1 //===- InstrRefBasedImpl.h - Tracking Debug Value MIs ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H 10 #define LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H 11 12 #include "llvm/ADT/DenseMap.h" 13 #include "llvm/ADT/IndexedMap.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/UniqueVector.h" 17 #include "llvm/CodeGen/LexicalScopes.h" 18 #include "llvm/CodeGen/MachineBasicBlock.h" 19 #include "llvm/CodeGen/MachineInstr.h" 20 #include "llvm/CodeGen/TargetRegisterInfo.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 23 #include "LiveDebugValues.h" 24 25 class TransferTracker; 26 27 // Forward dec of unit test class, so that we can peer into the LDV object. 28 class InstrRefLDVTest; 29 30 namespace LiveDebugValues { 31 32 class MLocTracker; 33 34 using namespace llvm; 35 36 /// Handle-class for a particular "location". This value-type uniquely 37 /// symbolises a register or stack location, allowing manipulation of locations 38 /// without concern for where that location is. Practically, this allows us to 39 /// treat the state of the machine at a particular point as an array of values, 40 /// rather than a map of values. 41 class LocIdx { 42 unsigned Location; 43 44 // Default constructor is private, initializing to an illegal location number. 45 // Use only for "not an entry" elements in IndexedMaps. 46 LocIdx() : Location(UINT_MAX) {} 47 48 public: 49 #define NUM_LOC_BITS 24 50 LocIdx(unsigned L) : Location(L) { 51 assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits"); 52 } 53 54 static LocIdx MakeIllegalLoc() { return LocIdx(); } 55 static LocIdx MakeTombstoneLoc() { 56 LocIdx L = LocIdx(); 57 --L.Location; 58 return L; 59 } 60 61 bool isIllegal() const { return Location == UINT_MAX; } 62 63 uint64_t asU64() const { return Location; } 64 65 bool operator==(unsigned L) const { return Location == L; } 66 67 bool operator==(const LocIdx &L) const { return Location == L.Location; } 68 69 bool operator!=(unsigned L) const { return !(*this == L); } 70 71 bool operator!=(const LocIdx &L) const { return !(*this == L); } 72 73 bool operator<(const LocIdx &Other) const { 74 return Location < Other.Location; 75 } 76 }; 77 78 // The location at which a spilled value resides. It consists of a register and 79 // an offset. 80 struct SpillLoc { 81 unsigned SpillBase; 82 StackOffset SpillOffset; 83 bool operator==(const SpillLoc &Other) const { 84 return std::make_pair(SpillBase, SpillOffset) == 85 std::make_pair(Other.SpillBase, Other.SpillOffset); 86 } 87 bool operator<(const SpillLoc &Other) const { 88 return std::make_tuple(SpillBase, SpillOffset.getFixed(), 89 SpillOffset.getScalable()) < 90 std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(), 91 Other.SpillOffset.getScalable()); 92 } 93 }; 94 95 /// Unique identifier for a value defined by an instruction, as a value type. 96 /// Casts back and forth to a uint64_t. Probably replacable with something less 97 /// bit-constrained. Each value identifies the instruction and machine location 98 /// where the value is defined, although there may be no corresponding machine 99 /// operand for it (ex: regmasks clobbering values). The instructions are 100 /// one-based, and definitions that are PHIs have instruction number zero. 101 /// 102 /// The obvious limits of a 1M block function or 1M instruction blocks are 103 /// problematic; but by that point we should probably have bailed out of 104 /// trying to analyse the function. 105 class ValueIDNum { 106 union { 107 struct { 108 uint64_t BlockNo : 20; /// The block where the def happens. 109 uint64_t InstNo : 20; /// The Instruction where the def happens. 110 /// One based, is distance from start of block. 111 uint64_t LocNo 112 : NUM_LOC_BITS; /// The machine location where the def happens. 113 } s; 114 uint64_t Value; 115 } u; 116 117 static_assert(sizeof(u) == 8, "Badly packed ValueIDNum?"); 118 119 public: 120 // Default-initialize to EmptyValue. This is necessary to make IndexedMaps 121 // of values to work. 122 ValueIDNum() { u.Value = EmptyValue.asU64(); } 123 124 ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) { 125 u.s = {Block, Inst, Loc}; 126 } 127 128 ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) { 129 u.s = {Block, Inst, Loc.asU64()}; 130 } 131 132 uint64_t getBlock() const { return u.s.BlockNo; } 133 uint64_t getInst() const { return u.s.InstNo; } 134 uint64_t getLoc() const { return u.s.LocNo; } 135 bool isPHI() const { return u.s.InstNo == 0; } 136 137 uint64_t asU64() const { return u.Value; } 138 139 static ValueIDNum fromU64(uint64_t v) { 140 ValueIDNum Val; 141 Val.u.Value = v; 142 return Val; 143 } 144 145 bool operator<(const ValueIDNum &Other) const { 146 return asU64() < Other.asU64(); 147 } 148 149 bool operator==(const ValueIDNum &Other) const { 150 return u.Value == Other.u.Value; 151 } 152 153 bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); } 154 155 std::string asString(const std::string &mlocname) const { 156 return Twine("Value{bb: ") 157 .concat(Twine(u.s.BlockNo) 158 .concat(Twine(", inst: ") 159 .concat((u.s.InstNo ? Twine(u.s.InstNo) 160 : Twine("live-in")) 161 .concat(Twine(", loc: ").concat( 162 Twine(mlocname))) 163 .concat(Twine("}"))))) 164 .str(); 165 } 166 167 static ValueIDNum EmptyValue; 168 static ValueIDNum TombstoneValue; 169 }; 170 171 /// Type for a table of values in a block. 172 using ValueTable = std::unique_ptr<ValueIDNum[]>; 173 174 /// Type for a table-of-table-of-values, i.e., the collection of either 175 /// live-in or live-out values for each block in the function. 176 using FuncValueTable = std::unique_ptr<ValueTable[]>; 177 178 /// Thin wrapper around an integer -- designed to give more type safety to 179 /// spill location numbers. 180 class SpillLocationNo { 181 public: 182 explicit SpillLocationNo(unsigned SpillNo) : SpillNo(SpillNo) {} 183 unsigned SpillNo; 184 unsigned id() const { return SpillNo; } 185 186 bool operator<(const SpillLocationNo &Other) const { 187 return SpillNo < Other.SpillNo; 188 } 189 190 bool operator==(const SpillLocationNo &Other) const { 191 return SpillNo == Other.SpillNo; 192 } 193 bool operator!