1 //===- InstrRefBasedImpl.h - Tracking Debug Value MIs ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H 10 #define LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H 11 12 #include "llvm/ADT/DenseMap.h" 13 #include "llvm/ADT/IndexedMap.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/UniqueVector.h" 17 #include "llvm/CodeGen/LexicalScopes.h" 18 #include "llvm/CodeGen/MachineBasicBlock.h" 19 #include "llvm/CodeGen/MachineInstr.h" 20 #include "llvm/CodeGen/TargetRegisterInfo.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include <optional> 23 24 #include "LiveDebugValues.h" 25 26 class TransferTracker; 27 28 // Forward dec of unit test class, so that we can peer into the LDV object. 29 class InstrRefLDVTest; 30 31 namespace LiveDebugValues { 32 33 class MLocTracker; 34 class DbgOpIDMap; 35 36 using namespace llvm; 37 38 using DebugVariableID = unsigned; 39 using VarAndLoc = std::pair<DebugVariable, const DILocation *>; 40 41 /// Mapping from DebugVariable to/from a unique identifying number. Each 42 /// DebugVariable consists of three pointers, and after a small amount of 43 /// work to identify overlapping fragments of variables we mostly only use 44 /// DebugVariables as identities of variables. It's much more compile-time 45 /// efficient to use an ID number instead, which this class provides. 46 class DebugVariableMap { 47 DenseMap<DebugVariable, unsigned> VarToIdx; 48 SmallVector<VarAndLoc> IdxToVar; 49 50 public: 51 DebugVariableID getDVID(const DebugVariable &Var) const { 52 auto It = VarToIdx.find(Var); 53 assert(It != VarToIdx.end()); 54 return It->second; 55 } 56 57 DebugVariableID insertDVID(DebugVariable &Var, const DILocation *Loc) { 58 unsigned Size = VarToIdx.size(); 59 auto ItPair = VarToIdx.insert({Var, Size}); 60 if (ItPair.second) { 61 IdxToVar.push_back({Var, Loc}); 62 return Size; 63 } 64 65 return ItPair.first->second; 66 } 67 68 const VarAndLoc &lookupDVID(DebugVariableID ID) const { return IdxToVar[ID]; } 69 70 void clear() { 71 VarToIdx.clear(); 72 IdxToVar.clear(); 73 } 74 }; 75 76 /// Handle-class for a particular "location". This value-type uniquely 77 /// symbolises a register or stack location, allowing manipulation of locations 78 /// without concern for where that location is. Practically, this allows us to 79 /// treat the state of the machine at a particular point as an array of values, 80 /// rather than a map of values. 81 class LocIdx { 82 unsigned Location; 83 84 // Default constructor is private, initializing to an illegal location number. 85 // Use only for "not an entry" elements in IndexedMaps. 86 LocIdx() : Location(UINT_MAX) {} 87 88 public: 89 #define NUM_LOC_BITS 24 90 LocIdx(unsigned L) : Location(L) { 91 assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits"); 92 } 93 94 static LocIdx MakeIllegalLoc() { return LocIdx(); } 95 static LocIdx MakeTombstoneLoc() { 96 LocIdx L = LocIdx(); 97 --L.Location; 98 return L; 99 } 100 101 bool isIllegal() const { return Location == UINT_MAX; } 102 103 uint64_t asU64() const { return Location; } 104 105 bool operator==(unsigned L) const { return Location == L; } 106 107 bool operator==(const LocIdx &L) const { return Location == L.Location; } 108 109 bool operator!=(unsigned L) const { return !(*this == L); } 110 111 bool operator!=(const LocIdx &L) const { return !(*this == L); } 112 113 bool operator<(const LocIdx &Other) const { 114 return Location < Other.Location; 115 } 116 }; 117 118 // The location at which a spilled value resides. It consists of a register and 119 // an offset. 120 struct SpillLoc { 121 unsigned SpillBase; 122 StackOffset SpillOffset; 123 bool operator==(const SpillLoc &Other) const { 124 return std::make_pair(SpillBase, SpillOffset) == 125 std::make_pair(Other.SpillBase, Other.SpillOffset); 126 } 127 bool operator<(const SpillLoc &Other) const { 128 return std::make_tuple(SpillBase, SpillOffset.getFixed(), 129 SpillOffset.getScalable()) < 130 std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(), 131 Other.SpillOffset.getScalable()); 132 } 133 }; 134 135 /// Unique identifier for a value defined by an instruction, as a value type. 136 /// Casts back and forth to a uint64_t. Probably replacable with something less 137 /// bit-constrained. Each value identifies the instruction and machine location 138 /// where the value is defined, although there may be no corresponding machine 139 /// operand for it (ex: regmasks clobbering values). The instructions are 140 /// one-based, and definitions that are PHIs have instruction number zero. 141 /// 142 /// The obvious limits of a 1M block function or 1M instruction blocks are 143 /// problematic; but by that point we should probably have bailed out of 144 /// trying to analyse the function. 145 class ValueIDNum { 146 union { 147 struct { 148 uint64_t BlockNo : 20; /// The block where the def happens. 149 uint64_t InstNo : 20; /// The Instruction where the def happens. 150 /// One based, is distance from start of block. 151 uint64_t LocNo 152 : NUM_LOC_BITS; /// The machine location where the def happens. 153 } s; 154 uint64_t Value; 155 } u; 156 157 static_assert(sizeof(u) == 8, "Badly packed ValueIDNum?"); 158 159 public: 160 // Default-initialize to EmptyValue. This is necessary to make IndexedMaps 161 // of values to work. 162 ValueIDNum() { u.Value = EmptyValue.asU64(); } 163 164 ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) { 165 u.s = {Block, Inst, Loc}; 166 } 167 168 ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) { 169 u.s = {Block, Inst, Loc.asU64()}; 170 } 171 172 uint64_t getBlock() const { return u.s.BlockNo; } 173 uint64_t getInst() const { return u.s.InstNo; } 174 uint64_t getLoc() const { return u.s.LocNo; } 175 bool isPHI() const { return u.s.InstNo == 0; } 176 177 uint64_t asU64() const { return u.Value; } 178 179 static ValueIDNum fromU64(uint64_t v) { 180 ValueIDNum Val; 181 Val.u.Value = v; 182 return Val; 183 } 184 185 bool operator<(const ValueIDNum &Other) const { 186 return asU64() < Other.asU64(); 187 } 188 189 bool operator==(const ValueIDNum &Other) const { 190 return u.Value == Other.u.Value; 191 } 192 193 bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); } 194 195 std::string asString(const std::string &mlocname) const { 196 return Twine("Value{bb: ") 197 .concat(Twine(u.s.BlockNo) 198 .concat(Twine(", inst: ") 199 .concat((u.s.InstNo ? Twine(u.s.InstNo) 200 : Twine("live-in")) 201 .concat(Twine(", loc: ").concat( 202 Twine(mlocname))) 203 .concat(Twine("}"))))) 204 .str(); 205 } 206 207 static ValueIDNum EmptyValue; 208 static ValueIDNum TombstoneValue; 209 }; 210 211 } // End namespace LiveDebugValues 212 213 namespace llvm { 214 using namespace LiveDebugValues; 215 216 template <> struct DenseMapInfo<LocIdx> { 217 static inline LocIdx getEmptyKey() { return LocIdx::MakeIllegalLoc(); } 218 static inline LocIdx getTombstoneKey() { return LocIdx::MakeTombstoneLoc(); } 219 220 static unsigned getHashValue(const LocIdx &Loc) { return Loc.asU64(); } 221 222 static bool isEqual(const LocIdx &A, const LocIdx &B) { return A == B; } 223 }; 224 225 template <> struct DenseMapInfo<ValueIDNum> { 226 static inline ValueIDNum getEmptyKey() { return ValueIDNum::EmptyValue; } 227 static inline ValueIDNum getTombstoneKey() { 228 return ValueIDNum::TombstoneValue; 229 } 230 231 static unsigned getHashValue(const ValueIDNum &Val) { 232 return hash_value(Val.asU64()); 233 } 234 235 static bool isEqual(const ValueIDNum &A, const ValueIDNum &B) { 236 return A == B; 237 } 238 }; 239 240 } // end namespace llvm 241 242 namespace LiveDebugValues { 243 using namespace llvm; 244 245 /// Type for a table of values in a block. 