xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file InstrRefBasedImpl.cpp
9 ///
10 /// This is a separate implementation of LiveDebugValues, see
11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
12 ///
13 /// This pass propagates variable locations between basic blocks, resolving
14 /// control flow conflicts between them. The problem is SSA construction, where
15 /// each debug instruction assigns the *value* that a variable has, and every
16 /// instruction where the variable is in scope uses that variable. The resulting
17 /// map of instruction-to-value is then translated into a register (or spill)
18 /// location for each variable over each instruction.
19 ///
20 /// The primary difference from normal SSA construction is that we cannot
21 /// _create_ PHI values that contain variable values. CodeGen has already
22 /// completed, and we can't alter it just to make debug-info complete. Thus:
23 /// we can identify function positions where we would like a PHI value for a
24 /// variable, but must search the MachineFunction to see whether such a PHI is
25 /// available. If no such PHI exists, the variable location must be dropped.
26 ///
27 /// To achieve this, we perform two kinds of analysis. First, we identify
28 /// every value defined by every instruction (ignoring those that only move
29 /// another value), then re-compute an SSA-form representation of the
30 /// MachineFunction, using value propagation to eliminate any un-necessary
31 /// PHI values. This gives us a map of every value computed in the function,
32 /// and its location within the register file / stack.
33 ///
34 /// Secondly, for each variable we perform the same analysis, where each debug
35 /// instruction is considered a def, and every instruction where the variable
36 /// is in lexical scope as a use. Value propagation is used again to eliminate
37 /// any un-necessary PHIs. This gives us a map of each variable to the value
38 /// it should have in a block.
39 ///
40 /// Once both are complete, we have two maps for each block:
41 ///  * Variables to the values they should have,
42 ///  * Values to the register / spill slot they are located in.
43 /// After which we can marry-up variable values with a location, and emit
44 /// DBG_VALUE instructions specifying those locations. Variable locations may
45 /// be dropped in this process due to the desired variable value not being
46 /// resident in any machine location, or because there is no PHI value in any
47 /// location that accurately represents the desired value.  The building of
48 /// location lists for each block is left to DbgEntityHistoryCalculator.
49 ///
50 /// This pass is kept efficient because the size of the first SSA problem
51 /// is proportional to the working-set size of the function, which the compiler
52 /// tries to keep small. (It's also proportional to the number of blocks).
53 /// Additionally, we repeatedly perform the second SSA problem analysis with
54 /// only the variables and blocks in a single lexical scope, exploiting their
55 /// locality.
56 ///
57 /// ### Terminology
58 ///
59 /// A machine location is a register or spill slot, a value is something that's
60 /// defined by an instruction or PHI node, while a variable value is the value
61 /// assigned to a variable. A variable location is a machine location, that must
62 /// contain the appropriate variable value. A value that is a PHI node is
63 /// occasionally called an mphi.
64 ///
65 /// The first SSA problem is the "machine value location" problem,
66 /// because we're determining which machine locations contain which values.
67 /// The "locations" are constant: what's unknown is what value they contain.
68 ///
69 /// The second SSA problem (the one for variables) is the "variable value
70 /// problem", because it's determining what values a variable has, rather than
71 /// what location those values are placed in.
72 ///
73 /// TODO:
74 ///   Overlapping fragments
75 ///   Entry values
76 ///   Add back DEBUG statements for debugging this
77 ///   Collect statistics
78 ///
79 //===----------------------------------------------------------------------===//
80 
81 #include "llvm/ADT/DenseMap.h"
82 #include "llvm/ADT/PostOrderIterator.h"
83 #include "llvm/ADT/STLExtras.h"
84 #include "llvm/ADT/SmallPtrSet.h"
85 #include "llvm/ADT/SmallSet.h"
86 #include "llvm/ADT/SmallVector.h"
87 #include "llvm/BinaryFormat/Dwarf.h"
88 #include "llvm/CodeGen/LexicalScopes.h"
89 #include "llvm/CodeGen/MachineBasicBlock.h"
90 #include "llvm/CodeGen/MachineDominators.h"
91 #include "llvm/CodeGen/MachineFrameInfo.h"
92 #include "llvm/CodeGen/MachineFunction.h"
93 #include "llvm/CodeGen/MachineInstr.h"
94 #include "llvm/CodeGen/MachineInstrBuilder.h"
95 #include "llvm/CodeGen/MachineInstrBundle.h"
96 #include "llvm/CodeGen/MachineMemOperand.h"
97 #include "llvm/CodeGen/MachineOperand.h"
98 #include "llvm/CodeGen/PseudoSourceValue.h"
99 #include "llvm/CodeGen/TargetFrameLowering.h"
100 #include "llvm/CodeGen/TargetInstrInfo.h"
101 #include "llvm/CodeGen/TargetLowering.h"
102 #include "llvm/CodeGen/TargetPassConfig.h"
103 #include "llvm/CodeGen/TargetRegisterInfo.h"
104 #include "llvm/CodeGen/TargetSubtargetInfo.h"
105 #include "llvm/Config/llvm-config.h"
106 #include "llvm/IR/DebugInfoMetadata.h"
107 #include "llvm/IR/DebugLoc.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/MC/MCRegisterInfo.h"
110 #include "llvm/Support/Casting.h"
111 #include "llvm/Support/Compiler.h"
112 #include "llvm/Support/Debug.h"
113 #include "llvm/Support/GenericIteratedDominanceFrontier.h"
114 #include "llvm/Support/TypeSize.h"
115 #include "llvm/Support/raw_ostream.h"
116 #include "llvm/Target/TargetMachine.h"
117 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
118 #include <algorithm>
119 #include <cassert>
120 #include <climits>
121 #include <cstdint>
122 #include <functional>
123 #include <queue>
124 #include <tuple>
125 #include <utility>
126 #include <vector>
127 
128 #include "InstrRefBasedImpl.h"
129 #include "LiveDebugValues.h"
130 #include <optional>
131 
132 using namespace llvm;
133 using namespace LiveDebugValues;
134 
135 // SSAUpdaterImple sets DEBUG_TYPE, change it.
