xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.h (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- InstrRefBasedImpl.h - Tracking Debug Value MIs ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
10 #define LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
11 
12 #include "llvm/ADT/DenseMap.h"
13 #include "llvm/ADT/IndexedMap.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/UniqueVector.h"
17 #include "llvm/CodeGen/LexicalScopes.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/TargetRegisterInfo.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include <optional>
23 
24 #include "LiveDebugValues.h"
25 
26 class TransferTracker;
27 
28 // Forward dec of unit test class, so that we can peer into the LDV object.
29 class InstrRefLDVTest;
30 
31 namespace LiveDebugValues {
32 
33 class MLocTracker;
34 class DbgOpIDMap;
35 
36 using namespace llvm;
37 
38 using DebugVariableID = unsigned;
39 using VarAndLoc = std::pair<DebugVariable, const DILocation *>;
40 
41 /// Mapping from DebugVariable to/from a unique identifying number. Each
42 /// DebugVariable consists of three pointers, and after a small amount of
43 /// work to identify overlapping fragments of variables we mostly only use
44 /// DebugVariables as identities of variables. It's much more compile-time
45 /// efficient to use an ID number instead, which this class provides.
46 class DebugVariableMap {
47   DenseMap<DebugVariable, unsigned> VarToIdx;
48   SmallVector<VarAndLoc> IdxToVar;
49 
50 public:
51   DebugVariableID getDVID(const DebugVariable &Var) const {
52     auto It = VarToIdx.find(Var);
53     assert(It != VarToIdx.end());
54     return It->second;
55   }
56 
57   DebugVariableID insertDVID(DebugVariable &Var, const DILocation *Loc) {
58     unsigned Size = VarToIdx.size();
59     auto ItPair = VarToIdx.insert({Var, Size});
60     if (ItPair.second) {
61       IdxToVar.push_back({Var, Loc});
62       return Size;
63     }
64 
65     return ItPair.first->second;
66   }
67 
68   const VarAndLoc &lookupDVID(DebugVariableID ID) const { return IdxToVar[ID]; }
69 
70   void clear() {
71     VarToIdx.clear();
72     IdxToVar.clear();
73   }
74 };
75 
76 /// Handle-class for a particular "location". This value-type uniquely
77 /// symbolises a register or stack location, allowing manipulation of locations
78 /// without concern for where that location is. Practically, this allows us to
79 /// treat the state of the machine at a particular point as an array of values,
80 /// rather than a map of values.
81 class LocIdx {
82   unsigned Location;
83 
84   // Default constructor is private, initializing to an illegal location number.
85   // Use only for "not an entry" elements in IndexedMaps.
86   LocIdx() : Location(UINT_MAX) {}
87 
88 public:
89 #define NUM_LOC_BITS 24
90   LocIdx(unsigned L) : Location(L) {
91     assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
92   }
93 
94   static LocIdx MakeIllegalLoc() { return LocIdx(); }
95   static LocIdx MakeTombstoneLoc() {
96     LocIdx L = LocIdx();
97     --L.Location;
98     return L;
99   }
100 
101   bool isIllegal() const { return Location == UINT_MAX; }
102 
103   uint64_t asU64() const { return Location; }
104 
105   bool operator==(unsigned L) const { return Location == L; }
106 
107   bool operator==(const LocIdx &L) const { return Location == L.Location; }
108 
109   bool operator!=(unsigned L) const { return !(*this == L); }
110 
111   bool operator!=(const LocIdx &L) const { return !(*this == L); }
112 
113   bool operator<(const LocIdx &Other) const {
114     return Location < Other.Location;
115   }
116 };
117 
118 // The location at which a spilled value resides. It consists of a register and
119 // an offset.
120 struct SpillLoc {
121   unsigned SpillBase;
122   StackOffset SpillOffset;
123   bool operator==(const SpillLoc &Other) const {
124     return std::make_pair(SpillBase, SpillOffset) ==
125            std::make_pair(Other.SpillBase, Other.SpillOffset);
126   }
127   bool operator<(const SpillLoc &Other) const {
128     return std::make_tuple(SpillBase, SpillOffset.getFixed(),
129                            SpillOffset.getScalable()) <
130            std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(),
131                            Other.SpillOffset.getScalable());
132   }
133 };
134 
135 /// Unique identifier for a value defined by an instruction, as a value type.
136 /// Casts back and forth to a uint64_t. Probably replacable with something less
137 /// bit-constrained. Each value identifies the instruction and machine location
138 /// where the value is defined, although there may be no corresponding machine
139 /// operand for it (ex: regmasks clobbering values). The instructions are
140 /// one-based, and definitions that are PHIs have instruction number zero.
141 ///
142 /// The obvious limits of a 1M block function or 1M instruction blocks are
143 /// problematic; but by that point we should probably have bailed out of
144 /// trying to analyse the function.
145 class ValueIDNum {
146   union {
147     struct {
148       uint64_t BlockNo : 20; /// The block where the def happens.
149       uint64_t InstNo : 20;  /// The Instruction where the def happens.
150                              /// One based, is distance from start of block.
151       uint64_t LocNo
152           : NUM_LOC_BITS; /// The machine location where the def happens.
153     } s;
154     uint64_t Value;
155   } u;
156 
157   static_assert(sizeof(u) == 8, "Badly packed ValueIDNum?");
158 
159 public:
160   // Default-initialize to EmptyValue. This is necessary to make IndexedMaps
161   // of values to work.
162   ValueIDNum() { u.Value = EmptyValue.asU64(); }
163 
164   ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) {
165     u.s = {Block, Inst, Loc};
166   }
167 
168   ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) {
169     u.s = {Block, Inst, Loc.asU64()};
170   }
171 
172   uint64_t getBlock() const { return u.s.BlockNo; }
173   uint64_t getInst() const { return u.s.InstNo; }
174   uint64_t getLoc() const { return u.s.LocNo; }
175   bool isPHI() const { return u.s.InstNo == 0; }
176 
177   uint64_t asU64() const { return u.Value; }
178 
179   static ValueIDNum fromU64(uint64_t v) {
180     ValueIDNum Val;
181     Val.u.Value = v;
182     return Val;
183   }
184 
185   bool operator<(const ValueIDNum &Other) const {
186     return asU64() < Other.asU64();
187   }
188 
189   bool operator==(const ValueIDNum &Other) const {
190     return u.Value == Other.u.Value;
191   }
192 
193   bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }
194 
195   std::string asString(const std::string &mlocname) const {
196     return Twine("Value{bb: ")
197         .concat(Twine(u.s.BlockNo)
198                     .concat(Twine(", inst: ")
199                                 .concat((u.s.InstNo ? Twine(u.s.InstNo)
200                                                     : Twine("live-in"))
201                                             .concat(Twine(", loc: ").concat(
202                                                 Twine(mlocname)))
203                                             .concat(Twine("}")))))
204         .str();
205   }
206 
207   static ValueIDNum EmptyValue;
208   static ValueIDNum TombstoneValue;
209 };
210 
211 } // End namespace LiveDebugValues
212 
213 namespace llvm {
214 using namespace LiveDebugValues;
215 
216 template <> struct DenseMapInfo<LocIdx> {
217   static inline LocIdx getEmptyKey() { return LocIdx::MakeIllegalLoc(); }
218   static inline LocIdx getTombstoneKey() { return LocIdx::MakeTombstoneLoc(); }
219 
220   static unsigned getHashValue(const LocIdx &Loc) { return Loc.asU64(); }
221 
222   static bool isEqual(const LocIdx &A, const LocIdx &B) { return A == B; }
223 };
224 
225 template <> struct DenseMapInfo<ValueIDNum> {
226   static inline ValueIDNum getEmptyKey() { return ValueIDNum::EmptyValue; }
227   static inline ValueIDNum getTombstoneKey() {
228     return ValueIDNum::TombstoneValue;
229   }
230 
231   static unsigned getHashValue(const ValueIDNum &Val) {
232     return hash_value(Val.asU64());
233   }
234 
235   static bool isEqual(const ValueIDNum &A, const ValueIDNum &B) {
236     return A == B;
237   }
238 };
239 
240 } // end namespace llvm
241 
242 namespace LiveDebugValues {
243 using namespace llvm;
244 
245 /// Type for a table of values in a block.
