1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file InstrRefBasedImpl.cpp 9 /// 10 /// This is a separate implementation of LiveDebugValues, see 11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information. 12 /// 13 /// This pass propagates variable locations between basic blocks, resolving 14 /// control flow conflicts between them. The problem is much like SSA 15 /// construction, where each DBG_VALUE instruction assigns the *value* that 16 /// a variable has, and every instruction where the variable is in scope uses 17 /// that variable. The resulting map of instruction-to-value is then translated 18 /// into a register (or spill) location for each variable over each instruction. 19 /// 20 /// This pass determines which DBG_VALUE dominates which instructions, or if 21 /// none do, where values must be merged (like PHI nodes). The added 22 /// complication is that because codegen has already finished, a PHI node may 23 /// be needed for a variable location to be correct, but no register or spill 24 /// slot merges the necessary values. In these circumstances, the variable 25 /// location is dropped. 26 /// 27 /// What makes this analysis non-trivial is loops: we cannot tell in advance 28 /// whether a variable location is live throughout a loop, or whether its 29 /// location is clobbered (or redefined by another DBG_VALUE), without 30 /// exploring all the way through. 31 /// 32 /// To make this simpler we perform two kinds of analysis. First, we identify 33 /// every value defined by every instruction (ignoring those that only move 34 /// another value), then compute a map of which values are available for each 35 /// instruction. This is stronger than a reaching-def analysis, as we create 36 /// PHI values where other values merge. 37 /// 38 /// Secondly, for each variable, we effectively re-construct SSA using each 39 /// DBG_VALUE as a def. The DBG_VALUEs read a value-number computed by the 40 /// first analysis from the location they refer to. We can then compute the 41 /// dominance frontiers of where a variable has a value, and create PHI nodes 42 /// where they merge. 43 /// This isn't precisely SSA-construction though, because the function shape 44 /// is pre-defined. If a variable location requires a PHI node, but no 45 /// PHI for the relevant values is present in the function (as computed by the 46 /// first analysis), the location must be dropped. 47 /// 48 /// Once both are complete, we can pass back over all instructions knowing: 49 /// * What _value_ each variable should contain, either defined by an 50 /// instruction or where control flow merges 51 /// * What the location of that value is (if any). 52 /// Allowing us to create appropriate live-in DBG_VALUEs, and DBG_VALUEs when 53 /// a value moves location. After this pass runs, all variable locations within 54 /// a block should be specified by DBG_VALUEs within that block, allowing 55 /// DbgEntityHistoryCalculator to focus on individual blocks. 56 /// 57 /// This pass is able to go fast because the size of the first 58 /// reaching-definition analysis is proportional to the working-set size of 59 /// the function, which the compiler tries to keep small. (It's also 60 /// proportional to the number of blocks). Additionally, we repeatedly perform 61 /// the second reaching-definition analysis with only the variables and blocks 62 /// in a single lexical scope, exploiting their locality. 63 /// 64 /// Determining where PHIs happen is trickier with this approach, and it comes 65 /// to a head in the major problem for LiveDebugValues: is a value live-through 66 /// a loop, or not? Your garden-variety dataflow analysis aims to build a set of 67 /// facts about a function, however this analysis needs to generate new value 68 /// numbers at joins. 69 /// 70 /// To do this, consider a lattice of all definition values, from instructions 71 /// and from PHIs. Each PHI is characterised by the RPO number of the block it 72 /// occurs in. Each value pair A, B can be ordered by RPO(A) < RPO(B): 73 /// with non-PHI values at the top, and any PHI value in the last block (by RPO 74 /// order) at the bottom. 75 /// 76 /// (Awkwardly: lower-down-the _lattice_ means a greater RPO _number_. Below, 77 /// "rank" always refers to the former). 78 /// 79 /// At any join, for each register, we consider: 80 /// * All incoming values, and 81 /// * The PREVIOUS live-in value at this join. 82 /// If all incoming values agree: that's the live-in value. If they do not, the 83 /// incoming values are ranked according to the partial order, and the NEXT 84 /// LOWEST rank after the PREVIOUS live-in value is picked (multiple values of 85 /// the same rank are ignored as conflicting). If there are no candidate values, 86 /// or if the rank of the live-in would be lower than the rank of the current 87 /// blocks PHIs, create a new PHI value. 88 /// 89 /// Intuitively: if it's not immediately obvious what value a join should result 90 /// in, we iteratively descend from instruction-definitions down through PHI 91 /// values, getting closer to the current block each time. If the current block 92 /// is a loop head, this ordering is effectively searching outer levels of 93 /// loops, to find a value that's live-through the current loop. 94 /// 95 /// If there is no value that's live-through this loop, a PHI is created for 96 /// this location instead. We can't use a lower-ranked PHI because by definition 97 /// it doesn't dominate the current block. We can't create a PHI value any 98 /// earlier, because we risk creating a PHI value at a location where values do 99 /// not in fact merge, thus misrepresenting the truth, and not making the true 100 /// live-through value for variable locations. 101 /// 102 /// This algorithm applies to both calculating the availability of values in 103 /// the first analysis, and the location of variables in the second. However 104 /// for the second we add an extra dimension of pain: creating a variable 105 /// location PHI is only valid if, for each incoming edge, 106 /// * There is a value for the variable on the incoming edge, and 107 /// * All the edges have that value in the same register. 108 /// Or put another way: we can only create a variable-location PHI if there is 109 /// a matching machine-location PHI, each input to which is the variables value 110 /// in the predecessor block. 111 /// 112 /// To accommodate this difference, each point on the lattice is split in 113 /// two: a "proposed" PHI and "definite" PHI. Any PHI that can immediately 114 /// have a location determined are "definite" PHIs, and no further work is 115 /// needed. Otherwise, a location that all non-backedge predecessors agree 116 /// on is picked and propagated as a "proposed" PHI value. If that PHI value 117 /// is truly live-through, it'll appear on the loop backedges on the next 118 /// dataflow iteration, after which the block live-in moves to be a "definite" 119 /// PHI. If it's not truly live-through, the variable value will be downgraded 120 /// further as we explore the lattice, or remains "proposed" and is considered 121 /// invalid once dataflow completes. 122 /// 123 /// ### Terminology 124 /// 125 /// A machine location is a register or spill slot, a value is something that's 126 /// defined by an instruction or PHI node, while a variable value is the value 127 /// assigned to a variable. A variable location is a machine location, that must 128 /// contain the appropriate variable value. A value that is a PHI node is 129 /// occasionally called an mphi. 130 /// 131 /// The first dataflow problem is the "machine value location" problem, 132 /// because we're determining which machine locations contain which values. 133 /// The "locations" are constant: what's unknown is what value they contain. 134 /// 135 /// The second dataflow problem (the one for variables) is the "variable value 136 /// problem", because it's determining what values a variable has, rather than 137 /// what location those values are placed in. Unfortunately, it's not that 138 /// simple, because producing a PHI value always involves picking a location. 139 /// This is an imperfection that we just have to accept, at least for now. 140 /// 141 /// TODO: 142 /// Overlapping fragments 143 /// Entry values 144 /// Add back DEBUG statements for debugging this 145 /// Collect statistics 146 /// 147 //===----------------------------------------------------------------------===// 148 149 #include "llvm/ADT/DenseMap.h" 150 #include "llvm/ADT/PostOrderIterator.h" 151 #include "llvm/ADT/SmallPtrSet.h" 152 #include "llvm/ADT/SmallSet.h" 153 #include "llvm/ADT/SmallVector.h" 154 #include "llvm/ADT/Statistic.h" 155 #include "llvm/ADT/UniqueVector.h" 156 #include "llvm/CodeGen/LexicalScopes.h" 157 #include "llvm/CodeGen/MachineBasicBlock.h" 158 #include "llvm/CodeGen/MachineFrameInfo.h" 159 #include "llvm/CodeGen/MachineFunction.h" 160 #include "llvm/CodeGen/MachineFunctionPass.h" 161 #include "llvm/CodeGen/MachineInstr.h" 162 #include "llvm/CodeGen/MachineInstrBuilder.h" 163 #include "llvm/CodeGen/MachineMemOperand.h" 164 #include "llvm/CodeGen/MachineOperand.h" 165 #include "llvm/CodeGen/PseudoSourceValue.h" 166 #include "llvm/CodeGen/RegisterScavenging.h" 167 #include "llvm/CodeGen/TargetFrameLowering.h" 168 #include "llvm/CodeGen/TargetInstrInfo.h" 169 #include "llvm/CodeGen/TargetLowering.h" 170 #include "llvm/CodeGen/TargetPassConfig.h" 171 #include "llvm/CodeGen/TargetRegisterInfo.h" 172 #include "llvm/CodeGen/TargetSubtargetInfo.h" 173 #include "llvm/Config/llvm-config.h" 174 #include "llvm/IR/DIBuilder.h" 175 #include "llvm/IR/DebugInfoMetadata.h" 176 #include "llvm/IR/DebugLoc.h" 177 #include "llvm/IR/Function.h" 178 #include "llvm/IR/Module.h" 179 #include "llvm/InitializePasses.h" 180 #include "llvm/MC/MCRegisterInfo.h" 181 #include "llvm/Pass.h" 182 #include "llvm/Support/Casting.h" 183 #include "llvm/Support/Compiler.h" 184 #include "llvm/Support/Debug.h" 185 #include "llvm/Support/TypeSize.h" 186 #include "llvm/Support/raw_ostream.h" 187 #include <algorithm> 188 #include <cassert> 189 #include <cstdint> 190 #include <functional> 191 #include <queue> 192 #include <tuple> 193 #include <utility> 194 #include <vector> 195 #include <limits.h> 196 #include <limits> 197 198 #include "LiveDebugValues.h" 199 200 using namespace llvm; 201 202 #define DEBUG_TYPE "livedebugvalues" 203 204 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); 205 STATISTIC(NumRemoved, "Number of DBG_VALUE instructions removed"); 206 207 // Act more like the VarLoc implementation, by propagating some locations too 208 // far and ignoring some transfers. 209 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden, 210 cl::desc("Act like old LiveDebugValues did"), 211 cl::init(false)); 212 213 // Rely on isStoreToStackSlotPostFE and similar to observe all stack spills. 214 static cl::opt<bool> 215 ObserveAllStackops("observe-all-stack-ops", cl::Hidden, 216 cl::desc("Allow non-kill spill and restores"), 217 cl::init(false)); 218 219 namespace { 220 221 // The location at which a spilled value resides. It consists of a register and 222 // an offset. 223 struct SpillLoc { 224 unsigned SpillBase; 225 StackOffset SpillOffset; 226 bool operator==(const SpillLoc &Other) const { 227 return std::make_pair(SpillBase, SpillOffset) == 228 std::make_pair(Other.SpillBase, Other.SpillOffset); 229 } 230 bool operator<(const SpillLoc &Other) const { 231 return std::make_tuple(SpillBase, SpillOffset.getFixed(), 232 SpillOffset.getScalable()) < 233 std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(), 234 Other.SpillOffset.getScalable()); 235 } 236 }; 237 238 class LocIdx { 239 unsigned Location; 240 241 // Default constructor is private, initializing to an illegal location number. 242 // Use only for "not an entry" elements in IndexedMaps. 243 LocIdx() : Location(UINT_MAX) { } 244 245 public: 246 #define NUM_LOC_BITS 24 247 LocIdx(unsigned L) : Location(L) { 248 assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits"); 249 } 250 251 static LocIdx MakeIllegalLoc() { 252 return LocIdx(); 253 } 254 255 bool isIllegal() const { 256 return Location == UINT_MAX; 257 } 258 259 uint64_t asU64() const { 260 return Location; 261 } 262 263 bool operator==(unsigned L) const { 264 return Location == L; 265 } 266 267 bool operator==(const LocIdx &L) const { 268 return Location == L.Location; 269 } 270 271 bool operator!=(unsigned L) const { 272 return !(*this == L); 273 } 274 275 bool operator!=(const LocIdx &L) const { 276 return !(*this == L); 277 } 278 279 bool operator<(const LocIdx &Other) const { 280 return Location < Other.Location; 281 } 282 }; 283 284 class LocIdxToIndexFunctor { 285 public: 286 using argument_type = LocIdx; 287 unsigned operator()(const LocIdx &L) const { 288 return L.asU64(); 289 } 290 }; 291 292 /// Unique identifier for a value defined by an instruction, as a value type. 293 /// Casts back and forth to a uint64_t. Probably replacable with something less 294 /// bit-constrained. Each value identifies the instruction and machine location 295 /// where the value is defined, although there may be no corresponding machine 296 /// operand for it (ex: regmasks clobbering values). The instructions are 297 /// one-based, and definitions that are PHIs have instruction number zero. 298 /// 299 /// The obvious limits of a 1M block function or 1M instruction blocks are 300 /// problematic; but by that point we should probably have bailed out of 301 /// trying to analyse the function. 302 class ValueIDNum { 303 uint64_t BlockNo : 20; /// The block where the def happens. 304 uint64_t InstNo : 20; /// The Instruction where the def happens. 305 /// One based, is distance from start of block. 306 uint64_t LocNo : NUM_LOC_BITS; /// The machine location where the def happens. 307 308 public: 309 // XXX -- temporarily enabled while the live-in / live-out tables are moved 310 // to something more type-y 311 ValueIDNum() : BlockNo(0xFFFFF), 312 InstNo(0xFFFFF), 313 LocNo(0xFFFFFF) { } 314 315 ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) 316 : BlockNo(Block), InstNo(Inst), LocNo(Loc) { } 317 318 ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) 319 : BlockNo(Block), InstNo(Inst), LocNo(Loc.asU64()) { } 320 321 uint64_t getBlock() const { return BlockNo; } 322 uint64_t getInst() const { return InstNo; } 323 uint64_t getLoc() const { return LocNo; } 324 bool isPHI() const { return InstNo == 0; } 325 326 uint64_t asU64() const { 327 uint64_t TmpBlock = BlockNo; 328 uint64_t TmpInst = InstNo; 329 return TmpBlock << 44ull | TmpInst << NUM_LOC_BITS | LocNo; 330 } 331 332 static ValueIDNum fromU64(uint64_t v) { 333 uint64_t L = (v & 0x3FFF); 334 return {v >> 44ull, ((v >> NUM_LOC_BITS) & 0xFFFFF), L}; 335 } 336 337 bool operator<(const ValueIDNum &Other) const { 338 return asU64() < Other.asU64(); 339 } 340 341 bool operator==(const ValueIDNum &Other) const { 342 return std::tie(BlockNo, InstNo, LocNo) == 343 std::tie(Other.BlockNo, Other.InstNo, Other.LocNo); 344 } 345 346 bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); } 347 348 std::string asString(const std::string &mlocname) const { 349 return Twine("Value{bb: ") 350 .concat(Twine(BlockNo).concat( 351 Twine(", inst: ") 352 .concat((InstNo ? Twine(InstNo) : Twine("live-in")) 353 .concat(Twine(", loc: ").concat(Twine(mlocname))) 354 .concat(Twine("}"))))) 355 .str(); 356 } 357 358 static ValueIDNum EmptyValue; 359 }; 360 361 } // end anonymous namespace 362 363 namespace { 364 365 /// Meta qualifiers for a value. Pair of whatever expression is used to qualify 366 /// the the value, and Boolean of whether or not it's indirect. 367 class DbgValueProperties { 368 public: 369 DbgValueProperties(const DIExpression *DIExpr, bool Indirect) 370 : DIExpr(DIExpr), Indirect(Indirect) {} 371 372 /// Extract properties from an existing DBG_VALUE instruction. 373 DbgValueProperties(const MachineInstr &MI) { 374 assert(MI.isDebugValue()); 375 DIExpr = MI.getDebugExpression(); 376 Indirect = MI.getOperand(1).isImm(); 377 } 378 379 bool operator==(const DbgValueProperties &Other) const { 380 return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect); 381 } 382 383 bool operator!=(const DbgValueProperties &Other) const { 384 return !(*this == Other); 385 } 386 387 const DIExpression *DIExpr; 388 bool Indirect; 389 }; 390 391 /// Tracker for what values are in machine locations. Listens to the Things 392 /// being Done by various instructions, and maintains a table of what machine 393 /// locations have what values (as defined by a ValueIDNum). 