xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.h (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===- InstrRefBasedImpl.h - Tracking Debug Value MIs ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
10 #define LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
11 
12 #include "llvm/ADT/DenseMap.h"
13 #include "llvm/ADT/IndexedMap.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/UniqueVector.h"
17 #include "llvm/CodeGen/LexicalScopes.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/TargetRegisterInfo.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include <optional>
23 
24 #include "LiveDebugValues.h"
25 
26 class TransferTracker;
27 
28 // Forward dec of unit test class, so that we can peer into the LDV object.
29 class InstrRefLDVTest;
30 
31 namespace LiveDebugValues {
32 
33 class MLocTracker;
34 class DbgOpIDMap;
35 
36 using namespace llvm;
37 
38 /// Handle-class for a particular "location". This value-type uniquely
39 /// symbolises a register or stack location, allowing manipulation of locations
40 /// without concern for where that location is. Practically, this allows us to
41 /// treat the state of the machine at a particular point as an array of values,
42 /// rather than a map of values.
43 class LocIdx {
44   unsigned Location;
45 
46   // Default constructor is private, initializing to an illegal location number.
47   // Use only for "not an entry" elements in IndexedMaps.
48   LocIdx() : Location(UINT_MAX) {}
49 
50 public:
51 #define NUM_LOC_BITS 24
52   LocIdx(unsigned L) : Location(L) {
53     assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
54   }
55 
56   static LocIdx MakeIllegalLoc() { return LocIdx(); }
57   static LocIdx MakeTombstoneLoc() {
58     LocIdx L = LocIdx();
59     --L.Location;
60     return L;
61   }
62 
63   bool isIllegal() const { return Location == UINT_MAX; }
64 
65   uint64_t asU64() const { return Location; }
66 
67   bool operator==(unsigned L) const { return Location == L; }
68 
69   bool operator==(const LocIdx &L) const { return Location == L.Location; }
70 
71   bool operator!=(unsigned L) const { return !(*this == L); }
72 
73   bool operator!=(const LocIdx &L) const { return !(*this == L); }
74 
75   bool operator<(const LocIdx &Other) const {
76     return Location < Other.Location;
77   }
78 };
79 
80 // The location at which a spilled value resides. It consists of a register and
81 // an offset.
82 struct SpillLoc {
83   unsigned SpillBase;
84   StackOffset SpillOffset;
85   bool operator==(const SpillLoc &Other) const {
86     return std::make_pair(SpillBase, SpillOffset) ==
87            std::make_pair(Other.SpillBase, Other.SpillOffset);
88   }
89   bool operator<(const SpillLoc &Other) const {
90     return std::make_tuple(SpillBase, SpillOffset.getFixed(),
91                            SpillOffset.getScalable()) <
92            std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(),
93                            Other.SpillOffset.getScalable());
94   }
95 };
96 
97 /// Unique identifier for a value defined by an instruction, as a value type.
98 /// Casts back and forth to a uint64_t. Probably replacable with something less
99 /// bit-constrained. Each value identifies the instruction and machine location
100 /// where the value is defined, although there may be no corresponding machine
101 /// operand for it (ex: regmasks clobbering values). The instructions are
102 /// one-based, and definitions that are PHIs have instruction number zero.
103 ///
104 /// The obvious limits of a 1M block function or 1M instruction blocks are
105 /// problematic; but by that point we should probably have bailed out of
106 /// trying to analyse the function.
107 class ValueIDNum {
108   union {
109     struct {
110       uint64_t BlockNo : 20; /// The block where the def happens.
111       uint64_t InstNo : 20;  /// The Instruction where the def happens.
112                              /// One based, is distance from start of block.
113       uint64_t LocNo
114           : NUM_LOC_BITS; /// The machine location where the def happens.
115     } s;
116     uint64_t Value;
117   } u;
118 
119   static_assert(sizeof(u) == 8, "Badly packed ValueIDNum?");
120 
121 public:
122   // Default-initialize to EmptyValue. This is necessary to make IndexedMaps
123   // of values to work.
124   ValueIDNum() { u.Value = EmptyValue.asU64(); }
125 
126   ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) {
127     u.s = {Block, Inst, Loc};
128   }
129 
130   ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) {
131     u.s = {Block, Inst, Loc.asU64()};
132   }
133 
134   uint64_t getBlock() const { return u.s.BlockNo; }
135   uint64_t getInst() const { return u.s.InstNo; }
136   uint64_t getLoc() const { return u.s.LocNo; }
137   bool isPHI() const { return u.s.InstNo == 0; }
138 
139   uint64_t asU64() const { return u.Value; }
140 
141   static ValueIDNum fromU64(uint64_t v) {
142     ValueIDNum Val;
143     Val.u.Value = v;
144     return Val;
145   }
146 
147   bool operator<(const ValueIDNum &Other) const {
148     return asU64() < Other.asU64();
149   }
150 
151   bool operator==(const ValueIDNum &Other) const {
152     return u.Value == Other.u.Value;
153   }
154 
155   bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }
156 
157   std::string asString(const std::string &mlocname) const {
158     return Twine("Value{bb: ")
159         .concat(Twine(u.s.BlockNo)
160                     .concat(Twine(", inst: ")
161                                 .concat((u.s.InstNo ? Twine(u.s.InstNo)
162                                                     : Twine("live-in"))
163                                             .concat(Twine(", loc: ").concat(
164                                                 Twine(mlocname)))
165                                             .concat(Twine("}")))))
166         .str();
167   }
168 
169   static ValueIDNum EmptyValue;
170   static ValueIDNum TombstoneValue;
171 };
172 
173 } // End namespace LiveDebugValues
174 
175 namespace llvm {
176 using namespace LiveDebugValues;
177 
178 template <> struct DenseMapInfo<LocIdx> {
179   static inline LocIdx getEmptyKey() { return LocIdx::MakeIllegalLoc(); }
180   static inline LocIdx getTombstoneKey() { return LocIdx::MakeTombstoneLoc(); }
181 
182   static unsigned getHashValue(const LocIdx &Loc) { return Loc.asU64(); }
183 
184   static bool isEqual(const LocIdx &A, const LocIdx &B) { return A == B; }
185 };
186 
187 template <> struct DenseMapInfo<ValueIDNum> {
188   static inline ValueIDNum getEmptyKey() { return ValueIDNum::EmptyValue; }
189   static inline ValueIDNum getTombstoneKey() {
190     return ValueIDNum::TombstoneValue;
191   }
192 
193   static unsigned getHashValue(const ValueIDNum &Val) {
194     return hash_value(Val.asU64());
195   }
196 
197   static bool isEqual(const ValueIDNum &A, const ValueIDNum &B) {
198     return A == B;
199   }
200 };
201 
202 } // end namespace llvm
203 
204 namespace LiveDebugValues {
205 using namespace llvm;
206 
207 /// Type for a table of values in a block.
208 using ValueTable = SmallVector<ValueIDNum, 0>;
209 
210 /// A collection of ValueTables, one per BB in a function, with convenient
211 /// accessor methods.
212 struct FuncValueTable {
213   FuncValueTable(int NumBBs, int NumLocs) {
214     Storage.reserve(NumBBs);
215     for (int i = 0; i != NumBBs; ++i)
216       Storage.push_back(
217           std::make_unique<ValueTable>(NumLocs, ValueIDNum::EmptyValue));
218   }
219 
220   /// Returns the ValueTable associated with MBB.
221   ValueTable &operator[](const MachineBasicBlock &MBB) const {
222     return (*this)[MBB.getNumber()];
223   }
224 
225   /// Returns the ValueTable associated with the MachineBasicBlock whose number
226   /// is MBBNum.
227   ValueTable &operator[](int MBBNum) const {
228     auto &TablePtr = Storage[MBBNum];
229     assert(TablePtr && "Trying to access a deleted table");
230     return *TablePtr;
231   }
232 
233   /// Returns the ValueTable associated with the entry MachineBasicBlock.