136 #undef DEBUG_TYPE
137 #define DEBUG_TYPE "livedebugvalues"
138 
139 // Act more like the VarLoc implementation, by propagating some locations too
140 // far and ignoring some transfers.
141 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
142                                    cl::desc("Act like old LiveDebugValues did"),
143                                    cl::init(false));
144 
145 // Limit for the maximum number of stack slots we should track, past which we
146 // will ignore any spills. InstrRefBasedLDV gathers detailed information on all
147 // stack slots which leads to high memory consumption, and in some scenarios
148 // (such as asan with very many locals) the working set of the function can be
149 // very large, causing many spills. In these scenarios, it is very unlikely that
150 // the developer has hundreds of variables live at the same time that they're
151 // carefully thinking about -- instead, they probably autogenerated the code.
152 // When this happens, gracefully stop tracking excess spill slots, rather than
153 // consuming all the developer's memory.
154 static cl::opt<unsigned>
155     StackWorkingSetLimit("livedebugvalues-max-stack-slots", cl::Hidden,
156                          cl::desc("livedebugvalues-stack-ws-limit"),
157                          cl::init(250));
158 
159 DbgOpID DbgOpID::UndefID = DbgOpID(0xffffffff);
160 
161 /// Tracker for converting machine value locations and variable values into
162 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
163 /// specifying block live-in locations and transfers within blocks.
164 ///
165 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
166 /// and must be initialized with the set of variable values that are live-in to
167 /// the block. The caller then repeatedly calls process(). TransferTracker picks
168 /// out variable locations for the live-in variable values (if there _is_ a
169 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is
170 /// stepped through, transfers of values between machine locations are
171 /// identified and if profitable, a DBG_VALUE created.
172 ///
173 /// This is where debug use-before-defs would be resolved: a variable with an
174 /// unavailable value could materialize in the middle of a block, when the
175 /// value becomes available. Or, we could detect clobbers and re-specify the
176 /// variable in a backup location. (XXX these are unimplemented).
177 class TransferTracker {
178 public:
179   const TargetInstrInfo *TII;
180   const TargetLowering *TLI;
181   /// This machine location tracker is assumed to always contain the up-to-date
182   /// value mapping for all machine locations. TransferTracker only reads
183   /// information from it. (XXX make it const?)
184   MLocTracker *MTracker;
185   MachineFunction &MF;
186   bool ShouldEmitDebugEntryValues;
187 
188   /// Record of all changes in variable locations at a block position. Awkwardly
189   /// we allow inserting either before or after the point: MBB != nullptr
190   /// indicates it's before, otherwise after.
191   struct Transfer {
192     MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
193     MachineBasicBlock *MBB; /// non-null if we should insert after.
194     SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
195   };
196 
197   /// Stores the resolved operands (machine locations and constants) and
198   /// qualifying meta-information needed to construct a concrete DBG_VALUE-like
199   /// instruction.
200   struct ResolvedDbgValue {
201     SmallVector<ResolvedDbgOp> Ops;
202     DbgValueProperties Properties;
203 
204     ResolvedDbgValue(SmallVectorImpl<ResolvedDbgOp> &Ops,
205                      DbgValueProperties Properties)
206         : Ops(Ops.begin(), Ops.end()), Properties(Properties) {}
207 
208     /// Returns all the LocIdx values used in this struct, in the order in which
209     /// they appear as operands in the debug value; may contain duplicates.
210     auto loc_indices() const {
211       return map_range(
212           make_filter_range(
213               Ops, [](const ResolvedDbgOp &Op) { return !Op.IsConst; }),
214           [](const ResolvedDbgOp &Op) { return Op.Loc; });
215     }
216   };
217 
218   /// Collection of transfers (DBG_VALUEs) to be inserted.
219   SmallVector<Transfer, 32> Transfers;
220 
221   /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
222   /// between TransferTrackers view of variable locations and MLocTrackers. For
223   /// example, MLocTracker observes all clobbers, but TransferTracker lazily
224   /// does not.
225   SmallVector<ValueIDNum, 32> VarLocs;
226 
227   /// Map from LocIdxes to which DebugVariables are based that location.