246 using ValueTable = SmallVector<ValueIDNum, 0>; 247 248 /// A collection of ValueTables, one per BB in a function, with convenient 249 /// accessor methods. 250 struct FuncValueTable { 251 FuncValueTable(int NumBBs, int NumLocs) { 252 Storage.reserve(NumBBs); 253 for (int i = 0; i != NumBBs; ++i) 254 Storage.push_back( 255 std::make_unique<ValueTable>(NumLocs, ValueIDNum::EmptyValue)); 256 } 257 258 /// Returns the ValueTable associated with MBB. 259 ValueTable &operator[](const MachineBasicBlock &MBB) const { 260 return (*this)[MBB.getNumber()]; 261 } 262 263 /// Returns the ValueTable associated with the MachineBasicBlock whose number 264 /// is MBBNum. 265 ValueTable &operator[](int MBBNum) const { 266 auto &TablePtr = Storage[MBBNum]; 267 assert(TablePtr && "Trying to access a deleted table"); 268 return *TablePtr; 269 } 270 271 /// Returns the ValueTable associated with the entry MachineBasicBlock. 272 ValueTable &tableForEntryMBB() const { return (*this)[0]; } 273 274 /// Returns true if the ValueTable associated with MBB has not been freed. 275 bool hasTableFor(MachineBasicBlock &MBB) const { 276 return Storage[MBB.getNumber()] != nullptr; 277 } 278 279 /// Frees the memory of the ValueTable associated with MBB. 280 void ejectTableForBlock(const MachineBasicBlock &MBB) { 281 Storage[MBB.getNumber()].reset(); 282 } 283 284 private: 285 /// ValueTables are stored as unique_ptrs to allow for deallocation during 286 /// LDV; this was measured to have a significant impact on compiler memory 287 /// usage. 288 SmallVector<std::unique_ptr<ValueTable>, 0> Storage; 289 }; 290 291 /// Thin wrapper around an integer -- designed to give more type safety to 292 /// spill location numbers. 293 class SpillLocationNo { 294 public: 295 explicit SpillLocationNo(unsigned SpillNo) : SpillNo(SpillNo) {} 296 unsigned SpillNo; 297 unsigned id() const { return SpillNo; } 298 299 bool operator<(const SpillLocationNo &Other) const { 300 return SpillNo < Other.SpillNo; 301 } 302 303 bool operator==(const SpillLocationNo &Other) const { 304 return SpillNo == Other.SpillNo; 305 } 306 bool operator!=(const SpillLocationNo &Other) const { 307 return !(*this == Other); 308 } 309 }; 310 311 /// Meta qualifiers for a value. Pair of whatever expression is used to qualify 312 /// the value, and Boolean of whether or not it's indirect. 313 class DbgValueProperties { 314 public: 315 DbgValueProperties(const DIExpression *DIExpr, bool Indirect, bool IsVariadic) 316 : DIExpr(DIExpr), Indirect(Indirect), IsVariadic(IsVariadic) {} 317 318 /// Extract properties from an existing DBG_VALUE instruction. 319 DbgValueProperties(const MachineInstr &MI) { 320 assert(MI.isDebugValue()); 321 assert(MI.getDebugExpression()->getNumLocationOperands() == 0 || 322 MI.isDebugValueList() || MI.isUndefDebugValue()); 323 IsVariadic = MI.isDebugValueList(); 324 DIExpr = MI.getDebugExpression(); 325 Indirect = MI.isDebugOffsetImm(); 326 } 327 328 bool isJoinable(const DbgValueProperties &Other) const { 329 return DIExpression::isEqualExpression(DIExpr, Indirect, Other.DIExpr, 330 Other.Indirect); 331 } 332 333 bool operator==(const DbgValueProperties &Other) const { 334 return std::tie(DIExpr, Indirect, IsVariadic) == 335 std::tie(Other.DIExpr, Other.Indirect, Other.IsVariadic); 336 } 337 338 bool operator!=(const DbgValueProperties &Other) const { 339 return !(*this == Other); 340 } 341 342 unsigned getLocationOpCount() const { 343 return IsVariadic ? DIExpr->getNumLocationOperands() : 1; 344 } 345 346 const DIExpression *DIExpr; 347 bool Indirect; 348 bool IsVariadic; 349 }; 350 351 /// TODO: Might pack better if we changed this to a Struct of Arrays, since 352 /// MachineOperand is width 32, making this struct width 33. We could also 353 /// potentially avoid storing the whole MachineOperand (sizeof=32), instead 354 /// choosing to store just the contents portion (sizeof=8) and a Kind enum, 355 /// since we already know it is some type of immediate value. 356 /// Stores a single debug operand, which can either be a MachineOperand for 357 /// directly storing immediate values, or a ValueIDNum representing some value 358 /// computed at some point in the program. IsConst is used as a discriminator. 359 struct DbgOp { 360 union { 361 ValueIDNum ID; 362 MachineOperand MO; 363 }; 364 bool IsConst; 365 366 DbgOp() : ID(ValueIDNum::EmptyValue), IsConst(false) {} 367 DbgOp(ValueIDNum ID) : ID(ID), IsConst(false) {} 368 DbgOp(MachineOperand MO) : MO(MO), IsConst(true) {} 369 370 bool isUndef() const { return !IsConst && ID == ValueIDNum::EmptyValue; } 371 372 #ifndef NDEBUG 373 void dump(const MLocTracker *MTrack) const; 374 #endif 375 }; 376 377 /// A DbgOp whose ID (if any) has resolved to an actual location, LocIdx. Used 378 /// when working with concrete debug values, i.e. when joining MLocs and VLocs 379 /// in the TransferTracker or emitting DBG_VALUE/DBG_VALUE_LIST instructions in 380 /// the MLocTracker. 381 struct ResolvedDbgOp { 382 union { 383 LocIdx Loc; 384 MachineOperand MO; 385 }; 386 bool IsConst; 387 388 ResolvedDbgOp(LocIdx Loc) : Loc(Loc), IsConst(false) {} 389 ResolvedDbgOp(MachineOperand MO) : MO(MO), IsConst(true) {} 390 391 bool operator==(const ResolvedDbgOp &Other) const { 392 if (IsConst != Other.IsConst) 393 return false; 394 if (IsConst) 395 return MO.isIdenticalTo(Other.MO); 396 return Loc == Other.Loc; 397 } 398 399 #ifndef NDEBUG 400 void dump(const MLocTracker *MTrack) const; 401 #endif 402 }; 403 404 /// An ID used in the DbgOpIDMap (below) to lookup a stored DbgOp. This is used 405 /// in place of actual DbgOps inside of a DbgValue to reduce its size, as 406 /// DbgValue is very frequently used and passed around, and the actual DbgOp is 407 /// over 8x larger than this class, due to storing a MachineOperand. This ID 408 /// should be equal for all equal DbgOps, and also encodes whether the mapped 409 /// DbgOp is a constant, meaning that for simple equality or const-ness checks 410 /// it is not necessary to lookup this ID. 411 struct DbgOpID { 412 struct IsConstIndexPair { 413 uint32_t IsConst : 1; 414 uint32_t Index : 31; 415 }; 416 417 union { 418 struct IsConstIndexPair ID; 419 uint32_t RawID; 420 }; 421 422 DbgOpID() : RawID(UndefID.RawID) { 423 static_assert(sizeof(DbgOpID) == 4, "DbgOpID should fit within 4 bytes."); 424 } 425 DbgOpID(uint32_t RawID) : RawID(RawID) {} 426 DbgOpID(bool IsConst, uint32_t Index) : ID({IsConst, Index}) {} 427 428 static DbgOpID UndefID; 429 430 bool operator==(const DbgOpID &Other) const { return RawID == Other.RawID; } 431 bool operator!=(const DbgOpID &Other) const { return !(*this == Other); } 432 433 uint32_t asU32() const { return RawID; } 434 435 bool isUndef() const { return *this == UndefID; } 436 bool isConst() const { return ID.IsConst && !isUndef(); } 437 uint32_t getIndex() const { return ID.Index; } 438 439 #ifndef NDEBUG 440 void dump(const MLocTracker *MTrack, const DbgOpIDMap *OpStore) const; 441 #endif 442 }; 443 444 /// Class storing the complete set of values that are observed by DbgValues 445 /// within the current function. Allows 2-way lookup, with `find` returning the 446 /// Op for a given ID and `insert` returning the ID for a given Op (creating one 447 /// if none exists). 448 class DbgOpIDMap { 449 450 SmallVector<ValueIDNum, 0> ValueOps; 451 SmallVector<MachineOperand, 0> ConstOps; 452 453 DenseMap<ValueIDNum, DbgOpID> ValueOpToID; 454 DenseMap<MachineOperand, DbgOpID> ConstOpToID; 455 456 public: 457 /// If \p Op does not already exist in this map, it is inserted and the 458 /// corresponding DbgOpID is returned. If Op already exists in this map, then 459 /// no change is made and the existing ID for Op is returned. 