234   ValueTable &tableForEntryMBB() const { return (*this)[0]; }
235 
236   /// Returns true if the ValueTable associated with MBB has not been freed.
237   bool hasTableFor(MachineBasicBlock &MBB) const {
238     return Storage[MBB.getNumber()] != nullptr;
239   }
240 
241   /// Frees the memory of the ValueTable associated with MBB.
242   void ejectTableForBlock(const MachineBasicBlock &MBB) {
243     Storage[MBB.getNumber()].reset();
244   }
245 
246 private:
247   /// ValueTables are stored as unique_ptrs to allow for deallocation during
248   /// LDV; this was measured to have a significant impact on compiler memory
249   /// usage.
250   SmallVector<std::unique_ptr<ValueTable>, 0> Storage;
251 };
252 
253 /// Thin wrapper around an integer -- designed to give more type safety to
254 /// spill location numbers.
255 class SpillLocationNo {
256 public:
257   explicit SpillLocationNo(unsigned SpillNo) : SpillNo(SpillNo) {}
258   unsigned SpillNo;
259   unsigned id() const { return SpillNo; }
260 
261   bool operator<(const SpillLocationNo &Other) const {
262     return SpillNo < Other.SpillNo;
263   }
264 
265   bool operator==(const SpillLocationNo &Other) const {
266     return SpillNo == Other.SpillNo;
267   }
268   bool operator!=(const SpillLocationNo &Other) const {
269     return !(*this == Other);
270   }
271 };
272 
273 /// Meta qualifiers for a value. Pair of whatever expression is used to qualify
274 /// the value, and Boolean of whether or not it's indirect.
275 class DbgValueProperties {
276 public:
277   DbgValueProperties(const DIExpression *DIExpr, bool Indirect, bool IsVariadic)
278       : DIExpr(DIExpr), Indirect(Indirect), IsVariadic(IsVariadic) {}
279 
280   /// Extract properties from an existing DBG_VALUE instruction.
281   DbgValueProperties(const MachineInstr &MI) {
282     assert(MI.isDebugValue());
283     assert(MI.getDebugExpression()->getNumLocationOperands() == 0 ||
284            MI.isDebugValueList() || MI.isUndefDebugValue());
285     IsVariadic = MI.isDebugValueList();
286     DIExpr = MI.getDebugExpression();
287     Indirect = MI.isDebugOffsetImm();
288   }
289 
290   bool isJoinable(const DbgValueProperties &Other) const {
291     return DIExpression::isEqualExpression(DIExpr, Indirect, Other.DIExpr,
292                                            Other.Indirect);
293   }
294 
295   bool operator==(const DbgValueProperties &Other) const {
296     return std::tie(DIExpr, Indirect, IsVariadic) ==
297            std::tie(Other.DIExpr, Other.Indirect, Other.IsVariadic);
298   }
299 
300   bool operator!=(const DbgValueProperties &Other) const {
301     return !(*this == Other);
302   }
303 
304   unsigned getLocationOpCount() const {
305     return IsVariadic ? DIExpr->getNumLocationOperands() : 1;
306   }
307 
308   const DIExpression *DIExpr;
309   bool Indirect;
310   bool IsVariadic;
311 };
312 
313 /// TODO: Might pack better if we changed this to a Struct of Arrays, since
314 /// MachineOperand is width 32, making this struct width 33. We could also
315 /// potentially avoid storing the whole MachineOperand (sizeof=32), instead
316 /// choosing to store just the contents portion (sizeof=8) and a Kind enum,
317 /// since we already know it is some type of immediate value.
318 /// Stores a single debug operand, which can either be a MachineOperand for
319 /// directly storing immediate values, or a ValueIDNum representing some value
320 /// computed at some point in the program. IsConst is used as a discriminator.
321 struct DbgOp {
322   union {
323     ValueIDNum ID;
324     MachineOperand MO;
325   };
326   bool IsConst;
327 
328   DbgOp() : ID(ValueIDNum::EmptyValue), IsConst(false) {}
329   DbgOp(ValueIDNum ID) : ID(ID), IsConst(false) {}
330   DbgOp(MachineOperand MO) : MO(MO), IsConst(true) {}
331 
332   bool isUndef() const { return !IsConst && ID == ValueIDNum::EmptyValue; }
333 
334 #ifndef NDEBUG
335   void dump(const MLocTracker *MTrack) const;
336 #endif
337 };
338 
339 /// A DbgOp whose ID (if any) has resolved to an actual location, LocIdx. Used
340 /// when working with concrete debug values, i.e. when joining MLocs and VLocs
341 /// in the TransferTracker or emitting DBG_VALUE/DBG_VALUE_LIST instructions in
342 /// the MLocTracker.
343 struct ResolvedDbgOp {
344   union {
345     LocIdx Loc;
346     MachineOperand MO;
347   };
348   bool IsConst;
349 
350   ResolvedDbgOp(LocIdx Loc) : Loc(Loc), IsConst(false) {}
351   ResolvedDbgOp(MachineOperand MO) : MO(MO), IsConst(true) {}
352 
353   bool operator==(const ResolvedDbgOp &Other) const {
354     if (IsConst != Other.IsConst)
355       return false;
356     if (IsConst)
357       return MO.isIdenticalTo(Other.MO);
358     return Loc == Other.Loc;
359   }
360 
361 #ifndef NDEBUG
362   void dump(const MLocTracker *MTrack) const;
363 #endif
364 };
365 
366 /// An ID used in the DbgOpIDMap (below) to lookup a stored DbgOp. This is used
367 /// in place of actual DbgOps inside of a DbgValue to reduce its size, as
368 /// DbgValue is very frequently used and passed around, and the actual DbgOp is
369 /// over 8x larger than this class, due to storing a MachineOperand. This ID
370 /// should be equal for all equal DbgOps, and also encodes whether the mapped
371 /// DbgOp is a constant, meaning that for simple equality or const-ness checks
372 /// it is not necessary to lookup this ID.
373 struct DbgOpID {
374   struct IsConstIndexPair {
375     uint32_t IsConst : 1;
376     uint32_t Index : 31;
377   };
378 
379   union {
380     struct IsConstIndexPair ID;
381     uint32_t RawID;
382   };
383 
384   DbgOpID() : RawID(UndefID.RawID) {
385     static_assert(sizeof(DbgOpID) == 4, "DbgOpID should fit within 4 bytes.");
386   }
387   DbgOpID(uint32_t RawID) : RawID(RawID) {}
388   DbgOpID(bool IsConst, uint32_t Index) : ID({IsConst, Index}) {}
389 
390   static DbgOpID UndefID;
391 
392   bool operator==(const DbgOpID &Other) const { return RawID == Other.RawID; }
393   bool operator!=(const DbgOpID &Other) const { return !(*this == Other); }
394 
395   uint32_t asU32() const { return RawID; }
396 
397   bool isUndef() const { return *this == UndefID; }
398   bool isConst() const { return ID.IsConst && !isUndef(); }
399   uint32_t getIndex() const { return ID.Index; }
400 
401 #ifndef NDEBUG
402   void dump(const MLocTracker *MTrack, const DbgOpIDMap *OpStore) const;
403 #endif
404 };
405 
406 /// Class storing the complete set of values that are observed by DbgValues
407 /// within the current function. Allows 2-way lookup, with `find` returning the
408 /// Op for a given ID and `insert` returning the ID for a given Op (creating one
409 /// if none exists).
410 class DbgOpIDMap {
411 
412   SmallVector<ValueIDNum, 0> ValueOps;
413   SmallVector<MachineOperand, 0> ConstOps;
414 
415   DenseMap<ValueIDNum, DbgOpID> ValueOpToID;
416   DenseMap<MachineOperand, DbgOpID> ConstOpToID;
417 
418 public:
419   /// If \p Op does not already exist in this map, it is inserted and the
420   /// corresponding DbgOpID is returned. If Op already exists in this map, then
421   /// no change is made and the existing ID for Op is returned.