228   /// Mantained while stepping through the block. Not accurate if
229   /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
230   DenseMap<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
231 
232   /// Map from DebugVariable to it's current location and qualifying meta
233   /// information. To be used in conjunction with ActiveMLocs to construct
234   /// enough information for the DBG_VALUEs for a particular LocIdx.
235   DenseMap<DebugVariable, ResolvedDbgValue> ActiveVLocs;
236 
237   /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
238   SmallVector<MachineInstr *, 4> PendingDbgValues;
239 
240   /// Record of a use-before-def: created when a value that's live-in to the
241   /// current block isn't available in any machine location, but it will be
242   /// defined in this block.
243   struct UseBeforeDef {
244     /// Value of this variable, def'd in block.
245     SmallVector<DbgOp> Values;
246     /// Identity of this variable.
247     DebugVariable Var;
248     /// Additional variable properties.
249     DbgValueProperties Properties;
250     UseBeforeDef(ArrayRef<DbgOp> Values, const DebugVariable &Var,
251                  const DbgValueProperties &Properties)
252         : Values(Values.begin(), Values.end()), Var(Var),
253           Properties(Properties) {}
254   };
255 
256   /// Map from instruction index (within the block) to the set of UseBeforeDefs
257   /// that become defined at that instruction.
258   DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
259 
260   /// The set of variables that are in UseBeforeDefs and can become a location
261   /// once the relevant value is defined. An element being erased from this
262   /// collection prevents the use-before-def materializing.
263   DenseSet<DebugVariable> UseBeforeDefVariables;
264 
265   const TargetRegisterInfo &TRI;
266   const BitVector &CalleeSavedRegs;
267 
268   TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
269                   MachineFunction &MF, const TargetRegisterInfo &TRI,
270                   const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
271       : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
272         CalleeSavedRegs(CalleeSavedRegs) {
273     TLI = MF.getSubtarget().getTargetLowering();
274     auto &TM = TPC.getTM<TargetMachine>();
275     ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
276   }
277 
278   bool isCalleeSaved(LocIdx L) const {
279     unsigned Reg = MTracker->LocIdxToLocID[L];
280     if (Reg >= MTracker->NumRegs)
281       return false;
282     for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
283       if (CalleeSavedRegs.test(*RAI))
284         return true;
285     return false;
286   };
287 
288   // An estimate of the expected lifespan of values at a machine location, with
289   // a greater value corresponding to a longer expected lifespan, i.e. spill
290   // slots generally live longer than callee-saved registers which generally
291   // live longer than non-callee-saved registers. The minimum value of 0
292   // corresponds to an illegal location that cannot have a "lifespan" at all.
293   enum class LocationQuality : unsigned char {
294     Illegal = 0,
295     Register,
296     CalleeSavedRegister,
297     SpillSlot,
298     Best = SpillSlot
299   };
300 
301   class LocationAndQuality {
302     unsigned Location : 24;
303     unsigned Quality : 8;
304 
305   public:
306     LocationAndQuality() : Location(0), Quality(0) {}
307     LocationAndQuality(LocIdx L, LocationQuality Q)
308         : Location(L.asU64()), Quality(static_cast<unsigned>(Q)) {}
309     LocIdx getLoc() const {
310       if (!Quality)
311         return LocIdx::MakeIllegalLoc();
312       return LocIdx(Location);
313     }
314     LocationQuality getQuality() const { return LocationQuality(Quality); }
315     bool isIllegal() const { return !Quality; }
316     bool isBest() const { return getQuality() == LocationQuality::Best; }
317   };
318 
319   // Returns the LocationQuality for the location L iff the quality of L is
320   // is strictly greater than the provided minimum quality.
321   std::optional<LocationQuality>
322   getLocQualityIfBetter(LocIdx L, LocationQuality Min) const {
323     if (L.isIllegal())
324       return std::nullopt;
325     if (Min >= LocationQuality::SpillSlot)
326       return std::nullopt;
327     if (MTracker->isSpill(L))
328       return LocationQuality::SpillSlot;
329     if (Min >= LocationQuality::CalleeSavedRegister)
330       return std::nullopt;
331     if (isCalleeSaved(L))
332       return LocationQuality::CalleeSavedRegister;
333     if (Min >= LocationQuality::Register)
334       return std::nullopt;
335     return LocationQuality::Register;
336   }
337 
338   /// For a variable \p Var with the live-in value \p Value, attempts to resolve
339   /// the DbgValue to a concrete DBG_VALUE, emitting that value and loading the
340   /// tracking information to track Var throughout the block.
341   /// \p ValueToLoc is a map containing the best known location for every
342   ///    ValueIDNum that Value may use.
343   /// \p MBB is the basic block that we are loading the live-in value for.
344   /// \p DbgOpStore is the map containing the DbgOpID->DbgOp mapping needed to
345   ///    determine the values used by Value.
346   void loadVarInloc(MachineBasicBlock &MBB, DbgOpIDMap &DbgOpStore,
347                     const DenseMap<ValueIDNum, LocationAndQuality> &ValueToLoc,
348                     DebugVariable Var, DbgValue Value) {
349     SmallVector<DbgOp> DbgOps;
350     SmallVector<ResolvedDbgOp> ResolvedDbgOps;
351     bool IsValueValid = true;
352     unsigned LastUseBeforeDef = 0;
353 
354     // If every value used by the incoming DbgValue is available at block
355     // entry, ResolvedDbgOps will contain the machine locations/constants for
356     // those values and will be used to emit a debug location.