460 /// Calling this with the undef DbgOp will always return DbgOpID::UndefID. 461 DbgOpID insert(DbgOp Op) { 462 if (Op.isUndef()) 463 return DbgOpID::UndefID; 464 if (Op.IsConst) 465 return insertConstOp(Op.MO); 466 return insertValueOp(Op.ID); 467 } 468 /// Returns the DbgOp associated with \p ID. Should only be used for IDs 469 /// returned from calling `insert` from this map or DbgOpID::UndefID. 470 DbgOp find(DbgOpID ID) const { 471 if (ID == DbgOpID::UndefID) 472 return DbgOp(); 473 if (ID.isConst()) 474 return DbgOp(ConstOps[ID.getIndex()]); 475 return DbgOp(ValueOps[ID.getIndex()]); 476 } 477 478 void clear() { 479 ValueOps.clear(); 480 ConstOps.clear(); 481 ValueOpToID.clear(); 482 ConstOpToID.clear(); 483 } 484 485 private: 486 DbgOpID insertConstOp(MachineOperand &MO) { 487 auto ExistingIt = ConstOpToID.find(MO); 488 if (ExistingIt != ConstOpToID.end()) 489 return ExistingIt->second; 490 DbgOpID ID(true, ConstOps.size()); 491 ConstOpToID.insert(std::make_pair(MO, ID)); 492 ConstOps.push_back(MO); 493 return ID; 494 } 495 DbgOpID insertValueOp(ValueIDNum VID) { 496 auto ExistingIt = ValueOpToID.find(VID); 497 if (ExistingIt != ValueOpToID.end()) 498 return ExistingIt->second; 499 DbgOpID ID(false, ValueOps.size()); 500 ValueOpToID.insert(std::make_pair(VID, ID)); 501 ValueOps.push_back(VID); 502 return ID; 503 } 504 }; 505 506 // We set the maximum number of operands that we will handle to keep DbgValue 507 // within a reasonable size (64 bytes), as we store and pass a lot of them 508 // around. 509 #define MAX_DBG_OPS 8 510 511 /// Class recording the (high level) _value_ of a variable. Identifies the value 512 /// of the variable as a list of ValueIDNums and constant MachineOperands, or as 513 /// an empty list for undef debug values or VPHI values which we have not found 514 /// valid locations for. 515 /// This class also stores meta-information about how the value is qualified. 516 /// Used to reason about variable values when performing the second 517 /// (DebugVariable specific) dataflow analysis. 518 class DbgValue { 519 private: 520 /// If Kind is Def or VPHI, the set of IDs corresponding to the DbgOps that 521 /// are used. VPHIs set every ID to EmptyID when we have not found a valid 522 /// machine-value for every operand, and sets them to the corresponding 523 /// machine-values when we have found all of them. 524 DbgOpID DbgOps[MAX_DBG_OPS]; 525 unsigned OpCount; 526 527 public: 528 /// For a NoVal or VPHI DbgValue, which block it was generated in. 529 int BlockNo; 530 531 /// Qualifiers for the ValueIDNum above. 532 DbgValueProperties Properties; 533 534 typedef enum { 535 Undef, // Represents a DBG_VALUE $noreg in the transfer function only. 536 Def, // This value is defined by some combination of constants, 537 // instructions, or PHI values. 538 VPHI, // Incoming values to BlockNo differ, those values must be joined by 539 // a PHI in this block. 540 NoVal, // Empty DbgValue indicating an unknown value. Used as initializer, 541 // before dominating blocks values are propagated in. 542 } KindT; 543 /// Discriminator for whether this is a constant or an in-program value. 544 KindT Kind; 545 546 DbgValue(ArrayRef<DbgOpID> DbgOps, const DbgValueProperties &Prop) 547 : OpCount(DbgOps.size()), BlockNo(0), Properties(Prop), Kind(Def) { 548 static_assert(sizeof(DbgValue) <= 64, 549 "DbgValue should fit within 64 bytes."); 550 assert(DbgOps.size() == Prop.getLocationOpCount()); 551 if (DbgOps.size() > MAX_DBG_OPS || 552 any_of(DbgOps, [](DbgOpID ID) { return ID.isUndef(); })) { 553 Kind = Undef; 554 OpCount = 0; 555 #define DEBUG_TYPE "LiveDebugValues" 556 if (DbgOps.size() > MAX_DBG_OPS) { 557 LLVM_DEBUG(dbgs() << "Found DbgValue with more than maximum allowed " 558 "operands.\n"); 559 } 560 #undef DEBUG_TYPE 561 } else { 562 for (unsigned Idx = 0; Idx < DbgOps.size(); ++Idx) 563 this->DbgOps[Idx] = DbgOps[Idx]; 564 } 565 } 566 567 DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind) 568 : OpCount(0), BlockNo(BlockNo), Properties(Prop), Kind(Kind) { 569 assert(Kind == NoVal || Kind == VPHI); 570 } 571 572 DbgValue(const DbgValueProperties &Prop, KindT Kind) 573 : OpCount(0), BlockNo(0), Properties(Prop), Kind(Kind) { 574 assert(Kind == Undef && 575 "Empty DbgValue constructor must pass in Undef kind"); 576 } 577 578 #ifndef NDEBUG 579 void dump(const MLocTracker *MTrack = nullptr, 580 const DbgOpIDMap *OpStore = nullptr) const; 581 #endif 582 583 bool operator==(const DbgValue &Other) const { 584 if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties)) 585 return false; 586 else if (Kind == Def && !equal(getDbgOpIDs(), Other.getDbgOpIDs())) 587 return false; 588 else if (Kind == NoVal && BlockNo != Other.BlockNo) 589 return false; 590 else if (Kind == VPHI && BlockNo != Other.BlockNo) 591 return false; 592 else if (Kind == VPHI && !equal(getDbgOpIDs(), Other.getDbgOpIDs())) 593 return false; 594 595 return true; 596 } 597 598 bool operator!=(const DbgValue &Other) const { return !(*this == Other); } 599 600 // Returns an array of all the machine values used to calculate this variable 601 // value, or an empty list for an Undef or unjoined VPHI. 602 ArrayRef<DbgOpID> getDbgOpIDs() const { return {DbgOps, OpCount}; } 603 604 // Returns either DbgOps[Index] if this DbgValue has Debug Operands, or 605 // the ID for ValueIDNum::EmptyValue otherwise (i.e. if this is an Undef, 606 // NoVal, or an unjoined VPHI). 607 DbgOpID getDbgOpID(unsigned Index) const { 608 if (!OpCount) 609 return DbgOpID::UndefID; 610 assert(Index < OpCount); 611 return DbgOps[Index]; 612 } 613 // Replaces this DbgValue's existing DbgOpIDs (if any) with the contents of 614 // \p NewIDs. The number of DbgOpIDs passed must be equal to the number of 615 // arguments expected by this DbgValue's properties (the return value of 616 // `getLocationOpCount()`). 617 void setDbgOpIDs(ArrayRef<DbgOpID> NewIDs) { 618 // We can go from no ops to some ops, but not from some ops to no ops. 619 assert(NewIDs.size() == getLocationOpCount() && 620 "Incorrect number of Debug Operands for this DbgValue."); 621 OpCount = NewIDs.size(); 622 for (unsigned Idx = 0; Idx < NewIDs.size(); ++Idx) 623 DbgOps[Idx] = NewIDs[Idx]; 624 } 625 626 // The number of debug operands expected by this DbgValue's expression. 627 // getDbgOpIDs() should return an array of this length, unless this is an 628 // Undef or an unjoined VPHI. 629 unsigned getLocationOpCount() const { 630 return Properties.getLocationOpCount(); 631 } 632 633 // Returns true if this or Other are unjoined PHIs, which do not have defined 634 // Loc Ops, or if the `n`th Loc Op for this has a different constness to the 635 // `n`th Loc Op for Other. 636 bool hasJoinableLocOps(const DbgValue &Other) const { 637 if (isUnjoinedPHI() || Other.isUnjoinedPHI()) 638 return true; 639 for (unsigned Idx = 0; Idx < getLocationOpCount(); ++Idx) { 640 if (getDbgOpID(Idx).isConst() != Other.getDbgOpID(Idx).isConst()) 641 return false; 642 } 643 return true; 644 } 645 646 bool isUnjoinedPHI() const { return Kind == VPHI && OpCount == 0; } 647 648 bool hasIdenticalValidLocOps(const DbgValue &Other) const { 649 if (!OpCount) 650 return false; 651 return equal(getDbgOpIDs(), Other.getDbgOpIDs()); 652 } 653 }; 654 655 class LocIdxToIndexFunctor { 656 public: 657 using argument_type = LocIdx; 658 unsigned operator()(const LocIdx &L) const { return L.asU64(); } 659 }; 660 661 /// Tracker for what values are in machine locations. Listens to the Things 662 /// being Done by various instructions, and maintains a table of what machine 663 /// locations have what values (as defined by a ValueIDNum). 