422   /// Calling this with the undef DbgOp will always return DbgOpID::UndefID.
423   DbgOpID insert(DbgOp Op) {
424     if (Op.isUndef())
425       return DbgOpID::UndefID;
426     if (Op.IsConst)
427       return insertConstOp(Op.MO);
428     return insertValueOp(Op.ID);
429   }
430   /// Returns the DbgOp associated with \p ID. Should only be used for IDs
431   /// returned from calling `insert` from this map or DbgOpID::UndefID.
432   DbgOp find(DbgOpID ID) const {
433     if (ID == DbgOpID::UndefID)
434       return DbgOp();
435     if (ID.isConst())
436       return DbgOp(ConstOps[ID.getIndex()]);
437     return DbgOp(ValueOps[ID.getIndex()]);
438   }
439 
440   void clear() {
441     ValueOps.clear();
442     ConstOps.clear();
443     ValueOpToID.clear();
444     ConstOpToID.clear();
445   }
446 
447 private:
448   DbgOpID insertConstOp(MachineOperand &MO) {
449     auto ExistingIt = ConstOpToID.find(MO);
450     if (ExistingIt != ConstOpToID.end())
451       return ExistingIt->second;
452     DbgOpID ID(true, ConstOps.size());
453     ConstOpToID.insert(std::make_pair(MO, ID));
454     ConstOps.push_back(MO);
455     return ID;
456   }
457   DbgOpID insertValueOp(ValueIDNum VID) {
458     auto ExistingIt = ValueOpToID.find(VID);
459     if (ExistingIt != ValueOpToID.end())
460       return ExistingIt->second;
461     DbgOpID ID(false, ValueOps.size());
462     ValueOpToID.insert(std::make_pair(VID, ID));
463     ValueOps.push_back(VID);
464     return ID;
465   }
466 };
467 
468 // We set the maximum number of operands that we will handle to keep DbgValue
469 // within a reasonable size (64 bytes), as we store and pass a lot of them
470 // around.
471 #define MAX_DBG_OPS 8
472 
473 /// Class recording the (high level) _value_ of a variable. Identifies the value
474 /// of the variable as a list of ValueIDNums and constant MachineOperands, or as
475 /// an empty list for undef debug values or VPHI values which we have not found
476 /// valid locations for.
477 /// This class also stores meta-information about how the value is qualified.
478 /// Used to reason about variable values when performing the second
479 /// (DebugVariable specific) dataflow analysis.
480 class DbgValue {
481 private:
482   /// If Kind is Def or VPHI, the set of IDs corresponding to the DbgOps that
483   /// are used. VPHIs set every ID to EmptyID when we have not found a valid
484   /// machine-value for every operand, and sets them to the corresponding
485   /// machine-values when we have found all of them.
486   DbgOpID DbgOps[MAX_DBG_OPS];
487   unsigned OpCount;
488 
489 public:
490   /// For a NoVal or VPHI DbgValue, which block it was generated in.
491   int BlockNo;
492 
493   /// Qualifiers for the ValueIDNum above.
494   DbgValueProperties Properties;
495 
496   typedef enum {
497     Undef, // Represents a DBG_VALUE $noreg in the transfer function only.
498     Def,   // This value is defined by some combination of constants,
499            // instructions, or PHI values.
500     VPHI,  // Incoming values to BlockNo differ, those values must be joined by
501            // a PHI in this block.
502     NoVal, // Empty DbgValue indicating an unknown value. Used as initializer,
503            // before dominating blocks values are propagated in.
504   } KindT;
505   /// Discriminator for whether this is a constant or an in-program value.
506   KindT Kind;
507 
508   DbgValue(ArrayRef<DbgOpID> DbgOps, const DbgValueProperties &Prop)
509       : OpCount(DbgOps.size()), BlockNo(0), Properties(Prop), Kind(Def) {
510     static_assert(sizeof(DbgValue) <= 64,
511                   "DbgValue should fit within 64 bytes.");
512     assert(DbgOps.size() == Prop.getLocationOpCount());
513     if (DbgOps.size() > MAX_DBG_OPS ||
514         any_of(DbgOps, [](DbgOpID ID) { return ID.isUndef(); })) {
515       Kind = Undef;
516       OpCount = 0;
517 #define DEBUG_TYPE "LiveDebugValues"
518       if (DbgOps.size() > MAX_DBG_OPS) {
519         LLVM_DEBUG(dbgs() << "Found DbgValue with more than maximum allowed "
520                              "operands.\n");
521       }
522 #undef DEBUG_TYPE
523     } else {
524       for (unsigned Idx = 0; Idx < DbgOps.size(); ++Idx)
525         this->DbgOps[Idx] = DbgOps[Idx];
526     }
527   }
528 
529   DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
530       : OpCount(0), BlockNo(BlockNo), Properties(Prop), Kind(Kind) {
531     assert(Kind == NoVal || Kind == VPHI);
532   }
533 
534   DbgValue(const DbgValueProperties &Prop, KindT Kind)
535       : OpCount(0), BlockNo(0), Properties(Prop), Kind(Kind) {
536     assert(Kind == Undef &&
537            "Empty DbgValue constructor must pass in Undef kind");
538   }
539 
540 #ifndef NDEBUG
541   void dump(const MLocTracker *MTrack = nullptr,
542             const DbgOpIDMap *OpStore = nullptr) const;
543 #endif
544 
545   bool operator==(const DbgValue &Other) const {
546     if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
547       return false;
548     else if (Kind == Def && !equal(getDbgOpIDs(), Other.getDbgOpIDs()))
549       return false;
550     else if (Kind == NoVal && BlockNo != Other.BlockNo)
551       return false;
552     else if (Kind == VPHI && BlockNo != Other.BlockNo)
553       return false;
554     else if (Kind == VPHI && !equal(getDbgOpIDs(), Other.getDbgOpIDs()))
555       return false;
556 
557     return true;
558   }
559 
560   bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
561 
562   // Returns an array of all the machine values used to calculate this variable
563   // value, or an empty list for an Undef or unjoined VPHI.
564   ArrayRef<DbgOpID> getDbgOpIDs() const { return {DbgOps, OpCount}; }
565 
566   // Returns either DbgOps[Index] if this DbgValue has Debug Operands, or
567   // the ID for ValueIDNum::EmptyValue otherwise (i.e. if this is an Undef,
568   // NoVal, or an unjoined VPHI).
569   DbgOpID getDbgOpID(unsigned Index) const {
570     if (!OpCount)
571       return DbgOpID::UndefID;
572     assert(Index < OpCount);
573     return DbgOps[Index];
574   }
575   // Replaces this DbgValue's existing DbgOpIDs (if any) with the contents of
576   // \p NewIDs. The number of DbgOpIDs passed must be equal to the number of
577   // arguments expected by this DbgValue's properties (the return value of
578   // `getLocationOpCount()`).
579   void setDbgOpIDs(ArrayRef<DbgOpID> NewIDs) {
580     // We can go from no ops to some ops, but not from some ops to no ops.
581     assert(NewIDs.size() == getLocationOpCount() &&
582            "Incorrect number of Debug Operands for this DbgValue.");
583     OpCount = NewIDs.size();
584     for (unsigned Idx = 0; Idx < NewIDs.size(); ++Idx)
585       DbgOps[Idx] = NewIDs[Idx];
586   }
587 
588   // The number of debug operands expected by this DbgValue's expression.
589   // getDbgOpIDs() should return an array of this length, unless this is an
590   // Undef or an unjoined VPHI.
591   unsigned getLocationOpCount() const {
592     return Properties.getLocationOpCount();
593   }
594 
595   // Returns true if this or Other are unjoined PHIs, which do not have defined
596   // Loc Ops, or if the `n`th Loc Op for this has a different constness to the
597   // `n`th Loc Op for Other.