394 /// 395 /// There are potentially a much larger number of machine locations on the 396 /// target machine than the actual working-set size of the function. On x86 for 397 /// example, we're extremely unlikely to want to track values through control 398 /// or debug registers. To avoid doing so, MLocTracker has several layers of 399 /// indirection going on, with two kinds of ``location'': 400 /// * A LocID uniquely identifies a register or spill location, with a 401 /// predictable value. 402 /// * A LocIdx is a key (in the database sense) for a LocID and a ValueIDNum. 403 /// Whenever a location is def'd or used by a MachineInstr, we automagically 404 /// create a new LocIdx for a location, but not otherwise. This ensures we only 405 /// account for locations that are actually used or defined. The cost is another 406 /// vector lookup (of LocID -> LocIdx) over any other implementation. This is 407 /// fairly cheap, and the compiler tries to reduce the working-set at any one 408 /// time in the function anyway. 409 /// 410 /// Register mask operands completely blow this out of the water; I've just 411 /// piled hacks on top of hacks to get around that. 412 class MLocTracker { 413 public: 414 MachineFunction &MF; 415 const TargetInstrInfo &TII; 416 const TargetRegisterInfo &TRI; 417 const TargetLowering &TLI; 418 419 /// IndexedMap type, mapping from LocIdx to ValueIDNum. 420 using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>; 421 422 /// Map of LocIdxes to the ValueIDNums that they store. This is tightly 423 /// packed, entries only exist for locations that are being tracked. 424 LocToValueType LocIdxToIDNum; 425 426 /// "Map" of machine location IDs (i.e., raw register or spill number) to the 427 /// LocIdx key / number for that location. There are always at least as many 428 /// as the number of registers on the target -- if the value in the register 429 /// is not being tracked, then the LocIdx value will be zero. New entries are 430 /// appended if a new spill slot begins being tracked. 431 /// This, and the corresponding reverse map persist for the analysis of the 432 /// whole function, and is necessarying for decoding various vectors of 433 /// values. 434 std::vector<LocIdx> LocIDToLocIdx; 435 436 /// Inverse map of LocIDToLocIdx. 437 IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID; 438 439 /// Unique-ification of spill slots. Used to number them -- their LocID 440 /// number is the index in SpillLocs minus one plus NumRegs. 441 UniqueVector<SpillLoc> SpillLocs; 442 443 // If we discover a new machine location, assign it an mphi with this 444 // block number. 445 unsigned CurBB; 446 447 /// Cached local copy of the number of registers the target has. 448 unsigned NumRegs; 449 450 /// Collection of register mask operands that have been observed. Second part 451 /// of pair indicates the instruction that they happened in. Used to 452 /// reconstruct where defs happened if we start tracking a location later 453 /// on. 454 SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks; 455 456 /// Iterator for locations and the values they contain. Dereferencing 457 /// produces a struct/pair containing the LocIdx key for this location, 458 /// and a reference to the value currently stored. Simplifies the process 459 /// of seeking a particular location. 460 class MLocIterator { 461 LocToValueType &ValueMap; 462 LocIdx Idx; 463 464 public: 465 class value_type { 466 public: 467 value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) { } 468 const LocIdx Idx; /// Read-only index of this location. 469 ValueIDNum &Value; /// Reference to the stored value at this location. 470 }; 471 472 MLocIterator(LocToValueType &ValueMap, LocIdx Idx) 473 : ValueMap(ValueMap), Idx(Idx) { } 474 475 bool operator==(const MLocIterator &Other) const { 476 assert(&ValueMap == &Other.ValueMap); 477 return Idx == Other.Idx; 478 } 479 480 bool operator!=(const MLocIterator &Other) const { 481 return !(*this == Other); 482 } 483 484 void operator++() { 485 Idx = LocIdx(Idx.asU64() + 1); 486 } 487 488 value_type operator*() { 489 return value_type(Idx, ValueMap[LocIdx(Idx)]); 490 } 491 }; 492 493 MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, 494 const TargetRegisterInfo &TRI, const TargetLowering &TLI) 495 : MF(MF), TII(TII), TRI(TRI), TLI(TLI), 496 LocIdxToIDNum(ValueIDNum::EmptyValue), 497 LocIdxToLocID(0) { 498 NumRegs = TRI.getNumRegs(); 499 reset(); 500 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); 501 assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure 502 503 // Always track SP. This avoids the implicit clobbering caused by regmasks 504 // from affectings its values. (LiveDebugValues disbelieves calls and 505 // regmasks that claim to clobber SP). 506 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 507 if (SP) { 508 unsigned ID = getLocID(SP, false); 509 (void)lookupOrTrackRegister(ID); 510 } 511 } 512 513 /// Produce location ID number for indexing LocIDToLocIdx. Takes the register 514 /// or spill number, and flag for whether it's a spill or not. 515 unsigned getLocID(Register RegOrSpill, bool isSpill) { 516 return (isSpill) ? RegOrSpill.id() + NumRegs - 1 : RegOrSpill.id(); 517 } 518 519 /// Accessor for reading the value at Idx. 520 ValueIDNum getNumAtPos(LocIdx Idx) const { 521 assert(Idx.asU64() < LocIdxToIDNum.size()); 522 return LocIdxToIDNum[Idx]; 523 } 524 525 unsigned getNumLocs(void) const { return LocIdxToIDNum.size(); } 526 527 /// Reset all locations to contain a PHI value at the designated block. Used 528 /// sometimes for actual PHI values, othertimes to indicate the block entry 529 /// value (before any more information is known). 530 void setMPhis(unsigned NewCurBB) { 531 CurBB = NewCurBB; 532 for (auto Location : locations()) 533 Location.Value = {CurBB, 0, Location.Idx}; 534 } 535 536 /// Load values for each location from array of ValueIDNums. Take current 537 /// bbnum just in case we read a value from a hitherto untouched register. 538 void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) { 539 CurBB = NewCurBB; 540 // Iterate over all tracked locations, and load each locations live-in 541 // value into our local index. 542 for (auto Location : locations()) 543 Location.Value = Locs[Location.Idx.asU64()]; 544 } 545 546 /// Wipe any un-necessary location records after traversing a block. 547 void reset(void) { 548 // We could reset all the location values too; however either loadFromArray 549 // or setMPhis should be called before this object is re-used. Just 550 // clear Masks, they're definitely not needed. 551 Masks.clear(); 552 } 553 554 /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of 555 /// the information in this pass uninterpretable. 556 void clear(void) { 557 reset(); 558 LocIDToLocIdx.clear(); 559 LocIdxToLocID.clear(); 560 LocIdxToIDNum.clear(); 561 //SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from 0 562 SpillLocs = decltype(SpillLocs)(); 563 564 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); 565 } 566 567 /// Set a locaiton to a certain value. 568 void setMLoc(LocIdx L, ValueIDNum Num) { 569 assert(L.asU64() < LocIdxToIDNum.size()); 570 LocIdxToIDNum[L] = Num; 571 } 572 573 /// Create a LocIdx for an untracked register ID. Initialize it to either an 574 /// mphi value representing a live-in, or a recent register mask clobber. 575 LocIdx trackRegister(unsigned ID) { 576 assert(ID != 0); 577 LocIdx NewIdx = LocIdx(LocIdxToIDNum.size()); 578 LocIdxToIDNum.grow(NewIdx); 579 LocIdxToLocID.grow(NewIdx); 580 581 // Default: it's an mphi. 582 ValueIDNum ValNum = {CurBB, 0, NewIdx}; 583 // Was this reg ever touched by a regmask? 584 for (const auto &MaskPair : reverse(Masks)) { 585 if (MaskPair.first->clobbersPhysReg(ID)) { 586 // There was an earlier def we skipped. 587 ValNum = {CurBB, MaskPair.second, NewIdx}; 588 break; 589 } 590 } 591 592 LocIdxToIDNum[NewIdx] = ValNum; 593 LocIdxToLocID[NewIdx] = ID; 594 return NewIdx; 595 } 596 597 LocIdx lookupOrTrackRegister(unsigned ID) { 598 LocIdx &Index = LocIDToLocIdx[ID]; 599 if (Index.isIllegal()) 600 Index = trackRegister(ID); 601 return Index; 602 } 603 604 /// Record a definition of the specified register at the given block / inst. 605 /// This doesn't take a ValueIDNum, because the definition and its location 606 /// are synonymous. 607 void defReg(Register R, unsigned BB, unsigned Inst) { 608 unsigned ID = getLocID(R, false); 609 LocIdx Idx = lookupOrTrackRegister(ID); 610 ValueIDNum ValueID = {BB, Inst, Idx}; 611 LocIdxToIDNum[Idx] = ValueID; 612 } 613 614 /// Set a register to a value number. To be used if the value number is 615 /// known in advance. 616 void setReg(Register R, ValueIDNum ValueID) { 617 unsigned ID = getLocID(R, false); 618 LocIdx Idx = lookupOrTrackRegister(ID); 619 LocIdxToIDNum[Idx] = ValueID; 620 } 621 622 ValueIDNum readReg(Register R) { 623 unsigned ID = getLocID(R, false); 624 LocIdx Idx = lookupOrTrackRegister(ID); 625 return LocIdxToIDNum[Idx]; 626 } 627 628 /// Reset a register value to zero / empty. Needed to replicate the 629 /// VarLoc implementation where a copy to/from a register effectively 630 /// clears the contents of the source register. (Values can only have one 631 /// machine location in VarLocBasedImpl). 632 void wipeRegister(Register R) { 633 unsigned ID = getLocID(R, false); 634 LocIdx Idx = LocIDToLocIdx[ID]; 635 LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue; 636 } 637 638 /// Determine the LocIdx of an existing register. 639 LocIdx getRegMLoc(Register R) { 640 unsigned ID = getLocID(R, false); 641 return LocIDToLocIdx[ID]; 642 } 643 644 /// Record a RegMask operand being executed. Defs any register we currently 645 /// track, stores a pointer to the mask in case we have to account for it 646 /// later. 647 void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID) { 648 // Ensure SP exists, so that we don't override it later. 649 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 650 651 // Def any register we track have that isn't preserved. The regmask 652 // terminates the liveness of a register, meaning its value can't be 653 // relied upon -- we represent this by giving it a new value. 654 for (auto Location : locations()) { 655 unsigned ID = LocIdxToLocID[Location.Idx]; 656 // Don't clobber SP, even if the mask says it's clobbered. 657 if (ID < NumRegs && ID != SP && MO->clobbersPhysReg(ID)) 658 defReg(ID, CurBB, InstID); 659 } 660 Masks.push_back(std::make_pair(MO, InstID)); 661 } 662 663 /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked. 664 LocIdx getOrTrackSpillLoc(SpillLoc L) { 665 unsigned SpillID = SpillLocs.idFor(L); 666 if (SpillID == 0) { 667 SpillID = SpillLocs.insert(L); 668 unsigned L = getLocID(SpillID, true); 669 LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx 670 LocIdxToIDNum.grow(Idx); 671 LocIdxToLocID.grow(Idx); 672 LocIDToLocIdx.push_back(Idx); 673 LocIdxToLocID[Idx] = L; 674 return Idx; 675 } else { 676 unsigned L = getLocID(SpillID, true); 677 LocIdx Idx = LocIDToLocIdx[L]; 678 return Idx; 679 } 680 } 681 682 /// Set the value stored in a spill slot. 683 void setSpill(SpillLoc L, ValueIDNum ValueID) { 684 LocIdx Idx = getOrTrackSpillLoc(L); 685 LocIdxToIDNum[Idx] = ValueID; 686 } 687 688 /// Read whatever value is in a spill slot, or None if it isn't tracked. 689 Optional<ValueIDNum> readSpill(SpillLoc L) { 690 unsigned SpillID = SpillLocs.idFor(L); 691 if (SpillID == 0) 692 return None; 693 694 unsigned LocID = getLocID(SpillID, true); 695 LocIdx Idx = LocIDToLocIdx[LocID]; 696 return LocIdxToIDNum[Idx]; 697 } 698 699 /// Determine the LocIdx of a spill slot. Return None if it previously 700 /// hasn't had a value assigned. 701 Optional<LocIdx> getSpillMLoc(SpillLoc L) { 702 unsigned SpillID = SpillLocs.idFor(L); 703 if (SpillID == 0) 704 return None; 705 unsigned LocNo = getLocID(SpillID, true); 706 return LocIDToLocIdx[LocNo]; 707 } 708 709 /// Return true if Idx is a spill machine location. 710 bool isSpill(LocIdx Idx) const { 711 return LocIdxToLocID[Idx] >= NumRegs; 712 } 713 714 MLocIterator begin() { 715 return MLocIterator(LocIdxToIDNum, 0); 716 } 717 718 MLocIterator end() { 719 return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size()); 720 } 721 722 /// Return a range over all locations currently tracked. 723 iterator_range<MLocIterator> locations() { 724 return llvm::make_range(begin(), end()); 725 } 726 727 std::string LocIdxToName(LocIdx Idx) const { 728 unsigned ID = LocIdxToLocID[Idx]; 729 if (ID >= NumRegs) 730 return Twine("slot ").concat(Twine(ID - NumRegs)).str(); 731 else 732 return TRI.getRegAsmName(ID).str(); 733 } 734 735 std::string IDAsString(const ValueIDNum &Num) const { 736 std::string DefName = LocIdxToName(Num.getLoc()); 737 return Num.asString(DefName); 738 } 739 740 LLVM_DUMP_METHOD 741 void dump() { 742 for (auto Location : locations()) { 743 std::string MLocName = LocIdxToName(Location.Value.getLoc()); 744 std::string DefName = Location.Value.asString(MLocName); 745 dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n"; 746 } 747 } 748 749 LLVM_DUMP_METHOD 750 void dump_mloc_map() { 751 for (auto Location : locations()) { 752 std::string foo = LocIdxToName(Location.Idx); 753 dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n"; 754 } 755 } 756 757 /// Create a DBG_VALUE based on machine location \p MLoc. Qualify it with the 758 /// information in \pProperties, for variable Var. Don't insert it anywhere, 759 /// just return the builder for it. 760 MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var, 761 const DbgValueProperties &Properties) { 762 DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, 763 Var.getVariable()->getScope(), 764 const_cast<DILocation *>(Var.getInlinedAt())); 765 auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE)); 766 767 const DIExpression *Expr = Properties.DIExpr; 768 if (!MLoc) { 769 // No location -> DBG_VALUE $noreg 770 MIB.addReg(0, RegState::Debug); 771 MIB.addReg(0, RegState::Debug); 772 } else if (LocIdxToLocID[*MLoc] >= NumRegs) { 773 unsigned LocID = LocIdxToLocID[*MLoc]; 774 const SpillLoc &Spill = SpillLocs[LocID - NumRegs + 1]; 775 776 auto *TRI = MF.getSubtarget().getRegisterInfo(); 777 Expr = TRI->prependOffsetExpression(Expr, DIExpression::ApplyOffset, 778 Spill.SpillOffset); 779 unsigned Base = Spill.SpillBase; 780 MIB.addReg(Base, RegState::Debug); 781 MIB.addImm(0); 782 } else { 783 unsigned LocID = LocIdxToLocID[*MLoc]; 784 MIB.addReg(LocID, RegState::Debug); 785 if (Properties.Indirect) 786 MIB.addImm(0); 787 else 788 MIB.addReg(0, RegState::Debug); 789 } 790 791 MIB.addMetadata(Var.getVariable()); 792 MIB.addMetadata(Expr); 793 return MIB; 794 } 795 }; 796 797 /// Class recording the (high level) _value_ of a variable. Identifies either 798 /// the value of the variable as a ValueIDNum, or a constant MachineOperand. 799 /// This class also stores meta-information about how the value is qualified. 800 /// Used to reason about variable values when performing the second 801 /// (DebugVariable specific) dataflow analysis. 802 class DbgValue { 803 public: 804 union { 805 /// If Kind is Def, the value number that this value is based on. 806 ValueIDNum ID; 807 /// If Kind is Const, the MachineOperand defining this value. 808 MachineOperand MO; 809 /// For a NoVal DbgValue, which block it was generated in. 810 unsigned BlockNo; 811 }; 812 /// Qualifiers for the ValueIDNum above. 813 DbgValueProperties Properties; 814 815 typedef enum { 816 Undef, // Represents a DBG_VALUE $noreg in the transfer function only. 817 Def, // This value is defined by an inst, or is a PHI value. 818 Const, // A constant value contained in the MachineOperand field. 819 Proposed, // This is a tentative PHI value, which may be confirmed or 820 // invalidated later. 821 NoVal // Empty DbgValue, generated during dataflow. BlockNo stores 822 // which block this was generated in. 823 } KindT; 824 /// Discriminator for whether this is a constant or an in-program value. 825 KindT Kind; 826 827 DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind) 828 : ID(Val), Properties(Prop), Kind(Kind) { 829 assert(Kind == Def || Kind == Proposed); 830 } 831 832 DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind) 833 : BlockNo(BlockNo), Properties(Prop), Kind(Kind) { 834 assert(Kind == NoVal); 835 } 836 837 DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind) 838 : MO(MO), Properties(Prop), Kind(Kind) { 839 assert(Kind == Const); 840 } 841 842 DbgValue(const DbgValueProperties &Prop, KindT Kind) 843 : Properties(Prop), Kind(Kind) { 844 assert(Kind == Undef && 845 "Empty DbgValue constructor must pass in Undef kind"); 846 } 847 848 void dump(const MLocTracker *MTrack) const { 849 if (Kind == Const) { 850 MO.dump(); 851 } else if (Kind == NoVal) { 852 dbgs() << "NoVal(" << BlockNo << ")"; 853 } else if (Kind == Proposed) { 854 dbgs() << "VPHI(" << MTrack->IDAsString(ID) << ")"; 855 } else { 856 assert(Kind == Def); 857 dbgs() << MTrack->IDAsString(ID); 858 } 859 if (Properties.Indirect) 860 dbgs() << " indir"; 861 if (Properties.DIExpr) 862 dbgs() << " " << *Properties.DIExpr; 863 } 864 865 bool operator==(const DbgValue &Other) const { 866 if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties)) 867 return false; 868 else if (Kind == Proposed && ID != Other.ID) 869 return false; 870 else if (Kind == Def && ID != Other.ID) 871 return false; 872 else if (Kind == NoVal && BlockNo != Other.BlockNo) 873 return false; 874 else if (Kind == Const) 875 return MO.isIdenticalTo(Other.MO); 876 877 return true; 878 } 879 880 bool operator!