664 /// 665 /// There are potentially a much larger number of machine locations on the 666 /// target machine than the actual working-set size of the function. On x86 for 667 /// example, we're extremely unlikely to want to track values through control 668 /// or debug registers. To avoid doing so, MLocTracker has several layers of 669 /// indirection going on, described below, to avoid unnecessarily tracking 670 /// any location. 671 /// 672 /// Here's a sort of diagram of the indexes, read from the bottom up: 673 /// 674 /// Size on stack Offset on stack 675 /// \ / 676 /// Stack Idx (Where in slot is this?) 677 /// / 678 /// / 679 /// Slot Num (%stack.0) / 680 /// FrameIdx => SpillNum / 681 /// \ / 682 /// SpillID (int) Register number (int) 683 /// \ / 684 /// LocationID => LocIdx 685 /// | 686 /// LocIdx => ValueIDNum 687 /// 688 /// The aim here is that the LocIdx => ValueIDNum vector is just an array of 689 /// values in numbered locations, so that later analyses can ignore whether the 690 /// location is a register or otherwise. To map a register / spill location to 691 /// a LocIdx, you have to use the (sparse) LocationID => LocIdx map. And to 692 /// build a LocationID for a stack slot, you need to combine identifiers for 693 /// which stack slot it is and where within that slot is being described. 694 /// 695 /// Register mask operands cause trouble by technically defining every register; 696 /// various hacks are used to avoid tracking registers that are never read and 697 /// only written by regmasks. 698 class MLocTracker { 699 public: 700 MachineFunction &MF; 701 const TargetInstrInfo &TII; 702 const TargetRegisterInfo &TRI; 703 const TargetLowering &TLI; 704 705 /// IndexedMap type, mapping from LocIdx to ValueIDNum. 706 using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>; 707 708 /// Map of LocIdxes to the ValueIDNums that they store. This is tightly 709 /// packed, entries only exist for locations that are being tracked. 710 LocToValueType LocIdxToIDNum; 711 712 /// "Map" of machine location IDs (i.e., raw register or spill number) to the 713 /// LocIdx key / number for that location. There are always at least as many 714 /// as the number of registers on the target -- if the value in the register 715 /// is not being tracked, then the LocIdx value will be zero. New entries are 716 /// appended if a new spill slot begins being tracked. 717 /// This, and the corresponding reverse map persist for the analysis of the 718 /// whole function, and is necessarying for decoding various vectors of 719 /// values. 720 std::vector<LocIdx> LocIDToLocIdx; 721 722 /// Inverse map of LocIDToLocIdx. 723 IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID; 724 725 /// When clobbering register masks, we chose to not believe the machine model 726 /// and don't clobber SP. Do the same for SP aliases, and for efficiency, 727 /// keep a set of them here. 728 SmallSet<Register, 8> SPAliases; 729 730 /// Unique-ification of spill. Used to number them -- their LocID number is 731 /// the index in SpillLocs minus one plus NumRegs. 732 UniqueVector<SpillLoc> SpillLocs; 733 734 // If we discover a new machine location, assign it an mphi with this 735 // block number. 736 unsigned CurBB = -1; 737 738 /// Cached local copy of the number of registers the target has. 739 unsigned NumRegs; 740 741 /// Number of slot indexes the target has -- distinct segments of a stack 742 /// slot that can take on the value of a subregister, when a super-register 743 /// is written to the stack. 744 unsigned NumSlotIdxes; 745 746 /// Collection of register mask operands that have been observed. Second part 747 /// of pair indicates the instruction that they happened in. Used to 748 /// reconstruct where defs happened if we start tracking a location later 749 /// on. 750 SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks; 751 752 /// Pair for describing a position within a stack slot -- first the size in 753 /// bits, then the offset. 754 typedef std::pair<unsigned short, unsigned short> StackSlotPos; 755 756 /// Map from a size/offset pair describing a position in a stack slot, to a 757 /// numeric identifier for that position. Allows easier identification of 758 /// individual positions. 759 DenseMap<StackSlotPos, unsigned> StackSlotIdxes; 760 761 /// Inverse of StackSlotIdxes. 762 DenseMap<unsigned, StackSlotPos> StackIdxesToPos; 763 764 /// Iterator for locations and the values they contain. Dereferencing 765 /// produces a struct/pair containing the LocIdx key for this location, 766 /// and a reference to the value currently stored. Simplifies the process 767 /// of seeking a particular location. 768 class MLocIterator { 769 LocToValueType &ValueMap; 770 LocIdx Idx; 771 772 public: 773 class value_type { 774 public: 775 value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) {} 776 const LocIdx Idx; /// Read-only index of this location. 777 ValueIDNum &Value; /// Reference to the stored value at this location. 778 }; 779 780 MLocIterator(LocToValueType &ValueMap, LocIdx Idx) 781 : ValueMap(ValueMap), Idx(Idx) {} 782 783 bool operator==(const MLocIterator &Other) const { 784 assert(&ValueMap == &Other.ValueMap); 785 return Idx == Other.Idx; 786 } 787 788 bool operator!=(const MLocIterator &Other) const { 789 return !(*this == Other); 790 } 791 792 void operator++() { Idx = LocIdx(Idx.asU64() + 1); } 793 794 value_type operator*() { return value_type(Idx, ValueMap[LocIdx(Idx)]); } 795 }; 796 797 MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, 798 const TargetRegisterInfo &TRI, const TargetLowering &TLI); 799 800 /// Produce location ID number for a Register. Provides some small amount of 801 /// type safety. 802 /// \param Reg The register we're looking up. 803 unsigned getLocID(Register Reg) { return Reg.id(); } 804 805 /// Produce location ID number for a spill position. 806 /// \param Spill The number of the spill we're fetching the location for. 807 /// \param SpillSubReg Subregister within the spill we're addressing. 808 unsigned getLocID(SpillLocationNo Spill, unsigned SpillSubReg) { 809 unsigned short Size = TRI.getSubRegIdxSize(SpillSubReg); 810 unsigned short Offs = TRI.getSubRegIdxOffset(SpillSubReg); 811 return getLocID(Spill, {Size, Offs}); 812 } 813 814 /// Produce location ID number for a spill position. 815 /// \param Spill The number of the spill we're fetching the location for. 816 /// \apram SpillIdx size/offset within the spill slot to be addressed. 817 unsigned getLocID(SpillLocationNo Spill, StackSlotPos Idx) { 818 unsigned SlotNo = Spill.id() - 1; 819 SlotNo *= NumSlotIdxes; 820 assert(StackSlotIdxes.contains(Idx)); 821 SlotNo += StackSlotIdxes[Idx]; 822 SlotNo += NumRegs; 823 return SlotNo; 824 } 825 826 /// Given a spill number, and a slot within the spill, calculate the ID number 827 /// for that location. 828 unsigned getSpillIDWithIdx(SpillLocationNo Spill, unsigned Idx) { 829 unsigned SlotNo = Spill.id() - 1; 830 SlotNo *= NumSlotIdxes; 831 SlotNo += Idx; 832 SlotNo += NumRegs; 833 return SlotNo; 834 } 835 836 /// Return the spill number that a location ID corresponds to. 837 SpillLocationNo locIDToSpill(unsigned ID) const { 838 assert(ID >= NumRegs); 839 ID -= NumRegs; 840 // Truncate away the index part, leaving only the spill number. 841 ID /= NumSlotIdxes; 842 return SpillLocationNo(ID + 1); // The UniqueVector is one-based. 