598   bool hasJoinableLocOps(const DbgValue &Other) const {
599     if (isUnjoinedPHI() || Other.isUnjoinedPHI())
600       return true;
601     for (unsigned Idx = 0; Idx < getLocationOpCount(); ++Idx) {
602       if (getDbgOpID(Idx).isConst() != Other.getDbgOpID(Idx).isConst())
603         return false;
604     }
605     return true;
606   }
607 
608   bool isUnjoinedPHI() const { return Kind == VPHI && OpCount == 0; }
609 
610   bool hasIdenticalValidLocOps(const DbgValue &Other) const {
611     if (!OpCount)
612       return false;
613     return equal(getDbgOpIDs(), Other.getDbgOpIDs());
614   }
615 };
616 
617 class LocIdxToIndexFunctor {
618 public:
619   using argument_type = LocIdx;
620   unsigned operator()(const LocIdx &L) const { return L.asU64(); }
621 };
622 
623 /// Tracker for what values are in machine locations. Listens to the Things
624 /// being Done by various instructions, and maintains a table of what machine
625 /// locations have what values (as defined by a ValueIDNum).
626 ///
627 /// There are potentially a much larger number of machine locations on the
628 /// target machine than the actual working-set size of the function. On x86 for
629 /// example, we're extremely unlikely to want to track values through control
630 /// or debug registers. To avoid doing so, MLocTracker has several layers of
631 /// indirection going on, described below, to avoid unnecessarily tracking
632 /// any location.
633 ///
634 /// Here's a sort of diagram of the indexes, read from the bottom up:
635 ///
636 ///           Size on stack   Offset on stack
637 ///                 \              /
638 ///          Stack Idx (Where in slot is this?)
639 ///                         /
640 ///                        /
641 /// Slot Num (%stack.0)   /
642 /// FrameIdx => SpillNum /
643 ///              \      /
644 ///           SpillID (int)   Register number (int)
645 ///                      \       /
646 ///                      LocationID => LocIdx
647 ///                                |
648 ///                       LocIdx => ValueIDNum
649 ///
650 /// The aim here is that the LocIdx => ValueIDNum vector is just an array of
651 /// values in numbered locations, so that later analyses can ignore whether the
652 /// location is a register or otherwise. To map a register / spill location to
653 /// a LocIdx, you have to use the (sparse) LocationID => LocIdx map. And to
654 /// build a LocationID for a stack slot, you need to combine identifiers for
655 /// which stack slot it is and where within that slot is being described.
656 ///
657 /// Register mask operands cause trouble by technically defining every register;
658 /// various hacks are used to avoid tracking registers that are never read and
659 /// only written by regmasks.
660 class MLocTracker {
661 public:
662   MachineFunction &MF;
663   const TargetInstrInfo &TII;
664   const TargetRegisterInfo &TRI;
665   const TargetLowering &TLI;
666 
667   /// IndexedMap type, mapping from LocIdx to ValueIDNum.
668   using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>;
669 
670   /// Map of LocIdxes to the ValueIDNums that they store. This is tightly
671   /// packed, entries only exist for locations that are being tracked.
672   LocToValueType LocIdxToIDNum;
673 
674   /// "Map" of machine location IDs (i.e., raw register or spill number) to the
675   /// LocIdx key / number for that location. There are always at least as many
676   /// as the number of registers on the target -- if the value in the register
677   /// is not being tracked, then the LocIdx value will be zero. New entries are
678   /// appended if a new spill slot begins being tracked.
679   /// This, and the corresponding reverse map persist for the analysis of the
680   /// whole function, and is necessarying for decoding various vectors of
681   /// values.
682   std::vector<LocIdx> LocIDToLocIdx;
683 
684   /// Inverse map of LocIDToLocIdx.
685   IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID;
686 
687   /// When clobbering register masks, we chose to not believe the machine model
688   /// and don't clobber SP. Do the same for SP aliases, and for efficiency,
689   /// keep a set of them here.
690   SmallSet<Register, 8> SPAliases;
691 
692   /// Unique-ification of spill. Used to number them -- their LocID number is
693   /// the index in SpillLocs minus one plus NumRegs.
694   UniqueVector<SpillLoc> SpillLocs;
695 
696   // If we discover a new machine location, assign it an mphi with this
697   // block number.
698   unsigned CurBB = -1;
699 
700   /// Cached local copy of the number of registers the target has.
701   unsigned NumRegs;
702 
703   /// Number of slot indexes the target has -- distinct segments of a stack
704   /// slot that can take on the value of a subregister, when a super-register
705   /// is written to the stack.
706   unsigned NumSlotIdxes;
707 
708   /// Collection of register mask operands that have been observed. Second part
709   /// of pair indicates the instruction that they happened in. Used to
710   /// reconstruct where defs happened if we start tracking a location later
711   /// on.
712   SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks;
713 
714   /// Pair for describing a position within a stack slot -- first the size in
715   /// bits, then the offset.
716   typedef std::pair<unsigned short, unsigned short> StackSlotPos;
717 
718   /// Map from a size/offset pair describing a position in a stack slot, to a
719   /// numeric identifier for that position. Allows easier identification of
720   /// individual positions.
721   DenseMap<StackSlotPos, unsigned> StackSlotIdxes;
722 
723   /// Inverse of StackSlotIdxes.
724   DenseMap<unsigned, StackSlotPos> StackIdxesToPos;
725 
726   /// Iterator for locations and the values they contain. Dereferencing
727   /// produces a struct/pair containing the LocIdx key for this location,
728   /// and a reference to the value currently stored. Simplifies the process
729   /// of seeking a particular location.
730   class MLocIterator {
731     LocToValueType &ValueMap;
732     LocIdx Idx;
733 
734   public:
735     class value_type {
736     public:
737       value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) {}
738       const LocIdx Idx;  /// Read-only index of this location.
739       ValueIDNum &Value; /// Reference to the stored value at this location.
740     };
741 
742     MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
743         : ValueMap(ValueMap), Idx(Idx) {}
744 
745     bool operator==(const MLocIterator &Other) const {
746       assert(&ValueMap == &Other.ValueMap);
747       return Idx == Other.Idx;
748     }
749 
750     bool operator!=(const MLocIterator &Other) const {
751       return !(*this == Other);
752     }
753 
754     void operator++() { Idx = LocIdx(Idx.asU64() + 1); }
755 
756     value_type operator*() { return value_type(Idx, ValueMap[LocIdx(Idx)]); }
757   };
758 
759   MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
760               const TargetRegisterInfo &TRI, const TargetLowering &TLI);
761 
762   /// Produce location ID number for a Register. Provides some small amount of
763   /// type safety.
764   /// \param Reg The register we're looking up.
765   unsigned getLocID(Register Reg) { return Reg.id(); }
766 
767   /// Produce location ID number for a spill position.
768   /// \param Spill The number of the spill we're fetching the location for.
769   /// \param SpillSubReg Subregister within the spill we're addressing.
770   unsigned getLocID(SpillLocationNo Spill, unsigned SpillSubReg) {
771     unsigned short Size = TRI.getSubRegIdxSize(SpillSubReg);
772     unsigned short Offs = TRI.getSubRegIdxOffset(SpillSubReg);
773     return getLocID(Spill, {Size, Offs});
774   }
775 
776   /// Produce location ID number for a spill position.
777   /// \param Spill The number of the spill we're fetching the location for.
778   /// \apram SpillIdx size/offset within the spill slot to be addressed.
779   unsigned getLocID(SpillLocationNo Spill, StackSlotPos Idx) {
780     unsigned SlotNo = Spill.id() - 1;
781     SlotNo *= NumSlotIdxes;
782     assert(StackSlotIdxes.contains(Idx));
783     SlotNo += StackSlotIdxes[Idx];
784     SlotNo += NumRegs;
785     return SlotNo;
786   }
787 
788   /// Given a spill number, and a slot within the spill, calculate the ID number
789   /// for that location.
790   unsigned getSpillIDWithIdx(SpillLocationNo Spill, unsigned Idx) {
791     unsigned SlotNo = Spill.id() - 1;
792     SlotNo *= NumSlotIdxes;
793     SlotNo += Idx;
794     SlotNo += NumRegs;
795     return SlotNo;
796   }
797 
798   /// Return the spill number that a location ID corresponds to.