246 using ValueTable = SmallVector<ValueIDNum, 0>;
247 
248 /// A collection of ValueTables, one per BB in a function, with convenient
249 /// accessor methods.
250 struct FuncValueTable {
251   FuncValueTable(int NumBBs, int NumLocs) {
252     Storage.reserve(NumBBs);
253     for (int i = 0; i != NumBBs; ++i)
254       Storage.push_back(
255           std::make_unique<ValueTable>(NumLocs, ValueIDNum::EmptyValue));
256   }
257 
258   /// Returns the ValueTable associated with MBB.
259   ValueTable &operator[](const MachineBasicBlock &MBB) const {
260     return (*this)[MBB.getNumber()];
261   }
262 
263   /// Returns the ValueTable associated with the MachineBasicBlock whose number
264   /// is MBBNum.
265   ValueTable &operator[](int MBBNum) const {
266     auto &TablePtr = Storage[MBBNum];
267     assert(TablePtr && "Trying to access a deleted table");
268     return *TablePtr;
269   }
270 
271   /// Returns the ValueTable associated with the entry MachineBasicBlock.
272   ValueTable &tableForEntryMBB() const { return (*this)[0]; }
273 
274   /// Returns true if the ValueTable associated with MBB has not been freed.
275   bool hasTableFor(MachineBasicBlock &MBB) const {
276     return Storage[MBB.getNumber()] != nullptr;
277   }
278 
279   /// Frees the memory of the ValueTable associated with MBB.
280   void ejectTableForBlock(const MachineBasicBlock &MBB) {
281     Storage[MBB.getNumber()].reset();
282   }
283 
284 private:
285   /// ValueTables are stored as unique_ptrs to allow for deallocation during
286   /// LDV; this was measured to have a significant impact on compiler memory
287   /// usage.
288   SmallVector<std::unique_ptr<ValueTable>, 0> Storage;
289 };
290 
291 /// Thin wrapper around an integer -- designed to give more type safety to
292 /// spill location numbers.
293 class SpillLocationNo {
294 public:
295   explicit SpillLocationNo(unsigned SpillNo) : SpillNo(SpillNo) {}
296   unsigned SpillNo;
297   unsigned id() const { return SpillNo; }
298 
299   bool operator<(const SpillLocationNo &Other) const {
300     return SpillNo < Other.SpillNo;
301   }
302 
303   bool operator==(const SpillLocationNo &Other) const {
304     return SpillNo == Other.SpillNo;
305   }
306   bool operator!=(const SpillLocationNo &Other) const {
307     return !(*this == Other);
308   }
309 };
310 
311 /// Meta qualifiers for a value. Pair of whatever expression is used to qualify
312 /// the value, and Boolean of whether or not it's indirect.
313 class DbgValueProperties {
314 public:
315   DbgValueProperties(const DIExpression *DIExpr, bool Indirect, bool IsVariadic)
316       : DIExpr(DIExpr), Indirect(Indirect), IsVariadic(IsVariadic) {}
317 
318   /// Extract properties from an existing DBG_VALUE instruction.
319   DbgValueProperties(const MachineInstr &MI) {
320     assert(MI.isDebugValue());
321     assert(MI.getDebugExpression()->getNumLocationOperands() == 0 ||
322            MI.isDebugValueList() || MI.isUndefDebugValue());
323     IsVariadic = MI.isDebugValueList();
324     DIExpr = MI.getDebugExpression();
325     Indirect = MI.isDebugOffsetImm();
326   }
327 
328   bool isJoinable(const DbgValueProperties &Other) const {
329     return DIExpression::isEqualExpression(DIExpr, Indirect, Other.DIExpr,
330                                            Other.Indirect);
331   }
332 
333   bool operator==(const DbgValueProperties &Other) const {
334     return std::tie(DIExpr, Indirect, IsVariadic) ==
335            std::tie(Other.DIExpr, Other.Indirect, Other.IsVariadic);
336   }
337 
338   bool operator!=(const DbgValueProperties &Other) const {
339     return !(*this == Other);
340   }
341 
342   unsigned getLocationOpCount() const {
343     return IsVariadic ? DIExpr->getNumLocationOperands() : 1;
344   }
345 
346   const DIExpression *DIExpr;
347   bool Indirect;
348   bool IsVariadic;
349 };
350 
351 /// TODO: Might pack better if we changed this to a Struct of Arrays, since
352 /// MachineOperand is width 32, making this struct width 33. We could also
353 /// potentially avoid storing the whole MachineOperand (sizeof=32), instead
354 /// choosing to store just the contents portion (sizeof=8) and a Kind enum,
355 /// since we already know it is some type of immediate value.
356 /// Stores a single debug operand, which can either be a MachineOperand for
357 /// directly storing immediate values, or a ValueIDNum representing some value
358 /// computed at some point in the program. IsConst is used as a discriminator.
359 struct DbgOp {
360   union {
361     ValueIDNum ID;
362     MachineOperand MO;
363   };
364   bool IsConst;
365 
366   DbgOp() : ID(ValueIDNum::EmptyValue), IsConst(false) {}
367   DbgOp(ValueIDNum ID) : ID(ID), IsConst(false) {}
368   DbgOp(MachineOperand MO) : MO(MO), IsConst(true) {}
369 
370   bool isUndef() const { return !IsConst && ID == ValueIDNum::EmptyValue; }
371 
372 #ifndef NDEBUG
373   void dump(const MLocTracker *MTrack) const;
374 #endif
375 };
376 
377 /// A DbgOp whose ID (if any) has resolved to an actual location, LocIdx. Used
378 /// when working with concrete debug values, i.e. when joining MLocs and VLocs
379 /// in the TransferTracker or emitting DBG_VALUE/DBG_VALUE_LIST instructions in
380 /// the MLocTracker.
381 struct ResolvedDbgOp {
382   union {
383     LocIdx Loc;
384     MachineOperand MO;
385   };
386   bool IsConst;
387 
388   ResolvedDbgOp(LocIdx Loc) : Loc(Loc), IsConst(false) {}
389   ResolvedDbgOp(MachineOperand MO) : MO(MO), IsConst(true) {}
390 
391   bool operator==(const ResolvedDbgOp &Other) const {
392     if (IsConst != Other.IsConst)
393       return false;
394     if (IsConst)
395       return MO.isIdenticalTo(Other.MO);
396     return Loc == Other.Loc;
397   }
398 
399 #ifndef NDEBUG
400   void dump(const MLocTracker *MTrack) const;
401 #endif
402 };
403 
404 /// An ID used in the DbgOpIDMap (below) to lookup a stored DbgOp. This is used
405 /// in place of actual DbgOps inside of a DbgValue to reduce its size, as
406 /// DbgValue is very frequently used and passed around, and the actual DbgOp is
407 /// over 8x larger than this class, due to storing a MachineOperand. This ID
408 /// should be equal for all equal DbgOps, and also encodes whether the mapped
409 /// DbgOp is a constant, meaning that for simple equality or const-ness checks
410 /// it is not necessary to lookup this ID.
411 struct DbgOpID {
412   struct IsConstIndexPair {
413     uint32_t IsConst : 1;
414     uint32_t Index : 31;
415   };
416 
417   union {
418     struct IsConstIndexPair ID;
419     uint32_t RawID;
420   };
421 
422   DbgOpID() : RawID(UndefID.RawID) {
423     static_assert(sizeof(DbgOpID) == 4, "DbgOpID should fit within 4 bytes.");
424   }
425   DbgOpID(uint32_t RawID) : RawID(RawID) {}
426   DbgOpID(bool IsConst, uint32_t Index) : ID({IsConst, Index}) {}
427 
428   static DbgOpID UndefID;
429 
430   bool operator==(const DbgOpID &Other) const { return RawID == Other.RawID; }
431   bool operator!=(const DbgOpID &Other) const { return !(*this == Other); }
432 
433   uint32_t asU32() const { return RawID; }
434 
435   bool isUndef() const { return *this == UndefID; }
436   bool isConst() const { return ID.IsConst && !isUndef(); }
437   uint32_t getIndex() const { return ID.Index; }
438 
439 #ifndef NDEBUG
440   void dump(const MLocTracker *MTrack, const DbgOpIDMap *OpStore) const;
441 #endif
442 };
443 
444 /// Class storing the complete set of values that are observed by DbgValues
445 /// within the current function. Allows 2-way lookup, with `find` returning the
446 /// Op for a given ID and `insert` returning the ID for a given Op (creating one
447 /// if none exists).