843 } 844 845 /// Returns the spill-slot size/offs that a location ID corresponds to. 846 StackSlotPos locIDToSpillIdx(unsigned ID) const { 847 assert(ID >= NumRegs); 848 ID -= NumRegs; 849 unsigned Idx = ID % NumSlotIdxes; 850 return StackIdxesToPos.find(Idx)->second; 851 } 852 853 unsigned getNumLocs() const { return LocIdxToIDNum.size(); } 854 855 /// Reset all locations to contain a PHI value at the designated block. Used 856 /// sometimes for actual PHI values, othertimes to indicate the block entry 857 /// value (before any more information is known). 858 void setMPhis(unsigned NewCurBB) { 859 CurBB = NewCurBB; 860 for (auto Location : locations()) 861 Location.Value = {CurBB, 0, Location.Idx}; 862 } 863 864 /// Load values for each location from array of ValueIDNums. Take current 865 /// bbnum just in case we read a value from a hitherto untouched register. 866 void loadFromArray(ValueTable &Locs, unsigned NewCurBB) { 867 CurBB = NewCurBB; 868 // Iterate over all tracked locations, and load each locations live-in 869 // value into our local index. 870 for (auto Location : locations()) 871 Location.Value = Locs[Location.Idx.asU64()]; 872 } 873 874 /// Wipe any un-necessary location records after traversing a block. 875 void reset() { 876 // We could reset all the location values too; however either loadFromArray 877 // or setMPhis should be called before this object is re-used. Just 878 // clear Masks, they're definitely not needed. 879 Masks.clear(); 880 } 881 882 /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of 883 /// the information in this pass uninterpretable. 884 void clear() { 885 reset(); 886 LocIDToLocIdx.clear(); 887 LocIdxToLocID.clear(); 888 LocIdxToIDNum.clear(); 889 // SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from 890 // 0 891 SpillLocs = decltype(SpillLocs)(); 892 StackSlotIdxes.clear(); 893 StackIdxesToPos.clear(); 894 895 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); 896 } 897 898 /// Set a locaiton to a certain value. 899 void setMLoc(LocIdx L, ValueIDNum Num) { 900 assert(L.asU64() < LocIdxToIDNum.size()); 901 LocIdxToIDNum[L] = Num; 902 } 903 904 /// Read the value of a particular location 905 ValueIDNum readMLoc(LocIdx L) { 906 assert(L.asU64() < LocIdxToIDNum.size()); 907 return LocIdxToIDNum[L]; 908 } 909 910 /// Create a LocIdx for an untracked register ID. Initialize it to either an 911 /// mphi value representing a live-in, or a recent register mask clobber. 912 LocIdx trackRegister(unsigned ID); 913 914 LocIdx lookupOrTrackRegister(unsigned ID) { 915 LocIdx &Index = LocIDToLocIdx[ID]; 916 if (Index.isIllegal()) 917 Index = trackRegister(ID); 918 return Index; 919 } 920 921 /// Is register R currently tracked by MLocTracker? 922 bool isRegisterTracked(Register R) { 923 LocIdx &Index = LocIDToLocIdx[R]; 924 return !Index.isIllegal(); 925 } 926 927 /// Record a definition of the specified register at the given block / inst. 928 /// This doesn't take a ValueIDNum, because the definition and its location 929 /// are synonymous. 930 void defReg(Register R, unsigned BB, unsigned Inst) { 931 unsigned ID = getLocID(R); 932 LocIdx Idx = lookupOrTrackRegister(ID); 933 ValueIDNum ValueID = {BB, Inst, Idx}; 934 LocIdxToIDNum[Idx] = ValueID; 935 } 936 937 /// Set a register to a value number. To be used if the value number is 938 /// known in advance. 939 void setReg(Register R, ValueIDNum ValueID) { 940 unsigned ID = getLocID(R); 941 LocIdx Idx = lookupOrTrackRegister(ID); 942 LocIdxToIDNum[Idx] = ValueID; 943 } 944 945 ValueIDNum readReg(Register R) { 946 unsigned ID = getLocID(R); 947 LocIdx Idx = lookupOrTrackRegister(ID); 948 return LocIdxToIDNum[Idx]; 949 } 950 951 /// Reset a register value to zero / empty. Needed to replicate the 952 /// VarLoc implementation where a copy to/from a register effectively 953 /// clears the contents of the source register. (Values can only have one 954 /// machine location in VarLocBasedImpl). 955 void wipeRegister(Register R) { 956 unsigned ID = getLocID(R); 957 LocIdx Idx = LocIDToLocIdx[ID]; 958 LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue; 959 } 960 961 /// Determine the LocIdx of an existing register. 962 LocIdx getRegMLoc(Register R) { 963 unsigned ID = getLocID(R); 964 assert(ID < LocIDToLocIdx.size()); 965 assert(LocIDToLocIdx[ID] != UINT_MAX); // Sentinel for IndexedMap. 966 return LocIDToLocIdx[ID]; 967 } 968 969 /// Record a RegMask operand being executed. Defs any register we currently 970 /// track, stores a pointer to the mask in case we have to account for it 971 /// later. 972 void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID); 973 974 /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked. 975 /// Returns std::nullopt when in scenarios where a spill slot could be 976 /// tracked, but we would likely run into resource limitations. 977 std::optional<SpillLocationNo> getOrTrackSpillLoc(SpillLoc L); 978 979 // Get LocIdx of a spill ID. 980 LocIdx getSpillMLoc(unsigned SpillID) { 981 assert(LocIDToLocIdx[SpillID] != UINT_MAX); // Sentinel for IndexedMap. 982 return LocIDToLocIdx[SpillID]; 983 } 984 985 /// Return true if Idx is a spill machine location. 986 bool isSpill(LocIdx Idx) const { return LocIdxToLocID[Idx] >= NumRegs; } 987 988 /// How large is this location (aka, how wide is a value defined there?). 989 unsigned getLocSizeInBits(LocIdx L) const { 990 unsigned ID = LocIdxToLocID[L]; 991 if (!isSpill(L)) { 992 return TRI.getRegSizeInBits(Register(ID), MF.getRegInfo()); 993 } else { 994 // The slot location on the stack is uninteresting, we care about the 995 // position of the value within the slot (which comes with a size). 996 StackSlotPos Pos = locIDToSpillIdx(ID); 997 return Pos.first; 998 } 999 } 1000 1001 MLocIterator begin() { return MLocIterator(LocIdxToIDNum, 0); } 1002 1003 MLocIterator end() { 1004 return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size()); 1005 } 1006 1007 /// Return a range over all locations currently tracked. 1008 iterator_range<MLocIterator> locations() { 1009 return llvm::make_range(begin(), end()); 1010 } 1011 1012 std::string LocIdxToName(LocIdx Idx) const; 1013 1014 std::string IDAsString(const ValueIDNum &Num) const; 1015 1016 #ifndef NDEBUG 1017 LLVM_DUMP_METHOD void dump(); 1018 1019 LLVM_DUMP_METHOD void dump_mloc_map(); 1020 #endif 1021 1022 /// Create a DBG_VALUE based on debug operands \p DbgOps. Qualify it with the 1023 /// information in \pProperties, for variable Var. Don't insert it anywhere, 1024 /// just return the builder for it. 1025 MachineInstrBuilder emitLoc(const SmallVectorImpl<ResolvedDbgOp> &DbgOps, 1026 const DebugVariable &Var, const DILocation *DILoc, 1027 const DbgValueProperties &Properties); 1028 }; 1029 1030 /// Types for recording sets of variable fragments that overlap. For a given 1031 /// local variable, we record all other fragments of that variable that could 1032 /// overlap it, to reduce search time. 1033 using FragmentOfVar = 1034 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; 1035 using OverlapMap = 1036 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; 1037 1038 /// Collection of DBG_VALUEs observed when traversing a block. Records each 1039 /// variable and the value the DBG_VALUE refers to. Requires the machine value 1040 /// location dataflow algorithm to have run already, so that values can be 1041 /// identified. 1042 class VLocTracker { 1043 public: 1044 /// Ref to function-wide map of DebugVariable <=> ID-numbers. 1045 DebugVariableMap &DVMap; 1046 /// Map DebugVariable to the latest Value it's defined to have. 1047 /// Needs to be a MapVector because we determine order-in-the-input-MIR from 1048 /// the order in this container. (FIXME: likely no longer true as the ordering 1049 /// is now provided by DebugVariableMap). 