=(const DbgValue &Other) const { return !(*this == Other); } 881 }; 882 883 /// Types for recording sets of variable fragments that overlap. For a given 884 /// local variable, we record all other fragments of that variable that could 885 /// overlap it, to reduce search time. 886 using FragmentOfVar = 887 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; 888 using OverlapMap = 889 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; 890 891 /// Collection of DBG_VALUEs observed when traversing a block. Records each 892 /// variable and the value the DBG_VALUE refers to. Requires the machine value 893 /// location dataflow algorithm to have run already, so that values can be 894 /// identified. 895 class VLocTracker { 896 public: 897 /// Map DebugVariable to the latest Value it's defined to have. 898 /// Needs to be a MapVector because we determine order-in-the-input-MIR from 899 /// the order in this container. 900 /// We only retain the last DbgValue in each block for each variable, to 901 /// determine the blocks live-out variable value. The Vars container forms the 902 /// transfer function for this block, as part of the dataflow analysis. The 903 /// movement of values between locations inside of a block is handled at a 904 /// much later stage, in the TransferTracker class. 905 MapVector<DebugVariable, DbgValue> Vars; 906 DenseMap<DebugVariable, const DILocation *> Scopes; 907 MachineBasicBlock *MBB; 908 909 public: 910 VLocTracker() {} 911 912 void defVar(const MachineInstr &MI, const DbgValueProperties &Properties, 913 Optional<ValueIDNum> ID) { 914 assert(MI.isDebugValue() || MI.isDebugRef()); 915 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 916 MI.getDebugLoc()->getInlinedAt()); 917 DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def) 918 : DbgValue(Properties, DbgValue::Undef); 919 920 // Attempt insertion; overwrite if it's already mapped. 921 auto Result = Vars.insert(std::make_pair(Var, Rec)); 922 if (!Result.second) 923 Result.first->second = Rec; 924 Scopes[Var] = MI.getDebugLoc().get(); 925 } 926 927 void defVar(const MachineInstr &MI, const MachineOperand &MO) { 928 // Only DBG_VALUEs can define constant-valued variables. 929 assert(MI.isDebugValue()); 930 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 931 MI.getDebugLoc()->getInlinedAt()); 932 DbgValueProperties Properties(MI); 933 DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const); 934 935 // Attempt insertion; overwrite if it's already mapped. 936 auto Result = Vars.insert(std::make_pair(Var, Rec)); 937 if (!Result.second) 938 Result.first->second = Rec; 939 Scopes[Var] = MI.getDebugLoc().get(); 940 } 941 }; 942 943 /// Tracker for converting machine value locations and variable values into 944 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs 945 /// specifying block live-in locations and transfers within blocks. 946 /// 947 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker 948 /// and must be initialized with the set of variable values that are live-in to 949 /// the block. The caller then repeatedly calls process(). TransferTracker picks 950 /// out variable locations for the live-in variable values (if there _is_ a 951 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is 952 /// stepped through, transfers of values between machine locations are 953 /// identified and if profitable, a DBG_VALUE created. 954 /// 955 /// This is where debug use-before-defs would be resolved: a variable with an 956 /// unavailable value could materialize in the middle of a block, when the 957 /// value becomes available. Or, we could detect clobbers and re-specify the 958 /// variable in a backup location. (XXX these are unimplemented). 959 class TransferTracker { 960 public: 961 const TargetInstrInfo *TII; 962 /// This machine location tracker is assumed to always contain the up-to-date 963 /// value mapping for all machine locations. TransferTracker only reads 964 /// information from it. (XXX make it const?) 965 MLocTracker *MTracker; 966 MachineFunction &MF; 967 968 /// Record of all changes in variable locations at a block position. Awkwardly 969 /// we allow inserting either before or after the point: MBB != nullptr 970 /// indicates it's before, otherwise after. 971 struct Transfer { 972 MachineBasicBlock::iterator Pos; /// Position to insert DBG_VALUes 973 MachineBasicBlock *MBB; /// non-null if we should insert after. 974 SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert. 975 }; 976 977 typedef struct { 978 LocIdx Loc; 979 DbgValueProperties Properties; 980 } LocAndProperties; 981 982 /// Collection of transfers (DBG_VALUEs) to be inserted. 983 SmallVector<Transfer, 32> Transfers; 984 985 /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences 986 /// between TransferTrackers view of variable locations and MLocTrackers. For 987 /// example, MLocTracker observes all clobbers, but TransferTracker lazily 988 /// does not. 989 std::vector<ValueIDNum> VarLocs; 990 991 /// Map from LocIdxes to which DebugVariables are based that location. 992 /// Mantained while stepping through the block. Not accurate if 993 /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx]. 994 std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs; 995 996 /// Map from DebugVariable to it's current location and qualifying meta 997 /// information. To be used in conjunction with ActiveMLocs to construct 998 /// enough information for the DBG_VALUEs for a particular LocIdx. 999 DenseMap<DebugVariable, LocAndProperties> ActiveVLocs; 1000 1001 /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection. 1002 SmallVector<MachineInstr *, 4> PendingDbgValues; 1003 1004 /// Record of a use-before-def: created when a value that's live-in to the 1005 /// current block isn't available in any machine location, but it will be 1006 /// defined in this block. 1007 struct UseBeforeDef { 1008 /// Value of this variable, def'd in block. 1009 ValueIDNum ID; 1010 /// Identity of this variable. 1011 DebugVariable Var; 1012 /// Additional variable properties. 1013 DbgValueProperties Properties; 1014 }; 1015 1016 /// Map from instruction index (within the block) to the set of UseBeforeDefs 1017 /// that become defined at that instruction. 1018 DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs; 1019 1020 /// The set of variables that are in UseBeforeDefs and can become a location 1021 /// once the relevant value is defined. An element being erased from this 1022 /// collection prevents the use-before-def materializing. 1023 DenseSet<DebugVariable> UseBeforeDefVariables; 1024 1025 const TargetRegisterInfo &TRI; 1026 const BitVector &CalleeSavedRegs; 1027 1028 TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker, 1029 MachineFunction &MF, const TargetRegisterInfo &TRI, 1030 const BitVector &CalleeSavedRegs) 1031 : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI), 1032 CalleeSavedRegs(CalleeSavedRegs) {} 1033 1034 /// Load object with live-in variable values. \p mlocs contains the live-in 1035 /// values in each machine location, while \p vlocs the live-in variable 1036 /// values. This method picks variable locations for the live-in variables, 1037 /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other 1038 /// object fields to track variable locations as we step through the block. 1039 /// FIXME: could just examine mloctracker instead of passing in \p mlocs? 1040 void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs, 1041 SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs, 1042 unsigned NumLocs) { 1043 ActiveMLocs.clear(); 1044 ActiveVLocs.clear(); 1045 VarLocs.clear(); 1046 VarLocs.reserve(NumLocs); 1047 UseBeforeDefs.clear(); 1048 UseBeforeDefVariables.clear(); 1049 1050 auto isCalleeSaved = [&](LocIdx L) { 1051 unsigned Reg = MTracker->LocIdxToLocID[L]; 1052 if (Reg >= MTracker->NumRegs) 1053 return false; 1054 for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI) 1055 if (CalleeSavedRegs.test(*RAI)) 1056 return true; 1057 return false; 1058 }; 1059 1060 // Map of the preferred location for each value. 1061 std::map<ValueIDNum, LocIdx> ValueToLoc; 1062 1063 // Produce a map of value numbers to the current machine locs they live 1064 // in. When emulating VarLocBasedImpl, there should only be one 1065 // location; when not, we get to pick. 1066 for (auto Location : MTracker->locations()) { 1067 LocIdx Idx = Location.Idx; 1068 ValueIDNum &VNum = MLocs[Idx.asU64()]; 1069 VarLocs.push_back(VNum); 1070 auto it = ValueToLoc.find(VNum); 1071 // In order of preference, pick: 1072 // * Callee saved registers, 1073 // * Other registers, 1074 // * Spill slots. 1075 if (it == ValueToLoc.end() || MTracker->isSpill(it->second) || 1076 (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) { 1077 // Insert, or overwrite if insertion failed. 1078 auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx)); 1079 if (!PrefLocRes.second) 1080 PrefLocRes.first->second = Idx; 1081 } 1082 } 1083 1084 // Now map variables to their picked LocIdxes. 1085 for (auto Var : VLocs) { 1086 if (Var.second.Kind == DbgValue::Const) { 1087 PendingDbgValues.push_back( 1088 emitMOLoc(Var.second.MO, Var.first, Var.second.Properties)); 1089 continue; 1090 } 1091 1092 // If the value has no location, we can't make a variable location. 1093 const ValueIDNum &Num = Var.second.ID; 1094 auto ValuesPreferredLoc = ValueToLoc.find(Num); 1095 if (ValuesPreferredLoc == ValueToLoc.end()) { 1096 // If it's a def that occurs in this block, register it as a 1097 // use-before-def to be resolved as we step through the block. 1098 if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI()) 1099 addUseBeforeDef(Var.first, Var.second.Properties, Num); 1100 continue; 1101 } 1102 1103 LocIdx M = ValuesPreferredLoc->second; 1104 auto NewValue = LocAndProperties{M, Var.second.Properties}; 1105 auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue)); 1106 if (!Result.second) 1107 Result.first->second = NewValue; 1108 ActiveMLocs[M].insert(Var.first); 1109 PendingDbgValues.push_back( 1110 MTracker->emitLoc(M, Var.first, Var.second.Properties)); 1111 } 1112 flushDbgValues(MBB.begin(), &MBB); 1113 } 1114 1115 /// Record that \p Var has value \p ID, a value that becomes available 1116 /// later in the function. 1117 void addUseBeforeDef(const DebugVariable &Var, 1118 const DbgValueProperties &Properties, ValueIDNum ID) { 1119 UseBeforeDef UBD = {ID, Var, Properties}; 1120 UseBeforeDefs[ID.getInst()].push_back(UBD); 1121 UseBeforeDefVariables.insert(Var); 1122 } 1123 1124 /// After the instruction at index \p Inst and position \p pos has been 1125 /// processed, check whether it defines a variable value in a use-before-def. 1126 /// If so, and the variable value hasn't changed since the start of the 1127 /// block, create a DBG_VALUE. 1128 void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) { 1129 auto MIt = UseBeforeDefs.find(Inst); 1130 if (MIt == UseBeforeDefs.end()) 1131 return; 1132 1133 for (auto &Use : MIt->second) { 1134 LocIdx L = Use.ID.getLoc(); 1135 1136 // If something goes very wrong, we might end up labelling a COPY 1137 // instruction or similar with an instruction number, where it doesn't 1138 // actually define a new value, instead it moves a value. In case this 1139 // happens, discard. 1140 if (MTracker->LocIdxToIDNum[L] != Use.ID) 1141 continue; 1142 1143 // If a different debug instruction defined the variable value / location 1144 // since the start of the block, don't materialize this use-before-def. 1145 if (!UseBeforeDefVariables.count(Use.Var)) 1146 continue; 1147 1148 PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties)); 1149 } 1150 flushDbgValues(pos, nullptr); 1151 } 1152 1153 /// Helper to move created DBG_VALUEs into Transfers collection. 1154 void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) { 1155 if (PendingDbgValues.size() > 0) { 1156 Transfers.push_back({Pos, MBB, PendingDbgValues}); 1157 PendingDbgValues.clear(); 1158 } 1159 } 1160 1161 /// Change a variable value after encountering a DBG_VALUE inside a block. 1162 void redefVar(const MachineInstr &MI) { 1163 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 1164 MI.getDebugLoc()->getInlinedAt()); 1165 DbgValueProperties Properties(MI); 1166 1167 const MachineOperand &MO = MI.getOperand(0); 1168 1169 // Ignore non-register locations, we don't transfer those. 1170 if (!MO.isReg() || MO.getReg() == 0) { 1171 auto It = ActiveVLocs.find(Var); 1172 if (It != ActiveVLocs.end()) { 1173 ActiveMLocs[It->second.Loc].erase(Var); 1174 ActiveVLocs.erase(It); 1175 } 1176 // Any use-before-defs no longer apply. 1177 UseBeforeDefVariables.erase(Var); 1178 return; 1179 } 1180 1181 Register Reg = MO.getReg(); 1182 LocIdx NewLoc = MTracker->getRegMLoc(Reg); 1183 redefVar(MI, Properties, NewLoc); 1184 } 1185 1186 /// Handle a change in variable location within a block. Terminate the 1187 /// variables current location, and record the value it now refers to, so 1188 /// that we can detect location transfers later on. 1189 void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties, 1190 Optional<LocIdx> OptNewLoc) { 1191 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 1192 MI.getDebugLoc()->getInlinedAt()); 1193 // Any use-before-defs no longer apply. 1194 UseBeforeDefVariables.erase(Var); 1195 1196 // Erase any previous location, 1197 auto It = ActiveVLocs.find(Var); 1198 if (It != ActiveVLocs.end()) 1199 ActiveMLocs[It->second.Loc].erase(Var); 1200 1201 // If there _is_ no new location, all we had to do was erase. 1202 if (!OptNewLoc) 1203 return; 1204 LocIdx NewLoc = *OptNewLoc; 1205 1206 // Check whether our local copy of values-by-location in #VarLocs is out of 1207 // date. Wipe old tracking data for the location if it's been clobbered in 1208 // the meantime. 1209 if (MTracker->getNumAtPos(NewLoc) != VarLocs[NewLoc.asU64()]) { 1210 for (auto &P : ActiveMLocs[NewLoc]) { 1211 ActiveVLocs.erase(P); 1212 } 1213 ActiveMLocs[NewLoc.asU64()].clear(); 1214 VarLocs[NewLoc.asU64()] = MTracker->getNumAtPos(NewLoc); 1215 } 1216 1217 ActiveMLocs[NewLoc].insert(Var); 1218 if (It == ActiveVLocs.end()) { 1219 ActiveVLocs.insert( 1220 std::make_pair(Var, LocAndProperties{NewLoc, Properties})); 1221 } else { 1222 It->second.Loc = NewLoc; 1223 It->second.Properties = Properties; 1224 } 1225 } 1226 1227 /// Explicitly terminate variable locations based on \p mloc. Creates undef 1228 /// DBG_VALUEs for any variables that were located there, and clears 1229 /// #ActiveMLoc / #ActiveVLoc tracking information for that location. 1230 void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos) { 1231 assert(MTracker->isSpill(MLoc)); 1232 auto ActiveMLocIt = ActiveMLocs.find(MLoc); 1233 if (ActiveMLocIt == ActiveMLocs.end()) 1234 return; 1235 1236 VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue; 1237 1238 for (auto &Var : ActiveMLocIt->second) { 1239 auto ActiveVLocIt = ActiveVLocs.find(Var); 1240 // Create an undef. We can't feed in a nullptr DIExpression alas, 1241 // so use the variables last expression. Pass None as the location. 1242 const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr; 1243 DbgValueProperties Properties(Expr, false); 1244 PendingDbgValues.push_back(MTracker->emitLoc(None, Var, Properties)); 1245 ActiveVLocs.erase(ActiveVLocIt); 1246 } 1247 flushDbgValues(Pos, nullptr); 1248 1249 ActiveMLocIt->second.clear(); 1250 } 1251 1252 /// Transfer variables based on \p Src to be based on \p Dst. This handles 1253 /// both register copies as well as spills and restores. Creates DBG_VALUEs 1254 /// describing the movement. 1255 void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) { 1256 // Does Src still contain the value num we expect? If not, it's been 1257 // clobbered in the meantime, and our variable locations are stale. 