448 class DbgOpIDMap {
449 
450   SmallVector<ValueIDNum, 0> ValueOps;
451   SmallVector<MachineOperand, 0> ConstOps;
452 
453   DenseMap<ValueIDNum, DbgOpID> ValueOpToID;
454   DenseMap<MachineOperand, DbgOpID> ConstOpToID;
455 
456 public:
457   /// If \p Op does not already exist in this map, it is inserted and the
458   /// corresponding DbgOpID is returned. If Op already exists in this map, then
459   /// no change is made and the existing ID for Op is returned.
460   /// Calling this with the undef DbgOp will always return DbgOpID::UndefID.
461   DbgOpID insert(DbgOp Op) {
462     if (Op.isUndef())
463       return DbgOpID::UndefID;
464     if (Op.IsConst)
465       return insertConstOp(Op.MO);
466     return insertValueOp(Op.ID);
467   }
468   /// Returns the DbgOp associated with \p ID. Should only be used for IDs
469   /// returned from calling `insert` from this map or DbgOpID::UndefID.
470   DbgOp find(DbgOpID ID) const {
471     if (ID == DbgOpID::UndefID)
472       return DbgOp();
473     if (ID.isConst())
474       return DbgOp(ConstOps[ID.getIndex()]);
475     return DbgOp(ValueOps[ID.getIndex()]);
476   }
477 
478   void clear() {
479     ValueOps.clear();
480     ConstOps.clear();
481     ValueOpToID.clear();
482     ConstOpToID.clear();
483   }
484 
485 private:
486   DbgOpID insertConstOp(MachineOperand &MO) {
487     auto ExistingIt = ConstOpToID.find(MO);
488     if (ExistingIt != ConstOpToID.end())
489       return ExistingIt->second;
490     DbgOpID ID(true, ConstOps.size());
491     ConstOpToID.insert(std::make_pair(MO, ID));
492     ConstOps.push_back(MO);
493     return ID;
494   }
495   DbgOpID insertValueOp(ValueIDNum VID) {
496     auto ExistingIt = ValueOpToID.find(VID);
497     if (ExistingIt != ValueOpToID.end())
498       return ExistingIt->second;
499     DbgOpID ID(false, ValueOps.size());
500     ValueOpToID.insert(std::make_pair(VID, ID));
501     ValueOps.push_back(VID);
502     return ID;
503   }
504 };
505 
506 // We set the maximum number of operands that we will handle to keep DbgValue
507 // within a reasonable size (64 bytes), as we store and pass a lot of them
508 // around.
509 #define MAX_DBG_OPS 8
510 
511 /// Class recording the (high level) _value_ of a variable. Identifies the value
512 /// of the variable as a list of ValueIDNums and constant MachineOperands, or as
513 /// an empty list for undef debug values or VPHI values which we have not found
514 /// valid locations for.
515 /// This class also stores meta-information about how the value is qualified.
516 /// Used to reason about variable values when performing the second
517 /// (DebugVariable specific) dataflow analysis.
518 class DbgValue {
519 private:
520   /// If Kind is Def or VPHI, the set of IDs corresponding to the DbgOps that
521   /// are used. VPHIs set every ID to EmptyID when we have not found a valid
522   /// machine-value for every operand, and sets them to the corresponding
523   /// machine-values when we have found all of them.
524   DbgOpID DbgOps[MAX_DBG_OPS];
525   unsigned OpCount;
526 
527 public:
528   /// For a NoVal or VPHI DbgValue, which block it was generated in.
529   int BlockNo;
530 
531   /// Qualifiers for the ValueIDNum above.
532   DbgValueProperties Properties;
533 
534   typedef enum {
535     Undef, // Represents a DBG_VALUE $noreg in the transfer function only.
536     Def,   // This value is defined by some combination of constants,
537            // instructions, or PHI values.
538     VPHI,  // Incoming values to BlockNo differ, those values must be joined by
539            // a PHI in this block.
540     NoVal, // Empty DbgValue indicating an unknown value. Used as initializer,
541            // before dominating blocks values are propagated in.
542   } KindT;
543   /// Discriminator for whether this is a constant or an in-program value.
544   KindT Kind;
545 
546   DbgValue(ArrayRef<DbgOpID> DbgOps, const DbgValueProperties &Prop)
547       : OpCount(DbgOps.size()), BlockNo(0), Properties(Prop), Kind(Def) {
548     static_assert(sizeof(DbgValue) <= 64,
549                   "DbgValue should fit within 64 bytes.");
550     assert(DbgOps.size() == Prop.getLocationOpCount());
551     if (DbgOps.size() > MAX_DBG_OPS ||
552         any_of(DbgOps, [](DbgOpID ID) { return ID.isUndef(); })) {
553       Kind = Undef;
554       OpCount = 0;
555 #define DEBUG_TYPE "LiveDebugValues"
556       if (DbgOps.size() > MAX_DBG_OPS) {
557         LLVM_DEBUG(dbgs() << "Found DbgValue with more than maximum allowed "
558                              "operands.\n");
559       }
560 #undef DEBUG_TYPE
561     } else {
562       for (unsigned Idx = 0; Idx < DbgOps.size(); ++Idx)
563         this->DbgOps[Idx] = DbgOps[Idx];
564     }
565   }
566 
567   DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
568       : OpCount(0), BlockNo(BlockNo), Properties(Prop), Kind(Kind) {
569     assert(Kind == NoVal || Kind == VPHI);
570   }
571 
572   DbgValue(const DbgValueProperties &Prop, KindT Kind)
573       : OpCount(0), BlockNo(0), Properties(Prop), Kind(Kind) {
574     assert(Kind == Undef &&
575            "Empty DbgValue constructor must pass in Undef kind");
576   }
577 
578 #ifndef NDEBUG
579   void dump(const MLocTracker *MTrack = nullptr,
580             const DbgOpIDMap *OpStore = nullptr) const;
581 #endif
582 
583   bool operator==(const DbgValue &Other) const {
584     if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
585       return false;
586     else if (Kind == Def && !equal(getDbgOpIDs(), Other.getDbgOpIDs()))
587       return false;
588     else if (Kind == NoVal && BlockNo != Other.BlockNo)
589       return false;
590     else if (Kind == VPHI && BlockNo != Other.BlockNo)
591       return false;
592     else if (Kind == VPHI && !equal(getDbgOpIDs(), Other.getDbgOpIDs()))
593       return false;
594 
595     return true;
596   }
597 
598   bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
599 
600   // Returns an array of all the machine values used to calculate this variable
601   // value, or an empty list for an Undef or unjoined VPHI.
602   ArrayRef<DbgOpID> getDbgOpIDs() const { return {DbgOps, OpCount}; }
603 
604   // Returns either DbgOps[Index] if this DbgValue has Debug Operands, or
605   // the ID for ValueIDNum::EmptyValue otherwise (i.e. if this is an Undef,
606   // NoVal, or an unjoined VPHI).
607   DbgOpID getDbgOpID(unsigned Index) const {
608     if (!OpCount)
609       return DbgOpID::UndefID;
610     assert(Index < OpCount);
611     return DbgOps[Index];
612   }
613   // Replaces this DbgValue's existing DbgOpIDs (if any) with the contents of
614   // \p NewIDs. The number of DbgOpIDs passed must be equal to the number of
615   // arguments expected by this DbgValue's properties (the return value of
616   // `getLocationOpCount()`).
617   void setDbgOpIDs(ArrayRef<DbgOpID> NewIDs) {
618     // We can go from no ops to some ops, but not from some ops to no ops.
619     assert(NewIDs.size() == getLocationOpCount() &&
620            "Incorrect number of Debug Operands for this DbgValue.");
621     OpCount = NewIDs.size();
622     for (unsigned Idx = 0; Idx < NewIDs.size(); ++Idx)
623       DbgOps[Idx] = NewIDs[Idx];
624   }
625 
626   // The number of debug operands expected by this DbgValue's expression.
627   // getDbgOpIDs() should return an array of this length, unless this is an
628   // Undef or an unjoined VPHI.