357     // If one or more values are not yet available, but will all be defined in
358     // this block, then LastUseBeforeDef will track the instruction index in
359     // this BB at which the last of those values is defined, DbgOps will
360     // contain the values that we will emit when we reach that instruction.
361     // If one or more values are undef or not available throughout this block,
362     // and we can't recover as an entry value, we set IsValueValid=false and
363     // skip this variable.
364     for (DbgOpID ID : Value.getDbgOpIDs()) {
365       DbgOp Op = DbgOpStore.find(ID);
366       DbgOps.push_back(Op);
367       if (ID.isUndef()) {
368         IsValueValid = false;
369         break;
370       }
371       if (ID.isConst()) {
372         ResolvedDbgOps.push_back(Op.MO);
373         continue;
374       }
375 
376       // If the value has no location, we can't make a variable location.
377       const ValueIDNum &Num = Op.ID;
378       auto ValuesPreferredLoc = ValueToLoc.find(Num);
379       if (ValuesPreferredLoc->second.isIllegal()) {
380         // If it's a def that occurs in this block, register it as a
381         // use-before-def to be resolved as we step through the block.
382         // Continue processing values so that we add any other UseBeforeDef
383         // entries needed for later.
384         if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI()) {
385           LastUseBeforeDef = std::max(LastUseBeforeDef,
386                                       static_cast<unsigned>(Num.getInst()));
387           continue;
388         }
389         recoverAsEntryValue(Var, Value.Properties, Num);
390         IsValueValid = false;
391         break;
392       }
393 
394       // Defer modifying ActiveVLocs until after we've confirmed we have a
395       // live range.
396       LocIdx M = ValuesPreferredLoc->second.getLoc();
397       ResolvedDbgOps.push_back(M);
398     }
399 
400     // If we cannot produce a valid value for the LiveIn value within this
401     // block, skip this variable.
402     if (!IsValueValid)
403       return;
404 
405     // Add UseBeforeDef entry for the last value to be defined in this block.
406     if (LastUseBeforeDef) {
407       addUseBeforeDef(Var, Value.Properties, DbgOps,
408                       LastUseBeforeDef);
409       return;
410     }
411 
412     // The LiveIn value is available at block entry, begin tracking and record
413     // the transfer.
414     for (const ResolvedDbgOp &Op : ResolvedDbgOps)
415       if (!Op.IsConst)
416         ActiveMLocs[Op.Loc].insert(Var);
417     auto NewValue = ResolvedDbgValue{ResolvedDbgOps, Value.Properties};
418     auto Result = ActiveVLocs.insert(std::make_pair(Var, NewValue));
419     if (!Result.second)
420       Result.first->second = NewValue;
421     PendingDbgValues.push_back(
422         MTracker->emitLoc(ResolvedDbgOps, Var, Value.Properties));
423   }
424 
425   /// Load object with live-in variable values. \p mlocs contains the live-in
426   /// values in each machine location, while \p vlocs the live-in variable
427   /// values. This method picks variable locations for the live-in variables,
428   /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
429   /// object fields to track variable locations as we step through the block.
430   /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
431   void
432   loadInlocs(MachineBasicBlock &MBB, ValueTable &MLocs, DbgOpIDMap &DbgOpStore,
433              const SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
434              unsigned NumLocs) {
435     ActiveMLocs.clear();
436     ActiveVLocs.clear();
437     VarLocs.clear();
438     VarLocs.reserve(NumLocs);
439     UseBeforeDefs.clear();
440     UseBeforeDefVariables.clear();
441 
442     // Map of the preferred location for each value.
443     DenseMap<ValueIDNum, LocationAndQuality> ValueToLoc;
444 
445     // Initialized the preferred-location map with illegal locations, to be
446     // filled in later.
447     for (const auto &VLoc : VLocs)
448       if (VLoc.second.Kind == DbgValue::Def)
449         for (DbgOpID OpID : VLoc.second.getDbgOpIDs())
450           if (!OpID.ID.IsConst)
451             ValueToLoc.insert({DbgOpStore.find(OpID).ID, LocationAndQuality()});
452 
453     ActiveMLocs.reserve(VLocs.size());
454     ActiveVLocs.reserve(VLocs.size());
455 
456     // Produce a map of value numbers to the current machine locs they live
457     // in. When emulating VarLocBasedImpl, there should only be one
458     // location; when not, we get to pick.
459     for (auto Location : MTracker->locations()) {
460       LocIdx Idx = Location.Idx;
461       ValueIDNum &VNum = MLocs[Idx.asU64()];
462       if (VNum == ValueIDNum::EmptyValue)
463         continue;
464       VarLocs.push_back(VNum);
465 
466       // Is there a variable that wants a location for this value? If not, skip.
467       auto VIt = ValueToLoc.find(VNum);
468       if (VIt == ValueToLoc.end())
469         continue;
470 
471       auto &Previous = VIt->second;
472       // If this is the first location with that value, pick it. Otherwise,
473       // consider whether it's a "longer term" location.