=(const SpillLocationNo &Other) const { 194 return !(*this == Other); 195 } 196 }; 197 198 /// Meta qualifiers for a value. Pair of whatever expression is used to qualify 199 /// the value, and Boolean of whether or not it's indirect. 200 class DbgValueProperties { 201 public: 202 DbgValueProperties(const DIExpression *DIExpr, bool Indirect) 203 : DIExpr(DIExpr), Indirect(Indirect) {} 204 205 /// Extract properties from an existing DBG_VALUE instruction. 206 DbgValueProperties(const MachineInstr &MI) { 207 assert(MI.isDebugValue()); 208 DIExpr = MI.getDebugExpression(); 209 Indirect = MI.getOperand(1).isImm(); 210 } 211 212 bool operator==(const DbgValueProperties &Other) const { 213 return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect); 214 } 215 216 bool operator!=(const DbgValueProperties &Other) const { 217 return !(*this == Other); 218 } 219 220 const DIExpression *DIExpr; 221 bool Indirect; 222 }; 223 224 /// Class recording the (high level) _value_ of a variable. Identifies either 225 /// the value of the variable as a ValueIDNum, or a constant MachineOperand. 226 /// This class also stores meta-information about how the value is qualified. 227 /// Used to reason about variable values when performing the second 228 /// (DebugVariable specific) dataflow analysis. 229 class DbgValue { 230 public: 231 /// If Kind is Def, the value number that this value is based on. VPHIs set 232 /// this field to EmptyValue if there is no machine-value for this VPHI, or 233 /// the corresponding machine-value if there is one. 234 ValueIDNum ID; 235 /// If Kind is Const, the MachineOperand defining this value. 236 Optional<MachineOperand> MO; 237 /// For a NoVal or VPHI DbgValue, which block it was generated in. 238 int BlockNo; 239 240 /// Qualifiers for the ValueIDNum above. 241 DbgValueProperties Properties; 242 243 typedef enum { 244 Undef, // Represents a DBG_VALUE $noreg in the transfer function only. 245 Def, // This value is defined by an inst, or is a PHI value. 246 Const, // A constant value contained in the MachineOperand field. 247 VPHI, // Incoming values to BlockNo differ, those values must be joined by 248 // a PHI in this block. 249 NoVal, // Empty DbgValue indicating an unknown value. Used as initializer, 250 // before dominating blocks values are propagated in. 251 } KindT; 252 /// Discriminator for whether this is a constant or an in-program value. 253 KindT Kind; 254 255 DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind) 256 : ID(Val), MO(None), BlockNo(0), Properties(Prop), Kind(Kind) { 257 assert(Kind == Def); 258 } 259 260 DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind) 261 : ID(ValueIDNum::EmptyValue), MO(None), BlockNo(BlockNo), 262 Properties(Prop), Kind(Kind) { 263 assert(Kind == NoVal || Kind == VPHI); 264 } 265 266 DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind) 267 : ID(ValueIDNum::EmptyValue), MO(MO), BlockNo(0), Properties(Prop), 268 Kind(Kind) { 269 assert(Kind == Const); 270 } 271 272 DbgValue(const DbgValueProperties &Prop, KindT Kind) 273 : ID(ValueIDNum::EmptyValue), MO(None), BlockNo(0), Properties(Prop), 274 Kind(Kind) { 275 assert(Kind == Undef && 276 "Empty DbgValue constructor must pass in Undef kind"); 277 } 278 279 #ifndef NDEBUG 280 void dump(const MLocTracker *MTrack) const; 281 #endif 282 283 bool operator==(const DbgValue &Other) const { 284 if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties)) 285 return false; 286 else if (Kind == Def && ID != Other.ID) 287 return false; 288 else if (Kind == NoVal && BlockNo != Other.BlockNo) 289 return false; 290 else if (Kind == Const) 291 return MO->isIdenticalTo(*Other.MO); 292 else if (Kind == VPHI && BlockNo != Other.BlockNo) 293 return false; 294 else if (Kind == VPHI && ID != Other.ID) 295 return false; 296 297 return true; 298 } 299 300 bool operator!=(const DbgValue &Other) const { return !(*this == Other); } 301 }; 302 303 class LocIdxToIndexFunctor { 304 public: 305 using argument_type = LocIdx; 306 unsigned operator()(const LocIdx &L) const { return L.asU64(); } 307 }; 308 309 /// Tracker for what values are in machine locations. Listens to the Things 310 /// being Done by various instructions, and maintains a table of what machine 311 /// locations have what values (as defined by a ValueIDNum). 312 /// 313 /// There are potentially a much larger number of machine locations on the 314 /// target machine than the actual working-set size of the function. On x86 for 315 /// example, we're extremely unlikely to want to track values through control 316 /// or debug registers. To avoid doing so, MLocTracker has several layers of 317 /// indirection going on, described below, to avoid unnecessarily tracking 318 /// any location. 319 /// 320 /// Here's a sort of diagram of the indexes, read from the bottom up: 321 /// 322 /// Size on stack Offset on stack 323 /// \ / 324 /// Stack Idx (Where in slot is this?) 325 /// / 326 /// / 327 /// Slot Num (%stack.0) / 328 /// FrameIdx => SpillNum / 329 /// \ / 330 /// SpillID (int) Register number (int) 331 /// \ / 332 /// LocationID => LocIdx 333 /// | 334 /// LocIdx => ValueIDNum 335 /// 336 /// The aim here is that the LocIdx => ValueIDNum vector is just an array of 337 /// values in numbered locations, so that later analyses can ignore whether the 338 /// location is a register or otherwise. To map a register / spill location to 339 /// a LocIdx, you have to use the (sparse) LocationID => LocIdx map. And to 340 /// build a LocationID for a stack slot, you need to combine identifiers for 341 /// which stack slot it is and where within that slot is being described. 342 /// 343 /// Register mask operands cause trouble by technically defining every register; 344 /// various hacks are used to avoid tracking registers that are never read and 345 /// only written by regmasks. 