can be expressed 1747 // by using its entry value. 1748 auto *DIVar = MI.getDebugVariable(); 1749 if (!DIVar->isParameter()) 1750 return false; 1751 1752 // Do not consider parameters that belong to an inlined function. 1753 if (MI.getDebugLoc()->getInlinedAt()) 1754 return false; 1755 1756 // Only consider parameters that are described using registers. Parameters 1757 // that are passed on the stack are not yet supported, so ignore debug 1758 // values that are described by the frame or stack pointer. 1759 if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI)) 1760 return false; 1761 1762 // If a parameter's value has been propagated from the caller, then the 1763 // parameter's DBG_VALUE may be described using a register defined by some 1764 // instruction in the entry block, in which case we shouldn't create an 1765 // entry value. 1766 if (DefinedRegs.count(MI.getDebugOperand(0).getReg())) 1767 return false; 1768 1769 // TODO: Add support for parameters that have a pre-existing debug expressions 1770 // (e.g. fragments). 1771 if (MI.getDebugExpression()->getNumElements() > 0) 1772 return false; 1773 1774 return true; 1775 } 1776 1777 /// Collect all register defines (including aliases) for the given instruction. 1778 static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs, 1779 const TargetRegisterInfo *TRI) { 1780 for (const MachineOperand &MO : MI.operands()) 1781 if (MO.isReg() && MO.isDef() && MO.getReg()) 1782 for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) 1783 Regs.insert(*AI); 1784 } 1785 1786 /// This routine records the entry values of function parameters. The values 1787 /// could be used as backup values. If we loose the track of some unmodified 1788 /// parameters, the backup values will be used as a primary locations. 1789 void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI, 1790 const DefinedRegsSet &DefinedRegs, 1791 OpenRangesSet &OpenRanges, 1792 VarLocMap &VarLocIDs) { 1793 if (TPC) { 1794 auto &TM = TPC->getTM<TargetMachine>(); 1795 if (!TM.Options.ShouldEmitDebugEntryValues()) 1796 return; 1797 } 1798 1799 DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(), 1800 MI.getDebugLoc()->getInlinedAt()); 1801 1802 if (!isEntryValueCandidate(MI, DefinedRegs) || 1803 OpenRanges.getEntryValueBackup(V)) 1804 return; 1805 1806 LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump();); 1807 1808 // Create the entry value and use it as a backup location until it is 1809 // valid. It is valid until a parameter is not changed. 1810 DIExpression *NewExpr = 1811 DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue); 1812 VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, LS, NewExpr); 1813 LocIndex EntryValLocID = VarLocIDs.insert(EntryValLocAsBackup); 1814 OpenRanges.insert(EntryValLocID, EntryValLocAsBackup); 1815 } 1816 1817 /// Calculate the liveness information for the given machine function and 1818 /// extend ranges across basic blocks. 1819 bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) { 1820 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); 1821 1822 if (!MF.getFunction().getSubprogram()) 1823 // VarLocBaseLDV will already have removed all DBG_VALUEs. 1824 return false; 1825 1826 // Skip functions from NoDebug compilation units. 1827 if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() == 1828 DICompileUnit::NoDebug) 1829 return false; 1830 1831 TRI = MF.getSubtarget().getRegisterInfo(); 1832 TII = MF.getSubtarget().getInstrInfo(); 1833 TFI = MF.getSubtarget().getFrameLowering(); 1834 TFI->getCalleeSaves(MF, CalleeSavedRegs); 1835 this->TPC = TPC; 1836 LS.initialize(MF); 1837 1838 bool Changed = false; 1839 bool OLChanged = false; 1840 bool MBBJoined = false; 1841 1842 VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors. 1843 OverlapMap OverlapFragments; // Map of overlapping variable fragments. 1844 OpenRangesSet OpenRanges(Alloc, OverlapFragments); 1845 // Ranges that are open until end of bb. 1846 VarLocInMBB OutLocs; // Ranges that exist beyond bb. 1847 VarLocInMBB InLocs; // Ranges that are incoming after joining. 1848 TransferMap Transfers; // DBG_VALUEs associated with transfers (such as 1849 // spills, copies and restores). 1850 1851 VarToFragments SeenFragments; 1852 1853 // Blocks which are artificial, i.e. blocks which exclusively contain 1854 // instructions without locations, or with line 0 locations. 1855 SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks; 1856 1857 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; 1858 DenseMap<MachineBasicBlock *, unsigned int> BBToOrder; 1859 std::priority_queue<unsigned int, std::vector<unsigned int>, 1860 std::greater<unsigned int>> 1861 Worklist; 1862 std::priority_queue<unsigned int, std::vector<unsigned int>, 1863 std::greater<unsigned int>> 1864 Pending; 1865 1866 // Set of register defines that are seen when traversing the entry block 1867 // looking for debug entry value candidates. 