474       std::optional<LocationQuality> ReplacementQuality =
475           getLocQualityIfBetter(Idx, Previous.getQuality());
476       if (ReplacementQuality)
477         Previous = LocationAndQuality(Idx, *ReplacementQuality);
478     }
479 
480     // Now map variables to their picked LocIdxes.
481     for (const auto &Var : VLocs) {
482       loadVarInloc(MBB, DbgOpStore, ValueToLoc, Var.first, Var.second);
483     }
484     flushDbgValues(MBB.begin(), &MBB);
485   }
486 
487   /// Record that \p Var has value \p ID, a value that becomes available
488   /// later in the function.
489   void addUseBeforeDef(const DebugVariable &Var,
490                        const DbgValueProperties &Properties,
491                        const SmallVectorImpl<DbgOp> &DbgOps, unsigned Inst) {
492     UseBeforeDefs[Inst].emplace_back(DbgOps, Var, Properties);
493     UseBeforeDefVariables.insert(Var);
494   }
495 
496   /// After the instruction at index \p Inst and position \p pos has been
497   /// processed, check whether it defines a variable value in a use-before-def.
498   /// If so, and the variable value hasn't changed since the start of the
499   /// block, create a DBG_VALUE.
500   void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
501     auto MIt = UseBeforeDefs.find(Inst);
502     if (MIt == UseBeforeDefs.end())
503       return;
504 
505     // Map of values to the locations that store them for every value used by
506     // the variables that may have become available.
507     SmallDenseMap<ValueIDNum, LocationAndQuality> ValueToLoc;
508 
509     // Populate ValueToLoc with illegal default mappings for every value used by
510     // any UseBeforeDef variables for this instruction.
511     for (auto &Use : MIt->second) {
512       if (!UseBeforeDefVariables.count(Use.Var))
513         continue;
514 
515       for (DbgOp &Op : Use.Values) {
516         assert(!Op.isUndef() && "UseBeforeDef erroneously created for a "
517                                 "DbgValue with undef values.");
518         if (Op.IsConst)
519           continue;
520 
521         ValueToLoc.insert({Op.ID, LocationAndQuality()});
522       }
523     }
524 
525     // Exit early if we have no DbgValues to produce.
526     if (ValueToLoc.empty())
527       return;
528 
529     // Determine the best location for each desired value.
530     for (auto Location : MTracker->locations()) {
531       LocIdx Idx = Location.Idx;
532       ValueIDNum &LocValueID = Location.Value;
533 
534       // Is there a variable that wants a location for this value? If not, skip.
535       auto VIt = ValueToLoc.find(LocValueID);
536       if (VIt == ValueToLoc.end())
537         continue;
538 
539       auto &Previous = VIt->second;
540       // If this is the first location with that value, pick it. Otherwise,
541       // consider whether it's a "longer term" location.
542       std::optional<LocationQuality> ReplacementQuality =
543           getLocQualityIfBetter(Idx, Previous.getQuality());
544       if (ReplacementQuality)
545         Previous = LocationAndQuality(Idx, *ReplacementQuality);
546     }
547 
548     // Using the map of values to locations, produce a final set of values for
549     // this variable.
550     for (auto &Use : MIt->second) {
551       if (!UseBeforeDefVariables.count(Use.Var))
552         continue;
553 
554       SmallVector<ResolvedDbgOp> DbgOps;
555 
556       for (DbgOp &Op : Use.Values) {
557         if (Op.IsConst) {
558           DbgOps.push_back(Op.MO);
559           continue;
560         }
561         LocIdx NewLoc = ValueToLoc.find(Op.ID)->second.getLoc();
562         if (NewLoc.isIllegal())
563           break;
564         DbgOps.push_back(NewLoc);
565       }
566 
567       // If at least one value used by this debug value is no longer available,
568       // i.e. one of the values was killed before we finished defining all of
569       // the values used by this variable, discard.
570       if (DbgOps.size() != Use.Values.size())
571         continue;
572 
573       // Otherwise, we're good to go.
574       PendingDbgValues.push_back(
575           MTracker->emitLoc(DbgOps, Use.Var, Use.Properties));
576     }
577     flushDbgValues(pos, nullptr);
578   }
579 
580   /// Helper to move created DBG_VALUEs into Transfers collection.
581   void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
582     if (PendingDbgValues.size() == 0)
583       return;
584 
585     // Pick out the instruction start position.
586     MachineBasicBlock::instr_iterator BundleStart;
587     if (MBB && Pos == MBB->begin())
588       BundleStart = MBB->instr_begin();
589     else
590       BundleStart = getBundleStart(Pos->getIterator());
591 
592     Transfers.push_back({BundleStart, MBB, PendingDbgValues});
593     PendingDbgValues.clear();
594   }
595 
596   bool isEntryValueVariable(const DebugVariable &Var,
597                             const DIExpression *Expr) const {
598     if (!Var.getVariable()->isParameter())
599       return false;
600 
601     if (Var.getInlinedAt())
602       return false;
603 
604     if (Expr->getNumElements() > 0 && !Expr->isDeref())
605       return false;
606 
607     return true;
608   }
609 
610   bool isEntryValueValue(const ValueIDNum &Val) const {
611     // Must be in entry block (block number zero), and be a PHI / live-in value.