799   SpillLocationNo locIDToSpill(unsigned ID) const {
800     assert(ID >= NumRegs);
801     ID -= NumRegs;
802     // Truncate away the index part, leaving only the spill number.
803     ID /= NumSlotIdxes;
804     return SpillLocationNo(ID + 1); // The UniqueVector is one-based.
805   }
806 
807   /// Returns the spill-slot size/offs that a location ID corresponds to.
808   StackSlotPos locIDToSpillIdx(unsigned ID) const {
809     assert(ID >= NumRegs);
810     ID -= NumRegs;
811     unsigned Idx = ID % NumSlotIdxes;
812     return StackIdxesToPos.find(Idx)->second;
813   }
814 
815   unsigned getNumLocs() const { return LocIdxToIDNum.size(); }
816 
817   /// Reset all locations to contain a PHI value at the designated block. Used
818   /// sometimes for actual PHI values, othertimes to indicate the block entry
819   /// value (before any more information is known).
820   void setMPhis(unsigned NewCurBB) {
821     CurBB = NewCurBB;
822     for (auto Location : locations())
823       Location.Value = {CurBB, 0, Location.Idx};
824   }
825 
826   /// Load values for each location from array of ValueIDNums. Take current
827   /// bbnum just in case we read a value from a hitherto untouched register.
828   void loadFromArray(ValueTable &Locs, unsigned NewCurBB) {
829     CurBB = NewCurBB;
830     // Iterate over all tracked locations, and load each locations live-in
831     // value into our local index.
832     for (auto Location : locations())
833       Location.Value = Locs[Location.Idx.asU64()];
834   }
835 
836   /// Wipe any un-necessary location records after traversing a block.
837   void reset() {
838     // We could reset all the location values too; however either loadFromArray
839     // or setMPhis should be called before this object is re-used. Just
840     // clear Masks, they're definitely not needed.
841     Masks.clear();
842   }
843 
844   /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
845   /// the information in this pass uninterpretable.
846   void clear() {
847     reset();
848     LocIDToLocIdx.clear();
849     LocIdxToLocID.clear();
850     LocIdxToIDNum.clear();
851     // SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from
852     // 0
853     SpillLocs = decltype(SpillLocs)();
854     StackSlotIdxes.clear();
855     StackIdxesToPos.clear();
856 
857     LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
858   }
859 
860   /// Set a locaiton to a certain value.
861   void setMLoc(LocIdx L, ValueIDNum Num) {
862     assert(L.asU64() < LocIdxToIDNum.size());
863     LocIdxToIDNum[L] = Num;
864   }
865 
866   /// Read the value of a particular location
867   ValueIDNum readMLoc(LocIdx L) {
868     assert(L.asU64() < LocIdxToIDNum.size());
869     return LocIdxToIDNum[L];
870   }
871 
872   /// Create a LocIdx for an untracked register ID. Initialize it to either an
873   /// mphi value representing a live-in, or a recent register mask clobber.
874   LocIdx trackRegister(unsigned ID);
875 
876   LocIdx lookupOrTrackRegister(unsigned ID) {
877     LocIdx &Index = LocIDToLocIdx[ID];
878     if (Index.isIllegal())
879       Index = trackRegister(ID);
880     return Index;
881   }
882 
883   /// Is register R currently tracked by MLocTracker?
884   bool isRegisterTracked(Register R) {
885     LocIdx &Index = LocIDToLocIdx[R];
886     return !Index.isIllegal();
887   }
888 
889   /// Record a definition of the specified register at the given block / inst.
890   /// This doesn't take a ValueIDNum, because the definition and its location
891   /// are synonymous.
892   void defReg(Register R, unsigned BB, unsigned Inst) {
893     unsigned ID = getLocID(R);
894     LocIdx Idx = lookupOrTrackRegister(ID);
895     ValueIDNum ValueID = {BB, Inst, Idx};
896     LocIdxToIDNum[Idx] = ValueID;
897   }
898 
899   /// Set a register to a value number. To be used if the value number is
900   /// known in advance.
901   void setReg(Register R, ValueIDNum ValueID) {
902     unsigned ID = getLocID(R);
903     LocIdx Idx = lookupOrTrackRegister(ID);
904     LocIdxToIDNum[Idx] = ValueID;
905   }
906 
907   ValueIDNum readReg(Register R) {
908     unsigned ID = getLocID(R);
909     LocIdx Idx = lookupOrTrackRegister(ID);
910     return LocIdxToIDNum[Idx];
911   }
912 
913   /// Reset a register value to zero / empty. Needed to replicate the
914   /// VarLoc implementation where a copy to/from a register effectively
915   /// clears the contents of the source register. (Values can only have one
916   ///  machine location in VarLocBasedImpl).
917   void wipeRegister(Register R) {
918     unsigned ID = getLocID(R);
919     LocIdx Idx = LocIDToLocIdx[ID];
920     LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue;
921   }
922 
923   /// Determine the LocIdx of an existing register.
924   LocIdx getRegMLoc(Register R) {
925     unsigned ID = getLocID(R);
926     assert(ID < LocIDToLocIdx.size());
927     assert(LocIDToLocIdx[ID] != UINT_MAX); // Sentinal for IndexedMap.
928     return LocIDToLocIdx[ID];
929   }
930 
931   /// Record a RegMask operand being executed. Defs any register we currently
932   /// track, stores a pointer to the mask in case we have to account for it
933   /// later.
934   void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID);
935 
936   /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
937   /// Returns std::nullopt when in scenarios where a spill slot could be
938   /// tracked, but we would likely run into resource limitations.
939   std::optional<SpillLocationNo> getOrTrackSpillLoc(SpillLoc L);
940 
941   // Get LocIdx of a spill ID.
942   LocIdx getSpillMLoc(unsigned SpillID) {
943     assert(LocIDToLocIdx[SpillID] != UINT_MAX); // Sentinal for IndexedMap.
944     return LocIDToLocIdx[SpillID];
945   }
946 
947   /// Return true if Idx is a spill machine location.
948   bool isSpill(LocIdx Idx) const { return LocIdxToLocID[Idx] >= NumRegs; }
949 
950   /// How large is this location (aka, how wide is a value defined there?).
951   unsigned getLocSizeInBits(LocIdx L) const {
952     unsigned ID = LocIdxToLocID[L];
953     if (!isSpill(L)) {
954       return TRI.getRegSizeInBits(Register(ID), MF.getRegInfo());
955     } else {
956       // The slot location on the stack is uninteresting, we care about the
957       // position of the value within the slot (which comes with a size).
958       StackSlotPos Pos = locIDToSpillIdx(ID);
959       return Pos.first;
960     }
961   }
962 
963   MLocIterator begin() { return MLocIterator(LocIdxToIDNum, 0); }
964 
965   MLocIterator end() {
966     return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size());
967   }
968 
969   /// Return a range over all locations currently tracked.
970   iterator_range<MLocIterator> locations() {
971     return llvm::make_range(begin(), end());
972   }
973 
974   std::string LocIdxToName(LocIdx Idx) const;
975 
976   std::string IDAsString(const ValueIDNum &Num) const;
977 
978 #ifndef NDEBUG
979   LLVM_DUMP_METHOD void dump();
980 
981   LLVM_DUMP_METHOD void dump_mloc_map();
982 #endif
983 
984   /// Create a DBG_VALUE based on debug operands \p DbgOps. Qualify it with the
985   /// information in \pProperties, for variable Var. Don't insert it anywhere,
986   /// just return the builder for it.
987   MachineInstrBuilder emitLoc(const SmallVectorImpl<ResolvedDbgOp> &DbgOps,
988                               const DebugVariable &Var,
989                               const DbgValueProperties &Properties);
990 };
991 
992 /// Types for recording sets of variable fragments that overlap. For a given
993 /// local variable, we record all other fragments of that variable that could
994 /// overlap it, to reduce search time.