1258 if (VarLocs[Src.asU64()] != MTracker->getNumAtPos(Src)) 1259 return; 1260 1261 // assert(ActiveMLocs[Dst].size() == 0); 1262 //^^^ Legitimate scenario on account of un-clobbered slot being assigned to? 1263 ActiveMLocs[Dst] = ActiveMLocs[Src]; 1264 VarLocs[Dst.asU64()] = VarLocs[Src.asU64()]; 1265 1266 // For each variable based on Src; create a location at Dst. 1267 for (auto &Var : ActiveMLocs[Src]) { 1268 auto ActiveVLocIt = ActiveVLocs.find(Var); 1269 assert(ActiveVLocIt != ActiveVLocs.end()); 1270 ActiveVLocIt->second.Loc = Dst; 1271 1272 assert(Dst != 0); 1273 MachineInstr *MI = 1274 MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties); 1275 PendingDbgValues.push_back(MI); 1276 } 1277 ActiveMLocs[Src].clear(); 1278 flushDbgValues(Pos, nullptr); 1279 1280 // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data 1281 // about the old location. 1282 if (EmulateOldLDV) 1283 VarLocs[Src.asU64()] = ValueIDNum::EmptyValue; 1284 } 1285 1286 MachineInstrBuilder emitMOLoc(const MachineOperand &MO, 1287 const DebugVariable &Var, 1288 const DbgValueProperties &Properties) { 1289 DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, 1290 Var.getVariable()->getScope(), 1291 const_cast<DILocation *>(Var.getInlinedAt())); 1292 auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)); 1293 MIB.add(MO); 1294 if (Properties.Indirect) 1295 MIB.addImm(0); 1296 else 1297 MIB.addReg(0); 1298 MIB.addMetadata(Var.getVariable()); 1299 MIB.addMetadata(Properties.DIExpr); 1300 return MIB; 1301 } 1302 }; 1303 1304 class InstrRefBasedLDV : public LDVImpl { 1305 private: 1306 using FragmentInfo = DIExpression::FragmentInfo; 1307 using OptFragmentInfo = Optional<DIExpression::FragmentInfo>; 1308 1309 // Helper while building OverlapMap, a map of all fragments seen for a given 1310 // DILocalVariable. 1311 using VarToFragments = 1312 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; 1313 1314 /// Machine location/value transfer function, a mapping of which locations 1315 /// are assigned which new values. 1316 using MLocTransferMap = std::map<LocIdx, ValueIDNum>; 1317 1318 /// Live in/out structure for the variable values: a per-block map of 1319 /// variables to their values. XXX, better name? 1320 using LiveIdxT = 1321 DenseMap<const MachineBasicBlock *, DenseMap<DebugVariable, DbgValue> *>; 1322 1323 using VarAndLoc = std::pair<DebugVariable, DbgValue>; 1324 1325 /// Type for a live-in value: the predecessor block, and its value. 1326 using InValueT = std::pair<MachineBasicBlock *, DbgValue *>; 1327 1328 /// Vector (per block) of a collection (inner smallvector) of live-ins. 1329 /// Used as the result type for the variable value dataflow problem. 1330 using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>; 1331 1332 const TargetRegisterInfo *TRI; 1333 const TargetInstrInfo *TII; 1334 const TargetFrameLowering *TFI; 1335 BitVector CalleeSavedRegs; 1336 LexicalScopes LS; 1337 TargetPassConfig *TPC; 1338 1339 /// Object to track machine locations as we step through a block. Could 1340 /// probably be a field rather than a pointer, as it's always used. 1341 MLocTracker *MTracker; 1342 1343 /// Number of the current block LiveDebugValues is stepping through. 1344 unsigned CurBB; 1345 1346 /// Number of the current instruction LiveDebugValues is evaluating. 1347 unsigned CurInst; 1348 1349 /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl 1350 /// steps through a block. Reads the values at each location from the 1351 /// MLocTracker object. 1352 VLocTracker *VTracker; 1353 1354 /// Tracker for transfers, listens to DBG_VALUEs and transfers of values 1355 /// between locations during stepping, creates new DBG_VALUEs when values move 1356 /// location. 1357 TransferTracker *TTracker; 1358 1359 /// Blocks which are artificial, i.e. blocks which exclusively contain 1360 /// instructions without DebugLocs, or with line 0 locations. 1361 SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks; 1362 1363 // Mapping of blocks to and from their RPOT order. 1364 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; 1365 DenseMap<MachineBasicBlock *, unsigned int> BBToOrder; 1366 DenseMap<unsigned, unsigned> BBNumToRPO; 1367 1368 /// Pair of MachineInstr, and its 1-based offset into the containing block. 1369 using InstAndNum = std::pair<const MachineInstr *, unsigned>; 1370 /// Map from debug instruction number to the MachineInstr labelled with that 1371 /// number, and its location within the function. Used to transform 1372 /// instruction numbers in DBG_INSTR_REFs into machine value numbers. 1373 std::map<uint64_t, InstAndNum> DebugInstrNumToInstr; 1374 1375 // Map of overlapping variable fragments. 1376 OverlapMap OverlapFragments; 1377 VarToFragments SeenFragments; 1378 1379 /// Tests whether this instruction is a spill to a stack slot. 1380 bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); 1381 1382 /// Decide if @MI is a spill instruction and return true if it is. We use 2 1383 /// criteria to make this decision: 1384 /// - Is this instruction a store to a spill slot? 1385 /// - Is there a register operand that is both used and killed? 1386 /// TODO: Store optimization can fold spills into other stores (including 1387 /// other spills). We do not handle this yet (more than one memory operand). 1388 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, 1389 unsigned &Reg); 1390 1391 /// If a given instruction is identified as a spill, return the spill slot 1392 /// and set \p Reg to the spilled register. 1393 Optional<SpillLoc> isRestoreInstruction(const MachineInstr &MI, 1394 MachineFunction *MF, unsigned &Reg); 1395 1396 /// Given a spill instruction, extract the register and offset used to 1397 /// address the spill slot in a target independent way. 1398 SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); 1399 1400 /// Observe a single instruction while stepping through a block. 1401 void process(MachineInstr &MI); 1402 1403 /// Examines whether \p MI is a DBG_VALUE and notifies trackers. 1404 /// \returns true if MI was recognized and processed. 1405 bool transferDebugValue(const MachineInstr &MI); 1406 1407 /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers. 1408 /// \returns true if MI was recognized and processed. 1409 bool transferDebugInstrRef(MachineInstr &MI); 1410 1411 /// Examines whether \p MI is copy instruction, and notifies trackers. 1412 /// \returns true if MI was recognized and processed. 1413 bool transferRegisterCopy(MachineInstr &MI); 1414 1415 /// Examines whether \p MI is stack spill or restore instruction, and 1416 /// notifies trackers. \returns true if MI was recognized and processed. 1417 bool transferSpillOrRestoreInst(MachineInstr &MI); 1418 1419 /// Examines \p MI for any registers that it defines, and notifies trackers. 1420 void transferRegisterDef(MachineInstr &MI); 1421 1422 /// Copy one location to the other, accounting for movement of subregisters 1423 /// too. 1424 void performCopy(Register Src, Register Dst); 1425 1426 void accumulateFragmentMap(MachineInstr &MI); 1427 1428 /// Step through the function, recording register definitions and movements 1429 /// in an MLocTracker. Convert the observations into a per-block transfer 1430 /// function in \p MLocTransfer, suitable for using with the machine value 1431 /// location dataflow problem. 1432 void 1433 produceMLocTransferFunction(MachineFunction &MF, 1434 SmallVectorImpl<MLocTransferMap> &MLocTransfer, 1435 unsigned MaxNumBlocks); 1436 1437 /// Solve the machine value location dataflow problem. Takes as input the 1438 /// transfer functions in \p MLocTransfer. Writes the output live-in and 1439 /// live-out arrays to the (initialized to zero) multidimensional arrays in 1440 /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block 1441 /// number, the inner by LocIdx. 1442 void mlocDataflow(ValueIDNum **MInLocs, ValueIDNum **MOutLocs, 1443 SmallVectorImpl<MLocTransferMap> &MLocTransfer); 1444 1445 /// Perform a control flow join (lattice value meet) of the values in machine 1446 /// locations at \p MBB. Follows the algorithm described in the file-comment, 1447 /// reading live-outs of predecessors from \p OutLocs, the current live ins 1448 /// from \p InLocs, and assigning the newly computed live ins back into 1449 /// \p InLocs. \returns two bools -- the first indicates whether a change 1450 /// was made, the second whether a lattice downgrade occurred. If the latter 1451 /// is true, revisiting this block is necessary. 1452 std::tuple<bool, bool> 1453 mlocJoin(MachineBasicBlock &MBB, 1454 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1455 ValueIDNum **OutLocs, ValueIDNum *InLocs); 1456 1457 /// Solve the variable value dataflow problem, for a single lexical scope. 1458 /// Uses the algorithm from the file comment to resolve control flow joins, 1459 /// although there are extra hacks, see vlocJoin. Reads the 1460 /// locations of values from the \p MInLocs and \p MOutLocs arrays (see 1461 /// mlocDataflow) and reads the variable values transfer function from 1462 /// \p AllTheVlocs. Live-in and Live-out variable values are stored locally, 1463 /// with the live-ins permanently stored to \p Output once the fixedpoint is 1464 /// reached. 1465 /// \p VarsWeCareAbout contains a collection of the variables in \p Scope 1466 /// that we should be tracking. 1467 /// \p AssignBlocks contains the set of blocks that aren't in \p Scope, but 1468 /// which do contain DBG_VALUEs, which VarLocBasedImpl tracks locations 1469 /// through. 1470 void vlocDataflow(const LexicalScope *Scope, const DILocation *DILoc, 1471 const SmallSet<DebugVariable, 4> &VarsWeCareAbout, 1472 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, 1473 LiveInsT &Output, ValueIDNum **MOutLocs, 1474 ValueIDNum **MInLocs, 1475 SmallVectorImpl<VLocTracker> &AllTheVLocs); 1476 1477 /// Compute the live-ins to a block, considering control flow merges according 1478 /// to the method in the file comment. Live out and live in variable values 1479 /// are stored in \p VLOCOutLocs and \p VLOCInLocs. The live-ins for \p MBB 1480 /// are computed and stored into \p VLOCInLocs. \returns true if the live-ins 1481 /// are modified. 1482 /// \p InLocsT Output argument, storage for calculated live-ins. 1483 /// \returns two bools -- the first indicates whether a change 1484 /// was made, the second whether a lattice downgrade occurred. If the latter 1485 /// is true, revisiting this block is necessary. 1486 std::tuple<bool, bool> 1487 vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs, 1488 SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, 1489 unsigned BBNum, const SmallSet<DebugVariable, 4> &AllVars, 1490 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 1491 SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks, 1492 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, 1493 DenseMap<DebugVariable, DbgValue> &InLocsT); 1494 1495 /// Continue exploration of the variable-value lattice, as explained in the 1496 /// file-level comment. \p OldLiveInLocation contains the current 1497 /// exploration position, from which we need to descend further. \p Values 1498 /// contains the set of live-in values, \p CurBlockRPONum the RPO number of 1499 /// the current block, and \p CandidateLocations a set of locations that 1500 /// should be considered as PHI locations, if we reach the bottom of the 1501 /// lattice. \returns true if we should downgrade; the value is the agreeing 1502 /// value number in a non-backedge predecessor. 1503 bool vlocDowngradeLattice(const MachineBasicBlock &MBB, 1504 const DbgValue &OldLiveInLocation, 1505 const SmallVectorImpl<InValueT> &Values, 1506 unsigned CurBlockRPONum); 1507 1508 /// For the given block and live-outs feeding into it, try to find a 1509 /// machine location where they all join. If a solution for all predecessors 1510 /// can't be found, a location where all non-backedge-predecessors join 1511 /// will be returned instead. While this method finds a join location, this 1512 /// says nothing as to whether it should be used. 1513 /// \returns Pair of value ID if found, and true when the correct value 1514 /// is available on all predecessor edges, or false if it's only available 1515 /// for non-backedge predecessors. 1516 std::tuple<Optional<ValueIDNum>, bool> 1517 pickVPHILoc(MachineBasicBlock &MBB, const DebugVariable &Var, 1518 const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs, 1519 ValueIDNum **MInLocs, 1520 const SmallVectorImpl<MachineBasicBlock *> &BlockOrders); 1521 1522 /// Given the solutions to the two dataflow problems, machine value locations 1523 /// in \p MInLocs and live-in variable values in \p SavedLiveIns, runs the 1524 /// TransferTracker class over the function to produce live-in and transfer 1525 /// DBG_VALUEs, then inserts them. Groups of DBG_VALUEs are inserted in the 1526 /// order given by AllVarsNumbering -- this could be any stable order, but 1527 /// right now "order of appearence in function, when explored in RPO", so 1528 /// that we can compare explictly against VarLocBasedImpl. 1529 void emitLocations(MachineFunction &MF, LiveInsT SavedLiveIns, 1530 ValueIDNum **MInLocs, 1531 DenseMap<DebugVariable, unsigned> &AllVarsNumbering); 1532 1533 /// Boilerplate computation of some initial sets, artifical blocks and 1534 /// RPOT block ordering. 1535 void initialSetup(MachineFunction &MF); 1536 1537 bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override; 1538 1539 public: 1540 /// Default construct and initialize the pass. 1541 InstrRefBasedLDV(); 1542 1543 LLVM_DUMP_METHOD 1544 void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const; 1545 1546 bool isCalleeSaved(LocIdx L) { 1547 unsigned Reg = MTracker->LocIdxToLocID[L]; 1548 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1549 if (CalleeSavedRegs.test(*RAI)) 1550 return true; 1551 return false; 1552 } 1553 }; 1554 1555 } // end anonymous namespace 1556 1557 //===----------------------------------------------------------------------===// 1558 // Implementation 1559 //===----------------------------------------------------------------------===// 1560 1561 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX}; 1562 1563 /// Default construct and initialize the pass. 1564 InstrRefBasedLDV::InstrRefBasedLDV() {} 1565 1566 //===----------------------------------------------------------------------===// 1567 // Debug Range Extension Implementation 1568 //===----------------------------------------------------------------------===// 1569 1570 #ifndef NDEBUG 1571 // Something to restore in the future. 1572 // void InstrRefBasedLDV::printVarLocInMBB(..) 1573 #endif 1574 1575 SpillLoc 1576 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { 1577 assert(MI.hasOneMemOperand() && 1578 "Spill instruction does not have exactly one memory operand?"); 1579 auto MMOI = MI.memoperands_begin(); 1580 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 1581 assert(PVal->kind() == PseudoSourceValue::FixedStack && 1582 "Inconsistent memory operand in spill instruction"); 1583 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); 1584 const MachineBasicBlock *MBB = MI.getParent(); 1585 Register Reg; 1586 StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); 1587 return {Reg, Offset}; 1588 } 1589 1590 /// End all previous ranges related to @MI and start a new range from @MI 1591 /// if it is a DBG_VALUE instr. 1592 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) { 1593 if (!MI.isDebugValue()) 1594 return false; 1595 1596 const DILocalVariable *Var = MI.getDebugVariable(); 1597 const DIExpression *Expr = MI.getDebugExpression(); 1598 const DILocation *DebugLoc = MI.getDebugLoc(); 1599 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 1600 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 1601 "Expected inlined-at fields to agree"); 1602 1603 DebugVariable V(Var, Expr, InlinedAt); 1604 DbgValueProperties Properties(MI); 1605 1606 // If there are no instructions in this lexical scope, do no location tracking 1607 // at all, this variable shouldn't get a legitimate location range. 1608 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); 1609 if (Scope == nullptr) 1610 return true; // handled it; by doing nothing 1611 1612 const MachineOperand &MO = MI.getOperand(0); 1613 1614 // MLocTracker needs to know that this register is read, even if it's only 1615 // read by a debug inst. 1616 if (MO.isReg() && MO.getReg() != 0) 1617 (void)MTracker->readReg(MO.getReg()); 1618 1619 // If we're preparing for the second analysis (variables), the machine value 1620 // locations are already solved, and we report this DBG_VALUE and the value 1621 // it refers to to VLocTracker. 