1 //===- InstrRefBasedImpl.h - Tracking Debug Value MIs ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H 10 #define LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H 11 12 #include "llvm/ADT/DenseMap.h" 13 #include "llvm/ADT/IndexedMap.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/UniqueVector.h" 17 #include "llvm/CodeGen/LexicalScopes.h" 18 #include "llvm/CodeGen/MachineBasicBlock.h" 19 #include "llvm/CodeGen/MachineInstr.h" 20 #include "llvm/CodeGen/TargetRegisterInfo.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include <optional> 23 24 #include "LiveDebugValues.h" 25 26 class TransferTracker; 27 28 // Forward dec of unit test class, so that we can peer into the LDV object. 29 class InstrRefLDVTest; 30 31 namespace LiveDebugValues { 32 33 class MLocTracker; 34 class DbgOpIDMap; 35 36 using namespace llvm; 37 38 /// Handle-class for a particular "location". This value-type uniquely 39 /// symbolises a register or stack location, allowing manipulation of locations 40 /// without concern for where that location is. Practically, this allows us to 41 /// treat the state of the machine at a particular point as an array of values, 42 /// rather than a map of values. 43 class LocIdx { 44 unsigned Location; 45 46 // Default constructor is private, initializing to an illegal location number. 47 // Use only for "not an entry" elements in IndexedMaps. 48 LocIdx() : Location(UINT_MAX) {} 49 50 public: 51 #define NUM_LOC_BITS 24 52 LocIdx(unsigned L) : Location(L) { 53 assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits"); 54 } 55 56 static LocIdx MakeIllegalLoc() { return LocIdx(); } 57 static LocIdx MakeTombstoneLoc() { 58 LocIdx L = LocIdx(); 59 --L.Location; 60 return L; 61 } 62 63 bool isIllegal() const { return Location == UINT_MAX; } 64 65 uint64_t asU64() const { return Location; } 66 67 bool operator==(unsigned L) const { return Location == L; } 68 69 bool operator==(const LocIdx &L) const { return Location == L.Location; } 70 71 bool operator!=(unsigned L) const { return !(*this == L); } 72 73 bool operator!=(const LocIdx &L) const { return !(*this == L); } 74 75 bool operator<(const LocIdx &Other) const { 76 return Location < Other.Location; 77 } 78 }; 79 80 // The location at which a spilled value resides. It consists of a register and 81 // an offset. 82 struct SpillLoc { 83 unsigned SpillBase; 84 StackOffset SpillOffset; 85 bool operator==(const SpillLoc &Other) const { 86 return std::make_pair(SpillBase, SpillOffset) == 87 std::make_pair(Other.SpillBase, Other.SpillOffset); 88 } 89 bool operator<(const SpillLoc &Other) const { 90 return std::make_tuple(SpillBase, SpillOffset.getFixed(), 91 SpillOffset.getScalable()) < 92 std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(), 93 Other.SpillOffset.getScalable()); 94 } 95 }; 96 97 /// Unique identifier for a value defined by an instruction, as a value type. 98 /// Casts back and forth to a uint64_t. Probably replacable with something less 99 /// bit-constrained. Each value identifies the instruction and machine location 100 /// where the value is defined, although there may be no corresponding machine 101 /// operand for it (ex: regmasks clobbering values). The instructions are 102 /// one-based, and definitions that are PHIs have instruction number zero. 103 /// 104 /// The obvious limits of a 1M block function or 1M instruction blocks are 105 /// problematic; but by that point we should probably have bailed out of 106 /// trying to analyse the function. 107 class ValueIDNum { 108 union { 109 struct { 110 uint64_t BlockNo : 20; /// The block where the def happens. 111 uint64_t InstNo : 20; /// The Instruction where the def happens. 112 /// One based, is distance from start of block. 113 uint64_t LocNo 114 : NUM_LOC_BITS; /// The machine location where the def happens. 115 } s; 116 uint64_t Value; 117 } u; 118 119 static_assert(sizeof(u) == 8, "Badly packed ValueIDNum?"); 120 121 public: 122 // Default-initialize to EmptyValue. This is necessary to make IndexedMaps 123 // of values to work. 124 ValueIDNum() { u.Value = EmptyValue.asU64(); } 125 126 ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) { 127 u.s = {Block, Inst, Loc}; 128 } 129 130 ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) { 131 u.s = {Block, Inst, Loc.asU64()}; 132 } 133 134 uint64_t getBlock() const { return u.s.BlockNo; } 135 uint64_t getInst() const { return u.s.InstNo; } 136 uint64_t getLoc() const { return u.s.LocNo; } 137 bool isPHI() const { return u.s.InstNo == 0; } 138 139 uint64_t asU64() const { return u.Value; } 140 141 static ValueIDNum fromU64(uint64_t v) { 142 ValueIDNum Val; 143 Val.u.Value = v; 144 return Val; 145 } 146 147 bool operator<(const ValueIDNum &Other) const { 148 return asU64() < Other.asU64(); 149 } 150 151 bool operator==(const ValueIDNum &Other) const { 152 return u.Value == Other.u.Value; 153 } 154 155 bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); } 156 157 std::string asString(const std::string &mlocname) const { 158 return Twine("Value{bb: ") 159 .concat(Twine(u.s.BlockNo) 160 .concat(Twine(", inst: ") 161 .concat((u.s.InstNo ? Twine(u.s.InstNo) 162 : Twine("live-in")) 163 .concat(Twine(", loc: ").concat( 164 Twine(mlocname))) 165 .concat(Twine("}"))))) 166 .str(); 167 } 168 169 static ValueIDNum EmptyValue; 170 static ValueIDNum TombstoneValue; 171 }; 172 173 } // End namespace LiveDebugValues 174 175 namespace llvm { 176 using namespace LiveDebugValues; 177 178 template <> struct DenseMapInfo<LocIdx> { 179 static inline LocIdx getEmptyKey() { return LocIdx::MakeIllegalLoc(); } 180 static inline LocIdx getTombstoneKey() { return LocIdx::MakeTombstoneLoc(); } 181 182 static unsigned getHashValue(const LocIdx &Loc) { return Loc.asU64(); } 183 184 static bool isEqual(const LocIdx &A, const LocIdx &B) { return A == B; } 185 }; 186 187 template <> struct DenseMapInfo<ValueIDNum> { 188 static inline ValueIDNum getEmptyKey() { return ValueIDNum::EmptyValue; } 189 static inline ValueIDNum getTombstoneKey() { 190 return ValueIDNum::TombstoneValue; 191 } 192 193 static unsigned getHashValue(const ValueIDNum &Val) { 194 return hash_value(Val.asU64()); 195 } 196 197 static bool isEqual(const ValueIDNum &A, const ValueIDNum &B) { 198 return A == B; 199 } 200 }; 201 202 } // end namespace llvm 203 204 namespace LiveDebugValues { 205 using namespace llvm; 206 207 /// Type for a table of values in a block. 208 using ValueTable = SmallVector<ValueIDNum, 0>; 209 210 /// A collection of ValueTables, one per BB in a function, with convenient 211 /// accessor methods. 212 struct FuncValueTable { 213 FuncValueTable(int NumBBs, int NumLocs) { 214 Storage.reserve(NumBBs); 215 for (int i = 0; i != NumBBs; ++i) 216 Storage.push_back( 217 std::make_unique<ValueTable>(NumLocs, ValueIDNum::EmptyValue)); 218 } 219 220 /// Returns the ValueTable associated with MBB. 221 ValueTable &operator[](const MachineBasicBlock &MBB) const { 222 return (*this)[MBB.getNumber()]; 223 } 224 225 /// Returns the ValueTable associated with the MachineBasicBlock whose number 226 /// is MBBNum. 227 ValueTable &operator[](int MBBNum) const { 228 auto &TablePtr = Storage[MBBNum]; 229 assert(TablePtr && "Trying to access a deleted table"); 230 return *TablePtr; 231 } 232 233 /// Returns the ValueTable associated with the entry MachineBasicBlock. 