629   unsigned getLocationOpCount() const {
630     return Properties.getLocationOpCount();
631   }
632 
633   // Returns true if this or Other are unjoined PHIs, which do not have defined
634   // Loc Ops, or if the `n`th Loc Op for this has a different constness to the
635   // `n`th Loc Op for Other.
636   bool hasJoinableLocOps(const DbgValue &Other) const {
637     if (isUnjoinedPHI() || Other.isUnjoinedPHI())
638       return true;
639     for (unsigned Idx = 0; Idx < getLocationOpCount(); ++Idx) {
640       if (getDbgOpID(Idx).isConst() != Other.getDbgOpID(Idx).isConst())
641         return false;
642     }
643     return true;
644   }
645 
646   bool isUnjoinedPHI() const { return Kind == VPHI && OpCount == 0; }
647 
648   bool hasIdenticalValidLocOps(const DbgValue &Other) const {
649     if (!OpCount)
650       return false;
651     return equal(getDbgOpIDs(), Other.getDbgOpIDs());
652   }
653 };
654 
655 class LocIdxToIndexFunctor {
656 public:
657   using argument_type = LocIdx;
658   unsigned operator()(const LocIdx &L) const { return L.asU64(); }
659 };
660 
661 /// Tracker for what values are in machine locations. Listens to the Things
662 /// being Done by various instructions, and maintains a table of what machine
663 /// locations have what values (as defined by a ValueIDNum).
664 ///
665 /// There are potentially a much larger number of machine locations on the
666 /// target machine than the actual working-set size of the function. On x86 for
667 /// example, we're extremely unlikely to want to track values through control
668 /// or debug registers. To avoid doing so, MLocTracker has several layers of
669 /// indirection going on, described below, to avoid unnecessarily tracking
670 /// any location.
671 ///
672 /// Here's a sort of diagram of the indexes, read from the bottom up:
673 ///
674 ///           Size on stack   Offset on stack
675 ///                 \              /
676 ///          Stack Idx (Where in slot is this?)
677 ///                         /
678 ///                        /
679 /// Slot Num (%stack.0)   /
680 /// FrameIdx => SpillNum /
681 ///              \      /
682 ///           SpillID (int)   Register number (int)
683 ///                      \       /
684 ///                      LocationID => LocIdx
685 ///                                |
686 ///                       LocIdx => ValueIDNum
687 ///
688 /// The aim here is that the LocIdx => ValueIDNum vector is just an array of
689 /// values in numbered locations, so that later analyses can ignore whether the
690 /// location is a register or otherwise. To map a register / spill location to
691 /// a LocIdx, you have to use the (sparse) LocationID => LocIdx map. And to
692 /// build a LocationID for a stack slot, you need to combine identifiers for
693 /// which stack slot it is and where within that slot is being described.
694 ///
695 /// Register mask operands cause trouble by technically defining every register;
696 /// various hacks are used to avoid tracking registers that are never read and
697 /// only written by regmasks.
698 class MLocTracker {
699 public:
700   MachineFunction &MF;
701   const TargetInstrInfo &TII;
702   const TargetRegisterInfo &TRI;
703   const TargetLowering &TLI;
704 
705   /// IndexedMap type, mapping from LocIdx to ValueIDNum.
706   using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>;
707 
708   /// Map of LocIdxes to the ValueIDNums that they store. This is tightly
709   /// packed, entries only exist for locations that are being tracked.
710   LocToValueType LocIdxToIDNum;
711 
712   /// "Map" of machine location IDs (i.e., raw register or spill number) to the
713   /// LocIdx key / number for that location. There are always at least as many
714   /// as the number of registers on the target -- if the value in the register
715   /// is not being tracked, then the LocIdx value will be zero. New entries are
716   /// appended if a new spill slot begins being tracked.
717   /// This, and the corresponding reverse map persist for the analysis of the
718   /// whole function, and is necessarying for decoding various vectors of
719   /// values.
720   std::vector<LocIdx> LocIDToLocIdx;
721 
722   /// Inverse map of LocIDToLocIdx.
723   IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID;
724 
725   /// When clobbering register masks, we chose to not believe the machine model
726   /// and don't clobber SP. Do the same for SP aliases, and for efficiency,
727   /// keep a set of them here.
728   SmallSet<Register, 8> SPAliases;
729 
730   /// Unique-ification of spill. Used to number them -- their LocID number is
731   /// the index in SpillLocs minus one plus NumRegs.
732   UniqueVector<SpillLoc> SpillLocs;
733 
734   // If we discover a new machine location, assign it an mphi with this
735   // block number.
736   unsigned CurBB = -1;
737 
738   /// Cached local copy of the number of registers the target has.
739   unsigned NumRegs;
740 
741   /// Number of slot indexes the target has -- distinct segments of a stack
742   /// slot that can take on the value of a subregister, when a super-register
743   /// is written to the stack.
744   unsigned NumSlotIdxes;
745 
746   /// Collection of register mask operands that have been observed. Second part
747   /// of pair indicates the instruction that they happened in. Used to
748   /// reconstruct where defs happened if we start tracking a location later
749   /// on.
750   SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks;
751 
752   /// Pair for describing a position within a stack slot -- first the size in
753   /// bits, then the offset.
754   typedef std::pair<unsigned short, unsigned short> StackSlotPos;
755 
756   /// Map from a size/offset pair describing a position in a stack slot, to a
757   /// numeric identifier for that position. Allows easier identification of
758   /// individual positions.
759   DenseMap<StackSlotPos, unsigned> StackSlotIdxes;
760 
761   /// Inverse of StackSlotIdxes.
762   DenseMap<unsigned, StackSlotPos> StackIdxesToPos;
763 
764   /// Iterator for locations and the values they contain. Dereferencing
765   /// produces a struct/pair containing the LocIdx key for this location,
766   /// and a reference to the value currently stored. Simplifies the process
767   /// of seeking a particular location.
768   class MLocIterator {
769     LocToValueType &ValueMap;
770     LocIdx Idx;
771 
772   public:
773     class value_type {
774     public:
775       value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) {}
776       const LocIdx Idx;  /// Read-only index of this location.
777       ValueIDNum &Value; /// Reference to the stored value at this location.
778     };
779 
780     MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
781         : ValueMap(ValueMap), Idx(Idx) {}
782 
783     bool operator==(const MLocIterator &Other) const {
784       assert(&ValueMap == &Other.ValueMap);
785       return Idx == Other.Idx;
786     }
787 
788     bool operator!=(const MLocIterator &Other) const {
789       return !(*this == Other);
790     }
791 
792     void operator++() { Idx = LocIdx(Idx.asU64() + 1); }
793 
794     value_type operator*() { return value_type(Idx, ValueMap[LocIdx(Idx)]); }
795   };
796 
797   MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
798               const TargetRegisterInfo &TRI, const TargetLowering &TLI);
799 
800   /// Produce location ID number for a Register. Provides some small amount of
801   /// type safety.
802   /// \param Reg The register we're looking up.
803   unsigned getLocID(Register Reg) { return Reg.id(); }
804 
805   /// Produce location ID number for a spill position.
806   /// \param Spill The number of the spill we're fetching the location for.
807   /// \param SpillSubReg Subregister within the spill we're addressing.
808   unsigned getLocID(SpillLocationNo Spill, unsigned SpillSubReg) {
809     unsigned short Size = TRI.getSubRegIdxSize(SpillSubReg);
810     unsigned short Offs = TRI.getSubRegIdxOffset(SpillSubReg);
811     return getLocID(Spill, {Size, Offs});
812   }
813 
814   /// Produce location ID number for a spill position.
815   /// \param Spill The number of the spill we're fetching the location for.
816   /// \apram SpillIdx size/offset within the spill slot to be addressed.
817   unsigned getLocID(SpillLocationNo Spill, StackSlotPos Idx) {
818     unsigned SlotNo = Spill.id() - 1;
819     SlotNo *= NumSlotIdxes;
820     assert(StackSlotIdxes.contains(Idx));
821     SlotNo += StackSlotIdxes[Idx];
822     SlotNo += NumRegs;
823     return SlotNo;
824   }
825 
826   /// Given a spill number, and a slot within the spill, calculate the ID number
827   /// for that location.
828   unsigned getSpillIDWithIdx(SpillLocationNo Spill, unsigned Idx) {
829     unsigned SlotNo = Spill.id() - 1;
830     SlotNo *= NumSlotIdxes;
831     SlotNo += Idx;
832     SlotNo += NumRegs;
833     return SlotNo;
834   }
835 
836   /// Return the spill number that a location ID corresponds to.