612     if (Val.getBlock() || !Val.isPHI())
613       return false;
614 
615     // Entry values must enter in a register.
616     if (MTracker->isSpill(Val.getLoc()))
617       return false;
618 
619     Register SP = TLI->getStackPointerRegisterToSaveRestore();
620     Register FP = TRI.getFrameRegister(MF);
621     Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
622     return Reg != SP && Reg != FP;
623   }
624 
625   bool recoverAsEntryValue(const DebugVariable &Var,
626                            const DbgValueProperties &Prop,
627                            const ValueIDNum &Num) {
628     // Is this variable location a candidate to be an entry value. First,
629     // should we be trying this at all?
630     if (!ShouldEmitDebugEntryValues)
631       return false;
632 
633     const DIExpression *DIExpr = Prop.DIExpr;
634 
635     // We don't currently emit entry values for DBG_VALUE_LISTs.
636     if (Prop.IsVariadic) {
637       // If this debug value can be converted to be non-variadic, then do so;
638       // otherwise give up.
639       auto NonVariadicExpression =
640           DIExpression::convertToNonVariadicExpression(DIExpr);
641       if (!NonVariadicExpression)
642         return false;
643       DIExpr = *NonVariadicExpression;
644     }
645 
646     // Is the variable appropriate for entry values (i.e., is a parameter).
647     if (!isEntryValueVariable(Var, DIExpr))
648       return false;
649 
650     // Is the value assigned to this variable still the entry value?
651     if (!isEntryValueValue(Num))
652       return false;
653 
654     // Emit a variable location using an entry value expression.
655     DIExpression *NewExpr =
656         DIExpression::prepend(DIExpr, DIExpression::EntryValue);
657     Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
658     MachineOperand MO = MachineOperand::CreateReg(Reg, false);
659 
660     PendingDbgValues.push_back(
661         emitMOLoc(MO, Var, {NewExpr, Prop.Indirect, false}));
662     return true;
663   }
664 
665   /// Change a variable value after encountering a DBG_VALUE inside a block.
666   void redefVar(const MachineInstr &MI) {
667     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
668                       MI.getDebugLoc()->getInlinedAt());
669     DbgValueProperties Properties(MI);
670 
671     // Ignore non-register locations, we don't transfer those.
672     if (MI.isUndefDebugValue() ||
673         all_of(MI.debug_operands(),
674                [](const MachineOperand &MO) { return !MO.isReg(); })) {
675       auto It = ActiveVLocs.find(Var);
676       if (It != ActiveVLocs.end()) {
677         for (LocIdx Loc : It->second.loc_indices())
678           ActiveMLocs[Loc].erase(Var);
679         ActiveVLocs.erase(It);
680       }
681       // Any use-before-defs no longer apply.
682       UseBeforeDefVariables.erase(Var);
683       return;
684     }
685 
686     SmallVector<ResolvedDbgOp> NewLocs;
687     for (const MachineOperand &MO : MI.debug_operands()) {
688       if (MO.isReg()) {
689         // Any undef regs have already been filtered out above.
690         Register Reg = MO.getReg();
691         LocIdx NewLoc = MTracker->getRegMLoc(Reg);
692         NewLocs.push_back(NewLoc);
693       } else {
694         NewLocs.push_back(MO);
695       }
696     }
697 
698     redefVar(MI, Properties, NewLocs);
699   }
700 
701   /// Handle a change in variable location within a block. Terminate the
702   /// variables current location, and record the value it now refers to, so
703   /// that we can detect location transfers later on.
704   void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
705                 SmallVectorImpl<ResolvedDbgOp> &NewLocs) {
706     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
707                       MI.getDebugLoc()->getInlinedAt());
708     // Any use-before-defs no longer apply.
709     UseBeforeDefVariables.erase(Var);
710 
711     // Erase any previous location.
712     auto It = ActiveVLocs.find(Var);
713     if (It != ActiveVLocs.end()) {
714       for (LocIdx Loc : It->second.loc_indices())
715         ActiveMLocs[Loc].erase(Var);
716     }
717 
718     // If there _is_ no new location, all we had to do was erase.
719     if (NewLocs.empty()) {
720       if (It != ActiveVLocs.end())
721         ActiveVLocs.erase(It);
722       return;
723     }
724 
725     SmallVector<std::pair<LocIdx, DebugVariable>> LostMLocs;
726     for (ResolvedDbgOp &Op : NewLocs) {
727       if (Op.IsConst)
728         continue;
729 
730       LocIdx NewLoc = Op.Loc;
731 
732       // Check whether our local copy of values-by-location in #VarLocs is out
733       // of date. Wipe old tracking data for the location if it's been clobbered
734       // in the meantime.
735       if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) {
736         for (const auto &P : ActiveMLocs[NewLoc]) {
737           auto LostVLocIt = ActiveVLocs.find(P);
738           if (LostVLocIt != ActiveVLocs.end()) {
739             for (LocIdx Loc : LostVLocIt->second.loc_indices()) {
740               // Every active variable mapping for NewLoc will be cleared, no
741               // need to track individual variables.