234 ValueTable &tableForEntryMBB() const { return (*this)[0]; } 235 236 /// Returns true if the ValueTable associated with MBB has not been freed. 237 bool hasTableFor(MachineBasicBlock &MBB) const { 238 return Storage[MBB.getNumber()] != nullptr; 239 } 240 241 /// Frees the memory of the ValueTable associated with MBB. 242 void ejectTableForBlock(const MachineBasicBlock &MBB) { 243 Storage[MBB.getNumber()].reset(); 244 } 245 246 private: 247 /// ValueTables are stored as unique_ptrs to allow for deallocation during 248 /// LDV; this was measured to have a significant impact on compiler memory 249 /// usage. 250 SmallVector<std::unique_ptr<ValueTable>, 0> Storage; 251 }; 252 253 /// Thin wrapper around an integer -- designed to give more type safety to 254 /// spill location numbers. 255 class SpillLocationNo { 256 public: 257 explicit SpillLocationNo(unsigned SpillNo) : SpillNo(SpillNo) {} 258 unsigned SpillNo; 259 unsigned id() const { return SpillNo; } 260 261 bool operator<(const SpillLocationNo &Other) const { 262 return SpillNo < Other.SpillNo; 263 } 264 265 bool operator==(const SpillLocationNo &Other) const { 266 return SpillNo == Other.SpillNo; 267 } 268 bool operator!=(const SpillLocationNo &Other) const { 269 return !(*this == Other); 270 } 271 }; 272 273 /// Meta qualifiers for a value. Pair of whatever expression is used to qualify 274 /// the value, and Boolean of whether or not it's indirect. 275 class DbgValueProperties { 276 public: 277 DbgValueProperties(const DIExpression *DIExpr, bool Indirect, bool IsVariadic) 278 : DIExpr(DIExpr), Indirect(Indirect), IsVariadic(IsVariadic) {} 279 280 /// Extract properties from an existing DBG_VALUE instruction. 281 DbgValueProperties(const MachineInstr &MI) { 282 assert(MI.isDebugValue()); 283 assert(MI.getDebugExpression()->getNumLocationOperands() == 0 || 284 MI.isDebugValueList() || MI.isUndefDebugValue()); 285 IsVariadic = MI.isDebugValueList(); 286 DIExpr = MI.getDebugExpression(); 287 Indirect = MI.isDebugOffsetImm(); 288 } 289 290 bool isJoinable(const DbgValueProperties &Other) const { 291 return DIExpression::isEqualExpression(DIExpr, Indirect, Other.DIExpr, 292 Other.Indirect); 293 } 294 295 bool operator==(const DbgValueProperties &Other) const { 296 return std::tie(DIExpr, Indirect, IsVariadic) == 297 std::tie(Other.DIExpr, Other.Indirect, Other.IsVariadic); 298 } 299 300 bool operator!=(const DbgValueProperties &Other) const { 301 return !(*this == Other); 302 } 303 304 unsigned getLocationOpCount() const { 305 return IsVariadic ? DIExpr->getNumLocationOperands() : 1; 306 } 307 308 const DIExpression *DIExpr; 309 bool Indirect; 310 bool IsVariadic; 311 }; 312 313 /// TODO: Might pack better if we changed this to a Struct of Arrays, since 314 /// MachineOperand is width 32, making this struct width 33. We could also 315 /// potentially avoid storing the whole MachineOperand (sizeof=32), instead 316 /// choosing to store just the contents portion (sizeof=8) and a Kind enum, 317 /// since we already know it is some type of immediate value. 318 /// Stores a single debug operand, which can either be a MachineOperand for 319 /// directly storing immediate values, or a ValueIDNum representing some value 320 /// computed at some point in the program. IsConst is used as a discriminator. 321 struct DbgOp { 322 union { 323 ValueIDNum ID; 324 MachineOperand MO; 325 }; 326 bool IsConst; 327 328 DbgOp() : ID(ValueIDNum::EmptyValue), IsConst(false) {} 329 DbgOp(ValueIDNum ID) : ID(ID), IsConst(false) {} 330 DbgOp(MachineOperand MO) : MO(MO), IsConst(true) {} 331 332 bool isUndef() const { return !IsConst && ID == ValueIDNum::EmptyValue; } 333 334 #ifndef NDEBUG 335 void dump(const MLocTracker *MTrack) const; 336 #endif 337 }; 338 339 /// A DbgOp whose ID (if any) has resolved to an actual location, LocIdx. Used 340 /// when working with concrete debug values, i.e. when joining MLocs and VLocs 341 /// in the TransferTracker or emitting DBG_VALUE/DBG_VALUE_LIST instructions in 342 /// the MLocTracker. 343 struct ResolvedDbgOp { 344 union { 345 LocIdx Loc; 346 MachineOperand MO; 347 }; 348 bool IsConst; 349 350 ResolvedDbgOp(LocIdx Loc) : Loc(Loc), IsConst(false) {} 351 ResolvedDbgOp(MachineOperand MO) : MO(MO), IsConst(true) {} 352 353 bool operator==(const ResolvedDbgOp &Other) const { 354 if (IsConst != Other.IsConst) 355 return false; 356 if (IsConst) 357 return MO.isIdenticalTo(Other.MO); 358 return Loc == Other.Loc; 359 } 360 361 #ifndef NDEBUG 362 void dump(const MLocTracker *MTrack) const; 363 #endif 364 }; 365 366 /// An ID used in the DbgOpIDMap (below) to lookup a stored DbgOp. This is used 367 /// in place of actual DbgOps inside of a DbgValue to reduce its size, as 368 /// DbgValue is very frequently used and passed around, and the actual DbgOp is 369 /// over 8x larger than this class, due to storing a MachineOperand. This ID 370 /// should be equal for all equal DbgOps, and also encodes whether the mapped 371 /// DbgOp is a constant, meaning that for simple equality or const-ness checks 372 /// it is not necessary to lookup this ID. 373 struct DbgOpID { 374 struct IsConstIndexPair { 375 uint32_t IsConst : 1; 376 uint32_t Index : 31; 377 }; 378 379 union { 380 struct IsConstIndexPair ID; 381 uint32_t RawID; 382 }; 383 384 DbgOpID() : RawID(UndefID.RawID) { 385 static_assert(sizeof(DbgOpID) == 4, "DbgOpID should fit within 4 bytes."); 386 } 387 DbgOpID(uint32_t RawID) : RawID(RawID) {} 388 DbgOpID(bool IsConst, uint32_t Index) : ID({IsConst, Index}) {} 389 390 static DbgOpID UndefID; 391 392 bool operator==(const DbgOpID &Other) const { return RawID == Other.RawID; } 393 bool operator!=(const DbgOpID &Other) const { return !(*this == Other); } 394 395 uint32_t asU32() const { return RawID; } 396 397 bool isUndef() const { return *this == UndefID; } 398 bool isConst() const { return ID.IsConst && !isUndef(); } 399 uint32_t getIndex() const { return ID.Index; } 400 401 #ifndef NDEBUG 402 void dump(const MLocTracker *MTrack, const DbgOpIDMap *OpStore) const; 403 #endif 404 }; 405 406 /// Class storing the complete set of values that are observed by DbgValues 407 /// within the current function. Allows 2-way lookup, with `find` returning the 408 /// Op for a given ID and `insert` returning the ID for a given Op (creating one 409 /// if none exists). 410 class DbgOpIDMap { 411 412 SmallVector<ValueIDNum, 0> ValueOps; 413 SmallVector<MachineOperand, 0> ConstOps; 414 415 DenseMap<ValueIDNum, DbgOpID> ValueOpToID; 416 DenseMap<MachineOperand, DbgOpID> ConstOpToID; 417 418 public: 419 /// If \p Op does not already exist in this map, it is inserted and the 420 /// corresponding DbgOpID is returned. If Op already exists in this map, then 421 /// no change is made and the existing ID for Op is returned. 422 /// Calling this with the undef DbgOp will always return DbgOpID::UndefID. 423 DbgOpID insert(DbgOp Op) { 424 if (Op.isUndef()) 425 return DbgOpID::UndefID; 426 if (Op.IsConst) 427 return insertConstOp(Op.MO); 428 return insertValueOp(Op.ID); 429 } 430 /// Returns the DbgOp associated with \p ID. Should only be used for IDs 431 /// returned from calling `insert` from this map or DbgOpID::UndefID. 