1622 if (VTracker) { 1623 if (MO.isReg()) { 1624 // Feed defVar the new variable location, or if this is a 1625 // DBG_VALUE $noreg, feed defVar None. 1626 if (MO.getReg()) 1627 VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg())); 1628 else 1629 VTracker->defVar(MI, Properties, None); 1630 } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() || 1631 MI.getOperand(0).isCImm()) { 1632 VTracker->defVar(MI, MI.getOperand(0)); 1633 } 1634 } 1635 1636 // If performing final tracking of transfers, report this variable definition 1637 // to the TransferTracker too. 1638 if (TTracker) 1639 TTracker->redefVar(MI); 1640 return true; 1641 } 1642 1643 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI) { 1644 if (!MI.isDebugRef()) 1645 return false; 1646 1647 // Only handle this instruction when we are building the variable value 1648 // transfer function. 1649 if (!VTracker) 1650 return false; 1651 1652 unsigned InstNo = MI.getOperand(0).getImm(); 1653 unsigned OpNo = MI.getOperand(1).getImm(); 1654 1655 const DILocalVariable *Var = MI.getDebugVariable(); 1656 const DIExpression *Expr = MI.getDebugExpression(); 1657 const DILocation *DebugLoc = MI.getDebugLoc(); 1658 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 1659 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 1660 "Expected inlined-at fields to agree"); 1661 1662 DebugVariable V(Var, Expr, InlinedAt); 1663 1664 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); 1665 if (Scope == nullptr) 1666 return true; // Handled by doing nothing. This variable is never in scope. 1667 1668 const MachineFunction &MF = *MI.getParent()->getParent(); 1669 1670 // Various optimizations may have happened to the value during codegen, 1671 // recorded in the value substitution table. Apply any substitutions to 1672 // the instruction / operand number in this DBG_INSTR_REF. 1673 auto Sub = MF.DebugValueSubstitutions.find(std::make_pair(InstNo, OpNo)); 1674 while (Sub != MF.DebugValueSubstitutions.end()) { 1675 InstNo = Sub->second.first; 1676 OpNo = Sub->second.second; 1677 Sub = MF.DebugValueSubstitutions.find(std::make_pair(InstNo, OpNo)); 1678 } 1679 1680 // Default machine value number is <None> -- if no instruction defines 1681 // the corresponding value, it must have been optimized out. 1682 Optional<ValueIDNum> NewID = None; 1683 1684 // Try to lookup the instruction number, and find the machine value number 1685 // that it defines. 1686 auto InstrIt = DebugInstrNumToInstr.find(InstNo); 1687 if (InstrIt != DebugInstrNumToInstr.end()) { 1688 const MachineInstr &TargetInstr = *InstrIt->second.first; 1689 uint64_t BlockNo = TargetInstr.getParent()->getNumber(); 1690 1691 // Pick out the designated operand. 1692 assert(OpNo < TargetInstr.getNumOperands()); 1693 const MachineOperand &MO = TargetInstr.getOperand(OpNo); 1694 1695 // Today, this can only be a register. 1696 assert(MO.isReg() && MO.isDef()); 1697 1698 unsigned LocID = MTracker->getLocID(MO.getReg(), false); 1699 LocIdx L = MTracker->LocIDToLocIdx[LocID]; 1700 NewID = ValueIDNum(BlockNo, InstrIt->second.second, L); 1701 } 1702 1703 // We, we have a value number or None. Tell the variable value tracker about 1704 // it. The rest of this LiveDebugValues implementation acts exactly the same 1705 // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that 1706 // aren't immediately available). 1707 DbgValueProperties Properties(Expr, false); 1708 VTracker->defVar(MI, Properties, NewID); 1709 1710 // If we're on the final pass through the function, decompose this INSTR_REF 1711 // into a plain DBG_VALUE. 1712 if (!TTracker) 1713 return true; 1714 1715 // Pick a location for the machine value number, if such a location exists. 1716 // (This information could be stored in TransferTracker to make it faster). 1717 Optional<LocIdx> FoundLoc = None; 1718 for (auto Location : MTracker->locations()) { 1719 LocIdx CurL = Location.Idx; 1720 ValueIDNum ID = MTracker->LocIdxToIDNum[CurL]; 1721 if (NewID && ID == NewID) { 1722 // If this is the first location with that value, pick it. Otherwise, 1723 // consider whether it's a "longer term" location. 1724 if (!FoundLoc) { 1725 FoundLoc = CurL; 1726 continue; 1727 } 1728 1729 if (MTracker->isSpill(CurL)) 1730 FoundLoc = CurL; // Spills are a longer term location. 1731 else if (!MTracker->isSpill(*FoundLoc) && 1732 !MTracker->isSpill(CurL) && 1733 !isCalleeSaved(*FoundLoc) && 1734 isCalleeSaved(CurL)) 1735 FoundLoc = CurL; // Callee saved regs are longer term than normal. 1736 } 1737 } 1738 1739 // Tell transfer tracker that the variable value has changed. 1740 TTracker->redefVar(MI, Properties, FoundLoc); 1741 1742 // If there was a value with no location; but the value is defined in a 1743 // later instruction in this block, this is a block-local use-before-def. 1744 if (!FoundLoc && NewID && NewID->getBlock() == CurBB && 1745 NewID->getInst() > CurInst) 1746 TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID); 1747 1748 // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant. 1749 // This DBG_VALUE is potentially a $noreg / undefined location, if 1750 // FoundLoc is None. 1751 // (XXX -- could morph the DBG_INSTR_REF in the future). 1752 MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties); 1753 TTracker->PendingDbgValues.push_back(DbgMI); 1754 TTracker->flushDbgValues(MI.getIterator(), nullptr); 1755 1756 return true; 1757 } 1758 1759 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) { 1760 // Meta Instructions do not affect the debug liveness of any register they 1761 // define. 1762 if (MI.isImplicitDef()) { 1763 // Except when there's an implicit def, and the location it's defining has 1764 // no value number. The whole point of an implicit def is to announce that 1765 // the register is live, without be specific about it's value. So define 1766 // a value if there isn't one already. 1767 ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg()); 1768 // Has a legitimate value -> ignore the implicit def. 1769 if (Num.getLoc() != 0) 1770 return; 1771 // Otherwise, def it here. 1772 } else if (MI.isMetaInstruction()) 1773 return; 1774 1775 MachineFunction *MF = MI.getMF(); 1776 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1777 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 1778 1779 // Find the regs killed by MI, and find regmasks of preserved regs. 1780 // Max out the number of statically allocated elements in `DeadRegs`, as this 1781 // prevents fallback to std::set::count() operations. 1782 SmallSet<uint32_t, 32> DeadRegs; 1783 SmallVector<const uint32_t *, 4> RegMasks; 1784 SmallVector<const MachineOperand *, 4> RegMaskPtrs; 1785 for (const MachineOperand &MO : MI.operands()) { 1786 // Determine whether the operand is a register def. 1787 if (MO.isReg() && MO.isDef() && MO.getReg() && 1788 Register::isPhysicalRegister(MO.getReg()) && 1789 !(MI.isCall() && MO.getReg() == SP)) { 1790 // Remove ranges of all aliased registers. 1791 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1792 // FIXME: Can we break out of this loop early if no insertion occurs? 1793 DeadRegs.insert(*RAI); 1794 } else if (MO.isRegMask()) { 1795 RegMasks.push_back(MO.getRegMask()); 1796 RegMaskPtrs.push_back(&MO); 1797 } 1798 } 1799 1800 // Tell MLocTracker about all definitions, of regmasks and otherwise. 1801 for (uint32_t DeadReg : DeadRegs) 1802 MTracker->defReg(DeadReg, CurBB, CurInst); 1803 1804 for (auto *MO : RegMaskPtrs) 1805 MTracker->writeRegMask(MO, CurBB, CurInst); 1806 } 1807 1808 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) { 1809 ValueIDNum SrcValue = MTracker->readReg(SrcRegNum); 1810 1811 MTracker->setReg(DstRegNum, SrcValue); 1812 1813 // In all circumstances, re-def the super registers. It's definitely a new 1814 // value now. This doesn't uniquely identify the composition of subregs, for 1815 // example, two identical values in subregisters composed in different 1816 // places would not get equal value numbers. 1817 for (MCSuperRegIterator SRI(DstRegNum, TRI); SRI.isValid(); ++SRI) 1818 MTracker->defReg(*SRI, CurBB, CurInst); 1819 1820 // If we're emulating VarLocBasedImpl, just define all the subregisters. 1821 // DBG_VALUEs of them will expect to be tracked from the DBG_VALUE, not 1822 // through prior copies. 1823 if (EmulateOldLDV) { 1824 for (MCSubRegIndexIterator DRI(DstRegNum, TRI); DRI.isValid(); ++DRI) 1825 MTracker->defReg(DRI.getSubReg(), CurBB, CurInst); 1826 return; 1827 } 1828 1829 // Otherwise, actually copy subregisters from one location to another. 1830 // XXX: in addition, any subregisters of DstRegNum that don't line up with 1831 // the source register should be def'd. 1832 for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) { 1833 unsigned SrcSubReg = SRI.getSubReg(); 1834 unsigned SubRegIdx = SRI.getSubRegIndex(); 1835 unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx); 1836 if (!DstSubReg) 1837 continue; 1838 1839 // Do copy. There are two matching subregisters, the source value should 1840 // have been def'd when the super-reg was, the latter might not be tracked 1841 // yet. 1842 // This will force SrcSubReg to be tracked, if it isn't yet. 1843 (void)MTracker->readReg(SrcSubReg); 1844 LocIdx SrcL = MTracker->getRegMLoc(SrcSubReg); 1845 assert(SrcL.asU64()); 1846 (void)MTracker->readReg(DstSubReg); 1847 LocIdx DstL = MTracker->getRegMLoc(DstSubReg); 1848 assert(DstL.asU64()); 1849 (void)DstL; 1850 ValueIDNum CpyValue = {SrcValue.getBlock(), SrcValue.getInst(), SrcL}; 1851 1852 MTracker->setReg(DstSubReg, CpyValue); 1853 } 1854 } 1855 1856 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI, 1857 MachineFunction *MF) { 1858 // TODO: Handle multiple stores folded into one. 1859 if (!MI.hasOneMemOperand()) 1860 return false; 1861 1862 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) 1863 return false; // This is not a spill instruction, since no valid size was 1864 // returned from either function. 1865 1866 return true; 1867 } 1868 1869 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI, 1870 MachineFunction *MF, unsigned &Reg) { 1871 if (!isSpillInstruction(MI, MF)) 1872 return false; 1873 1874 // XXX FIXME: On x86, isStoreToStackSlotPostFE returns '1' instead of an 1875 // actual register number. 1876 if (ObserveAllStackops) { 1877 int FI; 1878 Reg = TII->isStoreToStackSlotPostFE(MI, FI); 1879 return Reg != 0; 1880 } 1881 1882 auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) { 1883 if (!MO.isReg() || !MO.isUse()) { 1884 Reg = 0; 1885 return false; 1886 } 1887 Reg = MO.getReg(); 1888 return MO.isKill(); 1889 }; 1890 1891 for (const MachineOperand &MO : MI.operands()) { 1892 // In a spill instruction generated by the InlineSpiller the spilled 1893 // register has its kill flag set. 1894 if (isKilledReg(MO, Reg)) 1895 return true; 1896 if (Reg != 0) { 1897 // Check whether next instruction kills the spilled register. 1898 // FIXME: Current solution does not cover search for killed register in 1899 // bundles and instructions further down the chain. 1900 auto NextI = std::next(MI.getIterator()); 1901 // Skip next instruction that points to basic block end iterator. 1902 if (MI.getParent()->end() == NextI) 1903 continue; 1904 unsigned RegNext; 1905 for (const MachineOperand &MONext : NextI->operands()) { 1906 // Return true if we came across the register from the 1907 // previous spill instruction that is killed in NextI. 1908 if (isKilledReg(MONext, RegNext) && RegNext == Reg) 1909 return true; 1910 } 1911 } 1912 } 1913 // Return false if we didn't find spilled register. 1914 return false; 1915 } 1916 1917 Optional<SpillLoc> 1918 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI, 1919 MachineFunction *MF, unsigned &Reg) { 1920 if (!MI.hasOneMemOperand()) 1921 return None; 1922 1923 // FIXME: Handle folded restore instructions with more than one memory 1924 // operand. 1925 if (MI.getRestoreSize(TII)) { 1926 Reg = MI.getOperand(0).getReg(); 1927 return extractSpillBaseRegAndOffset(MI); 1928 } 1929 return None; 1930 } 1931 1932 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) { 1933 // XXX -- it's too difficult to implement VarLocBasedImpl's stack location 1934 // limitations under the new model. Therefore, when comparing them, compare 1935 // versions that don't attempt spills or restores at all. 1936 if (EmulateOldLDV) 1937 return false; 1938 1939 MachineFunction *MF = MI.getMF(); 1940 unsigned Reg; 1941 Optional<SpillLoc> Loc; 1942 1943 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); 1944 1945 // First, if there are any DBG_VALUEs pointing at a spill slot that is 1946 // written to, terminate that variable location. The value in memory 1947 // will have changed. DbgEntityHistoryCalculator doesn't try to detect this. 1948 if (isSpillInstruction(MI, MF)) { 1949 Loc = extractSpillBaseRegAndOffset(MI); 1950 1951 if (TTracker) { 1952 Optional<LocIdx> MLoc = MTracker->getSpillMLoc(*Loc); 1953 if (MLoc) 1954 TTracker->clobberMloc(*MLoc, MI.getIterator()); 1955 } 1956 } 1957 1958 // Try to recognise spill and restore instructions that may transfer a value. 1959 if (isLocationSpill(MI, MF, Reg)) { 1960 Loc = extractSpillBaseRegAndOffset(MI); 1961 auto ValueID = MTracker->readReg(Reg); 1962 1963 // If the location is empty, produce a phi, signify it's the live-in value. 1964 if (ValueID.getLoc() == 0) 1965 ValueID = {CurBB, 0, MTracker->getRegMLoc(Reg)}; 1966 1967 MTracker->setSpill(*Loc, ValueID); 1968 auto OptSpillLocIdx = MTracker->getSpillMLoc(*Loc); 1969 assert(OptSpillLocIdx && "Spill slot set but has no LocIdx?"); 1970 LocIdx SpillLocIdx = *OptSpillLocIdx; 1971 1972 // Tell TransferTracker about this spill, produce DBG_VALUEs for it. 1973 if (TTracker) 1974 TTracker->transferMlocs(MTracker->getRegMLoc(Reg), SpillLocIdx, 1975 MI.getIterator()); 1976 } else { 1977 if (!(Loc = isRestoreInstruction(MI, MF, Reg))) 1978 return false; 1979 1980 // Is there a value to be restored? 1981 auto OptValueID = MTracker->readSpill(*Loc); 1982 if (OptValueID) { 1983 ValueIDNum ValueID = *OptValueID; 1984 LocIdx SpillLocIdx = *MTracker->getSpillMLoc(*Loc); 1985 // XXX -- can we recover sub-registers of this value? Until we can, first 1986 // overwrite all defs of the register being restored to. 1987 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1988 MTracker->defReg(*RAI, CurBB, CurInst); 1989 1990 // Now override the reg we're restoring to. 1991 MTracker->setReg(Reg, ValueID); 1992 1993 // Report this restore to the transfer tracker too. 1994 if (TTracker) 1995 TTracker->transferMlocs(SpillLocIdx, MTracker->getRegMLoc(Reg), 1996 MI.getIterator()); 1997 } else { 1998 // There isn't anything in the location; not clear if this is a code path 1999 // that still runs. Def this register anyway just in case. 2000 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 2001 MTracker->defReg(*RAI, CurBB, CurInst); 2002 2003 // Force the spill slot to be tracked. 2004 LocIdx L = MTracker->getOrTrackSpillLoc(*Loc); 2005 2006 // Set the restored value to be a machine phi number, signifying that it's 2007 // whatever the spills live-in value is in this block. Definitely has 2008 // a LocIdx due to the setSpill above. 2009 ValueIDNum ValueID = {CurBB, 0, L}; 2010 MTracker->setReg(Reg, ValueID); 2011 MTracker->setSpill(*Loc, ValueID); 2012 } 2013 } 2014 return true; 2015 } 2016 2017 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) { 2018 auto DestSrc = TII->isCopyInstr(MI); 2019 if (!DestSrc) 2020 return false; 2021 2022 const MachineOperand *DestRegOp = DestSrc->Destination; 2023 const MachineOperand *SrcRegOp = DestSrc->Source; 2024 2025 auto isCalleeSavedReg = [&](unsigned Reg) { 2026 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 2027 if (CalleeSavedRegs.test(*RAI)) 2028 return true; 2029 return false; 2030 }; 2031 2032 Register SrcReg = SrcRegOp->getReg(); 2033 Register DestReg = DestRegOp->getReg(); 2034 2035 // Ignore identity copies. Yep, these make it as far as LiveDebugValues. 2036 if (SrcReg == DestReg) 2037 return true; 2038 2039 // For emulating VarLocBasedImpl: 2040 // We want to recognize instructions where destination register is callee 2041 // saved register. If register that could be clobbered by the call is 2042 // included, there would be a great chance that it is going to be clobbered 2043 // soon. It is more likely that previous register, which is callee saved, is 2044 // going to stay unclobbered longer, even if it is killed. 2045 // 2046 // For InstrRefBasedImpl, we can track multiple locations per value, so 2047 // ignore this condition. 2048 if (EmulateOldLDV && !isCalleeSavedReg(DestReg)) 2049 return false; 2050 2051 // InstrRefBasedImpl only followed killing copies. 2052 if (EmulateOldLDV && !SrcRegOp->isKill()) 2053 return false; 2054 2055 // Copy MTracker info, including subregs if available. 2056 InstrRefBasedLDV::performCopy(SrcReg, DestReg); 2057 2058 // Only produce a transfer of DBG_VALUE within a block where old LDV 2059 // would have. We might make use of the additional value tracking in some 2060 // other way, later. 2061 if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill()) 2062 TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg), 2063 MTracker->getRegMLoc(DestReg), MI.getIterator()); 2064 2065 // VarLocBasedImpl would quit tracking the old location after copying. 