742               if (Loc == NewLoc)
743                 continue;
744               LostMLocs.emplace_back(Loc, P);
745             }
746           }
747           ActiveVLocs.erase(P);
748         }
749         for (const auto &LostMLoc : LostMLocs)
750           ActiveMLocs[LostMLoc.first].erase(LostMLoc.second);
751         LostMLocs.clear();
752         It = ActiveVLocs.find(Var);
753         ActiveMLocs[NewLoc.asU64()].clear();
754         VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc);
755       }
756 
757       ActiveMLocs[NewLoc].insert(Var);
758     }
759 
760     if (It == ActiveVLocs.end()) {
761       ActiveVLocs.insert(
762           std::make_pair(Var, ResolvedDbgValue(NewLocs, Properties)));
763     } else {
764       It->second.Ops.assign(NewLocs);
765       It->second.Properties = Properties;
766     }
767   }
768 
769   /// Account for a location \p mloc being clobbered. Examine the variable
770   /// locations that will be terminated: and try to recover them by using
771   /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
772   /// explicitly terminate a location if it can't be recovered.
773   void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
774                    bool MakeUndef = true) {
775     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
776     if (ActiveMLocIt == ActiveMLocs.end())
777       return;
778 
779     // What was the old variable value?
780     ValueIDNum OldValue = VarLocs[MLoc.asU64()];
781     clobberMloc(MLoc, OldValue, Pos, MakeUndef);
782   }
783   /// Overload that takes an explicit value \p OldValue for when the value in
784   /// \p MLoc has changed and the TransferTracker's locations have not been
785   /// updated yet.
786   void clobberMloc(LocIdx MLoc, ValueIDNum OldValue,
787                    MachineBasicBlock::iterator Pos, bool MakeUndef = true) {
788     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
789     if (ActiveMLocIt == ActiveMLocs.end())
790       return;
791 
792     VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
793 
794     // Examine the remaining variable locations: if we can find the same value
795     // again, we can recover the location.
796     std::optional<LocIdx> NewLoc;
797     for (auto Loc : MTracker->locations())
798       if (Loc.Value == OldValue)
799         NewLoc = Loc.Idx;
800 
801     // If there is no location, and we weren't asked to make the variable
802     // explicitly undef, then stop here.
803     if (!NewLoc && !MakeUndef) {
804       // Try and recover a few more locations with entry values.
805       for (const auto &Var : ActiveMLocIt->second) {
806         auto &Prop = ActiveVLocs.find(Var)->second.Properties;
807         recoverAsEntryValue(Var, Prop, OldValue);
808       }
809       flushDbgValues(Pos, nullptr);
810       return;
811     }
812 
813     // Examine all the variables based on this location.
814     DenseSet<DebugVariable> NewMLocs;
815     // If no new location has been found, every variable that depends on this
816     // MLoc is dead, so end their existing MLoc->Var mappings as well.
817     SmallVector<std::pair<LocIdx, DebugVariable>> LostMLocs;
818     for (const auto &Var : ActiveMLocIt->second) {
819       auto ActiveVLocIt = ActiveVLocs.find(Var);
820       // Re-state the variable location: if there's no replacement then NewLoc
821       // is std::nullopt and a $noreg DBG_VALUE will be created. Otherwise, a
822       // DBG_VALUE identifying the alternative location will be emitted.
823       const DbgValueProperties &Properties = ActiveVLocIt->second.Properties;
824 
825       // Produce the new list of debug ops - an empty list if no new location
826       // was found, or the existing list with the substitution MLoc -> NewLoc
827       // otherwise.
828       SmallVector<ResolvedDbgOp> DbgOps;
829       if (NewLoc) {
830         ResolvedDbgOp OldOp(MLoc);
831         ResolvedDbgOp NewOp(*NewLoc);
832         // Insert illegal ops to overwrite afterwards.
833         DbgOps.insert(DbgOps.begin(), ActiveVLocIt->second.Ops.size(),
834                       ResolvedDbgOp(LocIdx::MakeIllegalLoc()));
835         replace_copy(ActiveVLocIt->second.Ops, DbgOps.begin(), OldOp, NewOp);
836       }
837 
838       PendingDbgValues.push_back(MTracker->emitLoc(DbgOps, Var, Properties));
839 
840       // Update machine locations <=> variable locations maps. Defer updating
841       // ActiveMLocs to avoid invalidating the ActiveMLocIt iterator.
842       if (!NewLoc) {
843         for (LocIdx Loc : ActiveVLocIt->second.loc_indices()) {
844           if (Loc != MLoc)
845             LostMLocs.emplace_back(Loc, Var);
846         }
847         ActiveVLocs.erase(ActiveVLocIt);
848       } else {
849         ActiveVLocIt->second.Ops = DbgOps;
850         NewMLocs.insert(Var);
851       }
852     }
853 
854     // Remove variables from ActiveMLocs if they no longer use any other MLocs
855     // due to being killed by this clobber.