432 DbgOp find(DbgOpID ID) const { 433 if (ID == DbgOpID::UndefID) 434 return DbgOp(); 435 if (ID.isConst()) 436 return DbgOp(ConstOps[ID.getIndex()]); 437 return DbgOp(ValueOps[ID.getIndex()]); 438 } 439 440 void clear() { 441 ValueOps.clear(); 442 ConstOps.clear(); 443 ValueOpToID.clear(); 444 ConstOpToID.clear(); 445 } 446 447 private: 448 DbgOpID insertConstOp(MachineOperand &MO) { 449 auto ExistingIt = ConstOpToID.find(MO); 450 if (ExistingIt != ConstOpToID.end()) 451 return ExistingIt->second; 452 DbgOpID ID(true, ConstOps.size()); 453 ConstOpToID.insert(std::make_pair(MO, ID)); 454 ConstOps.push_back(MO); 455 return ID; 456 } 457 DbgOpID insertValueOp(ValueIDNum VID) { 458 auto ExistingIt = ValueOpToID.find(VID); 459 if (ExistingIt != ValueOpToID.end()) 460 return ExistingIt->second; 461 DbgOpID ID(false, ValueOps.size()); 462 ValueOpToID.insert(std::make_pair(VID, ID)); 463 ValueOps.push_back(VID); 464 return ID; 465 } 466 }; 467 468 // We set the maximum number of operands that we will handle to keep DbgValue 469 // within a reasonable size (64 bytes), as we store and pass a lot of them 470 // around. 471 #define MAX_DBG_OPS 8 472 473 /// Class recording the (high level) _value_ of a variable. Identifies the value 474 /// of the variable as a list of ValueIDNums and constant MachineOperands, or as 475 /// an empty list for undef debug values or VPHI values which we have not found 476 /// valid locations for. 477 /// This class also stores meta-information about how the value is qualified. 478 /// Used to reason about variable values when performing the second 479 /// (DebugVariable specific) dataflow analysis. 480 class DbgValue { 481 private: 482 /// If Kind is Def or VPHI, the set of IDs corresponding to the DbgOps that 483 /// are used. VPHIs set every ID to EmptyID when we have not found a valid 484 /// machine-value for every operand, and sets them to the corresponding 485 /// machine-values when we have found all of them. 486 DbgOpID DbgOps[MAX_DBG_OPS]; 487 unsigned OpCount; 488 489 public: 490 /// For a NoVal or VPHI DbgValue, which block it was generated in. 491 int BlockNo; 492 493 /// Qualifiers for the ValueIDNum above. 494 DbgValueProperties Properties; 495 496 typedef enum { 497 Undef, // Represents a DBG_VALUE $noreg in the transfer function only. 498 Def, // This value is defined by some combination of constants, 499 // instructions, or PHI values. 500 VPHI, // Incoming values to BlockNo differ, those values must be joined by 501 // a PHI in this block. 502 NoVal, // Empty DbgValue indicating an unknown value. Used as initializer, 503 // before dominating blocks values are propagated in. 504 } KindT; 505 /// Discriminator for whether this is a constant or an in-program value. 506 KindT Kind; 507 508 DbgValue(ArrayRef<DbgOpID> DbgOps, const DbgValueProperties &Prop) 509 : OpCount(DbgOps.size()), BlockNo(0), Properties(Prop), Kind(Def) { 510 static_assert(sizeof(DbgValue) <= 64, 511 "DbgValue should fit within 64 bytes."); 512 assert(DbgOps.size() == Prop.getLocationOpCount()); 513 if (DbgOps.size() > MAX_DBG_OPS || 514 any_of(DbgOps, [](DbgOpID ID) { return ID.isUndef(); })) { 515 Kind = Undef; 516 OpCount = 0; 517 #define DEBUG_TYPE "LiveDebugValues" 518 if (DbgOps.size() > MAX_DBG_OPS) { 519 LLVM_DEBUG(dbgs() << "Found DbgValue with more than maximum allowed " 520 "operands.\n"); 521 } 522 #undef DEBUG_TYPE 523 } else { 524 for (unsigned Idx = 0; Idx < DbgOps.size(); ++Idx) 525 this->DbgOps[Idx] = DbgOps[Idx]; 526 } 527 } 528 529 DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind) 530 : OpCount(0), BlockNo(BlockNo), Properties(Prop), Kind(Kind) { 531 assert(Kind == NoVal || Kind == VPHI); 532 } 533 534 DbgValue(const DbgValueProperties &Prop, KindT Kind) 535 : OpCount(0), BlockNo(0), Properties(Prop), Kind(Kind) { 536 assert(Kind == Undef && 537 "Empty DbgValue constructor must pass in Undef kind"); 538 } 539 540 #ifndef NDEBUG 541 void dump(const MLocTracker *MTrack = nullptr, 542 const DbgOpIDMap *OpStore = nullptr) const; 543 #endif 544 545 bool operator==(const DbgValue &Other) const { 546 if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties)) 547 return false; 548 else if (Kind == Def && !equal(getDbgOpIDs(), Other.getDbgOpIDs())) 549 return false; 550 else if (Kind == NoVal && BlockNo != Other.BlockNo) 551 return false; 552 else if (Kind == VPHI && BlockNo != Other.BlockNo) 553 return false; 554 else if (Kind == VPHI && !equal(getDbgOpIDs(), Other.getDbgOpIDs())) 555 return false; 556 557 return true; 558 } 559 560 bool operator!=(const DbgValue &Other) const { return !(*this == Other); } 561 562 // Returns an array of all the machine values used to calculate this variable 563 // value, or an empty list for an Undef or unjoined VPHI. 564 ArrayRef<DbgOpID> getDbgOpIDs() const { return {DbgOps, OpCount}; } 565 566 // Returns either DbgOps[Index] if this DbgValue has Debug Operands, or 567 // the ID for ValueIDNum::EmptyValue otherwise (i.e. if this is an Undef, 568 // NoVal, or an unjoined VPHI). 569 DbgOpID getDbgOpID(unsigned Index) const { 570 if (!OpCount) 571 return DbgOpID::UndefID; 572 assert(Index < OpCount); 573 return DbgOps[Index]; 574 } 575 // Replaces this DbgValue's existing DbgOpIDs (if any) with the contents of 576 // \p NewIDs. The number of DbgOpIDs passed must be equal to the number of 577 // arguments expected by this DbgValue's properties (the return value of 578 // `getLocationOpCount()`). 579 void setDbgOpIDs(ArrayRef<DbgOpID> NewIDs) { 580 // We can go from no ops to some ops, but not from some ops to no ops. 581 assert(NewIDs.size() == getLocationOpCount() && 582 "Incorrect number of Debug Operands for this DbgValue."); 583 OpCount = NewIDs.size(); 584 for (unsigned Idx = 0; Idx < NewIDs.size(); ++Idx) 585 DbgOps[Idx] = NewIDs[Idx]; 586 } 587 588 // The number of debug operands expected by this DbgValue's expression. 589 // getDbgOpIDs() should return an array of this length, unless this is an 590 // Undef or an unjoined VPHI. 591 unsigned getLocationOpCount() const { 592 return Properties.getLocationOpCount(); 593 } 594 595 // Returns true if this or Other are unjoined PHIs, which do not have defined 596 // Loc Ops, or if the `n`th Loc Op for this has a different constness to the 597 // `n`th Loc Op for Other. 598 bool hasJoinableLocOps(const DbgValue &Other) const { 599 if (isUnjoinedPHI() || Other.isUnjoinedPHI()) 600 return true; 601 for (unsigned Idx = 0; Idx < getLocationOpCount(); ++Idx) { 602 if (getDbgOpID(Idx).isConst() != Other.getDbgOpID(Idx).isConst()) 603 return false; 604 } 605 return true; 606 } 607 608 bool isUnjoinedPHI() const { return Kind == VPHI && OpCount == 0; } 609 610 bool hasIdenticalValidLocOps(const DbgValue &Other) const { 611 if (!OpCount) 612 return false; 613 return equal(getDbgOpIDs(), Other.getDbgOpIDs()); 614 } 615 }; 616 617 class LocIdxToIndexFunctor { 618 public: 619 using argument_type = LocIdx; 620 unsigned operator()(const LocIdx &L) const { return L.asU64(); } 621 }; 622 623 /// Tracker for what values are in machine locations. Listens to the Things 624 /// being Done by various instructions, and maintains a table of what machine 625 /// locations have what values (as defined by a ValueIDNum). 626 /// 627 /// There are potentially a much larger number of machine locations on the 628 /// target machine than the actual working-set size of the function. On x86 for 629 /// example, we're extremely unlikely to want to track values through control 630 /// or debug registers. To avoid doing so, MLocTracker has several layers of 631 /// indirection going on, described below, to avoid unnecessarily tracking 632 /// any location. 