1868 DefinedRegsSet DefinedRegs; 1869 1870 // Only in the case of entry MBB collect DBG_VALUEs representing 1871 // function parameters in order to generate debug entry values for them. 1872 MachineBasicBlock &First_MBB = *(MF.begin()); 1873 for (auto &MI : First_MBB) { 1874 collectRegDefs(MI, DefinedRegs, TRI); 1875 if (MI.isDebugValue()) 1876 recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs); 1877 } 1878 1879 // Initialize per-block structures and scan for fragment overlaps. 1880 for (auto &MBB : MF) 1881 for (auto &MI : MBB) 1882 if (MI.isDebugValue()) 1883 accumulateFragmentMap(MI, SeenFragments, OverlapFragments); 1884 1885 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { 1886 if (const DebugLoc &DL = MI.getDebugLoc()) 1887 return DL.getLine() != 0; 1888 return false; 1889 }; 1890 for (auto &MBB : MF) 1891 if (none_of(MBB.instrs(), hasNonArtificialLocation)) 1892 ArtificialBlocks.insert(&MBB); 1893 1894 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, 1895 "OutLocs after initialization", dbgs())); 1896 1897 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 1898 unsigned int RPONumber = 0; 1899 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { 1900 OrderToBB[RPONumber] = *RI; 1901 BBToOrder[*RI] = RPONumber; 1902 Worklist.push(RPONumber); 1903 ++RPONumber; 1904 } 1905 1906 if (RPONumber > InputBBLimit) { 1907 unsigned NumInputDbgValues = 0; 1908 for (auto &MBB : MF) 1909 for (auto &MI : MBB) 1910 if (MI.isDebugValue()) 1911 ++NumInputDbgValues; 1912 if (NumInputDbgValues > InputDbgValueLimit) { 1913 LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName() 1914 << " has " << RPONumber << " basic blocks and " 1915 << NumInputDbgValues 1916 << " input DBG_VALUEs, exceeding limits.\n"); 1917 return false; 1918 } 1919 } 1920 1921 // This is a standard "union of predecessor outs" dataflow problem. 1922 // To solve it, we perform join() and process() using the two worklist method 1923 // until the ranges converge. 1924 // Ranges have converged when both worklists are empty. 1925 SmallPtrSet<const MachineBasicBlock *, 16> Visited; 1926 while (!Worklist.empty() || !Pending.empty()) { 1927 // We track what is on the pending worklist to avoid inserting the same 1928 // thing twice. We could avoid this with a custom priority queue, but this 1929 // is probably not worth it. 1930 SmallPtrSet<MachineBasicBlock *, 16> OnPending; 1931 LLVM_DEBUG(dbgs() << "Processing Worklist\n"); 1932 while (!Worklist.empty()) { 1933 MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; 1934 Worklist.pop(); 1935 MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited, 1936 ArtificialBlocks); 1937 MBBJoined |= Visited.insert(MBB).second; 1938 if (MBBJoined) { 1939 MBBJoined = false; 1940 Changed = true; 1941 // Now that we have started to extend ranges across BBs we need to 1942 // examine spill, copy and restore instructions to see whether they 1943 // operate with registers that correspond to user variables. 1944 // First load any pending inlocs. 1945 OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs); 1946 for (auto &MI : *MBB) 1947 process(MI, OpenRanges, VarLocIDs, Transfers); 1948 OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs); 1949 1950 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, 1951 "OutLocs after propagating", dbgs())); 1952 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, 1953 "InLocs after propagating", dbgs())); 1954 1955 if (OLChanged) { 1956 OLChanged = false; 1957 for (auto s : MBB->successors()) 1958 if (OnPending.insert(s).second) { 1959 Pending.push(BBToOrder[s]); 1960 } 1961 } 1962 } 1963 } 1964 Worklist.swap(Pending); 1965 // At this point, pending must be empty, since it was just the empty 1966 // worklist 1967 assert(Pending.empty() && "Pending should be empty"); 1968 } 1969 1970 // Add any DBG_VALUE instructions created by location transfers. 1971 for (auto &TR : Transfers) { 1972 assert(!TR.TransferInst->isTerminator() && 1973 "Cannot insert DBG_VALUE after terminator"); 1974 MachineBasicBlock *MBB = TR.TransferInst->getParent(); 1975 const VarLoc &VL = VarLocIDs[TR.LocationID]; 1976 MachineInstr *MI = VL.BuildDbgValue(MF); 1977 MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI); 1978 } 1979 Transfers.clear(); 1980 1981 // Deferred inlocs will not have had any DBG_VALUE insts created; do 1982 // that now. 1983 flushPendingLocs(InLocs, VarLocIDs); 1984 1985 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs())); 1986 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs())); 1987 return Changed; 1988 } 1989 1990 LDVImpl * 1991 llvm::makeVarLocBasedLiveDebugValues() 1992 { 1993 return new VarLocBasedLDV(); 1994 } 1995