837   SpillLocationNo locIDToSpill(unsigned ID) const {
838     assert(ID >= NumRegs);
839     ID -= NumRegs;
840     // Truncate away the index part, leaving only the spill number.
841     ID /= NumSlotIdxes;
842     return SpillLocationNo(ID + 1); // The UniqueVector is one-based.
843   }
844 
845   /// Returns the spill-slot size/offs that a location ID corresponds to.
846   StackSlotPos locIDToSpillIdx(unsigned ID) const {
847     assert(ID >= NumRegs);
848     ID -= NumRegs;
849     unsigned Idx = ID % NumSlotIdxes;
850     return StackIdxesToPos.find(Idx)->second;
851   }
852 
853   unsigned getNumLocs() const { return LocIdxToIDNum.size(); }
854 
855   /// Reset all locations to contain a PHI value at the designated block. Used
856   /// sometimes for actual PHI values, othertimes to indicate the block entry
857   /// value (before any more information is known).
858   void setMPhis(unsigned NewCurBB) {
859     CurBB = NewCurBB;
860     for (auto Location : locations())
861       Location.Value = {CurBB, 0, Location.Idx};
862   }
863 
864   /// Load values for each location from array of ValueIDNums. Take current
865   /// bbnum just in case we read a value from a hitherto untouched register.
866   void loadFromArray(ValueTable &Locs, unsigned NewCurBB) {
867     CurBB = NewCurBB;
868     // Iterate over all tracked locations, and load each locations live-in
869     // value into our local index.
870     for (auto Location : locations())
871       Location.Value = Locs[Location.Idx.asU64()];
872   }
873 
874   /// Wipe any un-necessary location records after traversing a block.
875   void reset() {
876     // We could reset all the location values too; however either loadFromArray
877     // or setMPhis should be called before this object is re-used. Just
878     // clear Masks, they're definitely not needed.
879     Masks.clear();
880   }
881 
882   /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
883   /// the information in this pass uninterpretable.
884   void clear() {
885     reset();
886     LocIDToLocIdx.clear();
887     LocIdxToLocID.clear();
888     LocIdxToIDNum.clear();
889     // SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from
890     // 0
891     SpillLocs = decltype(SpillLocs)();
892     StackSlotIdxes.clear();
893     StackIdxesToPos.clear();
894 
895     LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
896   }
897 
898   /// Set a locaiton to a certain value.
899   void setMLoc(LocIdx L, ValueIDNum Num) {
900     assert(L.asU64() < LocIdxToIDNum.size());
901     LocIdxToIDNum[L] = Num;
902   }
903 
904   /// Read the value of a particular location
905   ValueIDNum readMLoc(LocIdx L) {
906     assert(L.asU64() < LocIdxToIDNum.size());
907     return LocIdxToIDNum[L];
908   }
909 
910   /// Create a LocIdx for an untracked register ID. Initialize it to either an
911   /// mphi value representing a live-in, or a recent register mask clobber.
912   LocIdx trackRegister(unsigned ID);
913 
914   LocIdx lookupOrTrackRegister(unsigned ID) {
915     LocIdx &Index = LocIDToLocIdx[ID];
916     if (Index.isIllegal())
917       Index = trackRegister(ID);
918     return Index;
919   }
920 
921   /// Is register R currently tracked by MLocTracker?
922   bool isRegisterTracked(Register R) {
923     LocIdx &Index = LocIDToLocIdx[R];
924     return !Index.isIllegal();
925   }
926 
927   /// Record a definition of the specified register at the given block / inst.
928   /// This doesn't take a ValueIDNum, because the definition and its location
929   /// are synonymous.
930   void defReg(Register R, unsigned BB, unsigned Inst) {
931     unsigned ID = getLocID(R);
932     LocIdx Idx = lookupOrTrackRegister(ID);
933     ValueIDNum ValueID = {BB, Inst, Idx};
934     LocIdxToIDNum[Idx] = ValueID;
935   }
936 
937   /// Set a register to a value number. To be used if the value number is
938   /// known in advance.
939   void setReg(Register R, ValueIDNum ValueID) {
940     unsigned ID = getLocID(R);
941     LocIdx Idx = lookupOrTrackRegister(ID);
942     LocIdxToIDNum[Idx] = ValueID;
943   }
944 
945   ValueIDNum readReg(Register R) {
946     unsigned ID = getLocID(R);
947     LocIdx Idx = lookupOrTrackRegister(ID);
948     return LocIdxToIDNum[Idx];
949   }
950 
951   /// Reset a register value to zero / empty. Needed to replicate the
952   /// VarLoc implementation where a copy to/from a register effectively
953   /// clears the contents of the source register. (Values can only have one
954   ///  machine location in VarLocBasedImpl).
955   void wipeRegister(Register R) {
956     unsigned ID = getLocID(R);
957     LocIdx Idx = LocIDToLocIdx[ID];
958     LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue;
959   }
960 
961   /// Determine the LocIdx of an existing register.
962   LocIdx getRegMLoc(Register R) {
963     unsigned ID = getLocID(R);
964     assert(ID < LocIDToLocIdx.size());
965     assert(LocIDToLocIdx[ID] != UINT_MAX); // Sentinel for IndexedMap.
966     return LocIDToLocIdx[ID];
967   }
968 
969   /// Record a RegMask operand being executed. Defs any register we currently
970   /// track, stores a pointer to the mask in case we have to account for it
971   /// later.
972   void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID);
973 
974   /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
975   /// Returns std::nullopt when in scenarios where a spill slot could be
976   /// tracked, but we would likely run into resource limitations.
977   std::optional<SpillLocationNo> getOrTrackSpillLoc(SpillLoc L);
978 
979   // Get LocIdx of a spill ID.
980   LocIdx getSpillMLoc(unsigned SpillID) {
981     assert(LocIDToLocIdx[SpillID] != UINT_MAX); // Sentinel for IndexedMap.
982     return LocIDToLocIdx[SpillID];
983   }
984 
985   /// Return true if Idx is a spill machine location.
986   bool isSpill(LocIdx Idx) const { return LocIdxToLocID[Idx] >= NumRegs; }
987 
988   /// How large is this location (aka, how wide is a value defined there?).
989   unsigned getLocSizeInBits(LocIdx L) const {
990     unsigned ID = LocIdxToLocID[L];
991     if (!isSpill(L)) {
992       return TRI.getRegSizeInBits(Register(ID), MF.getRegInfo());
993     } else {
994       // The slot location on the stack is uninteresting, we care about the
995       // position of the value within the slot (which comes with a size).
996       StackSlotPos Pos = locIDToSpillIdx(ID);
997       return Pos.first;
998     }
999   }
1000 
1001   MLocIterator begin() { return MLocIterator(LocIdxToIDNum, 0); }
1002 
1003   MLocIterator end() {
1004     return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size());
1005   }
1006 
1007   /// Return a range over all locations currently tracked.
1008   iterator_range<MLocIterator> locations() {
1009     return llvm::make_range(begin(), end());
1010   }
1011 
1012   std::string LocIdxToName(LocIdx Idx) const;
1013 
1014   std::string IDAsString(const ValueIDNum &Num) const;
1015 
1016 #ifndef NDEBUG
1017   LLVM_DUMP_METHOD void dump();
1018 
1019   LLVM_DUMP_METHOD void dump_mloc_map();
1020 #endif
1021 
1022   /// Create a DBG_VALUE based on debug operands \p DbgOps. Qualify it with the
1023   /// information in \pProperties, for variable Var. Don't insert it anywhere,
1024   /// just return the builder for it.
1025   MachineInstrBuilder emitLoc(const SmallVectorImpl<ResolvedDbgOp> &DbgOps,
1026                               const DebugVariable &Var, const DILocation *DILoc,
1027                               const DbgValueProperties &Properties);
1028 };
1029 
1030 /// Types for recording sets of variable fragments that overlap. For a given
1031 /// local variable, we record all other fragments of that variable that could
1032 /// overlap it, to reduce search time.
1033 using FragmentOfVar =
1034     std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
1035 using OverlapMap =
1036     DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
1037 
1038 /// Collection of DBG_VALUEs observed when traversing a block. Records each
1039 /// variable and the value the DBG_VALUE refers to. Requires the machine value
1040 /// location dataflow algorithm to have run already, so that values can be
1041 /// identified.