633 /// 634 /// Here's a sort of diagram of the indexes, read from the bottom up: 635 /// 636 /// Size on stack Offset on stack 637 /// \ / 638 /// Stack Idx (Where in slot is this?) 639 /// / 640 /// / 641 /// Slot Num (%stack.0) / 642 /// FrameIdx => SpillNum / 643 /// \ / 644 /// SpillID (int) Register number (int) 645 /// \ / 646 /// LocationID => LocIdx 647 /// | 648 /// LocIdx => ValueIDNum 649 /// 650 /// The aim here is that the LocIdx => ValueIDNum vector is just an array of 651 /// values in numbered locations, so that later analyses can ignore whether the 652 /// location is a register or otherwise. To map a register / spill location to 653 /// a LocIdx, you have to use the (sparse) LocationID => LocIdx map. And to 654 /// build a LocationID for a stack slot, you need to combine identifiers for 655 /// which stack slot it is and where within that slot is being described. 656 /// 657 /// Register mask operands cause trouble by technically defining every register; 658 /// various hacks are used to avoid tracking registers that are never read and 659 /// only written by regmasks. 660 class MLocTracker { 661 public: 662 MachineFunction &MF; 663 const TargetInstrInfo &TII; 664 const TargetRegisterInfo &TRI; 665 const TargetLowering &TLI; 666 667 /// IndexedMap type, mapping from LocIdx to ValueIDNum. 668 using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>; 669 670 /// Map of LocIdxes to the ValueIDNums that they store. This is tightly 671 /// packed, entries only exist for locations that are being tracked. 672 LocToValueType LocIdxToIDNum; 673 674 /// "Map" of machine location IDs (i.e., raw register or spill number) to the 675 /// LocIdx key / number for that location. There are always at least as many 676 /// as the number of registers on the target -- if the value in the register 677 /// is not being tracked, then the LocIdx value will be zero. New entries are 678 /// appended if a new spill slot begins being tracked. 679 /// This, and the corresponding reverse map persist for the analysis of the 680 /// whole function, and is necessarying for decoding various vectors of 681 /// values. 682 std::vector<LocIdx> LocIDToLocIdx; 683 684 /// Inverse map of LocIDToLocIdx. 685 IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID; 686 687 /// When clobbering register masks, we chose to not believe the machine model 688 /// and don't clobber SP. Do the same for SP aliases, and for efficiency, 689 /// keep a set of them here. 690 SmallSet<Register, 8> SPAliases; 691 692 /// Unique-ification of spill. Used to number them -- their LocID number is 693 /// the index in SpillLocs minus one plus NumRegs. 694 UniqueVector<SpillLoc> SpillLocs; 695 696 // If we discover a new machine location, assign it an mphi with this 697 // block number. 698 unsigned CurBB = -1; 699 700 /// Cached local copy of the number of registers the target has. 701 unsigned NumRegs; 702 703 /// Number of slot indexes the target has -- distinct segments of a stack 704 /// slot that can take on the value of a subregister, when a super-register 705 /// is written to the stack. 706 unsigned NumSlotIdxes; 707 708 /// Collection of register mask operands that have been observed. Second part 709 /// of pair indicates the instruction that they happened in. Used to 710 /// reconstruct where defs happened if we start tracking a location later 711 /// on. 712 SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks; 713 714 /// Pair for describing a position within a stack slot -- first the size in 715 /// bits, then the offset. 716 typedef std::pair<unsigned short, unsigned short> StackSlotPos; 717 718 /// Map from a size/offset pair describing a position in a stack slot, to a 719 /// numeric identifier for that position. Allows easier identification of 720 /// individual positions. 721 DenseMap<StackSlotPos, unsigned> StackSlotIdxes; 722 723 /// Inverse of StackSlotIdxes. 724 DenseMap<unsigned, StackSlotPos> StackIdxesToPos; 725 726 /// Iterator for locations and the values they contain. Dereferencing 727 /// produces a struct/pair containing the LocIdx key for this location, 728 /// and a reference to the value currently stored. Simplifies the process 729 /// of seeking a particular location. 730 class MLocIterator { 731 LocToValueType &ValueMap; 732 LocIdx Idx; 733 734 public: 735 class value_type { 736 public: 737 value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) {} 738 const LocIdx Idx; /// Read-only index of this location. 739 ValueIDNum &Value; /// Reference to the stored value at this location. 740 }; 741 742 MLocIterator(LocToValueType &ValueMap, LocIdx Idx) 743 : ValueMap(ValueMap), Idx(Idx) {} 744 745 bool operator==(const MLocIterator &Other) const { 746 assert(&ValueMap == &Other.ValueMap); 747 return Idx == Other.Idx; 748 } 749 750 bool operator!=(const MLocIterator &Other) const { 751 return !(*this == Other); 752 } 753 754 void operator++() { Idx = LocIdx(Idx.asU64() + 1); } 755 756 value_type operator*() { return value_type(Idx, ValueMap[LocIdx(Idx)]); } 757 }; 758 759 MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, 760 const TargetRegisterInfo &TRI, const TargetLowering &TLI); 761 762 /// Produce location ID number for a Register. Provides some small amount of 763 /// type safety. 764 /// \param Reg The register we're looking up. 765 unsigned getLocID(Register Reg) { return Reg.id(); } 766 767 /// Produce location ID number for a spill position. 768 /// \param Spill The number of the spill we're fetching the location for. 769 /// \param SpillSubReg Subregister within the spill we're addressing. 770 unsigned getLocID(SpillLocationNo Spill, unsigned SpillSubReg) { 771 unsigned short Size = TRI.getSubRegIdxSize(SpillSubReg); 772 unsigned short Offs = TRI.getSubRegIdxOffset(SpillSubReg); 773 return getLocID(Spill, {Size, Offs}); 774 } 775 776 /// Produce location ID number for a spill position. 777 /// \param Spill The number of the spill we're fetching the location for. 778 /// \apram SpillIdx size/offset within the spill slot to be addressed. 779 unsigned getLocID(SpillLocationNo Spill, StackSlotPos Idx) { 780 unsigned SlotNo = Spill.id() - 1; 781 SlotNo *= NumSlotIdxes; 782 assert(StackSlotIdxes.contains(Idx)); 783 SlotNo += StackSlotIdxes[Idx]; 784 SlotNo += NumRegs; 785 return SlotNo; 786 } 787 788 /// Given a spill number, and a slot within the spill, calculate the ID number 789 /// for that location. 790 unsigned getSpillIDWithIdx(SpillLocationNo Spill, unsigned Idx) { 791 unsigned SlotNo = Spill.id() - 1; 792 SlotNo *= NumSlotIdxes; 793 SlotNo += Idx; 794 SlotNo += NumRegs; 795 return SlotNo; 796 } 797 798 /// Return the spill number that a location ID corresponds to. 799 SpillLocationNo locIDToSpill(unsigned ID) const { 800 assert(ID >= NumRegs); 801 ID -= NumRegs; 802 // Truncate away the index part, leaving only the spill number. 803 ID /= NumSlotIdxes; 804 return SpillLocationNo(ID + 1); // The UniqueVector is one-based. 805 } 806 807 /// Returns the spill-slot size/offs that a location ID corresponds to. 808 StackSlotPos locIDToSpillIdx(unsigned ID) const { 809 assert(ID >= NumRegs); 810 ID -= NumRegs; 811 unsigned Idx = ID % NumSlotIdxes; 812 return StackIdxesToPos.find(Idx)->second; 813 } 814 815 unsigned getNumLocs() const { return LocIdxToIDNum.size(); } 816 817 /// Reset all locations to contain a PHI value at the designated block. Used 818 /// sometimes for actual PHI values, othertimes to indicate the block entry 819 /// value (before any more information is known). 