346 class MLocTracker { 347 public: 348 MachineFunction &MF; 349 const TargetInstrInfo &TII; 350 const TargetRegisterInfo &TRI; 351 const TargetLowering &TLI; 352 353 /// IndexedMap type, mapping from LocIdx to ValueIDNum. 354 using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>; 355 356 /// Map of LocIdxes to the ValueIDNums that they store. This is tightly 357 /// packed, entries only exist for locations that are being tracked. 358 LocToValueType LocIdxToIDNum; 359 360 /// "Map" of machine location IDs (i.e., raw register or spill number) to the 361 /// LocIdx key / number for that location. There are always at least as many 362 /// as the number of registers on the target -- if the value in the register 363 /// is not being tracked, then the LocIdx value will be zero. New entries are 364 /// appended if a new spill slot begins being tracked. 365 /// This, and the corresponding reverse map persist for the analysis of the 366 /// whole function, and is necessarying for decoding various vectors of 367 /// values. 368 std::vector<LocIdx> LocIDToLocIdx; 369 370 /// Inverse map of LocIDToLocIdx. 371 IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID; 372 373 /// When clobbering register masks, we chose to not believe the machine model 374 /// and don't clobber SP. Do the same for SP aliases, and for efficiency, 375 /// keep a set of them here. 376 SmallSet<Register, 8> SPAliases; 377 378 /// Unique-ification of spill. Used to number them -- their LocID number is 379 /// the index in SpillLocs minus one plus NumRegs. 380 UniqueVector<SpillLoc> SpillLocs; 381 382 // If we discover a new machine location, assign it an mphi with this 383 // block number. 384 unsigned CurBB; 385 386 /// Cached local copy of the number of registers the target has. 387 unsigned NumRegs; 388 389 /// Number of slot indexes the target has -- distinct segments of a stack 390 /// slot that can take on the value of a subregister, when a super-register 391 /// is written to the stack. 392 unsigned NumSlotIdxes; 393 394 /// Collection of register mask operands that have been observed. Second part 395 /// of pair indicates the instruction that they happened in. Used to 396 /// reconstruct where defs happened if we start tracking a location later 397 /// on. 398 SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks; 399 400 /// Pair for describing a position within a stack slot -- first the size in 401 /// bits, then the offset. 402 typedef std::pair<unsigned short, unsigned short> StackSlotPos; 403 404 /// Map from a size/offset pair describing a position in a stack slot, to a 405 /// numeric identifier for that position. Allows easier identification of 406 /// individual positions. 407 DenseMap<StackSlotPos, unsigned> StackSlotIdxes; 408 409 /// Inverse of StackSlotIdxes. 410 DenseMap<unsigned, StackSlotPos> StackIdxesToPos; 411 412 /// Iterator for locations and the values they contain. Dereferencing 413 /// produces a struct/pair containing the LocIdx key for this location, 414 /// and a reference to the value currently stored. Simplifies the process 415 /// of seeking a particular location. 416 class MLocIterator { 417 LocToValueType &ValueMap; 418 LocIdx Idx; 419 420 public: 421 class value_type { 422 public: 423 value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) {} 424 const LocIdx Idx; /// Read-only index of this location. 425 ValueIDNum &Value; /// Reference to the stored value at this location. 426 }; 427 428 MLocIterator(LocToValueType &ValueMap, LocIdx Idx) 429 : ValueMap(ValueMap), Idx(Idx) {} 430 431 bool operator==(const MLocIterator &Other) const { 432 assert(&ValueMap == &Other.ValueMap); 433 return Idx == Other.Idx; 434 } 435 436 bool operator!=(const MLocIterator &Other) const { 437 return !(*this == Other); 438 } 439 440 void operator++() { Idx = LocIdx(Idx.asU64() + 1); } 441 442 value_type operator*() { return value_type(Idx, ValueMap[LocIdx(Idx)]); } 443 }; 444 445 MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, 446 const TargetRegisterInfo &TRI, const TargetLowering &TLI); 447 448 /// Produce location ID number for a Register. Provides some small amount of 449 /// type safety. 450 /// \param Reg The register we're looking up. 451 unsigned getLocID(Register Reg) { return Reg.id(); } 452 453 /// Produce location ID number for a spill position. 454 /// \param Spill The number of the spill we're fetching the location for. 455 /// \param SpillSubReg Subregister within the spill we're addressing. 456 unsigned getLocID(SpillLocationNo Spill, unsigned SpillSubReg) { 457 unsigned short Size = TRI.getSubRegIdxSize(SpillSubReg); 458 unsigned short Offs = TRI.getSubRegIdxOffset(SpillSubReg); 459 return getLocID(Spill, {Size, Offs}); 460 } 461 462 /// Produce location ID number for a spill position. 463 /// \param Spill The number of the spill we're fetching the location for. 464 /// \apram SpillIdx size/offset within the spill slot to be addressed. 465 unsigned getLocID(SpillLocationNo Spill, StackSlotPos Idx) { 466 unsigned SlotNo = Spill.id() - 1; 467 SlotNo *= NumSlotIdxes; 468 assert(StackSlotIdxes.find(Idx) != StackSlotIdxes.end()); 469 SlotNo += StackSlotIdxes[Idx]; 470 SlotNo += NumRegs; 471 return SlotNo; 472 } 473 474 /// Given a spill number, and a slot within the spill, calculate the ID number 475 /// for that location. 476 unsigned getSpillIDWithIdx(SpillLocationNo Spill, unsigned Idx) { 477 unsigned SlotNo = Spill.id() - 1; 478 SlotNo *= NumSlotIdxes; 479 SlotNo += Idx; 480 SlotNo += NumRegs; 481 return SlotNo; 482 } 483 484 /// Return the spill number that a location ID corresponds to. 485 SpillLocationNo locIDToSpill(unsigned ID) const { 486 assert(ID >= NumRegs); 487 ID -= NumRegs; 488 // Truncate away the index part, leaving only the spill number. 489 ID /= NumSlotIdxes; 490 return SpillLocationNo(ID + 1); // The UniqueVector is one-based. 