1042 class VLocTracker {
1043 public:
1044   /// Ref to function-wide map of DebugVariable <=> ID-numbers.
1045   DebugVariableMap &DVMap;
1046   /// Map DebugVariable to the latest Value it's defined to have.
1047   /// Needs to be a MapVector because we determine order-in-the-input-MIR from
1048   /// the order in this container. (FIXME: likely no longer true as the ordering
1049   /// is now provided by DebugVariableMap).
1050   /// We only retain the last DbgValue in each block for each variable, to
1051   /// determine the blocks live-out variable value. The Vars container forms the
1052   /// transfer function for this block, as part of the dataflow analysis. The
1053   /// movement of values between locations inside of a block is handled at a
1054   /// much later stage, in the TransferTracker class.
1055   MapVector<DebugVariableID, DbgValue> Vars;
1056   SmallDenseMap<DebugVariableID, const DILocation *, 8> Scopes;
1057   MachineBasicBlock *MBB = nullptr;
1058   const OverlapMap &OverlappingFragments;
1059   DbgValueProperties EmptyProperties;
1060 
1061 public:
1062   VLocTracker(DebugVariableMap &DVMap, const OverlapMap &O,
1063               const DIExpression *EmptyExpr)
1064       : DVMap(DVMap), OverlappingFragments(O),
1065         EmptyProperties(EmptyExpr, false, false) {}
1066 
1067   void defVar(const MachineInstr &MI, const DbgValueProperties &Properties,
1068               const SmallVectorImpl<DbgOpID> &DebugOps) {
1069     assert(MI.isDebugValueLike());
1070     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
1071                       MI.getDebugLoc()->getInlinedAt());
1072     // Either insert or fetch an ID number for this variable.
1073     DebugVariableID VarID = DVMap.insertDVID(Var, MI.getDebugLoc().get());
1074     DbgValue Rec = (DebugOps.size() > 0)
1075                        ? DbgValue(DebugOps, Properties)
1076                        : DbgValue(Properties, DbgValue::Undef);
1077 
1078     // Attempt insertion; overwrite if it's already mapped.
1079     auto Result = Vars.insert(std::make_pair(VarID, Rec));
1080     if (!Result.second)
1081       Result.first->second = Rec;
1082     Scopes[VarID] = MI.getDebugLoc().get();
1083 
1084     considerOverlaps(Var, MI.getDebugLoc().get());
1085   }
1086 
1087   void considerOverlaps(const DebugVariable &Var, const DILocation *Loc) {
1088     auto Overlaps = OverlappingFragments.find(
1089         {Var.getVariable(), Var.getFragmentOrDefault()});
1090     if (Overlaps == OverlappingFragments.end())
1091       return;
1092 
1093     // Otherwise: terminate any overlapped variable locations.
1094     for (auto FragmentInfo : Overlaps->second) {
1095       // The "empty" fragment is stored as DebugVariable::DefaultFragment, so
1096       // that it overlaps with everything, however its cannonical representation
1097       // in a DebugVariable is as "None".
1098       std::optional<DIExpression::FragmentInfo> OptFragmentInfo = FragmentInfo;
1099       if (DebugVariable::isDefaultFragment(FragmentInfo))
1100         OptFragmentInfo = std::nullopt;
1101 
1102       DebugVariable Overlapped(Var.getVariable(), OptFragmentInfo,
1103                                Var.getInlinedAt());
1104       // Produce an ID number for this overlapping fragment of a variable.
1105       DebugVariableID OverlappedID = DVMap.insertDVID(Overlapped, Loc);
1106       DbgValue Rec = DbgValue(EmptyProperties, DbgValue::Undef);
1107 
1108       // Attempt insertion; overwrite if it's already mapped.
1109       auto Result = Vars.insert(std::make_pair(OverlappedID, Rec));
1110       if (!Result.second)
1111         Result.first->second = Rec;
1112       Scopes[OverlappedID] = Loc;
1113     }
1114   }
1115 
1116   void clear() {
1117     Vars.clear();
1118     Scopes.clear();
1119   }
1120 };
1121 
1122 // XXX XXX docs
1123 class InstrRefBasedLDV : public LDVImpl {
1124 public:
1125   friend class ::InstrRefLDVTest;
1126 
1127   using FragmentInfo = DIExpression::FragmentInfo;
1128   using OptFragmentInfo = std::optional<DIExpression::FragmentInfo>;
1129 
1130   // Helper while building OverlapMap, a map of all fragments seen for a given
1131   // DILocalVariable.
1132   using VarToFragments =
1133       DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
1134 
1135   /// Machine location/value transfer function, a mapping of which locations
1136   /// are assigned which new values.
1137   using MLocTransferMap = SmallDenseMap<LocIdx, ValueIDNum>;
1138 
1139   /// Live in/out structure for the variable values: a per-block map of
1140   /// variables to their values.
1141   using LiveIdxT = DenseMap<const MachineBasicBlock *, DbgValue *>;
1142 
1143   using VarAndLoc = std::pair<DebugVariableID, DbgValue>;
1144 
1145   /// Type for a live-in value: the predecessor block, and its value.
1146   using InValueT = std::pair<MachineBasicBlock *, DbgValue *>;
1147 
1148   /// Vector (per block) of a collection (inner smallvector) of live-ins.
1149   /// Used as the result type for the variable value dataflow problem.
1150   using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>;
1151 
1152   /// Mapping from lexical scopes to a DILocation in that scope.
1153   using ScopeToDILocT = DenseMap<const LexicalScope *, const DILocation *>;
1154 
1155   /// Mapping from lexical scopes to variables in that scope.
1156   using ScopeToVarsT =
1157       DenseMap<const LexicalScope *, SmallSet<DebugVariableID, 4>>;
1158 
1159   /// Mapping from lexical scopes to blocks where variables in that scope are
1160   /// assigned. Such blocks aren't necessarily "in" the lexical scope, it's
1161   /// just a block where an assignment happens.
1162   using ScopeToAssignBlocksT = DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>;
1163 
1164 private:
1165   MachineDominatorTree *DomTree;
1166   const TargetRegisterInfo *TRI;
1167   const MachineRegisterInfo *MRI;
1168   const TargetInstrInfo *TII;
1169   const TargetFrameLowering *TFI;
1170   const MachineFrameInfo *MFI;
1171   BitVector CalleeSavedRegs;
1172   LexicalScopes LS;
1173   TargetPassConfig *TPC;
1174 
1175   // An empty DIExpression. Used default / placeholder DbgValueProperties
1176   // objects, as we can't have null expressions.
1177   const DIExpression *EmptyExpr;
1178 
1179   /// Object to track machine locations as we step through a block. Could
1180   /// probably be a field rather than a pointer, as it's always used.
1181   MLocTracker *MTracker = nullptr;
1182 
1183   /// Number of the current block LiveDebugValues is stepping through.
1184   unsigned CurBB = -1;
1185 
1186   /// Number of the current instruction LiveDebugValues is evaluating.
1187   unsigned CurInst;
1188 
1189   /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
1190   /// steps through a block. Reads the values at each location from the
1191   /// MLocTracker object.
1192   VLocTracker *VTracker = nullptr;
1193 
1194   /// Tracker for transfers, listens to DBG_VALUEs and transfers of values
1195   /// between locations during stepping, creates new DBG_VALUEs when values move
1196   /// location.
1197   TransferTracker *TTracker = nullptr;
1198 
1199   /// Blocks which are artificial, i.e. blocks which exclusively contain
1200   /// instructions without DebugLocs, or with line 0 locations.
1201   SmallPtrSet<MachineBasicBlock *, 16> ArtificialBlocks;
1202 
1203   // Mapping of blocks to and from their RPOT order.
1204   SmallVector<MachineBasicBlock *> OrderToBB;
1205   DenseMap<const MachineBasicBlock *, unsigned int> BBToOrder;
1206   DenseMap<unsigned, unsigned> BBNumToRPO;
1207 
1208   /// Pair of MachineInstr, and its 1-based offset into the containing block.
1209   using InstAndNum = std::pair<const MachineInstr *, unsigned>;
1210   /// Map from debug instruction number to the MachineInstr labelled with that
1211   /// number, and its location within the function. Used to transform
1212   /// instruction numbers in DBG_INSTR_REFs into machine value numbers.