820 void setMPhis(unsigned NewCurBB) { 821 CurBB = NewCurBB; 822 for (auto Location : locations()) 823 Location.Value = {CurBB, 0, Location.Idx}; 824 } 825 826 /// Load values for each location from array of ValueIDNums. Take current 827 /// bbnum just in case we read a value from a hitherto untouched register. 828 void loadFromArray(ValueTable &Locs, unsigned NewCurBB) { 829 CurBB = NewCurBB; 830 // Iterate over all tracked locations, and load each locations live-in 831 // value into our local index. 832 for (auto Location : locations()) 833 Location.Value = Locs[Location.Idx.asU64()]; 834 } 835 836 /// Wipe any un-necessary location records after traversing a block. 837 void reset() { 838 // We could reset all the location values too; however either loadFromArray 839 // or setMPhis should be called before this object is re-used. Just 840 // clear Masks, they're definitely not needed. 841 Masks.clear(); 842 } 843 844 /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of 845 /// the information in this pass uninterpretable. 846 void clear() { 847 reset(); 848 LocIDToLocIdx.clear(); 849 LocIdxToLocID.clear(); 850 LocIdxToIDNum.clear(); 851 // SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from 852 // 0 853 SpillLocs = decltype(SpillLocs)(); 854 StackSlotIdxes.clear(); 855 StackIdxesToPos.clear(); 856 857 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); 858 } 859 860 /// Set a locaiton to a certain value. 861 void setMLoc(LocIdx L, ValueIDNum Num) { 862 assert(L.asU64() < LocIdxToIDNum.size()); 863 LocIdxToIDNum[L] = Num; 864 } 865 866 /// Read the value of a particular location 867 ValueIDNum readMLoc(LocIdx L) { 868 assert(L.asU64() < LocIdxToIDNum.size()); 869 return LocIdxToIDNum[L]; 870 } 871 872 /// Create a LocIdx for an untracked register ID. Initialize it to either an 873 /// mphi value representing a live-in, or a recent register mask clobber. 874 LocIdx trackRegister(unsigned ID); 875 876 LocIdx lookupOrTrackRegister(unsigned ID) { 877 LocIdx &Index = LocIDToLocIdx[ID]; 878 if (Index.isIllegal()) 879 Index = trackRegister(ID); 880 return Index; 881 } 882 883 /// Is register R currently tracked by MLocTracker? 884 bool isRegisterTracked(Register R) { 885 LocIdx &Index = LocIDToLocIdx[R]; 886 return !Index.isIllegal(); 887 } 888 889 /// Record a definition of the specified register at the given block / inst. 890 /// This doesn't take a ValueIDNum, because the definition and its location 891 /// are synonymous. 892 void defReg(Register R, unsigned BB, unsigned Inst) { 893 unsigned ID = getLocID(R); 894 LocIdx Idx = lookupOrTrackRegister(ID); 895 ValueIDNum ValueID = {BB, Inst, Idx}; 896 LocIdxToIDNum[Idx] = ValueID; 897 } 898 899 /// Set a register to a value number. To be used if the value number is 900 /// known in advance. 901 void setReg(Register R, ValueIDNum ValueID) { 902 unsigned ID = getLocID(R); 903 LocIdx Idx = lookupOrTrackRegister(ID); 904 LocIdxToIDNum[Idx] = ValueID; 905 } 906 907 ValueIDNum readReg(Register R) { 908 unsigned ID = getLocID(R); 909 LocIdx Idx = lookupOrTrackRegister(ID); 910 return LocIdxToIDNum[Idx]; 911 } 912 913 /// Reset a register value to zero / empty. Needed to replicate the 914 /// VarLoc implementation where a copy to/from a register effectively 915 /// clears the contents of the source register. (Values can only have one 916 /// machine location in VarLocBasedImpl). 917 void wipeRegister(Register R) { 918 unsigned ID = getLocID(R); 919 LocIdx Idx = LocIDToLocIdx[ID]; 920 LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue; 921 } 922 923 /// Determine the LocIdx of an existing register. 924 LocIdx getRegMLoc(Register R) { 925 unsigned ID = getLocID(R); 926 assert(ID < LocIDToLocIdx.size()); 927 assert(LocIDToLocIdx[ID] != UINT_MAX); // Sentinal for IndexedMap. 928 return LocIDToLocIdx[ID]; 929 } 930 931 /// Record a RegMask operand being executed. Defs any register we currently 932 /// track, stores a pointer to the mask in case we have to account for it 933 /// later. 934 void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID); 935 936 /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked. 937 /// Returns std::nullopt when in scenarios where a spill slot could be 938 /// tracked, but we would likely run into resource limitations. 939 std::optional<SpillLocationNo> getOrTrackSpillLoc(SpillLoc L); 940 941 // Get LocIdx of a spill ID. 942 LocIdx getSpillMLoc(unsigned SpillID) { 943 assert(LocIDToLocIdx[SpillID] != UINT_MAX); // Sentinal for IndexedMap. 944 return LocIDToLocIdx[SpillID]; 945 } 946 947 /// Return true if Idx is a spill machine location. 948 bool isSpill(LocIdx Idx) const { return LocIdxToLocID[Idx] >= NumRegs; } 949 950 /// How large is this location (aka, how wide is a value defined there?). 951 unsigned getLocSizeInBits(LocIdx L) const { 952 unsigned ID = LocIdxToLocID[L]; 953 if (!isSpill(L)) { 954 return TRI.getRegSizeInBits(Register(ID), MF.getRegInfo()); 955 } else { 956 // The slot location on the stack is uninteresting, we care about the 957 // position of the value within the slot (which comes with a size). 958 StackSlotPos Pos = locIDToSpillIdx(ID); 959 return Pos.first; 960 } 961 } 962 963 MLocIterator begin() { return MLocIterator(LocIdxToIDNum, 0); } 964 965 MLocIterator end() { 966 return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size()); 967 } 968 969 /// Return a range over all locations currently tracked. 970 iterator_range<MLocIterator> locations() { 971 return llvm::make_range(begin(), end()); 972 } 973 974 std::string LocIdxToName(LocIdx Idx) const; 975 976 std::string IDAsString(const ValueIDNum &Num) const; 977 978 #ifndef NDEBUG 979 LLVM_DUMP_METHOD void dump(); 980 981 LLVM_DUMP_METHOD void dump_mloc_map(); 982 #endif 983 984 /// Create a DBG_VALUE based on debug operands \p DbgOps. Qualify it with the 985 /// information in \pProperties, for variable Var. Don't insert it anywhere, 986 /// just return the builder for it. 987 MachineInstrBuilder emitLoc(const SmallVectorImpl<ResolvedDbgOp> &DbgOps, 988 const DebugVariable &Var, 989 const DbgValueProperties &Properties); 990 }; 991 992 /// Types for recording sets of variable fragments that overlap. For a given 993 /// local variable, we record all other fragments of that variable that could 994 /// overlap it, to reduce search time. 995 using FragmentOfVar = 996 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; 997 using OverlapMap = 998 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; 999 1000 /// Collection of DBG_VALUEs observed when traversing a block. Records each 1001 /// variable and the value the DBG_VALUE refers to. Requires the machine value 1002 /// location dataflow algorithm to have run already, so that values can be 1003 /// identified. 1004 class VLocTracker { 1005 public: 1006 /// Map DebugVariable to the latest Value it's defined to have. 1007 /// Needs to be a MapVector because we determine order-in-the-input-MIR from 1008 /// the order in this container. 1009 /// We only retain the last DbgValue in each block for each variable, to 1010 /// determine the blocks live-out variable value. The Vars container forms the 1011 /// transfer function for this block, as part of the dataflow analysis. The 1012 /// movement of values between locations inside of a block is handled at a 1013 /// much later stage, in the TransferTracker class. 