491 } 492 493 /// Returns the spill-slot size/offs that a location ID corresponds to. 494 StackSlotPos locIDToSpillIdx(unsigned ID) const { 495 assert(ID >= NumRegs); 496 ID -= NumRegs; 497 unsigned Idx = ID % NumSlotIdxes; 498 return StackIdxesToPos.find(Idx)->second; 499 } 500 501 unsigned getNumLocs() const { return LocIdxToIDNum.size(); } 502 503 /// Reset all locations to contain a PHI value at the designated block. Used 504 /// sometimes for actual PHI values, othertimes to indicate the block entry 505 /// value (before any more information is known). 506 void setMPhis(unsigned NewCurBB) { 507 CurBB = NewCurBB; 508 for (auto Location : locations()) 509 Location.Value = {CurBB, 0, Location.Idx}; 510 } 511 512 /// Load values for each location from array of ValueIDNums. Take current 513 /// bbnum just in case we read a value from a hitherto untouched register. 514 void loadFromArray(ValueTable &Locs, unsigned NewCurBB) { 515 CurBB = NewCurBB; 516 // Iterate over all tracked locations, and load each locations live-in 517 // value into our local index. 518 for (auto Location : locations()) 519 Location.Value = Locs[Location.Idx.asU64()]; 520 } 521 522 /// Wipe any un-necessary location records after traversing a block. 523 void reset() { 524 // We could reset all the location values too; however either loadFromArray 525 // or setMPhis should be called before this object is re-used. Just 526 // clear Masks, they're definitely not needed. 527 Masks.clear(); 528 } 529 530 /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of 531 /// the information in this pass uninterpretable. 532 void clear() { 533 reset(); 534 LocIDToLocIdx.clear(); 535 LocIdxToLocID.clear(); 536 LocIdxToIDNum.clear(); 537 // SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from 538 // 0 539 SpillLocs = decltype(SpillLocs)(); 540 StackSlotIdxes.clear(); 541 StackIdxesToPos.clear(); 542 543 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); 544 } 545 546 /// Set a locaiton to a certain value. 547 void setMLoc(LocIdx L, ValueIDNum Num) { 548 assert(L.asU64() < LocIdxToIDNum.size()); 549 LocIdxToIDNum[L] = Num; 550 } 551 552 /// Read the value of a particular location 553 ValueIDNum readMLoc(LocIdx L) { 554 assert(L.asU64() < LocIdxToIDNum.size()); 555 return LocIdxToIDNum[L]; 556 } 557 558 /// Create a LocIdx for an untracked register ID. Initialize it to either an 559 /// mphi value representing a live-in, or a recent register mask clobber. 560 LocIdx trackRegister(unsigned ID); 561 562 LocIdx lookupOrTrackRegister(unsigned ID) { 563 LocIdx &Index = LocIDToLocIdx[ID]; 564 if (Index.isIllegal()) 565 Index = trackRegister(ID); 566 return Index; 567 } 568 569 /// Is register R currently tracked by MLocTracker? 570 bool isRegisterTracked(Register R) { 571 LocIdx &Index = LocIDToLocIdx[R]; 572 return !Index.isIllegal(); 573 } 574 575 /// Record a definition of the specified register at the given block / inst. 576 /// This doesn't take a ValueIDNum, because the definition and its location 577 /// are synonymous. 578 void defReg(Register R, unsigned BB, unsigned Inst) { 579 unsigned ID = getLocID(R); 580 LocIdx Idx = lookupOrTrackRegister(ID); 581 ValueIDNum ValueID = {BB, Inst, Idx}; 582 LocIdxToIDNum[Idx] = ValueID; 583 } 584 585 /// Set a register to a value number. To be used if the value number is 586 /// known in advance. 587 void setReg(Register R, ValueIDNum ValueID) { 588 unsigned ID = getLocID(R); 589 LocIdx Idx = lookupOrTrackRegister(ID); 590 LocIdxToIDNum[Idx] = ValueID; 591 } 592 593 ValueIDNum readReg(Register R) { 594 unsigned ID = getLocID(R); 595 LocIdx Idx = lookupOrTrackRegister(ID); 596 return LocIdxToIDNum[Idx]; 597 } 598 599 /// Reset a register value to zero / empty. Needed to replicate the 600 /// VarLoc implementation where a copy to/from a register effectively 601 /// clears the contents of the source register. (Values can only have one 602 /// machine location in VarLocBasedImpl). 603 void wipeRegister(Register R) { 604 unsigned ID = getLocID(R); 605 LocIdx Idx = LocIDToLocIdx[ID]; 606 LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue; 607 } 608 609 /// Determine the LocIdx of an existing register. 610 LocIdx getRegMLoc(Register R) { 611 unsigned ID = getLocID(R); 612 assert(ID < LocIDToLocIdx.size()); 613 assert(LocIDToLocIdx[ID] != UINT_MAX); // Sentinal for IndexedMap. 614 return LocIDToLocIdx[ID]; 615 } 616 617 /// Record a RegMask operand being executed. Defs any register we currently 618 /// track, stores a pointer to the mask in case we have to account for it 619 /// later. 620 void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID); 621 622 /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked. 623 /// Returns None when in scenarios where a spill slot could be tracked, but 624 /// we would likely run into resource limitations. 625 Optional<SpillLocationNo> getOrTrackSpillLoc(SpillLoc L); 626 627 // Get LocIdx of a spill ID. 628 LocIdx getSpillMLoc(unsigned SpillID) { 629 assert(LocIDToLocIdx[SpillID] != UINT_MAX); // Sentinal for IndexedMap. 630 return LocIDToLocIdx[SpillID]; 631 } 632 633 /// Return true if Idx is a spill machine location. 634 bool isSpill(LocIdx Idx) const { return LocIdxToLocID[Idx] >= NumRegs; } 635 636 /// How large is this location (aka, how wide is a value defined there?). 637 unsigned getLocSizeInBits(LocIdx L) const { 638 unsigned ID = LocIdxToLocID[L]; 639 if (!isSpill(L)) { 640 return TRI.getRegSizeInBits(Register(ID), MF.getRegInfo()); 641 } else { 642 // The slot location on the stack is uninteresting, we care about the 643 // position of the value within the slot (which comes with a size). 644 StackSlotPos Pos = locIDToSpillIdx(ID); 645 return Pos.first; 646 } 647 } 648 649 MLocIterator begin() { return MLocIterator(LocIdxToIDNum, 0); } 650 651 MLocIterator end() { 652 return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size()); 653 } 654 655 /// Return a range over all locations currently tracked. 