2066 if (EmulateOldLDV && SrcReg != DestReg) 2067 MTracker->defReg(SrcReg, CurBB, CurInst); 2068 2069 return true; 2070 } 2071 2072 /// Accumulate a mapping between each DILocalVariable fragment and other 2073 /// fragments of that DILocalVariable which overlap. This reduces work during 2074 /// the data-flow stage from "Find any overlapping fragments" to "Check if the 2075 /// known-to-overlap fragments are present". 2076 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for 2077 /// fragment usage. 2078 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) { 2079 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), 2080 MI.getDebugLoc()->getInlinedAt()); 2081 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); 2082 2083 // If this is the first sighting of this variable, then we are guaranteed 2084 // there are currently no overlapping fragments either. Initialize the set 2085 // of seen fragments, record no overlaps for the current one, and return. 2086 auto SeenIt = SeenFragments.find(MIVar.getVariable()); 2087 if (SeenIt == SeenFragments.end()) { 2088 SmallSet<FragmentInfo, 4> OneFragment; 2089 OneFragment.insert(ThisFragment); 2090 SeenFragments.insert({MIVar.getVariable(), OneFragment}); 2091 2092 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 2093 return; 2094 } 2095 2096 // If this particular Variable/Fragment pair already exists in the overlap 2097 // map, it has already been accounted for. 2098 auto IsInOLapMap = 2099 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 2100 if (!IsInOLapMap.second) 2101 return; 2102 2103 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; 2104 auto &AllSeenFragments = SeenIt->second; 2105 2106 // Otherwise, examine all other seen fragments for this variable, with "this" 2107 // fragment being a previously unseen fragment. Record any pair of 2108 // overlapping fragments. 2109 for (auto &ASeenFragment : AllSeenFragments) { 2110 // Does this previously seen fragment overlap? 2111 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { 2112 // Yes: Mark the current fragment as being overlapped. 2113 ThisFragmentsOverlaps.push_back(ASeenFragment); 2114 // Mark the previously seen fragment as being overlapped by the current 2115 // one. 2116 auto ASeenFragmentsOverlaps = 2117 OverlapFragments.find({MIVar.getVariable(), ASeenFragment}); 2118 assert(ASeenFragmentsOverlaps != OverlapFragments.end() && 2119 "Previously seen var fragment has no vector of overlaps"); 2120 ASeenFragmentsOverlaps->second.push_back(ThisFragment); 2121 } 2122 } 2123 2124 AllSeenFragments.insert(ThisFragment); 2125 } 2126 2127 void InstrRefBasedLDV::process(MachineInstr &MI) { 2128 // Try to interpret an MI as a debug or transfer instruction. Only if it's 2129 // none of these should we interpret it's register defs as new value 2130 // definitions. 2131 if (transferDebugValue(MI)) 2132 return; 2133 if (transferDebugInstrRef(MI)) 2134 return; 2135 if (transferRegisterCopy(MI)) 2136 return; 2137 if (transferSpillOrRestoreInst(MI)) 2138 return; 2139 transferRegisterDef(MI); 2140 } 2141 2142 void InstrRefBasedLDV::produceMLocTransferFunction( 2143 MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer, 2144 unsigned MaxNumBlocks) { 2145 // Because we try to optimize around register mask operands by ignoring regs 2146 // that aren't currently tracked, we set up something ugly for later: RegMask 2147 // operands that are seen earlier than the first use of a register, still need 2148 // to clobber that register in the transfer function. But this information 2149 // isn't actively recorded. Instead, we track each RegMask used in each block, 2150 // and accumulated the clobbered but untracked registers in each block into 2151 // the following bitvector. Later, if new values are tracked, we can add 2152 // appropriate clobbers. 2153 SmallVector<BitVector, 32> BlockMasks; 2154 BlockMasks.resize(MaxNumBlocks); 2155 2156 // Reserve one bit per register for the masks described above. 2157 unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs()); 2158 for (auto &BV : BlockMasks) 2159 BV.resize(TRI->getNumRegs(), true); 2160 2161 // Step through all instructions and inhale the transfer function. 2162 for (auto &MBB : MF) { 2163 // Object fields that are read by trackers to know where we are in the 2164 // function. 2165 CurBB = MBB.getNumber(); 2166 CurInst = 1; 2167 2168 // Set all machine locations to a PHI value. For transfer function 2169 // production only, this signifies the live-in value to the block. 2170 MTracker->reset(); 2171 MTracker->setMPhis(CurBB); 2172 2173 // Step through each instruction in this block. 2174 for (auto &MI : MBB) { 2175 process(MI); 2176 // Also accumulate fragment map. 2177 if (MI.isDebugValue()) 2178 accumulateFragmentMap(MI); 2179 2180 // Create a map from the instruction number (if present) to the 2181 // MachineInstr and its position. 2182 if (uint64_t InstrNo = MI.peekDebugInstrNum()) { 2183 auto InstrAndPos = std::make_pair(&MI, CurInst); 2184 auto InsertResult = 2185 DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos)); 2186 2187 // There should never be duplicate instruction numbers. 2188 assert(InsertResult.second); 2189 (void)InsertResult; 2190 } 2191 2192 ++CurInst; 2193 } 2194 2195 // Produce the transfer function, a map of machine location to new value. If 2196 // any machine location has the live-in phi value from the start of the 2197 // block, it's live-through and doesn't need recording in the transfer 2198 // function. 2199 for (auto Location : MTracker->locations()) { 2200 LocIdx Idx = Location.Idx; 2201 ValueIDNum &P = Location.Value; 2202 if (P.isPHI() && P.getLoc() == Idx.asU64()) 2203 continue; 2204 2205 // Insert-or-update. 2206 auto &TransferMap = MLocTransfer[CurBB]; 2207 auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P)); 2208 if (!Result.second) 2209 Result.first->second = P; 2210 } 2211 2212 // Accumulate any bitmask operands into the clobberred reg mask for this 2213 // block. 2214 for (auto &P : MTracker->Masks) { 2215 BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords); 2216 } 2217 } 2218 2219 // Compute a bitvector of all the registers that are tracked in this block. 2220 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2221 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 2222 BitVector UsedRegs(TRI->getNumRegs()); 2223 for (auto Location : MTracker->locations()) { 2224 unsigned ID = MTracker->LocIdxToLocID[Location.Idx]; 2225 if (ID >= TRI->getNumRegs() || ID == SP) 2226 continue; 2227 UsedRegs.set(ID); 2228 } 2229 2230 // Check that any regmask-clobber of a register that gets tracked, is not 2231 // live-through in the transfer function. It needs to be clobbered at the 2232 // very least. 2233 for (unsigned int I = 0; I < MaxNumBlocks; ++I) { 2234 BitVector &BV = BlockMasks[I]; 2235 BV.flip(); 2236 BV &= UsedRegs; 2237 // This produces all the bits that we clobber, but also use. Check that 2238 // they're all clobbered or at least set in the designated transfer 2239 // elem. 2240 for (unsigned Bit : BV.set_bits()) { 2241 unsigned ID = MTracker->getLocID(Bit, false); 2242 LocIdx Idx = MTracker->LocIDToLocIdx[ID]; 2243 auto &TransferMap = MLocTransfer[I]; 2244 2245 // Install a value representing the fact that this location is effectively 2246 // written to in this block. As there's no reserved value, instead use 2247 // a value number that is never generated. Pick the value number for the 2248 // first instruction in the block, def'ing this location, which we know 2249 // this block never used anyway. 2250 ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx); 2251 auto Result = 2252 TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum)); 2253 if (!Result.second) { 2254 ValueIDNum &ValueID = Result.first->second; 2255 if (ValueID.getBlock() == I && ValueID.isPHI()) 2256 // It was left as live-through. Set it to clobbered. 2257 ValueID = NotGeneratedNum; 2258 } 2259 } 2260 } 2261 } 2262 2263 std::tuple<bool, bool> 2264 InstrRefBasedLDV::mlocJoin(MachineBasicBlock &MBB, 2265 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 2266 ValueIDNum **OutLocs, ValueIDNum *InLocs) { 2267 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 2268 bool Changed = false; 2269 bool DowngradeOccurred = false; 2270 2271 // Collect predecessors that have been visited. Anything that hasn't been 2272 // visited yet is a backedge on the first iteration, and the meet of it's 2273 // lattice value for all locations will be unaffected. 2274 SmallVector<const MachineBasicBlock *, 8> BlockOrders; 2275 for (auto Pred : MBB.predecessors()) { 2276 if (Visited.count(Pred)) { 2277 BlockOrders.push_back(Pred); 2278 } 2279 } 2280 2281 // Visit predecessors in RPOT order. 2282 auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) { 2283 return BBToOrder.find(A)->second < BBToOrder.find(B)->second; 2284 }; 2285 llvm::sort(BlockOrders, Cmp); 2286 2287 // Skip entry block. 2288 if (BlockOrders.size() == 0) 2289 return std::tuple<bool, bool>(false, false); 2290 2291 // Step through all machine locations, then look at each predecessor and 2292 // detect disagreements. 2293 unsigned ThisBlockRPO = BBToOrder.find(&MBB)->second; 2294 for (auto Location : MTracker->locations()) { 2295 LocIdx Idx = Location.Idx; 2296 // Pick out the first predecessors live-out value for this location. It's 2297 // guaranteed to be not a backedge, as we order by RPO. 2298 ValueIDNum BaseVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()]; 2299 2300 // Some flags for whether there's a disagreement, and whether it's a 2301 // disagreement with a backedge or not. 2302 bool Disagree = false; 2303 bool NonBackEdgeDisagree = false; 2304 2305 // Loop around everything that wasn't 'base'. 2306 for (unsigned int I = 1; I < BlockOrders.size(); ++I) { 2307 auto *MBB = BlockOrders[I]; 2308 if (BaseVal != OutLocs[MBB->getNumber()][Idx.asU64()]) { 2309 // Live-out of a predecessor disagrees with the first predecessor. 2310 Disagree = true; 2311 2312 // Test whether it's a disagreemnt in the backedges or not. 2313 if (BBToOrder.find(MBB)->second < ThisBlockRPO) // might be self b/e 2314 NonBackEdgeDisagree = true; 2315 } 2316 } 2317 2318 bool OverRide = false; 2319 if (Disagree && !NonBackEdgeDisagree) { 2320 // Only the backedges disagree. Consider demoting the livein 2321 // lattice value, as per the file level comment. The value we consider 2322 // demoting to is the value that the non-backedge predecessors agree on. 2323 // The order of values is that non-PHIs are \top, a PHI at this block 2324 // \bot, and phis between the two are ordered by their RPO number. 2325 // If there's no agreement, or we've already demoted to this PHI value 2326 // before, replace with a PHI value at this block. 2327 2328 // Calculate order numbers: zero means normal def, nonzero means RPO 2329 // number. 2330 unsigned BaseBlockRPONum = BBNumToRPO[BaseVal.getBlock()] + 1; 2331 if (!BaseVal.isPHI()) 2332 BaseBlockRPONum = 0; 2333 2334 ValueIDNum &InLocID = InLocs[Idx.asU64()]; 2335 unsigned InLocRPONum = BBNumToRPO[InLocID.getBlock()] + 1; 2336 if (!InLocID.isPHI()) 2337 InLocRPONum = 0; 2338 2339 // Should we ignore the disagreeing backedges, and override with the 2340 // value the other predecessors agree on (in "base")? 2341 unsigned ThisBlockRPONum = BBNumToRPO[MBB.getNumber()] + 1; 2342 if (BaseBlockRPONum > InLocRPONum && BaseBlockRPONum < ThisBlockRPONum) { 2343 // Override. 2344 OverRide = true; 2345 DowngradeOccurred = true; 2346 } 2347 } 2348 // else: if we disagree in the non-backedges, then this is definitely 2349 // a control flow merge where different values merge. Make it a PHI. 2350 2351 // Generate a phi... 2352 ValueIDNum PHI = {(uint64_t)MBB.getNumber(), 0, Idx}; 2353 ValueIDNum NewVal = (Disagree && !OverRide) ? PHI : BaseVal; 2354 if (InLocs[Idx.asU64()] != NewVal) { 2355 Changed |= true; 2356 InLocs[Idx.asU64()] = NewVal; 2357 } 2358 } 2359 2360 // TODO: Reimplement NumInserted and NumRemoved. 2361 return std::tuple<bool, bool>(Changed, DowngradeOccurred); 2362 } 2363 2364 void InstrRefBasedLDV::mlocDataflow( 2365 ValueIDNum **MInLocs, ValueIDNum **MOutLocs, 2366 SmallVectorImpl<MLocTransferMap> &MLocTransfer) { 2367 std::priority_queue<unsigned int, std::vector<unsigned int>, 2368 std::greater<unsigned int>> 2369 Worklist, Pending; 2370 2371 // We track what is on the current and pending worklist to avoid inserting 2372 // the same thing twice. We could avoid this with a custom priority queue, 2373 // but this is probably not worth it. 2374 SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist; 2375 2376 // Initialize worklist with every block to be visited. 2377 for (unsigned int I = 0; I < BBToOrder.size(); ++I) { 2378 Worklist.push(I); 2379 OnWorklist.insert(OrderToBB[I]); 2380 } 2381 2382 MTracker->reset(); 2383 2384 // Set inlocs for entry block -- each as a PHI at the entry block. Represents 2385 // the incoming value to the function. 2386 MTracker->setMPhis(0); 2387 for (auto Location : MTracker->locations()) 2388 MInLocs[0][Location.Idx.asU64()] = Location.Value; 2389 2390 SmallPtrSet<const MachineBasicBlock *, 16> Visited; 2391 while (!Worklist.empty() || !Pending.empty()) { 2392 // Vector for storing the evaluated block transfer function. 2393 SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap; 2394 2395 while (!Worklist.empty()) { 2396 MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; 2397 CurBB = MBB->getNumber(); 2398 Worklist.pop(); 2399 2400 // Join the values in all predecessor blocks. 2401 bool InLocsChanged, DowngradeOccurred; 2402 std::tie(InLocsChanged, DowngradeOccurred) = 2403 mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]); 2404 InLocsChanged |= Visited.insert(MBB).second; 2405 2406 // If a downgrade occurred, book us in for re-examination on the next 2407 // iteration. 2408 if (DowngradeOccurred && OnPending.insert(MBB).second) 2409 Pending.push(BBToOrder[MBB]); 2410 2411 // Don't examine transfer function if we've visited this loc at least 2412 // once, and inlocs haven't changed. 2413 if (!InLocsChanged) 2414 continue; 2415 2416 // Load the current set of live-ins into MLocTracker. 2417 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 2418 2419 // Each element of the transfer function can be a new def, or a read of 2420 // a live-in value. Evaluate each element, and store to "ToRemap". 2421 ToRemap.clear(); 2422 for (auto &P : MLocTransfer[CurBB]) { 2423 if (P.second.getBlock() == CurBB && P.second.isPHI()) { 2424 // This is a movement of whatever was live in. Read it. 2425 ValueIDNum NewID = MTracker->getNumAtPos(P.second.getLoc()); 2426 ToRemap.push_back(std::make_pair(P.first, NewID)); 2427 } else { 2428 // It's a def. Just set it. 2429 assert(P.second.getBlock() == CurBB); 2430 ToRemap.push_back(std::make_pair(P.first, P.second)); 2431 } 2432 } 2433 2434 // Commit the transfer function changes into mloc tracker, which 2435 // transforms the contents of the MLocTracker into the live-outs. 2436 for (auto &P : ToRemap) 2437 MTracker->setMLoc(P.first, P.second); 2438 2439 // Now copy out-locs from mloc tracker into out-loc vector, checking 2440 // whether changes have occurred. These changes can have come from both 2441 // the transfer function, and mlocJoin. 2442 bool OLChanged = false; 2443 for (auto Location : MTracker->locations()) { 2444 OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value; 2445 MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value; 2446 } 2447 2448 MTracker->reset(); 2449 2450 // No need to examine successors again if out-locs didn't change. 2451 if (!OLChanged) 2452 continue; 2453 2454 // All successors should be visited: put any back-edges on the pending 2455 // list for the next dataflow iteration, and any other successors to be 2456 // visited this iteration, if they're not going to be already. 2457 for (auto s : MBB->successors()) { 2458 // Does branching to this successor represent a back-edge? 2459 if (BBToOrder[s] > BBToOrder[MBB]) { 2460 // No: visit it during this dataflow iteration. 2461 if (OnWorklist.insert(s).second) 2462 Worklist.push(BBToOrder[s]); 2463 } else { 2464 // Yes: visit it on the next iteration. 2465 if (OnPending.insert(s).second) 2466 Pending.push(BBToOrder[s]); 2467 } 2468 } 2469 } 2470 2471 Worklist.swap(Pending); 2472 std::swap(OnPending, OnWorklist); 2473 OnPending.clear(); 2474 // At this point, pending must be empty, since it was just the empty 2475 // worklist 2476 assert(Pending.empty() && "Pending should be empty"); 2477 } 2478 2479 // Once all the live-ins don't change on mlocJoin(), we've reached a 2480 // fixedpoint. 