1014 MapVector<DebugVariable, DbgValue> Vars; 1015 SmallDenseMap<DebugVariable, const DILocation *, 8> Scopes; 1016 MachineBasicBlock *MBB = nullptr; 1017 const OverlapMap &OverlappingFragments; 1018 DbgValueProperties EmptyProperties; 1019 1020 public: 1021 VLocTracker(const OverlapMap &O, const DIExpression *EmptyExpr) 1022 : OverlappingFragments(O), EmptyProperties(EmptyExpr, false, false) {} 1023 1024 void defVar(const MachineInstr &MI, const DbgValueProperties &Properties, 1025 const SmallVectorImpl<DbgOpID> &DebugOps) { 1026 assert(MI.isDebugValueLike()); 1027 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 1028 MI.getDebugLoc()->getInlinedAt()); 1029 DbgValue Rec = (DebugOps.size() > 0) 1030 ? DbgValue(DebugOps, Properties) 1031 : DbgValue(Properties, DbgValue::Undef); 1032 1033 // Attempt insertion; overwrite if it's already mapped. 1034 auto Result = Vars.insert(std::make_pair(Var, Rec)); 1035 if (!Result.second) 1036 Result.first->second = Rec; 1037 Scopes[Var] = MI.getDebugLoc().get(); 1038 1039 considerOverlaps(Var, MI.getDebugLoc().get()); 1040 } 1041 1042 void considerOverlaps(const DebugVariable &Var, const DILocation *Loc) { 1043 auto Overlaps = OverlappingFragments.find( 1044 {Var.getVariable(), Var.getFragmentOrDefault()}); 1045 if (Overlaps == OverlappingFragments.end()) 1046 return; 1047 1048 // Otherwise: terminate any overlapped variable locations. 1049 for (auto FragmentInfo : Overlaps->second) { 1050 // The "empty" fragment is stored as DebugVariable::DefaultFragment, so 1051 // that it overlaps with everything, however its cannonical representation 1052 // in a DebugVariable is as "None". 1053 std::optional<DIExpression::FragmentInfo> OptFragmentInfo = FragmentInfo; 1054 if (DebugVariable::isDefaultFragment(FragmentInfo)) 1055 OptFragmentInfo = std::nullopt; 1056 1057 DebugVariable Overlapped(Var.getVariable(), OptFragmentInfo, 1058 Var.getInlinedAt()); 1059 DbgValue Rec = DbgValue(EmptyProperties, DbgValue::Undef); 1060 1061 // Attempt insertion; overwrite if it's already mapped. 1062 auto Result = Vars.insert(std::make_pair(Overlapped, Rec)); 1063 if (!Result.second) 1064 Result.first->second = Rec; 1065 Scopes[Overlapped] = Loc; 1066 } 1067 } 1068 1069 void clear() { 1070 Vars.clear(); 1071 Scopes.clear(); 1072 } 1073 }; 1074 1075 // XXX XXX docs 1076 class InstrRefBasedLDV : public LDVImpl { 1077 public: 1078 friend class ::InstrRefLDVTest; 1079 1080 using FragmentInfo = DIExpression::FragmentInfo; 1081 using OptFragmentInfo = std::optional<DIExpression::FragmentInfo>; 1082 1083 // Helper while building OverlapMap, a map of all fragments seen for a given 1084 // DILocalVariable. 1085 using VarToFragments = 1086 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; 1087 1088 /// Machine location/value transfer function, a mapping of which locations 1089 /// are assigned which new values. 1090 using MLocTransferMap = SmallDenseMap<LocIdx, ValueIDNum>; 1091 1092 /// Live in/out structure for the variable values: a per-block map of 1093 /// variables to their values. 1094 using LiveIdxT = DenseMap<const MachineBasicBlock *, DbgValue *>; 1095 1096 using VarAndLoc = std::pair<DebugVariable, DbgValue>; 1097 1098 /// Type for a live-in value: the predecessor block, and its value. 1099 using InValueT = std::pair<MachineBasicBlock *, DbgValue *>; 1100 1101 /// Vector (per block) of a collection (inner smallvector) of live-ins. 1102 /// Used as the result type for the variable value dataflow problem. 1103 using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>; 1104 1105 /// Mapping from lexical scopes to a DILocation in that scope. 1106 using ScopeToDILocT = DenseMap<const LexicalScope *, const DILocation *>; 1107 1108 /// Mapping from lexical scopes to variables in that scope. 1109 using ScopeToVarsT = DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>>; 1110 1111 /// Mapping from lexical scopes to blocks where variables in that scope are 1112 /// assigned. Such blocks aren't necessarily "in" the lexical scope, it's 1113 /// just a block where an assignment happens. 1114 using ScopeToAssignBlocksT = DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>; 1115 1116 private: 1117 MachineDominatorTree *DomTree; 1118 const TargetRegisterInfo *TRI; 1119 const MachineRegisterInfo *MRI; 1120 const TargetInstrInfo *TII; 1121 const TargetFrameLowering *TFI; 1122 const MachineFrameInfo *MFI; 1123 BitVector CalleeSavedRegs; 1124 LexicalScopes LS; 1125 TargetPassConfig *TPC; 1126 1127 // An empty DIExpression. Used default / placeholder DbgValueProperties 1128 // objects, as we can't have null expressions. 1129 const DIExpression *EmptyExpr; 1130 1131 /// Object to track machine locations as we step through a block. Could 1132 /// probably be a field rather than a pointer, as it's always used. 1133 MLocTracker *MTracker = nullptr; 1134 1135 /// Number of the current block LiveDebugValues is stepping through. 1136 unsigned CurBB = -1; 1137 1138 /// Number of the current instruction LiveDebugValues is evaluating. 1139 unsigned CurInst; 1140 1141 /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl 1142 /// steps through a block. Reads the values at each location from the 1143 /// MLocTracker object. 1144 VLocTracker *VTracker = nullptr; 1145 1146 /// Tracker for transfers, listens to DBG_VALUEs and transfers of values 1147 /// between locations during stepping, creates new DBG_VALUEs when values move 1148 /// location. 1149 TransferTracker *TTracker = nullptr; 1150 1151 /// Blocks which are artificial, i.e. blocks which exclusively contain 1152 /// instructions without DebugLocs, or with line 0 locations. 1153 SmallPtrSet<MachineBasicBlock *, 16> ArtificialBlocks; 1154 1155 // Mapping of blocks to and from their RPOT order. 1156 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; 1157 DenseMap<const MachineBasicBlock *, unsigned int> BBToOrder; 1158 DenseMap<unsigned, unsigned> BBNumToRPO; 1159 1160 /// Pair of MachineInstr, and its 1-based offset into the containing block. 1161 using InstAndNum = std::pair<const MachineInstr *, unsigned>; 1162 /// Map from debug instruction number to the MachineInstr labelled with that 1163 /// number, and its location within the function. Used to transform 1164 /// instruction numbers in DBG_INSTR_REFs into machine value numbers. 1165 std::map<uint64_t, InstAndNum> DebugInstrNumToInstr; 1166 1167 /// Record of where we observed a DBG_PHI instruction. 1168 class DebugPHIRecord { 1169 public: 1170 /// Instruction number of this DBG_PHI. 1171 uint64_t InstrNum; 1172 /// Block where DBG_PHI occurred. 1173 MachineBasicBlock *MBB; 1174 /// The value number read by the DBG_PHI -- or std::nullopt if it didn't 1175 /// refer to a value. 1176 std::optional<ValueIDNum> ValueRead; 1177 /// Register/Stack location the DBG_PHI reads -- or std::nullopt if it 1178 /// referred to something unexpected. 1179 std::optional<LocIdx> ReadLoc; 1180 1181 operator unsigned() const { return InstrNum; } 1182 }; 1183 1184 /// Map from instruction numbers defined by DBG_PHIs to a record of what that 1185 /// DBG_PHI read and where. Populated and edited during the machine value 1186 /// location problem -- we use LLVMs SSA Updater to fix changes by 1187 /// optimizations that destroy PHI instructions. 