656 iterator_range<MLocIterator> locations() { 657 return llvm::make_range(begin(), end()); 658 } 659 660 std::string LocIdxToName(LocIdx Idx) const; 661 662 std::string IDAsString(const ValueIDNum &Num) const; 663 664 #ifndef NDEBUG 665 LLVM_DUMP_METHOD void dump(); 666 667 LLVM_DUMP_METHOD void dump_mloc_map(); 668 #endif 669 670 /// Create a DBG_VALUE based on machine location \p MLoc. Qualify it with the 671 /// information in \pProperties, for variable Var. Don't insert it anywhere, 672 /// just return the builder for it. 673 MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var, 674 const DbgValueProperties &Properties); 675 }; 676 677 /// Types for recording sets of variable fragments that overlap. For a given 678 /// local variable, we record all other fragments of that variable that could 679 /// overlap it, to reduce search time. 680 using FragmentOfVar = 681 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; 682 using OverlapMap = 683 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; 684 685 /// Collection of DBG_VALUEs observed when traversing a block. Records each 686 /// variable and the value the DBG_VALUE refers to. Requires the machine value 687 /// location dataflow algorithm to have run already, so that values can be 688 /// identified. 689 class VLocTracker { 690 public: 691 /// Map DebugVariable to the latest Value it's defined to have. 692 /// Needs to be a MapVector because we determine order-in-the-input-MIR from 693 /// the order in this container. 694 /// We only retain the last DbgValue in each block for each variable, to 695 /// determine the blocks live-out variable value. The Vars container forms the 696 /// transfer function for this block, as part of the dataflow analysis. The 697 /// movement of values between locations inside of a block is handled at a 698 /// much later stage, in the TransferTracker class. 699 MapVector<DebugVariable, DbgValue> Vars; 700 SmallDenseMap<DebugVariable, const DILocation *, 8> Scopes; 701 MachineBasicBlock *MBB = nullptr; 702 const OverlapMap &OverlappingFragments; 703 DbgValueProperties EmptyProperties; 704 705 public: 706 VLocTracker(const OverlapMap &O, const DIExpression *EmptyExpr) 707 : OverlappingFragments(O), EmptyProperties(EmptyExpr, false) {} 708 709 void defVar(const MachineInstr &MI, const DbgValueProperties &Properties, 710 Optional<ValueIDNum> ID) { 711 assert(MI.isDebugValue() || MI.isDebugRef()); 712 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 713 MI.getDebugLoc()->getInlinedAt()); 714 DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def) 715 : DbgValue(Properties, DbgValue::Undef); 716 717 // Attempt insertion; overwrite if it's already mapped. 718 auto Result = Vars.insert(std::make_pair(Var, Rec)); 719 if (!Result.second) 720 Result.first->second = Rec; 721 Scopes[Var] = MI.getDebugLoc().get(); 722 723 considerOverlaps(Var, MI.getDebugLoc().get()); 724 } 725 726 void defVar(const MachineInstr &MI, const MachineOperand &MO) { 727 // Only DBG_VALUEs can define constant-valued variables. 728 assert(MI.isDebugValue()); 729 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 730 MI.getDebugLoc()->getInlinedAt()); 731 DbgValueProperties Properties(MI); 732 DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const); 733 734 // Attempt insertion; overwrite if it's already mapped. 735 auto Result = Vars.insert(std::make_pair(Var, Rec)); 736 if (!Result.second) 737 Result.first->second = Rec; 738 Scopes[Var] = MI.getDebugLoc().get(); 739 740 considerOverlaps(Var, MI.getDebugLoc().get()); 741 } 742 743 void considerOverlaps(const DebugVariable &Var, const DILocation *Loc) { 744 auto Overlaps = OverlappingFragments.find( 745 {Var.getVariable(), Var.getFragmentOrDefault()}); 746 if (Overlaps == OverlappingFragments.end()) 747 return; 748 749 // Otherwise: terminate any overlapped variable locations. 750 for (auto FragmentInfo : Overlaps->second) { 751 // The "empty" fragment is stored as DebugVariable::DefaultFragment, so 752 // that it overlaps with everything, however its cannonical representation 753 // in a DebugVariable is as "None". 754 Optional<DIExpression::FragmentInfo> OptFragmentInfo = FragmentInfo; 755 if (DebugVariable::isDefaultFragment(FragmentInfo)) 756 OptFragmentInfo = None; 757 758 DebugVariable Overlapped(Var.getVariable(), OptFragmentInfo, 759 Var.getInlinedAt()); 760 DbgValue Rec = DbgValue(EmptyProperties, DbgValue::Undef); 761 762 // Attempt insertion; overwrite if it's already mapped. 763 auto Result = Vars.insert(std::make_pair(Overlapped, Rec)); 764 if (!Result.second) 765 Result.first->second = Rec; 766 Scopes[Overlapped] = Loc; 767 } 768 } 769 770 void clear() { 771 Vars.clear(); 772 Scopes.clear(); 773 } 774 }; 775 776 // XXX XXX docs 777 class InstrRefBasedLDV : public LDVImpl { 778 public: 779 friend class ::InstrRefLDVTest; 780 781 using FragmentInfo = DIExpression::FragmentInfo; 782 using OptFragmentInfo = Optional<DIExpression::FragmentInfo>; 783 784 // Helper while building OverlapMap, a map of all fragments seen for a given 785 // DILocalVariable. 786 using VarToFragments = 787 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; 788 789 /// Machine location/value transfer function, a mapping of which locations 790 /// are assigned which new values. 791 using MLocTransferMap = SmallDenseMap<LocIdx, ValueIDNum>; 792 793 /// Live in/out structure for the variable values: a per-block map of 794 /// variables to their values. 795 using LiveIdxT = DenseMap<const MachineBasicBlock *, DbgValue *>; 796 797 using VarAndLoc = std::pair<DebugVariable, DbgValue>; 798 799 /// Type for a live-in value: the predecessor block, and its value. 800 using InValueT = std::pair<MachineBasicBlock *, DbgValue *>; 801 802 /// Vector (per block) of a collection (inner smallvector) of live-ins. 803 /// Used as the result type for the variable value dataflow problem. 804 using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>; 805 806 /// Mapping from lexical scopes to a DILocation in that scope. 807 using ScopeToDILocT = DenseMap<const LexicalScope *, const DILocation *>; 808 809 /// Mapping from lexical scopes to variables in that scope. 