1213   std::map<uint64_t, InstAndNum> DebugInstrNumToInstr;
1214 
1215   /// Record of where we observed a DBG_PHI instruction.
1216   class DebugPHIRecord {
1217   public:
1218     /// Instruction number of this DBG_PHI.
1219     uint64_t InstrNum;
1220     /// Block where DBG_PHI occurred.
1221     MachineBasicBlock *MBB;
1222     /// The value number read by the DBG_PHI -- or std::nullopt if it didn't
1223     /// refer to a value.
1224     std::optional<ValueIDNum> ValueRead;
1225     /// Register/Stack location the DBG_PHI reads -- or std::nullopt if it
1226     /// referred to something unexpected.
1227     std::optional<LocIdx> ReadLoc;
1228 
1229     operator unsigned() const { return InstrNum; }
1230   };
1231 
1232   /// Map from instruction numbers defined by DBG_PHIs to a record of what that
1233   /// DBG_PHI read and where. Populated and edited during the machine value
1234   /// location problem -- we use LLVMs SSA Updater to fix changes by
1235   /// optimizations that destroy PHI instructions.
1236   SmallVector<DebugPHIRecord, 32> DebugPHINumToValue;
1237 
1238   // Map of overlapping variable fragments.
1239   OverlapMap OverlapFragments;
1240   VarToFragments SeenFragments;
1241 
1242   /// Mapping of DBG_INSTR_REF instructions to their values, for those
1243   /// DBG_INSTR_REFs that call resolveDbgPHIs. These variable references solve
1244   /// a mini SSA problem caused by DBG_PHIs being cloned, this collection caches
1245   /// the result.
1246   DenseMap<std::pair<MachineInstr *, unsigned>, std::optional<ValueIDNum>>
1247       SeenDbgPHIs;
1248 
1249   DbgOpIDMap DbgOpStore;
1250 
1251   /// Mapping between DebugVariables and unique ID numbers. This is a more
1252   /// efficient way to represent the identity of a variable, versus a plain
1253   /// DebugVariable.
1254   DebugVariableMap DVMap;
1255 
1256   /// True if we need to examine call instructions for stack clobbers. We
1257   /// normally assume that they don't clobber SP, but stack probes on Windows
1258   /// do.
1259   bool AdjustsStackInCalls = false;
1260 
1261   /// If AdjustsStackInCalls is true, this holds the name of the target's stack
1262   /// probe function, which is the function we expect will alter the stack
1263   /// pointer.
1264   StringRef StackProbeSymbolName;
1265 
1266   /// Tests whether this instruction is a spill to a stack slot.
1267   std::optional<SpillLocationNo> isSpillInstruction(const MachineInstr &MI,
1268                                                     MachineFunction *MF);
1269 
1270   /// Decide if @MI is a spill instruction and return true if it is. We use 2
1271   /// criteria to make this decision:
1272   /// - Is this instruction a store to a spill slot?
1273   /// - Is there a register operand that is both used and killed?
1274   /// TODO: Store optimization can fold spills into other stores (including
1275   /// other spills). We do not handle this yet (more than one memory operand).
1276   bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
1277                        unsigned &Reg);
1278 
1279   /// If a given instruction is identified as a spill, return the spill slot
1280   /// and set \p Reg to the spilled register.
1281   std::optional<SpillLocationNo> isRestoreInstruction(const MachineInstr &MI,
1282                                                       MachineFunction *MF,
1283                                                       unsigned &Reg);
1284 
1285   /// Given a spill instruction, extract the spill slot information, ensure it's
1286   /// tracked, and return the spill number.
1287   std::optional<SpillLocationNo>
1288   extractSpillBaseRegAndOffset(const MachineInstr &MI);
1289 
1290   /// For an instruction reference given by \p InstNo and \p OpNo in instruction
1291   /// \p MI returns the Value pointed to by that instruction reference if any
1292   /// exists, otherwise returns std::nullopt.
1293   std::optional<ValueIDNum> getValueForInstrRef(unsigned InstNo, unsigned OpNo,
1294                                                 MachineInstr &MI,
1295                                                 const FuncValueTable *MLiveOuts,
1296                                                 const FuncValueTable *MLiveIns);
1297 
1298   /// Observe a single instruction while stepping through a block.
1299   void process(MachineInstr &MI, const FuncValueTable *MLiveOuts,
1300                const FuncValueTable *MLiveIns);
1301 
1302   /// Examines whether \p MI is a DBG_VALUE and notifies trackers.
1303   /// \returns true if MI was recognized and processed.
1304   bool transferDebugValue(const MachineInstr &MI);
1305 
1306   /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers.
1307   /// \returns true if MI was recognized and processed.
1308   bool transferDebugInstrRef(MachineInstr &MI, const FuncValueTable *MLiveOuts,
1309                              const FuncValueTable *MLiveIns);
1310 
1311   /// Stores value-information about where this PHI occurred, and what
1312   /// instruction number is associated with it.
1313   /// \returns true if MI was recognized and processed.
1314   bool transferDebugPHI(MachineInstr &MI);
1315 
1316   /// Examines whether \p MI is copy instruction, and notifies trackers.
1317   /// \returns true if MI was recognized and processed.
1318   bool transferRegisterCopy(MachineInstr &MI);
1319 
1320   /// Examines whether \p MI is stack spill or restore  instruction, and
1321   /// notifies trackers. \returns true if MI was recognized and processed.
1322   bool transferSpillOrRestoreInst(MachineInstr &MI);
1323 
1324   /// Examines \p MI for any registers that it defines, and notifies trackers.
1325   void transferRegisterDef(MachineInstr &MI);
1326 
1327   /// Copy one location to the other, accounting for movement of subregisters
1328   /// too.
1329   void performCopy(Register Src, Register Dst);
1330 
1331   void accumulateFragmentMap(MachineInstr &MI);
1332 
1333   /// Determine the machine value number referred to by (potentially several)
1334   /// DBG_PHI instructions. Block duplication and tail folding can duplicate
1335   /// DBG_PHIs, shifting the position where values in registers merge, and
1336   /// forming another mini-ssa problem to solve.
1337   /// \p Here the position of a DBG_INSTR_REF seeking a machine value number
1338   /// \p InstrNum Debug instruction number defined by DBG_PHI instructions.
1339   /// \returns The machine value number at position Here, or std::nullopt.
1340   std::optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF,
1341                                            const FuncValueTable &MLiveOuts,
1342                                            const FuncValueTable &MLiveIns,
1343                                            MachineInstr &Here,
1344                                            uint64_t InstrNum);
1345 
1346   std::optional<ValueIDNum> resolveDbgPHIsImpl(MachineFunction &MF,
1347                                                const FuncValueTable &MLiveOuts,
1348                                                const FuncValueTable &MLiveIns,
1349                                                MachineInstr &Here,
1350                                                uint64_t InstrNum);
1351 
1352   /// Step through the function, recording register definitions and movements
1353   /// in an MLocTracker. Convert the observations into a per-block transfer
1354   /// function in \p MLocTransfer, suitable for using with the machine value
1355   /// location dataflow problem.
1356   void
1357   produceMLocTransferFunction(MachineFunction &MF,
1358                               SmallVectorImpl<MLocTransferMap> &MLocTransfer,
1359                               unsigned MaxNumBlocks);
1360 
1361   /// Solve the machine value location dataflow problem. Takes as input the
1362   /// transfer functions in \p MLocTransfer. Writes the output live-in and
1363   /// live-out arrays to the (initialized to zero) multidimensional arrays in
1364   /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
1365   /// number, the inner by LocIdx.
1366   void buildMLocValueMap(MachineFunction &MF, FuncValueTable &MInLocs,
1367                          FuncValueTable &MOutLocs,
1368                          SmallVectorImpl<MLocTransferMap> &MLocTransfer);
1369 
1370   /// Examine the stack indexes (i.e. offsets within the stack) to find the
1371   /// basic units of interference -- like reg units, but for the stack.
1372   void findStackIndexInterference(SmallVectorImpl<unsigned> &Slots);
1373 
1374   /// Install PHI values into the live-in array for each block, according to
1375   /// the IDF of each register.