1188 SmallVector<DebugPHIRecord, 32> DebugPHINumToValue; 1189 1190 // Map of overlapping variable fragments. 1191 OverlapMap OverlapFragments; 1192 VarToFragments SeenFragments; 1193 1194 /// Mapping of DBG_INSTR_REF instructions to their values, for those 1195 /// DBG_INSTR_REFs that call resolveDbgPHIs. These variable references solve 1196 /// a mini SSA problem caused by DBG_PHIs being cloned, this collection caches 1197 /// the result. 1198 DenseMap<std::pair<MachineInstr *, unsigned>, std::optional<ValueIDNum>> 1199 SeenDbgPHIs; 1200 1201 DbgOpIDMap DbgOpStore; 1202 1203 /// True if we need to examine call instructions for stack clobbers. We 1204 /// normally assume that they don't clobber SP, but stack probes on Windows 1205 /// do. 1206 bool AdjustsStackInCalls = false; 1207 1208 /// If AdjustsStackInCalls is true, this holds the name of the target's stack 1209 /// probe function, which is the function we expect will alter the stack 1210 /// pointer. 1211 StringRef StackProbeSymbolName; 1212 1213 /// Tests whether this instruction is a spill to a stack slot. 1214 std::optional<SpillLocationNo> isSpillInstruction(const MachineInstr &MI, 1215 MachineFunction *MF); 1216 1217 /// Decide if @MI is a spill instruction and return true if it is. We use 2 1218 /// criteria to make this decision: 1219 /// - Is this instruction a store to a spill slot? 1220 /// - Is there a register operand that is both used and killed? 1221 /// TODO: Store optimization can fold spills into other stores (including 1222 /// other spills). We do not handle this yet (more than one memory operand). 1223 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, 1224 unsigned &Reg); 1225 1226 /// If a given instruction is identified as a spill, return the spill slot 1227 /// and set \p Reg to the spilled register. 1228 std::optional<SpillLocationNo> isRestoreInstruction(const MachineInstr &MI, 1229 MachineFunction *MF, 1230 unsigned &Reg); 1231 1232 /// Given a spill instruction, extract the spill slot information, ensure it's 1233 /// tracked, and return the spill number. 1234 std::optional<SpillLocationNo> 1235 extractSpillBaseRegAndOffset(const MachineInstr &MI); 1236 1237 /// For an instruction reference given by \p InstNo and \p OpNo in instruction 1238 /// \p MI returns the Value pointed to by that instruction reference if any 1239 /// exists, otherwise returns std::nullopt. 1240 std::optional<ValueIDNum> getValueForInstrRef(unsigned InstNo, unsigned OpNo, 1241 MachineInstr &MI, 1242 const FuncValueTable *MLiveOuts, 1243 const FuncValueTable *MLiveIns); 1244 1245 /// Observe a single instruction while stepping through a block. 1246 void process(MachineInstr &MI, const FuncValueTable *MLiveOuts, 1247 const FuncValueTable *MLiveIns); 1248 1249 /// Examines whether \p MI is a DBG_VALUE and notifies trackers. 1250 /// \returns true if MI was recognized and processed. 1251 bool transferDebugValue(const MachineInstr &MI); 1252 1253 /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers. 1254 /// \returns true if MI was recognized and processed. 1255 bool transferDebugInstrRef(MachineInstr &MI, const FuncValueTable *MLiveOuts, 1256 const FuncValueTable *MLiveIns); 1257 1258 /// Stores value-information about where this PHI occurred, and what 1259 /// instruction number is associated with it. 1260 /// \returns true if MI was recognized and processed. 1261 bool transferDebugPHI(MachineInstr &MI); 1262 1263 /// Examines whether \p MI is copy instruction, and notifies trackers. 1264 /// \returns true if MI was recognized and processed. 1265 bool transferRegisterCopy(MachineInstr &MI); 1266 1267 /// Examines whether \p MI is stack spill or restore instruction, and 1268 /// notifies trackers. \returns true if MI was recognized and processed. 1269 bool transferSpillOrRestoreInst(MachineInstr &MI); 1270 1271 /// Examines \p MI for any registers that it defines, and notifies trackers. 1272 void transferRegisterDef(MachineInstr &MI); 1273 1274 /// Copy one location to the other, accounting for movement of subregisters 1275 /// too. 1276 void performCopy(Register Src, Register Dst); 1277 1278 void accumulateFragmentMap(MachineInstr &MI); 1279 1280 /// Determine the machine value number referred to by (potentially several) 1281 /// DBG_PHI instructions. Block duplication and tail folding can duplicate 1282 /// DBG_PHIs, shifting the position where values in registers merge, and 1283 /// forming another mini-ssa problem to solve. 1284 /// \p Here the position of a DBG_INSTR_REF seeking a machine value number 1285 /// \p InstrNum Debug instruction number defined by DBG_PHI instructions. 1286 /// \returns The machine value number at position Here, or std::nullopt. 1287 std::optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF, 1288 const FuncValueTable &MLiveOuts, 1289 const FuncValueTable &MLiveIns, 1290 MachineInstr &Here, 1291 uint64_t InstrNum); 1292 1293 std::optional<ValueIDNum> resolveDbgPHIsImpl(MachineFunction &MF, 1294 const FuncValueTable &MLiveOuts, 1295 const FuncValueTable &MLiveIns, 1296 MachineInstr &Here, 1297 uint64_t InstrNum); 1298 1299 /// Step through the function, recording register definitions and movements 1300 /// in an MLocTracker. Convert the observations into a per-block transfer 1301 /// function in \p MLocTransfer, suitable for using with the machine value 1302 /// location dataflow problem. 1303 void 1304 produceMLocTransferFunction(MachineFunction &MF, 1305 SmallVectorImpl<MLocTransferMap> &MLocTransfer, 1306 unsigned MaxNumBlocks); 1307 1308 /// Solve the machine value location dataflow problem. Takes as input the 1309 /// transfer functions in \p MLocTransfer. Writes the output live-in and 1310 /// live-out arrays to the (initialized to zero) multidimensional arrays in 1311 /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block 1312 /// number, the inner by LocIdx. 1313 void buildMLocValueMap(MachineFunction &MF, FuncValueTable &MInLocs, 1314 FuncValueTable &MOutLocs, 1315 SmallVectorImpl<MLocTransferMap> &MLocTransfer); 1316 1317 /// Examine the stack indexes (i.e. offsets within the stack) to find the 1318 /// basic units of interference -- like reg units, but for the stack. 1319 void findStackIndexInterference(SmallVectorImpl<unsigned> &Slots); 1320 1321 /// Install PHI values into the live-in array for each block, according to 1322 /// the IDF of each register. 1323 void placeMLocPHIs(MachineFunction &MF, 1324 SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 1325 FuncValueTable &MInLocs, 1326 SmallVectorImpl<MLocTransferMap> &MLocTransfer); 1327 1328 /// Propagate variable values to blocks in the common case where there's 1329 /// only one value assigned to the variable. This function has better 1330 /// performance as it doesn't have to find the dominance frontier between 1331 /// different assignments. 1332 void placePHIsForSingleVarDefinition( 1333 const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks, 1334 MachineBasicBlock *MBB, SmallVectorImpl<VLocTracker> &AllTheVLocs, 1335 const DebugVariable &Var, LiveInsT &Output); 1336 1337 /// Calculate the iterated-dominance-frontier for a set of defs, using the 1338 /// existing LLVM facilities for this. Works for a single "value" or 1339 /// machine/variable location. 1340 /// \p AllBlocks Set of blocks where we might consume the value. 1341 /// \p DefBlocks Set of blocks where the value/location is defined. 