810 using ScopeToVarsT = DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>>; 811 812 /// Mapping from lexical scopes to blocks where variables in that scope are 813 /// assigned. Such blocks aren't necessarily "in" the lexical scope, it's 814 /// just a block where an assignment happens. 815 using ScopeToAssignBlocksT = DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>; 816 817 private: 818 MachineDominatorTree *DomTree; 819 const TargetRegisterInfo *TRI; 820 const MachineRegisterInfo *MRI; 821 const TargetInstrInfo *TII; 822 const TargetFrameLowering *TFI; 823 const MachineFrameInfo *MFI; 824 BitVector CalleeSavedRegs; 825 LexicalScopes LS; 826 TargetPassConfig *TPC; 827 828 // An empty DIExpression. Used default / placeholder DbgValueProperties 829 // objects, as we can't have null expressions. 830 const DIExpression *EmptyExpr; 831 832 /// Object to track machine locations as we step through a block. Could 833 /// probably be a field rather than a pointer, as it's always used. 834 MLocTracker *MTracker = nullptr; 835 836 /// Number of the current block LiveDebugValues is stepping through. 837 unsigned CurBB; 838 839 /// Number of the current instruction LiveDebugValues is evaluating. 840 unsigned CurInst; 841 842 /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl 843 /// steps through a block. Reads the values at each location from the 844 /// MLocTracker object. 845 VLocTracker *VTracker = nullptr; 846 847 /// Tracker for transfers, listens to DBG_VALUEs and transfers of values 848 /// between locations during stepping, creates new DBG_VALUEs when values move 849 /// location. 850 TransferTracker *TTracker = nullptr; 851 852 /// Blocks which are artificial, i.e. blocks which exclusively contain 853 /// instructions without DebugLocs, or with line 0 locations. 854 SmallPtrSet<MachineBasicBlock *, 16> ArtificialBlocks; 855 856 // Mapping of blocks to and from their RPOT order. 857 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; 858 DenseMap<const MachineBasicBlock *, unsigned int> BBToOrder; 859 DenseMap<unsigned, unsigned> BBNumToRPO; 860 861 /// Pair of MachineInstr, and its 1-based offset into the containing block. 862 using InstAndNum = std::pair<const MachineInstr *, unsigned>; 863 /// Map from debug instruction number to the MachineInstr labelled with that 864 /// number, and its location within the function. Used to transform 865 /// instruction numbers in DBG_INSTR_REFs into machine value numbers. 866 std::map<uint64_t, InstAndNum> DebugInstrNumToInstr; 867 868 /// Record of where we observed a DBG_PHI instruction. 869 class DebugPHIRecord { 870 public: 871 /// Instruction number of this DBG_PHI. 872 uint64_t InstrNum; 873 /// Block where DBG_PHI occurred. 874 MachineBasicBlock *MBB; 875 /// The value number read by the DBG_PHI -- or None if it didn't refer to 876 /// a value. 877 Optional<ValueIDNum> ValueRead; 878 /// Register/Stack location the DBG_PHI reads -- or None if it referred to 879 /// something unexpected. 880 Optional<LocIdx> ReadLoc; 881 882 operator unsigned() const { return InstrNum; } 883 }; 884 885 /// Map from instruction numbers defined by DBG_PHIs to a record of what that 886 /// DBG_PHI read and where. Populated and edited during the machine value 887 /// location problem -- we use LLVMs SSA Updater to fix changes by 888 /// optimizations that destroy PHI instructions. 889 SmallVector<DebugPHIRecord, 32> DebugPHINumToValue; 890 891 // Map of overlapping variable fragments. 892 OverlapMap OverlapFragments; 893 VarToFragments SeenFragments; 894 895 /// Mapping of DBG_INSTR_REF instructions to their values, for those 896 /// DBG_INSTR_REFs that call resolveDbgPHIs. These variable references solve 897 /// a mini SSA problem caused by DBG_PHIs being cloned, this collection caches 898 /// the result. 899 DenseMap<MachineInstr *, Optional<ValueIDNum>> SeenDbgPHIs; 900 901 /// True if we need to examine call instructions for stack clobbers. We 902 /// normally assume that they don't clobber SP, but stack probes on Windows 903 /// do. 904 bool AdjustsStackInCalls = false; 905 906 /// If AdjustsStackInCalls is true, this holds the name of the target's stack 907 /// probe function, which is the function we expect will alter the stack 908 /// pointer. 909 StringRef StackProbeSymbolName; 910 911 /// Tests whether this instruction is a spill to a stack slot. 912 Optional<SpillLocationNo> isSpillInstruction(const MachineInstr &MI, 913 MachineFunction *MF); 914 915 /// Decide if @MI is a spill instruction and return true if it is. We use 2 916 /// criteria to make this decision: 917 /// - Is this instruction a store to a spill slot? 918 /// - Is there a register operand that is both used and killed? 919 /// TODO: Store optimization can fold spills into other stores (including 920 /// other spills). We do not handle this yet (more than one memory operand). 921 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, 922 unsigned &Reg); 923 924 /// If a given instruction is identified as a spill, return the spill slot 925 /// and set \p Reg to the spilled register. 926 Optional<SpillLocationNo> isRestoreInstruction(const MachineInstr &MI, 927 MachineFunction *MF, unsigned &Reg); 928 929 /// Given a spill instruction, extract the spill slot information, ensure it's 930 /// tracked, and return the spill number. 931 Optional<SpillLocationNo> 932 extractSpillBaseRegAndOffset(const MachineInstr &MI); 933 934 /// Observe a single instruction while stepping through a block. 935 void process(MachineInstr &MI, const ValueTable *MLiveOuts, 936 const ValueTable *MLiveIns); 937 938 /// Examines whether \p MI is a DBG_VALUE and notifies trackers. 939 /// \returns true if MI was recognized and processed. 940 bool transferDebugValue(const MachineInstr &MI); 941 942 /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers. 943 /// \returns true if MI was recognized and processed. 944 bool transferDebugInstrRef(MachineInstr &MI, const ValueTable *MLiveOuts, 945 const ValueTable *MLiveIns); 946 947 /// Stores value-information about where this PHI occurred, and what 948 /// instruction number is associated with it. 949 /// \returns true if MI was recognized and processed. 