2481 } 2482 2483 bool InstrRefBasedLDV::vlocDowngradeLattice( 2484 const MachineBasicBlock &MBB, const DbgValue &OldLiveInLocation, 2485 const SmallVectorImpl<InValueT> &Values, unsigned CurBlockRPONum) { 2486 // Ranking value preference: see file level comment, the highest rank is 2487 // a plain def, followed by PHI values in reverse post-order. Numerically, 2488 // we assign all defs the rank '0', all PHIs their blocks RPO number plus 2489 // one, and consider the lowest value the highest ranked. 2490 int OldLiveInRank = BBNumToRPO[OldLiveInLocation.ID.getBlock()] + 1; 2491 if (!OldLiveInLocation.ID.isPHI()) 2492 OldLiveInRank = 0; 2493 2494 // Allow any unresolvable conflict to be over-ridden. 2495 if (OldLiveInLocation.Kind == DbgValue::NoVal) { 2496 // Although if it was an unresolvable conflict from _this_ block, then 2497 // all other seeking of downgrades and PHIs must have failed before hand. 2498 if (OldLiveInLocation.BlockNo == (unsigned)MBB.getNumber()) 2499 return false; 2500 OldLiveInRank = INT_MIN; 2501 } 2502 2503 auto &InValue = *Values[0].second; 2504 2505 if (InValue.Kind == DbgValue::Const || InValue.Kind == DbgValue::NoVal) 2506 return false; 2507 2508 unsigned ThisRPO = BBNumToRPO[InValue.ID.getBlock()]; 2509 int ThisRank = ThisRPO + 1; 2510 if (!InValue.ID.isPHI()) 2511 ThisRank = 0; 2512 2513 // Too far down the lattice? 2514 if (ThisRPO >= CurBlockRPONum) 2515 return false; 2516 2517 // Higher in the lattice than what we've already explored? 2518 if (ThisRank <= OldLiveInRank) 2519 return false; 2520 2521 return true; 2522 } 2523 2524 std::tuple<Optional<ValueIDNum>, bool> InstrRefBasedLDV::pickVPHILoc( 2525 MachineBasicBlock &MBB, const DebugVariable &Var, const LiveIdxT &LiveOuts, 2526 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 2527 const SmallVectorImpl<MachineBasicBlock *> &BlockOrders) { 2528 // Collect a set of locations from predecessor where its live-out value can 2529 // be found. 2530 SmallVector<SmallVector<LocIdx, 4>, 8> Locs; 2531 unsigned NumLocs = MTracker->getNumLocs(); 2532 unsigned BackEdgesStart = 0; 2533 2534 for (auto p : BlockOrders) { 2535 // Pick out where backedges start in the list of predecessors. Relies on 2536 // BlockOrders being sorted by RPO. 2537 if (BBToOrder[p] < BBToOrder[&MBB]) 2538 ++BackEdgesStart; 2539 2540 // For each predecessor, create a new set of locations. 2541 Locs.resize(Locs.size() + 1); 2542 unsigned ThisBBNum = p->getNumber(); 2543 auto LiveOutMap = LiveOuts.find(p); 2544 if (LiveOutMap == LiveOuts.end()) 2545 // This predecessor isn't in scope, it must have no live-in/live-out 2546 // locations. 2547 continue; 2548 2549 auto It = LiveOutMap->second->find(Var); 2550 if (It == LiveOutMap->second->end()) 2551 // There's no value recorded for this variable in this predecessor, 2552 // leave an empty set of locations. 2553 continue; 2554 2555 const DbgValue &OutVal = It->second; 2556 2557 if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal) 2558 // Consts and no-values cannot have locations we can join on. 2559 continue; 2560 2561 assert(OutVal.Kind == DbgValue::Proposed || OutVal.Kind == DbgValue::Def); 2562 ValueIDNum ValToLookFor = OutVal.ID; 2563 2564 // Search the live-outs of the predecessor for the specified value. 2565 for (unsigned int I = 0; I < NumLocs; ++I) { 2566 if (MOutLocs[ThisBBNum][I] == ValToLookFor) 2567 Locs.back().push_back(LocIdx(I)); 2568 } 2569 } 2570 2571 // If there were no locations at all, return an empty result. 2572 if (Locs.empty()) 2573 return std::tuple<Optional<ValueIDNum>, bool>(None, false); 2574 2575 // Lambda for seeking a common location within a range of location-sets. 2576 using LocsIt = SmallVector<SmallVector<LocIdx, 4>, 8>::iterator; 2577 auto SeekLocation = 2578 [&Locs](llvm::iterator_range<LocsIt> SearchRange) -> Optional<LocIdx> { 2579 // Starting with the first set of locations, take the intersection with 2580 // subsequent sets. 2581 SmallVector<LocIdx, 4> base = Locs[0]; 2582 for (auto &S : SearchRange) { 2583 SmallVector<LocIdx, 4> new_base; 2584 std::set_intersection(base.begin(), base.end(), S.begin(), S.end(), 2585 std::inserter(new_base, new_base.begin())); 2586 base = new_base; 2587 } 2588 if (base.empty()) 2589 return None; 2590 2591 // We now have a set of LocIdxes that contain the right output value in 2592 // each of the predecessors. Pick the lowest; if there's a register loc, 2593 // that'll be it. 2594 return *base.begin(); 2595 }; 2596 2597 // Search for a common location for all predecessors. If we can't, then fall 2598 // back to only finding a common location between non-backedge predecessors. 2599 bool ValidForAllLocs = true; 2600 auto TheLoc = SeekLocation(Locs); 2601 if (!TheLoc) { 2602 ValidForAllLocs = false; 2603 TheLoc = 2604 SeekLocation(make_range(Locs.begin(), Locs.begin() + BackEdgesStart)); 2605 } 2606 2607 if (!TheLoc) 2608 return std::tuple<Optional<ValueIDNum>, bool>(None, false); 2609 2610 // Return a PHI-value-number for the found location. 2611 LocIdx L = *TheLoc; 2612 ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L}; 2613 return std::tuple<Optional<ValueIDNum>, bool>(PHIVal, ValidForAllLocs); 2614 } 2615 2616 std::tuple<bool, bool> InstrRefBasedLDV::vlocJoin( 2617 MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs, 2618 SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, unsigned BBNum, 2619 const SmallSet<DebugVariable, 4> &AllVars, ValueIDNum **MOutLocs, 2620 ValueIDNum **MInLocs, 2621 SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks, 2622 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, 2623 DenseMap<DebugVariable, DbgValue> &InLocsT) { 2624 bool DowngradeOccurred = false; 2625 2626 // To emulate VarLocBasedImpl, process this block if it's not in scope but 2627 // _does_ assign a variable value. No live-ins for this scope are transferred 2628 // in though, so we can return immediately. 2629 if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) { 2630 if (VLOCVisited) 2631 return std::tuple<bool, bool>(true, false); 2632 return std::tuple<bool, bool>(false, false); 2633 } 2634 2635 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 2636 bool Changed = false; 2637 2638 // Find any live-ins computed in a prior iteration. 2639 auto ILSIt = VLOCInLocs.find(&MBB); 2640 assert(ILSIt != VLOCInLocs.end()); 2641 auto &ILS = *ILSIt->second; 2642 2643 // Order predecessors by RPOT order, for exploring them in that order. 2644 SmallVector<MachineBasicBlock *, 8> BlockOrders; 2645 for (auto p : MBB.predecessors()) 2646 BlockOrders.push_back(p); 2647 2648 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2649 return BBToOrder[A] < BBToOrder[B]; 2650 }; 2651 2652 llvm::sort(BlockOrders, Cmp); 2653 2654 unsigned CurBlockRPONum = BBToOrder[&MBB]; 2655 2656 // Force a re-visit to loop heads in the first dataflow iteration. 2657 // FIXME: if we could "propose" Const values this wouldn't be needed, 2658 // because they'd need to be confirmed before being emitted. 2659 if (!BlockOrders.empty() && 2660 BBToOrder[BlockOrders[BlockOrders.size() - 1]] >= CurBlockRPONum && 2661 VLOCVisited) 2662 DowngradeOccurred = true; 2663 2664 auto ConfirmValue = [&InLocsT](const DebugVariable &DV, DbgValue VR) { 2665 auto Result = InLocsT.insert(std::make_pair(DV, VR)); 2666 (void)Result; 2667 assert(Result.second); 2668 }; 2669 2670 auto ConfirmNoVal = [&ConfirmValue, &MBB](const DebugVariable &Var, const DbgValueProperties &Properties) { 2671 DbgValue NoLocPHIVal(MBB.getNumber(), Properties, DbgValue::NoVal); 2672 2673 ConfirmValue(Var, NoLocPHIVal); 2674 }; 2675 2676 // Attempt to join the values for each variable. 2677 for (auto &Var : AllVars) { 2678 // Collect all the DbgValues for this variable. 2679 SmallVector<InValueT, 8> Values; 2680 bool Bail = false; 2681 unsigned BackEdgesStart = 0; 2682 for (auto p : BlockOrders) { 2683 // If the predecessor isn't in scope / to be explored, we'll never be 2684 // able to join any locations. 2685 if (!BlocksToExplore.contains(p)) { 2686 Bail = true; 2687 break; 2688 } 2689 2690 // Don't attempt to handle unvisited predecessors: they're implicitly 2691 // "unknown"s in the lattice. 2692 if (VLOCVisited && !VLOCVisited->count(p)) 2693 continue; 2694 2695 // If the predecessors OutLocs is absent, there's not much we can do. 2696 auto OL = VLOCOutLocs.find(p); 2697 if (OL == VLOCOutLocs.end()) { 2698 Bail = true; 2699 break; 2700 } 2701 2702 // No live-out value for this predecessor also means we can't produce 2703 // a joined value. 2704 auto VIt = OL->second->find(Var); 2705 if (VIt == OL->second->end()) { 2706 Bail = true; 2707 break; 2708 } 2709 2710 // Keep track of where back-edges begin in the Values vector. Relies on 2711 // BlockOrders being sorted by RPO. 2712 unsigned ThisBBRPONum = BBToOrder[p]; 2713 if (ThisBBRPONum < CurBlockRPONum) 2714 ++BackEdgesStart; 2715 2716 Values.push_back(std::make_pair(p, &VIt->second)); 2717 } 2718 2719 // If there were no values, or one of the predecessors couldn't have a 2720 // value, then give up immediately. It's not safe to produce a live-in 2721 // value. 2722 if (Bail || Values.size() == 0) 2723 continue; 2724 2725 // Enumeration identifying the current state of the predecessors values. 2726 enum { 2727 Unset = 0, 2728 Agreed, // All preds agree on the variable value. 2729 PropDisagree, // All preds agree, but the value kind is Proposed in some. 2730 BEDisagree, // Only back-edges disagree on variable value. 2731 PHINeeded, // Non-back-edge predecessors have conflicing values. 2732 NoSolution // Conflicting Value metadata makes solution impossible. 2733 } OurState = Unset; 2734 2735 // All (non-entry) blocks have at least one non-backedge predecessor. 2736 // Pick the variable value from the first of these, to compare against 2737 // all others. 2738 const DbgValue &FirstVal = *Values[0].second; 2739 const ValueIDNum &FirstID = FirstVal.ID; 2740 2741 // Scan for variable values that can't be resolved: if they have different 2742 // DIExpressions, different indirectness, or are mixed constants / 2743 // non-constants. 2744 for (auto &V : Values) { 2745 if (V.second->Properties != FirstVal.Properties) 2746 OurState = NoSolution; 2747 if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const) 2748 OurState = NoSolution; 2749 } 2750 2751 // Flags diagnosing _how_ the values disagree. 2752 bool NonBackEdgeDisagree = false; 2753 bool DisagreeOnPHINess = false; 2754 bool IDDisagree = false; 2755 bool Disagree = false; 2756 if (OurState == Unset) { 2757 for (auto &V : Values) { 2758 if (*V.second == FirstVal) 2759 continue; // No disagreement. 2760 2761 Disagree = true; 2762 2763 // Flag whether the value number actually diagrees. 2764 if (V.second->ID != FirstID) 2765 IDDisagree = true; 2766 2767 // Distinguish whether disagreement happens in backedges or not. 2768 // Relies on Values (and BlockOrders) being sorted by RPO. 2769 unsigned ThisBBRPONum = BBToOrder[V.first]; 2770 if (ThisBBRPONum < CurBlockRPONum) 2771 NonBackEdgeDisagree = true; 2772 2773 // Is there a difference in whether the value is definite or only 2774 // proposed? 2775 if (V.second->Kind != FirstVal.Kind && 2776 (V.second->Kind == DbgValue::Proposed || 2777 V.second->Kind == DbgValue::Def) && 2778 (FirstVal.Kind == DbgValue::Proposed || 2779 FirstVal.Kind == DbgValue::Def)) 2780 DisagreeOnPHINess = true; 2781 } 2782 2783 // Collect those flags together and determine an overall state for 2784 // what extend the predecessors agree on a live-in value. 2785 if (!Disagree) 2786 OurState = Agreed; 2787 else if (!IDDisagree && DisagreeOnPHINess) 2788 OurState = PropDisagree; 2789 else if (!NonBackEdgeDisagree) 2790 OurState = BEDisagree; 2791 else 2792 OurState = PHINeeded; 2793 } 2794 2795 // An extra indicator: if we only disagree on whether the value is a 2796 // Def, or proposed, then also flag whether that disagreement happens 2797 // in backedges only. 2798 bool PropOnlyInBEs = Disagree && !IDDisagree && DisagreeOnPHINess && 2799 !NonBackEdgeDisagree && FirstVal.Kind == DbgValue::Def; 2800 2801 const auto &Properties = FirstVal.Properties; 2802 2803 auto OldLiveInIt = ILS.find(Var); 2804 const DbgValue *OldLiveInLocation = 2805 (OldLiveInIt != ILS.end()) ? &OldLiveInIt->second : nullptr; 2806 2807 bool OverRide = false; 2808 if (OurState == BEDisagree && OldLiveInLocation) { 2809 // Only backedges disagree: we can consider downgrading. If there was a 2810 // previous live-in value, use it to work out whether the current 2811 // incoming value represents a lattice downgrade or not. 2812 OverRide = 2813 vlocDowngradeLattice(MBB, *OldLiveInLocation, Values, CurBlockRPONum); 2814 } 2815 2816 // Use the current state of predecessor agreement and other flags to work 2817 // out what to do next. Possibilities include: 2818 // * Accept a value all predecessors agree on, or accept one that 2819 // represents a step down the exploration lattice, 2820 // * Use a PHI value number, if one can be found, 2821 // * Propose a PHI value number, and see if it gets confirmed later, 2822 // * Emit a 'NoVal' value, indicating we couldn't resolve anything. 2823 if (OurState == Agreed) { 2824 // Easiest solution: all predecessors agree on the variable value. 2825 ConfirmValue(Var, FirstVal); 2826 } else if (OurState == BEDisagree && OverRide) { 2827 // Only backedges disagree, and the other predecessors have produced 2828 // a new live-in value further down the exploration lattice. 2829 DowngradeOccurred = true; 2830 ConfirmValue(Var, FirstVal); 2831 } else if (OurState == PropDisagree) { 2832 // Predecessors agree on value, but some say it's only a proposed value. 2833 // Propagate it as proposed: unless it was proposed in this block, in 2834 // which case we're able to confirm the value. 2835 if (FirstID.getBlock() == (uint64_t)MBB.getNumber() && FirstID.isPHI()) { 2836 ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def)); 2837 } else if (PropOnlyInBEs) { 2838 // If only backedges disagree, a higher (in RPO) block confirmed this 2839 // location, and we need to propagate it into this loop. 2840 ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def)); 2841 } else { 2842 // Otherwise; a Def meeting a Proposed is still a Proposed. 2843 ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Proposed)); 2844 } 2845 } else if ((OurState == PHINeeded || OurState == BEDisagree)) { 2846 // Predecessors disagree and can't be downgraded: this can only be 2847 // solved with a PHI. Use pickVPHILoc to go look for one. 2848 Optional<ValueIDNum> VPHI; 2849 bool AllEdgesVPHI = false; 2850 std::tie(VPHI, AllEdgesVPHI) = 2851 pickVPHILoc(MBB, Var, VLOCOutLocs, MOutLocs, MInLocs, BlockOrders); 2852 2853 if (VPHI && AllEdgesVPHI) { 2854 // There's a PHI value that's valid for all predecessors -- we can use 2855 // it. If any of the non-backedge predecessors have proposed values 2856 // though, this PHI is also only proposed, until the predecessors are 2857 // confirmed. 2858 DbgValue::KindT K = DbgValue::Def; 2859 for (unsigned int I = 0; I < BackEdgesStart; ++I) 2860 if (Values[I].second->Kind == DbgValue::Proposed) 2861 K = DbgValue::Proposed; 2862 2863 ConfirmValue(Var, DbgValue(*VPHI, Properties, K)); 2864 } else if (VPHI) { 2865 // There's a PHI value, but it's only legal for backedges. Leave this 2866 // as a proposed PHI value: it might come back on the backedges, 2867 // and allow us to confirm it in the future. 2868 DbgValue NoBEValue = DbgValue(*VPHI, Properties, DbgValue::Proposed); 2869 ConfirmValue(Var, NoBEValue); 2870 } else { 2871 ConfirmNoVal(Var, Properties); 2872 } 2873 } else { 2874 // Otherwise: we don't know. Emit a "phi but no real loc" phi. 2875 ConfirmNoVal(Var, Properties); 2876 } 2877 } 2878 2879 // Store newly calculated in-locs into VLOCInLocs, if they've changed. 2880 Changed = ILS != InLocsT; 2881 if (Changed) 2882 ILS = InLocsT; 2883 2884 return std::tuple<bool, bool>(Changed, DowngradeOccurred); 2885 } 2886 2887 void InstrRefBasedLDV::vlocDataflow( 2888 const LexicalScope *Scope, const DILocation *DILoc, 2889 const SmallSet<DebugVariable, 4> &VarsWeCareAbout, 2890 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output, 2891 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 2892 SmallVectorImpl<VLocTracker> &AllTheVLocs) { 2893 // This method is much like mlocDataflow: but focuses on a single 2894 // LexicalScope at a time. Pick out a set of blocks and variables that are 2895 // to have their value assignments solved, then run our dataflow algorithm 2896 // until a fixedpoint is reached. 2897 std::priority_queue<unsigned int, std::vector<unsigned int>, 2898 std::greater<unsigned int>> 2899 Worklist, Pending; 2900 SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending; 2901 2902 // The set of blocks we'll be examining. 