1342 /// \p PHIBlocks Output set of blocks where PHIs must be placed. 1343 void BlockPHIPlacement(const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 1344 const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks, 1345 SmallVectorImpl<MachineBasicBlock *> &PHIBlocks); 1346 1347 /// Perform a control flow join (lattice value meet) of the values in machine 1348 /// locations at \p MBB. Follows the algorithm described in the file-comment, 1349 /// reading live-outs of predecessors from \p OutLocs, the current live ins 1350 /// from \p InLocs, and assigning the newly computed live ins back into 1351 /// \p InLocs. \returns two bools -- the first indicates whether a change 1352 /// was made, the second whether a lattice downgrade occurred. If the latter 1353 /// is true, revisiting this block is necessary. 1354 bool mlocJoin(MachineBasicBlock &MBB, 1355 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1356 FuncValueTable &OutLocs, ValueTable &InLocs); 1357 1358 /// Produce a set of blocks that are in the current lexical scope. This means 1359 /// those blocks that contain instructions "in" the scope, blocks where 1360 /// assignments to variables in scope occur, and artificial blocks that are 1361 /// successors to any of the earlier blocks. See https://llvm.org/PR48091 for 1362 /// more commentry on what "in scope" means. 1363 /// \p DILoc A location in the scope that we're fetching blocks for. 1364 /// \p Output Set to put in-scope-blocks into. 1365 /// \p AssignBlocks Blocks known to contain assignments of variables in scope. 1366 void 1367 getBlocksForScope(const DILocation *DILoc, 1368 SmallPtrSetImpl<const MachineBasicBlock *> &Output, 1369 const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks); 1370 1371 /// Solve the variable value dataflow problem, for a single lexical scope. 1372 /// Uses the algorithm from the file comment to resolve control flow joins 1373 /// using PHI placement and value propagation. Reads the locations of machine 1374 /// values from the \p MInLocs and \p MOutLocs arrays (see buildMLocValueMap) 1375 /// and reads the variable values transfer function from \p AllTheVlocs. 1376 /// Live-in and Live-out variable values are stored locally, with the live-ins 1377 /// permanently stored to \p Output once a fixedpoint is reached. 1378 /// \p VarsWeCareAbout contains a collection of the variables in \p Scope 1379 /// that we should be tracking. 1380 /// \p AssignBlocks contains the set of blocks that aren't in \p DILoc's 1381 /// scope, but which do contain DBG_VALUEs, which VarLocBasedImpl tracks 1382 /// locations through. 1383 void buildVLocValueMap(const DILocation *DILoc, 1384 const SmallSet<DebugVariable, 4> &VarsWeCareAbout, 1385 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, 1386 LiveInsT &Output, FuncValueTable &MOutLocs, 1387 FuncValueTable &MInLocs, 1388 SmallVectorImpl<VLocTracker> &AllTheVLocs); 1389 1390 /// Attempt to eliminate un-necessary PHIs on entry to a block. Examines the 1391 /// live-in values coming from predecessors live-outs, and replaces any PHIs 1392 /// already present in this blocks live-ins with a live-through value if the 1393 /// PHI isn't needed. 1394 /// \p LiveIn Old live-in value, overwritten with new one if live-in changes. 1395 /// \returns true if any live-ins change value, either from value propagation 1396 /// or PHI elimination. 1397 bool vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, 1398 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, 1399 DbgValue &LiveIn); 1400 1401 /// For the given block and live-outs feeding into it, try to find 1402 /// machine locations for each debug operand where all the values feeding 1403 /// into that operand join together. 1404 /// \returns true if a joined location was found for every value that needed 1405 /// to be joined. 1406 bool 1407 pickVPHILoc(SmallVectorImpl<DbgOpID> &OutValues, const MachineBasicBlock &MBB, 1408 const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs, 1409 const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders); 1410 1411 std::optional<ValueIDNum> pickOperandPHILoc( 1412 unsigned DbgOpIdx, const MachineBasicBlock &MBB, const LiveIdxT &LiveOuts, 1413 FuncValueTable &MOutLocs, 1414 const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders); 1415 1416 /// Take collections of DBG_VALUE instructions stored in TTracker, and 1417 /// install them into their output blocks. Preserves a stable order of 1418 /// DBG_VALUEs produced (which would otherwise cause nondeterminism) through 1419 /// the AllVarsNumbering order. 1420 bool emitTransfers(DenseMap<DebugVariable, unsigned> &AllVarsNumbering); 1421 1422 /// Boilerplate computation of some initial sets, artifical blocks and 1423 /// RPOT block ordering. 1424 void initialSetup(MachineFunction &MF); 1425 1426 /// Produce a map of the last lexical scope that uses a block, using the 1427 /// scopes DFSOut number. Mapping is block-number to DFSOut. 1428 /// \p EjectionMap Pre-allocated vector in which to install the built ma. 1429 /// \p ScopeToDILocation Mapping of LexicalScopes to their DILocations. 1430 /// \p AssignBlocks Map of blocks where assignments happen for a scope. 1431 void makeDepthFirstEjectionMap(SmallVectorImpl<unsigned> &EjectionMap, 1432 const ScopeToDILocT &ScopeToDILocation, 1433 ScopeToAssignBlocksT &AssignBlocks); 1434 1435 /// When determining per-block variable values and emitting to DBG_VALUEs, 1436 /// this function explores by lexical scope depth. Doing so means that per 1437 /// block information can be fully computed before exploration finishes, 1438 /// allowing us to emit it and free data structures earlier than otherwise. 1439 /// It's also good for locality. 1440 bool depthFirstVLocAndEmit( 1441 unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation, 1442 const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToBlocks, 1443 LiveInsT &Output, FuncValueTable &MOutLocs, FuncValueTable &MInLocs, 1444 SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF, 1445 DenseMap<DebugVariable, unsigned> &AllVarsNumbering, 1446 const TargetPassConfig &TPC); 1447 1448 bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree, 1449 TargetPassConfig *TPC, unsigned InputBBLimit, 1450 unsigned InputDbgValLimit) override; 1451 1452 public: 1453 /// Default construct and initialize the pass. 1454 InstrRefBasedLDV(); 1455 1456 LLVM_DUMP_METHOD 1457 void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const; 1458 1459 bool isCalleeSaved(LocIdx L) const; 1460 bool isCalleeSavedReg(Register R) const; 1461 1462 bool hasFoldedStackStore(const MachineInstr &MI) { 1463 // Instruction must have a memory operand that's a stack slot, and isn't 1464 // aliased, meaning it's a spill from regalloc instead of a variable. 1465 // If it's aliased, we can't guarantee its value. 1466 if (!MI.hasOneMemOperand()) 1467 return false; 1468 auto *MemOperand = *MI.memoperands_begin(); 1469 return MemOperand->isStore() && 1470 MemOperand->getPseudoValue() && 1471 MemOperand->getPseudoValue()->kind() == PseudoSourceValue::FixedStack 1472 && !MemOperand->getPseudoValue()->isAliased(MFI); 1473 } 1474 1475 std::optional<LocIdx> findLocationForMemOperand(const MachineInstr &MI); 1476 }; 1477 1478 } // namespace LiveDebugValues 1479 1480 #endif /* LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H */ 1481