950 bool transferDebugPHI(MachineInstr &MI); 951 952 /// Examines whether \p MI is copy instruction, and notifies trackers. 953 /// \returns true if MI was recognized and processed. 954 bool transferRegisterCopy(MachineInstr &MI); 955 956 /// Examines whether \p MI is stack spill or restore instruction, and 957 /// notifies trackers. \returns true if MI was recognized and processed. 958 bool transferSpillOrRestoreInst(MachineInstr &MI); 959 960 /// Examines \p MI for any registers that it defines, and notifies trackers. 961 void transferRegisterDef(MachineInstr &MI); 962 963 /// Copy one location to the other, accounting for movement of subregisters 964 /// too. 965 void performCopy(Register Src, Register Dst); 966 967 void accumulateFragmentMap(MachineInstr &MI); 968 969 /// Determine the machine value number referred to by (potentially several) 970 /// DBG_PHI instructions. Block duplication and tail folding can duplicate 971 /// DBG_PHIs, shifting the position where values in registers merge, and 972 /// forming another mini-ssa problem to solve. 973 /// \p Here the position of a DBG_INSTR_REF seeking a machine value number 974 /// \p InstrNum Debug instruction number defined by DBG_PHI instructions. 975 /// \returns The machine value number at position Here, or None. 976 Optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF, 977 const ValueTable *MLiveOuts, 978 const ValueTable *MLiveIns, 979 MachineInstr &Here, uint64_t InstrNum); 980 981 Optional<ValueIDNum> resolveDbgPHIsImpl(MachineFunction &MF, 982 const ValueTable *MLiveOuts, 983 const ValueTable *MLiveIns, 984 MachineInstr &Here, 985 uint64_t InstrNum); 986 987 /// Step through the function, recording register definitions and movements 988 /// in an MLocTracker. Convert the observations into a per-block transfer 989 /// function in \p MLocTransfer, suitable for using with the machine value 990 /// location dataflow problem. 991 void 992 produceMLocTransferFunction(MachineFunction &MF, 993 SmallVectorImpl<MLocTransferMap> &MLocTransfer, 994 unsigned MaxNumBlocks); 995 996 /// Solve the machine value location dataflow problem. Takes as input the 997 /// transfer functions in \p MLocTransfer. Writes the output live-in and 998 /// live-out arrays to the (initialized to zero) multidimensional arrays in 999 /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block 1000 /// number, the inner by LocIdx. 1001 void buildMLocValueMap(MachineFunction &MF, FuncValueTable &MInLocs, 1002 FuncValueTable &MOutLocs, 1003 SmallVectorImpl<MLocTransferMap> &MLocTransfer); 1004 1005 /// Examine the stack indexes (i.e. offsets within the stack) to find the 1006 /// basic units of interference -- like reg units, but for the stack. 1007 void findStackIndexInterference(SmallVectorImpl<unsigned> &Slots); 1008 1009 /// Install PHI values into the live-in array for each block, according to 1010 /// the IDF of each register. 1011 void placeMLocPHIs(MachineFunction &MF, 1012 SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 1013 FuncValueTable &MInLocs, 1014 SmallVectorImpl<MLocTransferMap> &MLocTransfer); 1015 1016 /// Propagate variable values to blocks in the common case where there's 1017 /// only one value assigned to the variable. This function has better 1018 /// performance as it doesn't have to find the dominance frontier between 1019 /// different assignments. 1020 void placePHIsForSingleVarDefinition( 1021 const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks, 1022 MachineBasicBlock *MBB, SmallVectorImpl<VLocTracker> &AllTheVLocs, 1023 const DebugVariable &Var, LiveInsT &Output); 1024 1025 /// Calculate the iterated-dominance-frontier for a set of defs, using the 1026 /// existing LLVM facilities for this. Works for a single "value" or 1027 /// machine/variable location. 1028 /// \p AllBlocks Set of blocks where we might consume the value. 1029 /// \p DefBlocks Set of blocks where the value/location is defined. 1030 /// \p PHIBlocks Output set of blocks where PHIs must be placed. 1031 void BlockPHIPlacement(const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 1032 const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks, 1033 SmallVectorImpl<MachineBasicBlock *> &PHIBlocks); 1034 1035 /// Perform a control flow join (lattice value meet) of the values in machine 1036 /// locations at \p MBB. Follows the algorithm described in the file-comment, 1037 /// reading live-outs of predecessors from \p OutLocs, the current live ins 1038 /// from \p InLocs, and assigning the newly computed live ins back into 1039 /// \p InLocs. \returns two bools -- the first indicates whether a change 1040 /// was made, the second whether a lattice downgrade occurred. If the latter 1041 /// is true, revisiting this block is necessary. 1042 bool mlocJoin(MachineBasicBlock &MBB, 1043 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1044 FuncValueTable &OutLocs, ValueTable &InLocs); 1045 1046 /// Produce a set of blocks that are in the current lexical scope. This means 1047 /// those blocks that contain instructions "in" the scope, blocks where 1048 /// assignments to variables in scope occur, and artificial blocks that are 1049 /// successors to any of the earlier blocks. See https://llvm.org/PR48091 for 1050 /// more commentry on what "in scope" means. 1051 /// \p DILoc A location in the scope that we're fetching blocks for. 1052 /// \p Output Set to put in-scope-blocks into. 1053 /// \p AssignBlocks Blocks known to contain assignments of variables in scope. 1054 void 1055 getBlocksForScope(const DILocation *DILoc, 1056 SmallPtrSetImpl<const MachineBasicBlock *> &Output, 1057 const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks); 1058 1059 /// Solve the variable value dataflow problem, for a single lexical scope. 