1050 /// We only retain the last DbgValue in each block for each variable, to 1051 /// determine the blocks live-out variable value. The Vars container forms the 1052 /// transfer function for this block, as part of the dataflow analysis. The 1053 /// movement of values between locations inside of a block is handled at a 1054 /// much later stage, in the TransferTracker class. 1055 MapVector<DebugVariableID, DbgValue> Vars; 1056 SmallDenseMap<DebugVariableID, const DILocation *, 8> Scopes; 1057 MachineBasicBlock *MBB = nullptr; 1058 const OverlapMap &OverlappingFragments; 1059 DbgValueProperties EmptyProperties; 1060 1061 public: 1062 VLocTracker(DebugVariableMap &DVMap, const OverlapMap &O, 1063 const DIExpression *EmptyExpr) 1064 : DVMap(DVMap), OverlappingFragments(O), 1065 EmptyProperties(EmptyExpr, false, false) {} 1066 1067 void defVar(const MachineInstr &MI, const DbgValueProperties &Properties, 1068 const SmallVectorImpl<DbgOpID> &DebugOps) { 1069 assert(MI.isDebugValueLike()); 1070 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 1071 MI.getDebugLoc()->getInlinedAt()); 1072 // Either insert or fetch an ID number for this variable. 1073 DebugVariableID VarID = DVMap.insertDVID(Var, MI.getDebugLoc().get()); 1074 DbgValue Rec = (DebugOps.size() > 0) 1075 ? DbgValue(DebugOps, Properties) 1076 : DbgValue(Properties, DbgValue::Undef); 1077 1078 // Attempt insertion; overwrite if it's already mapped. 1079 auto Result = Vars.insert(std::make_pair(VarID, Rec)); 1080 if (!Result.second) 1081 Result.first->second = Rec; 1082 Scopes[VarID] = MI.getDebugLoc().get(); 1083 1084 considerOverlaps(Var, MI.getDebugLoc().get()); 1085 } 1086 1087 void considerOverlaps(const DebugVariable &Var, const DILocation *Loc) { 1088 auto Overlaps = OverlappingFragments.find( 1089 {Var.getVariable(), Var.getFragmentOrDefault()}); 1090 if (Overlaps == OverlappingFragments.end()) 1091 return; 1092 1093 // Otherwise: terminate any overlapped variable locations. 1094 for (auto FragmentInfo : Overlaps->second) { 1095 // The "empty" fragment is stored as DebugVariable::DefaultFragment, so 1096 // that it overlaps with everything, however its cannonical representation 1097 // in a DebugVariable is as "None". 1098 std::optional<DIExpression::FragmentInfo> OptFragmentInfo = FragmentInfo; 1099 if (DebugVariable::isDefaultFragment(FragmentInfo)) 1100 OptFragmentInfo = std::nullopt; 1101 1102 DebugVariable Overlapped(Var.getVariable(), OptFragmentInfo, 1103 Var.getInlinedAt()); 1104 // Produce an ID number for this overlapping fragment of a variable. 1105 DebugVariableID OverlappedID = DVMap.insertDVID(Overlapped, Loc); 1106 DbgValue Rec = DbgValue(EmptyProperties, DbgValue::Undef); 1107 1108 // Attempt insertion; overwrite if it's already mapped. 1109 auto Result = Vars.insert(std::make_pair(OverlappedID, Rec)); 1110 if (!Result.second) 1111 Result.first->second = Rec; 1112 Scopes[OverlappedID] = Loc; 1113 } 1114 } 1115 1116 void clear() { 1117 Vars.clear(); 1118 Scopes.clear(); 1119 } 1120 }; 1121 1122 // XXX XXX docs 1123 class InstrRefBasedLDV : public LDVImpl { 1124 public: 1125 friend class ::InstrRefLDVTest; 1126 1127 using FragmentInfo = DIExpression::FragmentInfo; 1128 using OptFragmentInfo = std::optional<DIExpression::FragmentInfo>; 1129 1130 // Helper while building OverlapMap, a map of all fragments seen for a given 1131 // DILocalVariable. 1132 using VarToFragments = 1133 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; 1134 1135 /// Machine location/value transfer function, a mapping of which locations 1136 /// are assigned which new values. 1137 using MLocTransferMap = SmallDenseMap<LocIdx, ValueIDNum>; 1138 1139 /// Live in/out structure for the variable values: a per-block map of 1140 /// variables to their values. 1141 using LiveIdxT = DenseMap<const MachineBasicBlock *, DbgValue *>; 1142 1143 using VarAndLoc = std::pair<DebugVariableID, DbgValue>; 1144 1145 /// Type for a live-in value: the predecessor block, and its value. 1146 using InValueT = std::pair<MachineBasicBlock *, DbgValue *>; 1147 1148 /// Vector (per block) of a collection (inner smallvector) of live-ins. 1149 /// Used as the result type for the variable value dataflow problem. 1150 using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>; 1151 1152 /// Mapping from lexical scopes to a DILocation in that scope. 1153 using ScopeToDILocT = DenseMap<const LexicalScope *, const DILocation *>; 1154 1155 /// Mapping from lexical scopes to variables in that scope. 1156 using ScopeToVarsT = 1157 DenseMap<const LexicalScope *, SmallSet<DebugVariableID, 4>>; 1158 1159 /// Mapping from lexical scopes to blocks where variables in that scope are 1160 /// assigned. Such blocks aren't necessarily "in" the lexical scope, it's 1161 /// just a block where an assignment happens. 1162 using ScopeToAssignBlocksT = DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>; 1163 1164 private: 1165 MachineDominatorTree *DomTree; 1166 const TargetRegisterInfo *TRI; 1167 const MachineRegisterInfo *MRI; 1168 const TargetInstrInfo *TII; 1169 const TargetFrameLowering *TFI; 1170 const MachineFrameInfo *MFI; 1171 BitVector CalleeSavedRegs; 1172 LexicalScopes LS; 1173 TargetPassConfig *TPC; 1174 1175 // An empty DIExpression. Used default / placeholder DbgValueProperties 1176 // objects, as we can't have null expressions. 1177 const DIExpression *EmptyExpr; 1178 1179 /// Object to track machine locations as we step through a block. Could 1180 /// probably be a field rather than a pointer, as it's always used. 1181 MLocTracker *MTracker = nullptr; 1182 1183 /// Number of the current block LiveDebugValues is stepping through. 1184 unsigned CurBB = -1; 1185 1186 /// Number of the current instruction LiveDebugValues is evaluating. 1187 unsigned CurInst; 1188 1189 /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl 1190 /// steps through a block. Reads the values at each location from the 1191 /// MLocTracker object. 1192 VLocTracker *VTracker = nullptr; 1193 1194 /// Tracker for transfers, listens to DBG_VALUEs and transfers of values 1195 /// between locations during stepping, creates new DBG_VALUEs when values move 1196 /// location. 1197 TransferTracker *TTracker = nullptr; 1198 1199 /// Blocks which are artificial, i.e. blocks which exclusively contain 1200 /// instructions without DebugLocs, or with line 0 locations. 1201 SmallPtrSet<MachineBasicBlock *, 16> ArtificialBlocks; 1202 1203 // Mapping of blocks to and from their RPOT order. 1204 SmallVector<MachineBasicBlock *> OrderToBB; 1205 DenseMap<const MachineBasicBlock *, unsigned int> BBToOrder; 1206 DenseMap<unsigned, unsigned> BBNumToRPO; 1207 1208 /// Pair of MachineInstr, and its 1-based offset into the containing block. 1209 using InstAndNum = std::pair<const MachineInstr *, unsigned>; 1210 /// Map from debug instruction number to the MachineInstr labelled with that 1211 /// number, and its location within the function. Used to transform 1212 /// instruction numbers in DBG_INSTR_REFs into machine value numbers. 1213 std::map<uint64_t, InstAndNum> DebugInstrNumToInstr; 1214 1215 /// Record of where we observed a DBG_PHI instruction. 1216 class DebugPHIRecord { 1217 public: 1218 /// Instruction number of this DBG_PHI. 1219 uint64_t InstrNum; 1220 /// Block where DBG_PHI occurred. 1221 MachineBasicBlock *MBB; 1222 /// The value number read by the DBG_PHI -- or std::nullopt if it didn't 1223 /// refer to a value. 1224 std::optional<ValueIDNum> ValueRead; 1225 /// Register/Stack location the DBG_PHI reads -- or std::nullopt if it 1226 /// referred to something unexpected. 