1376   void placeMLocPHIs(MachineFunction &MF,
1377                      SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
1378                      FuncValueTable &MInLocs,
1379                      SmallVectorImpl<MLocTransferMap> &MLocTransfer);
1380 
1381   /// Propagate variable values to blocks in the common case where there's
1382   /// only one value assigned to the variable. This function has better
1383   /// performance as it doesn't have to find the dominance frontier between
1384   /// different assignments.
1385   void placePHIsForSingleVarDefinition(
1386       const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
1387       MachineBasicBlock *MBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
1388       DebugVariableID Var, LiveInsT &Output);
1389 
1390   /// Calculate the iterated-dominance-frontier for a set of defs, using the
1391   /// existing LLVM facilities for this. Works for a single "value" or
1392   /// machine/variable location.
1393   /// \p AllBlocks Set of blocks where we might consume the value.
1394   /// \p DefBlocks Set of blocks where the value/location is defined.
1395   /// \p PHIBlocks Output set of blocks where PHIs must be placed.
1396   void BlockPHIPlacement(const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
1397                          const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
1398                          SmallVectorImpl<MachineBasicBlock *> &PHIBlocks);
1399 
1400   /// Perform a control flow join (lattice value meet) of the values in machine
1401   /// locations at \p MBB. Follows the algorithm described in the file-comment,
1402   /// reading live-outs of predecessors from \p OutLocs, the current live ins
1403   /// from \p InLocs, and assigning the newly computed live ins back into
1404   /// \p InLocs. \returns two bools -- the first indicates whether a change
1405   /// was made, the second whether a lattice downgrade occurred. If the latter
1406   /// is true, revisiting this block is necessary.
1407   bool mlocJoin(MachineBasicBlock &MBB,
1408                 SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1409                 FuncValueTable &OutLocs, ValueTable &InLocs);
1410 
1411   /// Produce a set of blocks that are in the current lexical scope. This means
1412   /// those blocks that contain instructions "in" the scope, blocks where
1413   /// assignments to variables in scope occur, and artificial blocks that are
1414   /// successors to any of the earlier blocks. See https://llvm.org/PR48091 for
1415   /// more commentry on what "in scope" means.
1416   /// \p DILoc A location in the scope that we're fetching blocks for.
1417   /// \p Output Set to put in-scope-blocks into.
1418   /// \p AssignBlocks Blocks known to contain assignments of variables in scope.
1419   void
1420   getBlocksForScope(const DILocation *DILoc,
1421                     SmallPtrSetImpl<const MachineBasicBlock *> &Output,
1422                     const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks);
1423 
1424   /// Solve the variable value dataflow problem, for a single lexical scope.
1425   /// Uses the algorithm from the file comment to resolve control flow joins
1426   /// using PHI placement and value propagation. Reads the locations of machine
1427   /// values from the \p MInLocs and \p MOutLocs arrays (see buildMLocValueMap)
1428   /// and reads the variable values transfer function from \p AllTheVlocs.
1429   /// Live-in and Live-out variable values are stored locally, with the live-ins
1430   /// permanently stored to \p Output once a fixedpoint is reached.
1431   /// \p VarsWeCareAbout contains a collection of the variables in \p Scope
1432   /// that we should be tracking.
1433   /// \p AssignBlocks contains the set of blocks that aren't in \p DILoc's
1434   /// scope, but which do contain DBG_VALUEs, which VarLocBasedImpl tracks
1435   /// locations through.
1436   void buildVLocValueMap(const DILocation *DILoc,
1437                          const SmallSet<DebugVariableID, 4> &VarsWeCareAbout,
1438                          SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
1439                          LiveInsT &Output, FuncValueTable &MOutLocs,
1440                          FuncValueTable &MInLocs,
1441                          SmallVectorImpl<VLocTracker> &AllTheVLocs);
1442 
1443   /// Attempt to eliminate un-necessary PHIs on entry to a block. Examines the
1444   /// live-in values coming from predecessors live-outs, and replaces any PHIs
1445   /// already present in this blocks live-ins with a live-through value if the
1446   /// PHI isn't needed.
1447   /// \p LiveIn Old live-in value, overwritten with new one if live-in changes.
1448   /// \returns true if any live-ins change value, either from value propagation
1449   ///          or PHI elimination.
1450   bool vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
1451                 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
1452                 DbgValue &LiveIn);
1453 
1454   /// For the given block and live-outs feeding into it, try to find
1455   /// machine locations for each debug operand where all the values feeding
1456   /// into that operand join together.
1457   /// \returns true if a joined location was found for every value that needed
1458   ///          to be joined.
1459   bool
1460   pickVPHILoc(SmallVectorImpl<DbgOpID> &OutValues, const MachineBasicBlock &MBB,
1461               const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs,
1462               const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders);
1463 
1464   std::optional<ValueIDNum> pickOperandPHILoc(
1465       unsigned DbgOpIdx, const MachineBasicBlock &MBB, const LiveIdxT &LiveOuts,
1466       FuncValueTable &MOutLocs,
1467       const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders);
1468 
1469   /// Take collections of DBG_VALUE instructions stored in TTracker, and
1470   /// install them into their output blocks.
1471   bool emitTransfers();
1472 
1473   /// Boilerplate computation of some initial sets, artifical blocks and
1474   /// RPOT block ordering.
1475   void initialSetup(MachineFunction &MF);
1476 
1477   /// Produce a map of the last lexical scope that uses a block, using the
1478   /// scopes DFSOut number. Mapping is block-number to DFSOut.
1479   /// \p EjectionMap Pre-allocated vector in which to install the built ma.
1480   /// \p ScopeToDILocation Mapping of LexicalScopes to their DILocations.
1481   /// \p AssignBlocks Map of blocks where assignments happen for a scope.
1482   void makeDepthFirstEjectionMap(SmallVectorImpl<unsigned> &EjectionMap,
1483                                  const ScopeToDILocT &ScopeToDILocation,
1484                                  ScopeToAssignBlocksT &AssignBlocks);
1485 
1486   /// When determining per-block variable values and emitting to DBG_VALUEs,
1487   /// this function explores by lexical scope depth. Doing so means that per
1488   /// block information can be fully computed before exploration finishes,
1489   /// allowing us to emit it and free data structures earlier than otherwise.
1490   /// It's also good for locality.
1491   bool depthFirstVLocAndEmit(unsigned MaxNumBlocks,
1492                              const ScopeToDILocT &ScopeToDILocation,
1493                              const ScopeToVarsT &ScopeToVars,
1494                              ScopeToAssignBlocksT &ScopeToBlocks,
1495                              LiveInsT &Output, FuncValueTable &MOutLocs,
1496                              FuncValueTable &MInLocs,
1497                              SmallVectorImpl<VLocTracker> &AllTheVLocs,
1498                              MachineFunction &MF, const TargetPassConfig &TPC);
1499 
1500   bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree,
1501                     TargetPassConfig *TPC, unsigned InputBBLimit,
1502                     unsigned InputDbgValLimit) override;
1503 
1504 public:
1505   /// Default construct and initialize the pass.
1506   InstrRefBasedLDV();
1507 
1508   LLVM_DUMP_METHOD
1509   void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;
1510 
1511   bool isCalleeSaved(LocIdx L) const;
1512   bool isCalleeSavedReg(Register R) const;
1513 
1514   bool hasFoldedStackStore(const MachineInstr &MI) {
1515     // Instruction must have a memory operand that's a stack slot, and isn't
1516     // aliased, meaning it's a spill from regalloc instead of a variable.
1517     // If it's aliased, we can't guarantee its value.
1518     if (!MI.hasOneMemOperand())
1519       return false;
1520     auto *MemOperand = *MI.memoperands_begin();
1521     return MemOperand->isStore() &&
1522            MemOperand->getPseudoValue() &&
1523            MemOperand->getPseudoValue()->kind() == PseudoSourceValue::FixedStack
1524            && !MemOperand->getPseudoValue()->isAliased(MFI);
1525   }
1526 
1527   std::optional<LocIdx> findLocationForMemOperand(const MachineInstr &MI);
1528 
1529   // Utility for unit testing, don't use directly.
1530   DebugVariableMap &getDVMap() {
1531     return DVMap;
1532   }
1533 };
1534 
1535 } // namespace LiveDebugValues
1536 
1537 #endif /* LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H */
1538