995 using FragmentOfVar =
996     std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
997 using OverlapMap =
998     DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
999 
1000 /// Collection of DBG_VALUEs observed when traversing a block. Records each
1001 /// variable and the value the DBG_VALUE refers to. Requires the machine value
1002 /// location dataflow algorithm to have run already, so that values can be
1003 /// identified.
1004 class VLocTracker {
1005 public:
1006   /// Map DebugVariable to the latest Value it's defined to have.
1007   /// Needs to be a MapVector because we determine order-in-the-input-MIR from
1008   /// the order in this container.
1009   /// We only retain the last DbgValue in each block for each variable, to
1010   /// determine the blocks live-out variable value. The Vars container forms the
1011   /// transfer function for this block, as part of the dataflow analysis. The
1012   /// movement of values between locations inside of a block is handled at a
1013   /// much later stage, in the TransferTracker class.
1014   MapVector<DebugVariable, DbgValue> Vars;
1015   SmallDenseMap<DebugVariable, const DILocation *, 8> Scopes;
1016   MachineBasicBlock *MBB = nullptr;
1017   const OverlapMap &OverlappingFragments;
1018   DbgValueProperties EmptyProperties;
1019 
1020 public:
1021   VLocTracker(const OverlapMap &O, const DIExpression *EmptyExpr)
1022       : OverlappingFragments(O), EmptyProperties(EmptyExpr, false, false) {}
1023 
1024   void defVar(const MachineInstr &MI, const DbgValueProperties &Properties,
1025               const SmallVectorImpl<DbgOpID> &DebugOps) {
1026     assert(MI.isDebugValueLike());
1027     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
1028                       MI.getDebugLoc()->getInlinedAt());
1029     DbgValue Rec = (DebugOps.size() > 0)
1030                        ? DbgValue(DebugOps, Properties)
1031                        : DbgValue(Properties, DbgValue::Undef);
1032 
1033     // Attempt insertion; overwrite if it's already mapped.
1034     auto Result = Vars.insert(std::make_pair(Var, Rec));
1035     if (!Result.second)
1036       Result.first->second = Rec;
1037     Scopes[Var] = MI.getDebugLoc().get();
1038 
1039     considerOverlaps(Var, MI.getDebugLoc().get());
1040   }
1041 
1042   void considerOverlaps(const DebugVariable &Var, const DILocation *Loc) {
1043     auto Overlaps = OverlappingFragments.find(
1044         {Var.getVariable(), Var.getFragmentOrDefault()});
1045     if (Overlaps == OverlappingFragments.end())
1046       return;
1047 
1048     // Otherwise: terminate any overlapped variable locations.
1049     for (auto FragmentInfo : Overlaps->second) {
1050       // The "empty" fragment is stored as DebugVariable::DefaultFragment, so
1051       // that it overlaps with everything, however its cannonical representation
1052       // in a DebugVariable is as "None".
1053       std::optional<DIExpression::FragmentInfo> OptFragmentInfo = FragmentInfo;
1054       if (DebugVariable::isDefaultFragment(FragmentInfo))
1055         OptFragmentInfo = std::nullopt;
1056 
1057       DebugVariable Overlapped(Var.getVariable(), OptFragmentInfo,
1058                                Var.getInlinedAt());
1059       DbgValue Rec = DbgValue(EmptyProperties, DbgValue::Undef);
1060 
1061       // Attempt insertion; overwrite if it's already mapped.
1062       auto Result = Vars.insert(std::make_pair(Overlapped, Rec));
1063       if (!Result.second)
1064         Result.first->second = Rec;
1065       Scopes[Overlapped] = Loc;
1066     }
1067   }
1068 
1069   void clear() {
1070     Vars.clear();
1071     Scopes.clear();
1072   }
1073 };
1074 
1075 // XXX XXX docs
1076 class InstrRefBasedLDV : public LDVImpl {
1077 public:
1078   friend class ::InstrRefLDVTest;
1079 
1080   using FragmentInfo = DIExpression::FragmentInfo;
1081   using OptFragmentInfo = std::optional<DIExpression::FragmentInfo>;
1082 
1083   // Helper while building OverlapMap, a map of all fragments seen for a given
1084   // DILocalVariable.
1085   using VarToFragments =
1086       DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
1087 
1088   /// Machine location/value transfer function, a mapping of which locations
1089   /// are assigned which new values.
1090   using MLocTransferMap = SmallDenseMap<LocIdx, ValueIDNum>;
1091 
1092   /// Live in/out structure for the variable values: a per-block map of
1093   /// variables to their values.
1094   using LiveIdxT = DenseMap<const MachineBasicBlock *, DbgValue *>;
1095 
1096   using VarAndLoc = std::pair<DebugVariable, DbgValue>;
1097 
1098   /// Type for a live-in value: the predecessor block, and its value.
1099   using InValueT = std::pair<MachineBasicBlock *, DbgValue *>;
1100 
1101   /// Vector (per block) of a collection (inner smallvector) of live-ins.
1102   /// Used as the result type for the variable value dataflow problem.
1103   using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>;
1104 
1105   /// Mapping from lexical scopes to a DILocation in that scope.
1106   using ScopeToDILocT = DenseMap<const LexicalScope *, const DILocation *>;
1107 
1108   /// Mapping from lexical scopes to variables in that scope.
1109   using ScopeToVarsT = DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>>;
1110 
1111   /// Mapping from lexical scopes to blocks where variables in that scope are
1112   /// assigned. Such blocks aren't necessarily "in" the lexical scope, it's
1113   /// just a block where an assignment happens.
1114   using ScopeToAssignBlocksT = DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>;
1115 
1116 private:
1117   MachineDominatorTree *DomTree;
1118   const TargetRegisterInfo *TRI;
1119   const MachineRegisterInfo *MRI;
1120   const TargetInstrInfo *TII;
1121   const TargetFrameLowering *TFI;
1122   const MachineFrameInfo *MFI;
1123   BitVector CalleeSavedRegs;
1124   LexicalScopes LS;
1125   TargetPassConfig *TPC;
1126 
1127   // An empty DIExpression. Used default / placeholder DbgValueProperties
1128   // objects, as we can't have null expressions.
1129   const DIExpression *EmptyExpr;
1130 
1131   /// Object to track machine locations as we step through a block. Could
1132   /// probably be a field rather than a pointer, as it's always used.
1133   MLocTracker *MTracker = nullptr;
1134 
1135   /// Number of the current block LiveDebugValues is stepping through.
1136   unsigned CurBB = -1;
1137 
1138   /// Number of the current instruction LiveDebugValues is evaluating.
1139   unsigned CurInst;
1140 
1141   /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
1142   /// steps through a block. Reads the values at each location from the
1143   /// MLocTracker object.
1144   VLocTracker *VTracker = nullptr;
1145 
1146   /// Tracker for transfers, listens to DBG_VALUEs and transfers of values
1147   /// between locations during stepping, creates new DBG_VALUEs when values move
1148   /// location.
1149   TransferTracker *TTracker = nullptr;
1150 
1151   /// Blocks which are artificial, i.e. blocks which exclusively contain
1152   /// instructions without DebugLocs, or with line 0 locations.
1153   SmallPtrSet<MachineBasicBlock *, 16> ArtificialBlocks;
1154 
1155   // Mapping of blocks to and from their RPOT order.
1156   DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
1157   DenseMap<const MachineBasicBlock *, unsigned int> BBToOrder;
1158   DenseMap<unsigned, unsigned> BBNumToRPO;
1159 
1160   /// Pair of MachineInstr, and its 1-based offset into the containing block.
1161   using InstAndNum = std::pair<const MachineInstr *, unsigned>;
1162   /// Map from debug instruction number to the MachineInstr labelled with that
1163   /// number, and its location within the function. Used to transform
1164   /// instruction numbers in DBG_INSTR_REFs into machine value numbers.