1227 std::optional<LocIdx> ReadLoc; 1228 1229 operator unsigned() const { return InstrNum; } 1230 }; 1231 1232 /// Map from instruction numbers defined by DBG_PHIs to a record of what that 1233 /// DBG_PHI read and where. Populated and edited during the machine value 1234 /// location problem -- we use LLVMs SSA Updater to fix changes by 1235 /// optimizations that destroy PHI instructions. 1236 SmallVector<DebugPHIRecord, 32> DebugPHINumToValue; 1237 1238 // Map of overlapping variable fragments. 1239 OverlapMap OverlapFragments; 1240 VarToFragments SeenFragments; 1241 1242 /// Mapping of DBG_INSTR_REF instructions to their values, for those 1243 /// DBG_INSTR_REFs that call resolveDbgPHIs. These variable references solve 1244 /// a mini SSA problem caused by DBG_PHIs being cloned, this collection caches 1245 /// the result. 1246 DenseMap<std::pair<MachineInstr *, unsigned>, std::optional<ValueIDNum>> 1247 SeenDbgPHIs; 1248 1249 DbgOpIDMap DbgOpStore; 1250 1251 /// Mapping between DebugVariables and unique ID numbers. This is a more 1252 /// efficient way to represent the identity of a variable, versus a plain 1253 /// DebugVariable. 1254 DebugVariableMap DVMap; 1255 1256 /// True if we need to examine call instructions for stack clobbers. We 1257 /// normally assume that they don't clobber SP, but stack probes on Windows 1258 /// do. 1259 bool AdjustsStackInCalls = false; 1260 1261 /// If AdjustsStackInCalls is true, this holds the name of the target's stack 1262 /// probe function, which is the function we expect will alter the stack 1263 /// pointer. 1264 StringRef StackProbeSymbolName; 1265 1266 /// Tests whether this instruction is a spill to a stack slot. 1267 std::optional<SpillLocationNo> isSpillInstruction(const MachineInstr &MI, 1268 MachineFunction *MF); 1269 1270 /// Decide if @MI is a spill instruction and return true if it is. We use 2 1271 /// criteria to make this decision: 1272 /// - Is this instruction a store to a spill slot? 1273 /// - Is there a register operand that is both used and killed? 1274 /// TODO: Store optimization can fold spills into other stores (including 1275 /// other spills). We do not handle this yet (more than one memory operand). 1276 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, 1277 unsigned &Reg); 1278 1279 /// If a given instruction is identified as a spill, return the spill slot 1280 /// and set \p Reg to the spilled register. 1281 std::optional<SpillLocationNo> isRestoreInstruction(const MachineInstr &MI, 1282 MachineFunction *MF, 1283 unsigned &Reg); 1284 1285 /// Given a spill instruction, extract the spill slot information, ensure it's 1286 /// tracked, and return the spill number. 1287 std::optional<SpillLocationNo> 1288 extractSpillBaseRegAndOffset(const MachineInstr &MI); 1289 1290 /// For an instruction reference given by \p InstNo and \p OpNo in instruction 1291 /// \p MI returns the Value pointed to by that instruction reference if any 1292 /// exists, otherwise returns std::nullopt. 1293 std::optional<ValueIDNum> getValueForInstrRef(unsigned InstNo, unsigned OpNo, 1294 MachineInstr &MI, 1295 const FuncValueTable *MLiveOuts, 1296 const FuncValueTable *MLiveIns); 1297 1298 /// Observe a single instruction while stepping through a block. 1299 void process(MachineInstr &MI, const FuncValueTable *MLiveOuts, 1300 const FuncValueTable *MLiveIns); 1301 1302 /// Examines whether \p MI is a DBG_VALUE and notifies trackers. 1303 /// \returns true if MI was recognized and processed. 1304 bool transferDebugValue(const MachineInstr &MI); 1305 1306 /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers. 1307 /// \returns true if MI was recognized and processed. 1308 bool transferDebugInstrRef(MachineInstr &MI, const FuncValueTable *MLiveOuts, 1309 const FuncValueTable *MLiveIns); 1310 1311 /// Stores value-information about where this PHI occurred, and what 1312 /// instruction number is associated with it. 1313 /// \returns true if MI was recognized and processed. 1314 bool transferDebugPHI(MachineInstr &MI); 1315 1316 /// Examines whether \p MI is copy instruction, and notifies trackers. 1317 /// \returns true if MI was recognized and processed. 1318 bool transferRegisterCopy(MachineInstr &MI); 1319 1320 /// Examines whether \p MI is stack spill or restore instruction, and 1321 /// notifies trackers. \returns true if MI was recognized and processed. 1322 bool transferSpillOrRestoreInst(MachineInstr &MI); 1323 1324 /// Examines \p MI for any registers that it defines, and notifies trackers. 1325 void transferRegisterDef(MachineInstr &MI); 1326 1327 /// Copy one location to the other, accounting for movement of subregisters 1328 /// too. 1329 void performCopy(Register Src, Register Dst); 1330 1331 void accumulateFragmentMap(MachineInstr &MI); 1332 1333 /// Determine the machine value number referred to by (potentially several) 1334 /// DBG_PHI instructions. Block duplication and tail folding can duplicate 1335 /// DBG_PHIs, shifting the position where values in registers merge, and 1336 /// forming another mini-ssa problem to solve. 1337 /// \p Here the position of a DBG_INSTR_REF seeking a machine value number 1338 /// \p InstrNum Debug instruction number defined by DBG_PHI instructions. 1339 /// \returns The machine value number at position Here, or std::nullopt. 1340 std::optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF, 1341 const FuncValueTable &MLiveOuts, 1342 const FuncValueTable &MLiveIns, 1343 MachineInstr &Here, 1344 uint64_t InstrNum); 1345 1346 std::optional<ValueIDNum> resolveDbgPHIsImpl(MachineFunction &MF, 1347 const FuncValueTable &MLiveOuts, 1348 const FuncValueTable &MLiveIns, 1349 MachineInstr &Here, 1350 uint64_t InstrNum); 1351 1352 /// Step through the function, recording register definitions and movements 1353 /// in an MLocTracker. Convert the observations into a per-block transfer 1354 /// function in \p MLocTransfer, suitable for using with the machine value 1355 /// location dataflow problem. 1356 void 1357 produceMLocTransferFunction(MachineFunction &MF, 1358 SmallVectorImpl<MLocTransferMap> &MLocTransfer, 1359 unsigned MaxNumBlocks); 1360 1361 /// Solve the machine value location dataflow problem. Takes as input the 1362 /// transfer functions in \p MLocTransfer. Writes the output live-in and 1363 /// live-out arrays to the (initialized to zero) multidimensional arrays in 1364 /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block 1365 /// number, the inner by LocIdx. 1366 void buildMLocValueMap(MachineFunction &MF, FuncValueTable &MInLocs, 1367 FuncValueTable &MOutLocs, 1368 SmallVectorImpl<MLocTransferMap> &MLocTransfer); 1369 1370 /// Examine the stack indexes (i.e. offsets within the stack) to find the 1371 /// basic units of interference -- like reg units, but for the stack. 1372 void findStackIndexInterference(SmallVectorImpl<unsigned> &Slots); 1373 1374 /// Install PHI values into the live-in array for each block, according to 1375 /// the IDF of each register. 1376 void placeMLocPHIs(MachineFunction &MF, 1377 SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 1378 FuncValueTable &MInLocs, 1379 SmallVectorImpl<MLocTransferMap> &MLocTransfer); 1380 1381 /// Propagate variable values to blocks in the common case where there's 1382 /// only one value assigned to the variable. This function has better 1383 /// performance as it doesn't have to find the dominance frontier between 1384 /// different assignments. 