2903 SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore; 2904 2905 // The order in which to examine them (RPO). 2906 SmallVector<MachineBasicBlock *, 8> BlockOrders; 2907 2908 // RPO ordering function. 2909 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2910 return BBToOrder[A] < BBToOrder[B]; 2911 }; 2912 2913 LS.getMachineBasicBlocks(DILoc, BlocksToExplore); 2914 2915 // A separate container to distinguish "blocks we're exploring" versus 2916 // "blocks that are potentially in scope. See comment at start of vlocJoin. 2917 SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore; 2918 2919 // Old LiveDebugValues tracks variable locations that come out of blocks 2920 // not in scope, where DBG_VALUEs occur. This is something we could 2921 // legitimately ignore, but lets allow it for now. 2922 if (EmulateOldLDV) 2923 BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end()); 2924 2925 // We also need to propagate variable values through any artificial blocks 2926 // that immediately follow blocks in scope. 2927 DenseSet<const MachineBasicBlock *> ToAdd; 2928 2929 // Helper lambda: For a given block in scope, perform a depth first search 2930 // of all the artificial successors, adding them to the ToAdd collection. 2931 auto AccumulateArtificialBlocks = 2932 [this, &ToAdd, &BlocksToExplore, 2933 &InScopeBlocks](const MachineBasicBlock *MBB) { 2934 // Depth-first-search state: each node is a block and which successor 2935 // we're currently exploring. 2936 SmallVector<std::pair<const MachineBasicBlock *, 2937 MachineBasicBlock::const_succ_iterator>, 2938 8> 2939 DFS; 2940 2941 // Find any artificial successors not already tracked. 2942 for (auto *succ : MBB->successors()) { 2943 if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ)) 2944 continue; 2945 if (!ArtificialBlocks.count(succ)) 2946 continue; 2947 DFS.push_back(std::make_pair(succ, succ->succ_begin())); 2948 ToAdd.insert(succ); 2949 } 2950 2951 // Search all those blocks, depth first. 2952 while (!DFS.empty()) { 2953 const MachineBasicBlock *CurBB = DFS.back().first; 2954 MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second; 2955 // Walk back if we've explored this blocks successors to the end. 2956 if (CurSucc == CurBB->succ_end()) { 2957 DFS.pop_back(); 2958 continue; 2959 } 2960 2961 // If the current successor is artificial and unexplored, descend into 2962 // it. 2963 if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) { 2964 DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin())); 2965 ToAdd.insert(*CurSucc); 2966 continue; 2967 } 2968 2969 ++CurSucc; 2970 } 2971 }; 2972 2973 // Search in-scope blocks and those containing a DBG_VALUE from this scope 2974 // for artificial successors. 2975 for (auto *MBB : BlocksToExplore) 2976 AccumulateArtificialBlocks(MBB); 2977 for (auto *MBB : InScopeBlocks) 2978 AccumulateArtificialBlocks(MBB); 2979 2980 BlocksToExplore.insert(ToAdd.begin(), ToAdd.end()); 2981 InScopeBlocks.insert(ToAdd.begin(), ToAdd.end()); 2982 2983 // Single block scope: not interesting! No propagation at all. Note that 2984 // this could probably go above ArtificialBlocks without damage, but 2985 // that then produces output differences from original-live-debug-values, 2986 // which propagates from a single block into many artificial ones. 2987 if (BlocksToExplore.size() == 1) 2988 return; 2989 2990 // Picks out relevants blocks RPO order and sort them. 2991 for (auto *MBB : BlocksToExplore) 2992 BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB)); 2993 2994 llvm::sort(BlockOrders, Cmp); 2995 unsigned NumBlocks = BlockOrders.size(); 2996 2997 // Allocate some vectors for storing the live ins and live outs. Large. 2998 SmallVector<DenseMap<DebugVariable, DbgValue>, 32> LiveIns, LiveOuts; 2999 LiveIns.resize(NumBlocks); 3000 LiveOuts.resize(NumBlocks); 3001 3002 // Produce by-MBB indexes of live-in/live-outs, to ease lookup within 3003 // vlocJoin. 3004 LiveIdxT LiveOutIdx, LiveInIdx; 3005 LiveOutIdx.reserve(NumBlocks); 3006 LiveInIdx.reserve(NumBlocks); 3007 for (unsigned I = 0; I < NumBlocks; ++I) { 3008 LiveOutIdx[BlockOrders[I]] = &LiveOuts[I]; 3009 LiveInIdx[BlockOrders[I]] = &LiveIns[I]; 3010 } 3011 3012 for (auto *MBB : BlockOrders) { 3013 Worklist.push(BBToOrder[MBB]); 3014 OnWorklist.insert(MBB); 3015 } 3016 3017 // Iterate over all the blocks we selected, propagating variable values. 3018 bool FirstTrip = true; 3019 SmallPtrSet<const MachineBasicBlock *, 16> VLOCVisited; 3020 while (!Worklist.empty() || !Pending.empty()) { 3021 while (!Worklist.empty()) { 3022 auto *MBB = OrderToBB[Worklist.top()]; 3023 CurBB = MBB->getNumber(); 3024 Worklist.pop(); 3025 3026 DenseMap<DebugVariable, DbgValue> JoinedInLocs; 3027 3028 // Join values from predecessors. Updates LiveInIdx, and writes output 3029 // into JoinedInLocs. 3030 bool InLocsChanged, DowngradeOccurred; 3031 std::tie(InLocsChanged, DowngradeOccurred) = vlocJoin( 3032 *MBB, LiveOutIdx, LiveInIdx, (FirstTrip) ? &VLOCVisited : nullptr, 3033 CurBB, VarsWeCareAbout, MOutLocs, MInLocs, InScopeBlocks, 3034 BlocksToExplore, JoinedInLocs); 3035 3036 bool FirstVisit = VLOCVisited.insert(MBB).second; 3037 3038 // Always explore transfer function if inlocs changed, or if we've not 3039 // visited this block before. 3040 InLocsChanged |= FirstVisit; 3041 3042 // If a downgrade occurred, book us in for re-examination on the next 3043 // iteration. 3044 if (DowngradeOccurred && OnPending.insert(MBB).second) 3045 Pending.push(BBToOrder[MBB]); 3046 3047 if (!InLocsChanged) 3048 continue; 3049 3050 // Do transfer function. 3051 auto &VTracker = AllTheVLocs[MBB->getNumber()]; 3052 for (auto &Transfer : VTracker.Vars) { 3053 // Is this var we're mangling in this scope? 3054 if (VarsWeCareAbout.count(Transfer.first)) { 3055 // Erase on empty transfer (DBG_VALUE $noreg). 3056 if (Transfer.second.Kind == DbgValue::Undef) { 3057 JoinedInLocs.erase(Transfer.first); 3058 } else { 3059 // Insert new variable value; or overwrite. 3060 auto NewValuePair = std::make_pair(Transfer.first, Transfer.second); 3061 auto Result = JoinedInLocs.insert(NewValuePair); 3062 if (!Result.second) 3063 Result.first->second = Transfer.second; 3064 } 3065 } 3066 } 3067 3068 // Did the live-out locations change? 3069 bool OLChanged = JoinedInLocs != *LiveOutIdx[MBB]; 3070 3071 // If they haven't changed, there's no need to explore further. 3072 if (!OLChanged) 3073 continue; 3074 3075 // Commit to the live-out record. 3076 *LiveOutIdx[MBB] = JoinedInLocs; 3077 3078 // We should visit all successors. Ensure we'll visit any non-backedge 3079 // successors during this dataflow iteration; book backedge successors 3080 // to be visited next time around. 3081 for (auto s : MBB->successors()) { 3082 // Ignore out of scope / not-to-be-explored successors. 3083 if (LiveInIdx.find(s) == LiveInIdx.end()) 3084 continue; 3085 3086 if (BBToOrder[s] > BBToOrder[MBB]) { 3087 if (OnWorklist.insert(s).second) 3088 Worklist.push(BBToOrder[s]); 3089 } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) { 3090 Pending.push(BBToOrder[s]); 3091 } 3092 } 3093 } 3094 Worklist.swap(Pending); 3095 std::swap(OnWorklist, OnPending); 3096 OnPending.clear(); 3097 assert(Pending.empty()); 3098 FirstTrip = false; 3099 } 3100 3101 // Dataflow done. Now what? Save live-ins. Ignore any that are still marked 3102 // as being variable-PHIs, because those did not have their machine-PHI 3103 // value confirmed. Such variable values are places that could have been 3104 // PHIs, but are not. 3105 for (auto *MBB : BlockOrders) { 3106 auto &VarMap = *LiveInIdx[MBB]; 3107 for (auto &P : VarMap) { 3108 if (P.second.Kind == DbgValue::Proposed || 3109 P.second.Kind == DbgValue::NoVal) 3110 continue; 3111 Output[MBB->getNumber()].push_back(P); 3112 } 3113 } 3114 3115 BlockOrders.clear(); 3116 BlocksToExplore.clear(); 3117 } 3118 3119 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3120 void InstrRefBasedLDV::dump_mloc_transfer( 3121 const MLocTransferMap &mloc_transfer) const { 3122 for (auto &P : mloc_transfer) { 3123 std::string foo = MTracker->LocIdxToName(P.first); 3124 std::string bar = MTracker->IDAsString(P.second); 3125 dbgs() << "Loc " << foo << " --> " << bar << "\n"; 3126 } 3127 } 3128 #endif 3129 3130 void InstrRefBasedLDV::emitLocations( 3131 MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MInLocs, 3132 DenseMap<DebugVariable, unsigned> &AllVarsNumbering) { 3133 TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs); 3134 unsigned NumLocs = MTracker->getNumLocs(); 3135 3136 // For each block, load in the machine value locations and variable value 3137 // live-ins, then step through each instruction in the block. New DBG_VALUEs 3138 // to be inserted will be created along the way. 3139 for (MachineBasicBlock &MBB : MF) { 3140 unsigned bbnum = MBB.getNumber(); 3141 MTracker->reset(); 3142 MTracker->loadFromArray(MInLocs[bbnum], bbnum); 3143 TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()], 3144 NumLocs); 3145 3146 CurBB = bbnum; 3147 CurInst = 1; 3148 for (auto &MI : MBB) { 3149 process(MI); 3150 TTracker->checkInstForNewValues(CurInst, MI.getIterator()); 3151 ++CurInst; 3152 } 3153 } 3154 3155 // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer 3156 // in DWARF in different orders. Use the order that they appear when walking 3157 // through each block / each instruction, stored in AllVarsNumbering. 3158 auto OrderDbgValues = [&](const MachineInstr *A, 3159 const MachineInstr *B) -> bool { 3160 DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(), 3161 A->getDebugLoc()->getInlinedAt()); 3162 DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(), 3163 B->getDebugLoc()->getInlinedAt()); 3164 return AllVarsNumbering.find(VarA)->second < 3165 AllVarsNumbering.find(VarB)->second; 3166 }; 3167 3168 // Go through all the transfers recorded in the TransferTracker -- this is 3169 // both the live-ins to a block, and any movements of values that happen 3170 // in the middle. 3171 for (auto &P : TTracker->Transfers) { 3172 // Sort them according to appearance order. 3173 llvm::sort(P.Insts, OrderDbgValues); 3174 // Insert either before or after the designated point... 3175 if (P.MBB) { 3176 MachineBasicBlock &MBB = *P.MBB; 3177 for (auto *MI : P.Insts) { 3178 MBB.insert(P.Pos, MI); 3179 } 3180 } else { 3181 MachineBasicBlock &MBB = *P.Pos->getParent(); 3182 for (auto *MI : P.Insts) { 3183 MBB.insertAfter(P.Pos, MI); 3184 } 3185 } 3186 } 3187 } 3188 3189 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) { 3190 // Build some useful data structures. 3191 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { 3192 if (const DebugLoc &DL = MI.getDebugLoc()) 3193 return DL.getLine() != 0; 3194 return false; 3195 }; 3196 // Collect a set of all the artificial blocks. 3197 for (auto &MBB : MF) 3198 if (none_of(MBB.instrs(), hasNonArtificialLocation)) 3199 ArtificialBlocks.insert(&MBB); 3200 3201 // Compute mappings of block <=> RPO order. 3202 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 3203 unsigned int RPONumber = 0; 3204 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { 3205 OrderToBB[RPONumber] = *RI; 3206 BBToOrder[*RI] = RPONumber; 3207 BBNumToRPO[(*RI)->getNumber()] = RPONumber; 3208 ++RPONumber; 3209 } 3210 } 3211 3212 /// Calculate the liveness information for the given machine function and 3213 /// extend ranges across basic blocks. 3214 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF, 3215 TargetPassConfig *TPC) { 3216 // No subprogram means this function contains no debuginfo. 3217 if (!MF.getFunction().getSubprogram()) 3218 return false; 3219 3220 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); 3221 this->TPC = TPC; 3222 3223 TRI = MF.getSubtarget().getRegisterInfo(); 3224 TII = MF.getSubtarget().getInstrInfo(); 3225 TFI = MF.getSubtarget().getFrameLowering(); 3226 TFI->getCalleeSaves(MF, CalleeSavedRegs); 3227 LS.initialize(MF); 3228 3229 MTracker = 3230 new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering()); 3231 VTracker = nullptr; 3232 TTracker = nullptr; 3233 3234 SmallVector<MLocTransferMap, 32> MLocTransfer; 3235 SmallVector<VLocTracker, 8> vlocs; 3236 LiveInsT SavedLiveIns; 3237 3238 int MaxNumBlocks = -1; 3239 for (auto &MBB : MF) 3240 MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks); 3241 assert(MaxNumBlocks >= 0); 3242 ++MaxNumBlocks; 3243 3244 MLocTransfer.resize(MaxNumBlocks); 3245 vlocs.resize(MaxNumBlocks); 3246 SavedLiveIns.resize(MaxNumBlocks); 3247 3248 initialSetup(MF); 3249 3250 produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks); 3251 3252 // Allocate and initialize two array-of-arrays for the live-in and live-out 3253 // machine values. The outer dimension is the block number; while the inner 3254 // dimension is a LocIdx from MLocTracker. 3255 ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks]; 3256 ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks]; 3257 unsigned NumLocs = MTracker->getNumLocs(); 3258 for (int i = 0; i < MaxNumBlocks; ++i) { 3259 MOutLocs[i] = new ValueIDNum[NumLocs]; 3260 MInLocs[i] = new ValueIDNum[NumLocs]; 3261 } 3262 3263 // Solve the machine value dataflow problem using the MLocTransfer function, 3264 // storing the computed live-ins / live-outs into the array-of-arrays. We use 3265 // both live-ins and live-outs for decision making in the variable value 3266 // dataflow problem. 3267 mlocDataflow(MInLocs, MOutLocs, MLocTransfer); 3268 3269 // Walk back through each block / instruction, collecting DBG_VALUE 3270 // instructions and recording what machine value their operands refer to. 3271 for (auto &OrderPair : OrderToBB) { 3272 MachineBasicBlock &MBB = *OrderPair.second; 3273 CurBB = MBB.getNumber(); 3274 VTracker = &vlocs[CurBB]; 3275 VTracker->MBB = &MBB; 3276 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 3277 CurInst = 1; 3278 for (auto &MI : MBB) { 3279 process(MI); 3280 ++CurInst; 3281 } 3282 MTracker->reset(); 3283 } 3284 3285 // Number all variables in the order that they appear, to be used as a stable 3286 // insertion order later. 3287 DenseMap<DebugVariable, unsigned> AllVarsNumbering; 3288 3289 // Map from one LexicalScope to all the variables in that scope. 3290 DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars; 3291 3292 // Map from One lexical scope to all blocks in that scope. 3293 DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>> 3294 ScopeToBlocks; 3295 3296 // Store a DILocation that describes a scope. 3297 DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation; 3298 3299 // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise 3300 // the order is unimportant, it just has to be stable. 3301 for (unsigned int I = 0; I < OrderToBB.size(); ++I) { 3302 auto *MBB = OrderToBB[I]; 3303 auto *VTracker = &vlocs[MBB->getNumber()]; 3304 // Collect each variable with a DBG_VALUE in this block. 3305 for (auto &idx : VTracker->Vars) { 3306 const auto &Var = idx.first; 3307 const DILocation *ScopeLoc = VTracker->Scopes[Var]; 3308 assert(ScopeLoc != nullptr); 3309 auto *Scope = LS.findLexicalScope(ScopeLoc); 3310 3311 // No insts in scope -> shouldn't have been recorded. 3312 assert(Scope != nullptr); 3313 3314 AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size())); 3315 ScopeToVars[Scope].insert(Var); 3316 ScopeToBlocks[Scope].insert(VTracker->MBB); 3317 ScopeToDILocation[Scope] = ScopeLoc; 3318 } 3319 } 3320 3321 // OK. Iterate over scopes: there might be something to be said for 3322 // ordering them by size/locality, but that's for the future. For each scope, 3323 // solve the variable value problem, producing a map of variables to values 3324 // in SavedLiveIns. 3325 for (auto &P : ScopeToVars) { 3326 vlocDataflow(P.first, ScopeToDILocation[P.first], P.second, 3327 ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs, 3328 vlocs); 3329 } 3330 3331 // Using the computed value locations and variable values for each block, 3332 // create the DBG_VALUE instructions representing the extended variable 3333 // locations. 3334 emitLocations(MF, SavedLiveIns, MInLocs, AllVarsNumbering); 3335 3336 for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) { 3337 delete[] MOutLocs[Idx]; 3338 delete[] MInLocs[Idx]; 3339 } 3340 delete[] MOutLocs; 3341 delete[] MInLocs; 3342 3343 // Did we actually make any changes? If we created any DBG_VALUEs, then yes. 3344 bool Changed = TTracker->Transfers.size() != 0; 3345 3346 delete MTracker; 3347 delete TTracker; 3348 MTracker = nullptr; 3349 VTracker = nullptr; 3350 TTracker = nullptr; 3351 3352 ArtificialBlocks.clear(); 3353 OrderToBB.clear(); 3354 BBToOrder.clear(); 3355 BBNumToRPO.clear(); 3356 DebugInstrNumToInstr.clear(); 3357 3358 return Changed; 3359 } 3360 3361 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() { 3362 return new InstrRefBasedLDV(); 3363 } 3364