1060 /// Uses the algorithm from the file comment to resolve control flow joins 1061 /// using PHI placement and value propagation. Reads the locations of machine 1062 /// values from the \p MInLocs and \p MOutLocs arrays (see buildMLocValueMap) 1063 /// and reads the variable values transfer function from \p AllTheVlocs. 1064 /// Live-in and Live-out variable values are stored locally, with the live-ins 1065 /// permanently stored to \p Output once a fixedpoint is reached. 1066 /// \p VarsWeCareAbout contains a collection of the variables in \p Scope 1067 /// that we should be tracking. 1068 /// \p AssignBlocks contains the set of blocks that aren't in \p DILoc's 1069 /// scope, but which do contain DBG_VALUEs, which VarLocBasedImpl tracks 1070 /// locations through. 1071 void buildVLocValueMap(const DILocation *DILoc, 1072 const SmallSet<DebugVariable, 4> &VarsWeCareAbout, 1073 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, 1074 LiveInsT &Output, FuncValueTable &MOutLocs, 1075 FuncValueTable &MInLocs, 1076 SmallVectorImpl<VLocTracker> &AllTheVLocs); 1077 1078 /// Attempt to eliminate un-necessary PHIs on entry to a block. Examines the 1079 /// live-in values coming from predecessors live-outs, and replaces any PHIs 1080 /// already present in this blocks live-ins with a live-through value if the 1081 /// PHI isn't needed. 1082 /// \p LiveIn Old live-in value, overwritten with new one if live-in changes. 1083 /// \returns true if any live-ins change value, either from value propagation 1084 /// or PHI elimination. 1085 bool vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, 1086 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, 1087 DbgValue &LiveIn); 1088 1089 /// For the given block and live-outs feeding into it, try to find a 1090 /// machine location where all the variable values join together. 1091 /// \returns Value ID of a machine PHI if an appropriate one is available. 1092 Optional<ValueIDNum> 1093 pickVPHILoc(const MachineBasicBlock &MBB, const DebugVariable &Var, 1094 const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs, 1095 const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders); 1096 1097 /// Take collections of DBG_VALUE instructions stored in TTracker, and 1098 /// install them into their output blocks. Preserves a stable order of 1099 /// DBG_VALUEs produced (which would otherwise cause nondeterminism) through 1100 /// the AllVarsNumbering order. 1101 bool emitTransfers(DenseMap<DebugVariable, unsigned> &AllVarsNumbering); 1102 1103 /// Boilerplate computation of some initial sets, artifical blocks and 1104 /// RPOT block ordering. 1105 void initialSetup(MachineFunction &MF); 1106 1107 /// Produce a map of the last lexical scope that uses a block, using the 1108 /// scopes DFSOut number. Mapping is block-number to DFSOut. 1109 /// \p EjectionMap Pre-allocated vector in which to install the built ma. 1110 /// \p ScopeToDILocation Mapping of LexicalScopes to their DILocations. 1111 /// \p AssignBlocks Map of blocks where assignments happen for a scope. 1112 void makeDepthFirstEjectionMap(SmallVectorImpl<unsigned> &EjectionMap, 1113 const ScopeToDILocT &ScopeToDILocation, 1114 ScopeToAssignBlocksT &AssignBlocks); 1115 1116 /// When determining per-block variable values and emitting to DBG_VALUEs, 1117 /// this function explores by lexical scope depth. Doing so means that per 1118 /// block information can be fully computed before exploration finishes, 1119 /// allowing us to emit it and free data structures earlier than otherwise. 1120 /// It's also good for locality. 1121 bool depthFirstVLocAndEmit( 1122 unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation, 1123 const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToBlocks, 1124 LiveInsT &Output, FuncValueTable &MOutLocs, FuncValueTable &MInLocs, 1125 SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF, 1126 DenseMap<DebugVariable, unsigned> &AllVarsNumbering, 1127 const TargetPassConfig &TPC); 1128 1129 bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree, 1130 TargetPassConfig *TPC, unsigned InputBBLimit, 1131 unsigned InputDbgValLimit) override; 1132 1133 public: 1134 /// Default construct and initialize the pass. 1135 InstrRefBasedLDV(); 1136 1137 LLVM_DUMP_METHOD 1138 void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const; 1139 1140 bool isCalleeSaved(LocIdx L) const; 1141 1142 bool hasFoldedStackStore(const MachineInstr &MI) { 1143 // Instruction must have a memory operand that's a stack slot, and isn't 1144 // aliased, meaning it's a spill from regalloc instead of a variable. 1145 // If it's aliased, we can't guarantee its value. 1146 if (!MI.hasOneMemOperand()) 1147 return false; 1148 auto *MemOperand = *MI.memoperands_begin(); 1149 return MemOperand->isStore() && 1150 MemOperand->getPseudoValue() && 1151 MemOperand->getPseudoValue()->kind() == PseudoSourceValue::FixedStack 1152 && !MemOperand->getPseudoValue()->isAliased(MFI); 1153 } 1154 1155 Optional<LocIdx> findLocationForMemOperand(const MachineInstr &MI); 1156 }; 1157 1158 } // namespace LiveDebugValues 1159 1160 namespace llvm { 1161 using namespace LiveDebugValues; 1162 1163 template <> struct DenseMapInfo<LocIdx> { 1164 static inline LocIdx getEmptyKey() { return LocIdx::MakeIllegalLoc(); } 1165 static inline LocIdx getTombstoneKey() { return LocIdx::MakeTombstoneLoc(); } 1166 1167 static unsigned getHashValue(const LocIdx &Loc) { return Loc.asU64(); } 1168 1169 static bool isEqual(const LocIdx &A, const LocIdx &B) { return A == B; } 1170 }; 1171 1172 template <> struct DenseMapInfo<ValueIDNum> { 1173 static inline ValueIDNum getEmptyKey() { return ValueIDNum::EmptyValue; } 1174 static inline ValueIDNum getTombstoneKey() { 1175 return ValueIDNum::TombstoneValue; 1176 } 1177 1178 static unsigned getHashValue(const ValueIDNum &Val) { 1179 return hash_value(Val.asU64()); 1180 } 1181 1182 static bool isEqual(const ValueIDNum &A, const ValueIDNum &B) { 1183 return A == B; 1184 } 1185 }; 1186 1187 } // end namespace llvm 1188 1189 #endif /* LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H */ 1190