1385 void placePHIsForSingleVarDefinition( 1386 const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks, 1387 MachineBasicBlock *MBB, SmallVectorImpl<VLocTracker> &AllTheVLocs, 1388 DebugVariableID Var, LiveInsT &Output); 1389 1390 /// Calculate the iterated-dominance-frontier for a set of defs, using the 1391 /// existing LLVM facilities for this. Works for a single "value" or 1392 /// machine/variable location. 1393 /// \p AllBlocks Set of blocks where we might consume the value. 1394 /// \p DefBlocks Set of blocks where the value/location is defined. 1395 /// \p PHIBlocks Output set of blocks where PHIs must be placed. 1396 void BlockPHIPlacement(const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 1397 const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks, 1398 SmallVectorImpl<MachineBasicBlock *> &PHIBlocks); 1399 1400 /// Perform a control flow join (lattice value meet) of the values in machine 1401 /// locations at \p MBB. Follows the algorithm described in the file-comment, 1402 /// reading live-outs of predecessors from \p OutLocs, the current live ins 1403 /// from \p InLocs, and assigning the newly computed live ins back into 1404 /// \p InLocs. \returns two bools -- the first indicates whether a change 1405 /// was made, the second whether a lattice downgrade occurred. If the latter 1406 /// is true, revisiting this block is necessary. 1407 bool mlocJoin(MachineBasicBlock &MBB, 1408 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1409 FuncValueTable &OutLocs, ValueTable &InLocs); 1410 1411 /// Produce a set of blocks that are in the current lexical scope. This means 1412 /// those blocks that contain instructions "in" the scope, blocks where 1413 /// assignments to variables in scope occur, and artificial blocks that are 1414 /// successors to any of the earlier blocks. See https://llvm.org/PR48091 for 1415 /// more commentry on what "in scope" means. 1416 /// \p DILoc A location in the scope that we're fetching blocks for. 1417 /// \p Output Set to put in-scope-blocks into. 1418 /// \p AssignBlocks Blocks known to contain assignments of variables in scope. 1419 void 1420 getBlocksForScope(const DILocation *DILoc, 1421 SmallPtrSetImpl<const MachineBasicBlock *> &Output, 1422 const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks); 1423 1424 /// Solve the variable value dataflow problem, for a single lexical scope. 1425 /// Uses the algorithm from the file comment to resolve control flow joins 1426 /// using PHI placement and value propagation. Reads the locations of machine 1427 /// values from the \p MInLocs and \p MOutLocs arrays (see buildMLocValueMap) 1428 /// and reads the variable values transfer function from \p AllTheVlocs. 1429 /// Live-in and Live-out variable values are stored locally, with the live-ins 1430 /// permanently stored to \p Output once a fixedpoint is reached. 1431 /// \p VarsWeCareAbout contains a collection of the variables in \p Scope 1432 /// that we should be tracking. 1433 /// \p AssignBlocks contains the set of blocks that aren't in \p DILoc's 1434 /// scope, but which do contain DBG_VALUEs, which VarLocBasedImpl tracks 1435 /// locations through. 1436 void buildVLocValueMap(const DILocation *DILoc, 1437 const SmallSet<DebugVariableID, 4> &VarsWeCareAbout, 1438 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, 1439 LiveInsT &Output, FuncValueTable &MOutLocs, 1440 FuncValueTable &MInLocs, 1441 SmallVectorImpl<VLocTracker> &AllTheVLocs); 1442 1443 /// Attempt to eliminate un-necessary PHIs on entry to a block. Examines the 1444 /// live-in values coming from predecessors live-outs, and replaces any PHIs 1445 /// already present in this blocks live-ins with a live-through value if the 1446 /// PHI isn't needed. 1447 /// \p LiveIn Old live-in value, overwritten with new one if live-in changes. 1448 /// \returns true if any live-ins change value, either from value propagation 1449 /// or PHI elimination. 1450 bool vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, 1451 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, 1452 DbgValue &LiveIn); 1453 1454 /// For the given block and live-outs feeding into it, try to find 1455 /// machine locations for each debug operand where all the values feeding 1456 /// into that operand join together. 1457 /// \returns true if a joined location was found for every value that needed 1458 /// to be joined. 1459 bool 1460 pickVPHILoc(SmallVectorImpl<DbgOpID> &OutValues, const MachineBasicBlock &MBB, 1461 const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs, 1462 const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders); 1463 1464 std::optional<ValueIDNum> pickOperandPHILoc( 1465 unsigned DbgOpIdx, const MachineBasicBlock &MBB, const LiveIdxT &LiveOuts, 1466 FuncValueTable &MOutLocs, 1467 const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders); 1468 1469 /// Take collections of DBG_VALUE instructions stored in TTracker, and 1470 /// install them into their output blocks. 1471 bool emitTransfers(); 1472 1473 /// Boilerplate computation of some initial sets, artifical blocks and 1474 /// RPOT block ordering. 1475 void initialSetup(MachineFunction &MF); 1476 1477 /// Produce a map of the last lexical scope that uses a block, using the 1478 /// scopes DFSOut number. Mapping is block-number to DFSOut. 1479 /// \p EjectionMap Pre-allocated vector in which to install the built ma. 1480 /// \p ScopeToDILocation Mapping of LexicalScopes to their DILocations. 1481 /// \p AssignBlocks Map of blocks where assignments happen for a scope. 1482 void makeDepthFirstEjectionMap(SmallVectorImpl<unsigned> &EjectionMap, 1483 const ScopeToDILocT &ScopeToDILocation, 1484 ScopeToAssignBlocksT &AssignBlocks); 1485 1486 /// When determining per-block variable values and emitting to DBG_VALUEs, 1487 /// this function explores by lexical scope depth. Doing so means that per 1488 /// block information can be fully computed before exploration finishes, 1489 /// allowing us to emit it and free data structures earlier than otherwise. 1490 /// It's also good for locality. 1491 bool depthFirstVLocAndEmit(unsigned MaxNumBlocks, 1492 const ScopeToDILocT &ScopeToDILocation, 1493 const ScopeToVarsT &ScopeToVars, 1494 ScopeToAssignBlocksT &ScopeToBlocks, 1495 LiveInsT &Output, FuncValueTable &MOutLocs, 1496 FuncValueTable &MInLocs, 1497 SmallVectorImpl<VLocTracker> &AllTheVLocs, 1498 MachineFunction &MF, const TargetPassConfig &TPC); 1499 1500 bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree, 1501 TargetPassConfig *TPC, unsigned InputBBLimit, 1502 unsigned InputDbgValLimit) override; 1503 1504 public: 1505 /// Default construct and initialize the pass. 1506 InstrRefBasedLDV(); 1507 1508 LLVM_DUMP_METHOD 1509 void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const; 1510 1511 bool isCalleeSaved(LocIdx L) const; 1512 bool isCalleeSavedReg(Register R) const; 1513 1514 bool hasFoldedStackStore(const MachineInstr &MI) { 1515 // Instruction must have a memory operand that's a stack slot, and isn't 1516 // aliased, meaning it's a spill from regalloc instead of a variable. 1517 // If it's aliased, we can't guarantee its value. 1518 if (!MI.hasOneMemOperand()) 1519 return false; 1520 auto *MemOperand = *MI.memoperands_begin(); 1521 return MemOperand->isStore() && 1522 MemOperand->getPseudoValue() && 1523 MemOperand->getPseudoValue()->kind() == PseudoSourceValue::FixedStack 1524 && !MemOperand->getPseudoValue()->isAliased(MFI); 1525 } 1526 1527 std::optional<LocIdx> findLocationForMemOperand(const MachineInstr &MI); 1528 1529 // Utility for unit testing, don't use directly. 1530 DebugVariableMap &getDVMap() { 1531 return DVMap; 1532 } 1533 }; 1534 1535 } // namespace LiveDebugValues 1536 1537 #endif /* LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H */ 1538