1165   std::map<uint64_t, InstAndNum> DebugInstrNumToInstr;
1166 
1167   /// Record of where we observed a DBG_PHI instruction.
1168   class DebugPHIRecord {
1169   public:
1170     /// Instruction number of this DBG_PHI.
1171     uint64_t InstrNum;
1172     /// Block where DBG_PHI occurred.
1173     MachineBasicBlock *MBB;
1174     /// The value number read by the DBG_PHI -- or std::nullopt if it didn't
1175     /// refer to a value.
1176     std::optional<ValueIDNum> ValueRead;
1177     /// Register/Stack location the DBG_PHI reads -- or std::nullopt if it
1178     /// referred to something unexpected.
1179     std::optional<LocIdx> ReadLoc;
1180 
1181     operator unsigned() const { return InstrNum; }
1182   };
1183 
1184   /// Map from instruction numbers defined by DBG_PHIs to a record of what that
1185   /// DBG_PHI read and where. Populated and edited during the machine value
1186   /// location problem -- we use LLVMs SSA Updater to fix changes by
1187   /// optimizations that destroy PHI instructions.
1188   SmallVector<DebugPHIRecord, 32> DebugPHINumToValue;
1189 
1190   // Map of overlapping variable fragments.
1191   OverlapMap OverlapFragments;
1192   VarToFragments SeenFragments;
1193 
1194   /// Mapping of DBG_INSTR_REF instructions to their values, for those
1195   /// DBG_INSTR_REFs that call resolveDbgPHIs. These variable references solve
1196   /// a mini SSA problem caused by DBG_PHIs being cloned, this collection caches
1197   /// the result.
1198   DenseMap<std::pair<MachineInstr *, unsigned>, std::optional<ValueIDNum>>
1199       SeenDbgPHIs;
1200 
1201   DbgOpIDMap DbgOpStore;
1202 
1203   /// True if we need to examine call instructions for stack clobbers. We
1204   /// normally assume that they don't clobber SP, but stack probes on Windows
1205   /// do.
1206   bool AdjustsStackInCalls = false;
1207 
1208   /// If AdjustsStackInCalls is true, this holds the name of the target's stack
1209   /// probe function, which is the function we expect will alter the stack
1210   /// pointer.
1211   StringRef StackProbeSymbolName;
1212 
1213   /// Tests whether this instruction is a spill to a stack slot.
1214   std::optional<SpillLocationNo> isSpillInstruction(const MachineInstr &MI,
1215                                                     MachineFunction *MF);
1216 
1217   /// Decide if @MI is a spill instruction and return true if it is. We use 2
1218   /// criteria to make this decision:
1219   /// - Is this instruction a store to a spill slot?
1220   /// - Is there a register operand that is both used and killed?
1221   /// TODO: Store optimization can fold spills into other stores (including
1222   /// other spills). We do not handle this yet (more than one memory operand).
1223   bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
1224                        unsigned &Reg);
1225 
1226   /// If a given instruction is identified as a spill, return the spill slot
1227   /// and set \p Reg to the spilled register.
1228   std::optional<SpillLocationNo> isRestoreInstruction(const MachineInstr &MI,
1229                                                       MachineFunction *MF,
1230                                                       unsigned &Reg);
1231 
1232   /// Given a spill instruction, extract the spill slot information, ensure it's
1233   /// tracked, and return the spill number.
1234   std::optional<SpillLocationNo>
1235   extractSpillBaseRegAndOffset(const MachineInstr &MI);
1236 
1237   /// For an instruction reference given by \p InstNo and \p OpNo in instruction
1238   /// \p MI returns the Value pointed to by that instruction reference if any
1239   /// exists, otherwise returns std::nullopt.
1240   std::optional<ValueIDNum> getValueForInstrRef(unsigned InstNo, unsigned OpNo,
1241                                                 MachineInstr &MI,
1242                                                 const FuncValueTable *MLiveOuts,
1243                                                 const FuncValueTable *MLiveIns);
1244 
1245   /// Observe a single instruction while stepping through a block.
1246   void process(MachineInstr &MI, const FuncValueTable *MLiveOuts,
1247                const FuncValueTable *MLiveIns);
1248 
1249   /// Examines whether \p MI is a DBG_VALUE and notifies trackers.
1250   /// \returns true if MI was recognized and processed.
1251   bool transferDebugValue(const MachineInstr &MI);
1252 
1253   /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers.
1254   /// \returns true if MI was recognized and processed.
1255   bool transferDebugInstrRef(MachineInstr &MI, const FuncValueTable *MLiveOuts,
1256                              const FuncValueTable *MLiveIns);
1257 
1258   /// Stores value-information about where this PHI occurred, and what
1259   /// instruction number is associated with it.
1260   /// \returns true if MI was recognized and processed.
1261   bool transferDebugPHI(MachineInstr &MI);
1262 
1263   /// Examines whether \p MI is copy instruction, and notifies trackers.
1264   /// \returns true if MI was recognized and processed.
1265   bool transferRegisterCopy(MachineInstr &MI);
1266 
1267   /// Examines whether \p MI is stack spill or restore  instruction, and
1268   /// notifies trackers. \returns true if MI was recognized and processed.
1269   bool transferSpillOrRestoreInst(MachineInstr &MI);
1270 
1271   /// Examines \p MI for any registers that it defines, and notifies trackers.
1272   void transferRegisterDef(MachineInstr &MI);
1273 
1274   /// Copy one location to the other, accounting for movement of subregisters
1275   /// too.
1276   void performCopy(Register Src, Register Dst);
1277 
1278   void accumulateFragmentMap(MachineInstr &MI);
1279 
1280   /// Determine the machine value number referred to by (potentially several)
1281   /// DBG_PHI instructions. Block duplication and tail folding can duplicate
1282   /// DBG_PHIs, shifting the position where values in registers merge, and
1283   /// forming another mini-ssa problem to solve.
1284   /// \p Here the position of a DBG_INSTR_REF seeking a machine value number
1285   /// \p InstrNum Debug instruction number defined by DBG_PHI instructions.
1286   /// \returns The machine value number at position Here, or std::nullopt.
1287   std::optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF,
1288                                            const FuncValueTable &MLiveOuts,
1289                                            const FuncValueTable &MLiveIns,
1290                                            MachineInstr &Here,
1291                                            uint64_t InstrNum);
1292 
1293   std::optional<ValueIDNum> resolveDbgPHIsImpl(MachineFunction &MF,
1294                                                const FuncValueTable &MLiveOuts,
1295                                                const FuncValueTable &MLiveIns,
1296                                                MachineInstr &Here,
1297                                                uint64_t InstrNum);
1298 
1299   /// Step through the function, recording register definitions and movements
1300   /// in an MLocTracker. Convert the observations into a per-block transfer
1301   /// function in \p MLocTransfer, suitable for using with the machine value
1302   /// location dataflow problem.
1303   void
1304   produceMLocTransferFunction(MachineFunction &MF,
1305                               SmallVectorImpl<MLocTransferMap> &MLocTransfer,
1306                               unsigned MaxNumBlocks);
1307 
1308   /// Solve the machine value location dataflow problem. Takes as input the
1309   /// transfer functions in \p MLocTransfer. Writes the output live-in and
1310   /// live-out arrays to the (initialized to zero) multidimensional arrays in
1311   /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
1312   /// number, the inner by LocIdx.
1313   void buildMLocValueMap(MachineFunction &MF, FuncValueTable &MInLocs,
1314                          FuncValueTable &MOutLocs,
1315                          SmallVectorImpl<MLocTransferMap> &MLocTransfer);
1316 
1317   /// Examine the stack indexes (i.e. offsets within the stack) to find the
1318   /// basic units of interference -- like reg units, but for the stack.
1319   void findStackIndexInterference(SmallVectorImpl<unsigned> &Slots);
1320 
1321   /// Install PHI values into the live-in array for each block, according to
1322   /// the IDF of each register.
1323   void placeMLocPHIs(MachineFunction &MF,
1324                      SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
1325                      FuncValueTable &MInLocs,
1326                      SmallVectorImpl<MLocTransferMap> &MLocTransfer);
1327 
1328   /// Propagate variable values to blocks in the common case where there's
1329   /// only one value assigned to the variable. This function has better
1330   /// performance as it doesn't have to find the dominance frontier between
1331   /// different assignments.
1332   void placePHIsForSingleVarDefinition(
1333           const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
1334           MachineBasicBlock *MBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
1335           const DebugVariable &Var, LiveInsT &Output);
1336 
1337   /// Calculate the iterated-dominance-frontier for a set of defs, using the
1338   /// existing LLVM facilities for this. Works for a single "value" or
1339   /// machine/variable location.
1340   /// \p AllBlocks Set of blocks where we might consume the value.
1341   /// \p DefBlocks Set of blocks where the value/location is defined.
1342   /// \p PHIBlocks Output set of blocks where PHIs must be placed.
1343   void BlockPHIPlacement(const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
1344                          const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
1345                          SmallVectorImpl<MachineBasicBlock *> &PHIBlocks);
1346 
1347   /// Perform a control flow join (lattice value meet) of the values in machine
1348   /// locations at \p MBB. Follows the algorithm described in the file-comment,
1349   /// reading live-outs of predecessors from \p OutLocs, the current live ins
1350   /// from \p InLocs, and assigning the newly computed live ins back into
1351   /// \p InLocs. \returns two bools -- the first indicates whether a change
1352   /// was made, the second whether a lattice downgrade occurred. If the latter
1353   /// is true, revisiting this block is necessary.
1354   bool mlocJoin(MachineBasicBlock &MBB,
1355                 SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1356                 FuncValueTable &OutLocs, ValueTable &InLocs);
1357 
1358   /// Produce a set of blocks that are in the current lexical scope. This means
1359   /// those blocks that contain instructions "in" the scope, blocks where
1360   /// assignments to variables in scope occur, and artificial blocks that are
1361   /// successors to any of the earlier blocks. See https://llvm.org/PR48091 for
1362   /// more commentry on what "in scope" means.
1363   /// \p DILoc A location in the scope that we're fetching blocks for.
1364   /// \p Output Set to put in-scope-blocks into.
1365   /// \p AssignBlocks Blocks known to contain assignments of variables in scope.
1366   void
1367   getBlocksForScope(const DILocation *DILoc,
1368                     SmallPtrSetImpl<const MachineBasicBlock *> &Output,
1369                     const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks);
1370 
1371   /// Solve the variable value dataflow problem, for a single lexical scope.
1372   /// Uses the algorithm from the file comment to resolve control flow joins
1373   /// using PHI placement and value propagation. Reads the locations of machine
1374   /// values from the \p MInLocs and \p MOutLocs arrays (see buildMLocValueMap)
1375   /// and reads the variable values transfer function from \p AllTheVlocs.
1376   /// Live-in and Live-out variable values are stored locally, with the live-ins
1377   /// permanently stored to \p Output once a fixedpoint is reached.
1378   /// \p VarsWeCareAbout contains a collection of the variables in \p Scope
1379   /// that we should be tracking.
1380   /// \p AssignBlocks contains the set of blocks that aren't in \p DILoc's
1381   /// scope, but which do contain DBG_VALUEs, which VarLocBasedImpl tracks
1382   /// locations through.
1383   void buildVLocValueMap(const DILocation *DILoc,
1384                          const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
1385                          SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
1386                          LiveInsT &Output, FuncValueTable &MOutLocs,
1387                          FuncValueTable &MInLocs,
1388                          SmallVectorImpl<VLocTracker> &AllTheVLocs);
1389 
1390   /// Attempt to eliminate un-necessary PHIs on entry to a block. Examines the
1391   /// live-in values coming from predecessors live-outs, and replaces any PHIs
1392   /// already present in this blocks live-ins with a live-through value if the
1393   /// PHI isn't needed.
1394   /// \p LiveIn Old live-in value, overwritten with new one if live-in changes.
1395   /// \returns true if any live-ins change value, either from value propagation
1396   ///          or PHI elimination.
1397   bool vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
1398                 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
1399                 DbgValue &LiveIn);
1400 
1401   /// For the given block and live-outs feeding into it, try to find
1402   /// machine locations for each debug operand where all the values feeding
1403   /// into that operand join together.
1404   /// \returns true if a joined location was found for every value that needed
1405   ///          to be joined.
1406   bool
1407   pickVPHILoc(SmallVectorImpl<DbgOpID> &OutValues, const MachineBasicBlock &MBB,
1408               const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs,
1409               const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders);
1410 
1411   std::optional<ValueIDNum> pickOperandPHILoc(
1412       unsigned DbgOpIdx, const MachineBasicBlock &MBB, const LiveIdxT &LiveOuts,
1413       FuncValueTable &MOutLocs,
1414       const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders);
1415 
1416   /// Take collections of DBG_VALUE instructions stored in TTracker, and
1417   /// install them into their output blocks. Preserves a stable order of
1418   /// DBG_VALUEs produced (which would otherwise cause nondeterminism) through
1419   /// the AllVarsNumbering order.
1420   bool emitTransfers(DenseMap<DebugVariable, unsigned> &AllVarsNumbering);
1421 
1422   /// Boilerplate computation of some initial sets, artifical blocks and
1423   /// RPOT block ordering.
1424   void initialSetup(MachineFunction &MF);
1425 
1426   /// Produce a map of the last lexical scope that uses a block, using the
1427   /// scopes DFSOut number. Mapping is block-number to DFSOut.
1428   /// \p EjectionMap Pre-allocated vector in which to install the built ma.
1429   /// \p ScopeToDILocation Mapping of LexicalScopes to their DILocations.
1430   /// \p AssignBlocks Map of blocks where assignments happen for a scope.
1431   void makeDepthFirstEjectionMap(SmallVectorImpl<unsigned> &EjectionMap,
1432                                  const ScopeToDILocT &ScopeToDILocation,
1433                                  ScopeToAssignBlocksT &AssignBlocks);
1434 
1435   /// When determining per-block variable values and emitting to DBG_VALUEs,
1436   /// this function explores by lexical scope depth. Doing so means that per
1437   /// block information can be fully computed before exploration finishes,
1438   /// allowing us to emit it and free data structures earlier than otherwise.
1439   /// It's also good for locality.
1440   bool depthFirstVLocAndEmit(
1441       unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation,
1442       const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToBlocks,
1443       LiveInsT &Output, FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
1444       SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF,
1445       DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
1446       const TargetPassConfig &TPC);
1447 
1448   bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree,
1449                     TargetPassConfig *TPC, unsigned InputBBLimit,
1450                     unsigned InputDbgValLimit) override;
1451 
1452 public:
1453   /// Default construct and initialize the pass.
1454   InstrRefBasedLDV();
1455 
1456   LLVM_DUMP_METHOD
1457   void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;
1458 
1459   bool isCalleeSaved(LocIdx L) const;
1460   bool isCalleeSavedReg(Register R) const;
1461 
1462   bool hasFoldedStackStore(const MachineInstr &MI) {
1463     // Instruction must have a memory operand that's a stack slot, and isn't
1464     // aliased, meaning it's a spill from regalloc instead of a variable.
1465     // If it's aliased, we can't guarantee its value.
1466     if (!MI.hasOneMemOperand())
1467       return false;
1468     auto *MemOperand = *MI.memoperands_begin();
1469     return MemOperand->isStore() &&
1470            MemOperand->getPseudoValue() &&
1471            MemOperand->getPseudoValue()->kind() == PseudoSourceValue::FixedStack
1472            && !MemOperand->getPseudoValue()->isAliased(MFI);
1473   }
1474 
1475   std::optional<LocIdx> findLocationForMemOperand(const MachineInstr &MI);
1476 };
1477 
1478 } // namespace LiveDebugValues
1479 
1480 #endif /* LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H */
1481