856     for (auto &LocVarIt : LostMLocs) {
857       auto LostMLocIt = ActiveMLocs.find(LocVarIt.first);
858       assert(LostMLocIt != ActiveMLocs.end() &&
859              "Variable was using this MLoc, but ActiveMLocs[MLoc] has no "
860              "entries?");
861       LostMLocIt->second.erase(LocVarIt.second);
862     }
863 
864     // We lazily track what locations have which values; if we've found a new
865     // location for the clobbered value, remember it.
866     if (NewLoc)
867       VarLocs[NewLoc->asU64()] = OldValue;
868 
869     flushDbgValues(Pos, nullptr);
870 
871     // Commit ActiveMLoc changes.
872     ActiveMLocIt->second.clear();
873     if (!NewMLocs.empty())
874       for (auto &Var : NewMLocs)
875         ActiveMLocs[*NewLoc].insert(Var);
876   }
877 
878   /// Transfer variables based on \p Src to be based on \p Dst. This handles
879   /// both register copies as well as spills and restores. Creates DBG_VALUEs
880   /// describing the movement.
881   void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
882     // Does Src still contain the value num we expect? If not, it's been
883     // clobbered in the meantime, and our variable locations are stale.
884     if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src))
885       return;
886 
887     // assert(ActiveMLocs[Dst].size() == 0);
888     //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
889 
890     // Move set of active variables from one location to another.
891     auto MovingVars = ActiveMLocs[Src];
892     ActiveMLocs[Dst].insert(MovingVars.begin(), MovingVars.end());
893     VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
894 
895     // For each variable based on Src; create a location at Dst.
896     ResolvedDbgOp SrcOp(Src);
897     ResolvedDbgOp DstOp(Dst);
898     for (const auto &Var : MovingVars) {
899       auto ActiveVLocIt = ActiveVLocs.find(Var);
900       assert(ActiveVLocIt != ActiveVLocs.end());
901 
902       // Update all instances of Src in the variable's tracked values to Dst.
903       std::replace(ActiveVLocIt->second.Ops.begin(),
904                    ActiveVLocIt->second.Ops.end(), SrcOp, DstOp);
905 
906       MachineInstr *MI = MTracker->emitLoc(ActiveVLocIt->second.Ops, Var,
907                                            ActiveVLocIt->second.Properties);
908       PendingDbgValues.push_back(MI);
909     }
910     ActiveMLocs[Src].clear();
911     flushDbgValues(Pos, nullptr);
912 
913     // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
914     // about the old location.
915     if (EmulateOldLDV)
916       VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
917   }
918 
919   MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
920                                 const DebugVariable &Var,
921                                 const DbgValueProperties &Properties) {
922     DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
923                                   Var.getVariable()->getScope(),
924                                   const_cast<DILocation *>(Var.getInlinedAt()));
925     auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
926     MIB.add(MO);
927     if (Properties.Indirect)
928       MIB.addImm(0);
929     else
930       MIB.addReg(0);
931     MIB.addMetadata(Var.getVariable());
932     MIB.addMetadata(Properties.DIExpr);
933     return MIB;
934   }
935 };
936 
937 //===----------------------------------------------------------------------===//
938 //            Implementation
939 //===----------------------------------------------------------------------===//
940 
941 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
942 ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1};
943 
944 #ifndef NDEBUG
945 void ResolvedDbgOp::dump(const MLocTracker *MTrack) const {
946   if (IsConst) {
947     dbgs() << MO;
948   } else {
949     dbgs() << MTrack->LocIdxToName(Loc);
950   }
951 }
952 void DbgOp::dump(const MLocTracker *MTrack) const {
953   if (IsConst) {
954     dbgs() << MO;
955   } else if (!isUndef()) {
956     dbgs() << MTrack->IDAsString(ID);
957   }
958 }
959 void DbgOpID::dump(const MLocTracker *MTrack, const DbgOpIDMap *OpStore) const {
960   if (!OpStore) {
961     dbgs() << "ID(" << asU32() << ")";
962   } else {
963     OpStore->find(*this).dump(MTrack);
964   }
965 }
966 void DbgValue::dump(const MLocTracker *MTrack,
967                     const DbgOpIDMap *OpStore) const {
968   if (Kind == NoVal) {
969     dbgs() << "NoVal(" << BlockNo << ")";
970   } else if (Kind == VPHI || Kind == Def) {
971     if (Kind == VPHI)
972       dbgs() << "VPHI(" << BlockNo << ",";
973     else
974       dbgs() << "Def(";
975     for (unsigned Idx = 0; Idx < getDbgOpIDs().size(); ++Idx) {
976       getDbgOpID(Idx).dump(MTrack, OpStore);
977       if (Idx != 0)
978         dbgs() << ",";
979     }
980     dbgs() << ")";
981   }
982   if (Properties.Indirect)
983     dbgs() << " indir";
984   if (Properties.DIExpr)
985     dbgs() << " " << *Properties.DIExpr;
986 }
987 #endif
988 
989 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
990                          const TargetRegisterInfo &TRI,
991                          const TargetLowering &TLI)
992     : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
993       LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) {
994   NumRegs = TRI.getNumRegs();
995   reset();
996   LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
997   assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
998 
999   // Always track SP. This avoids the implicit clobbering caused by regmasks
1000   // from affectings its values. (LiveDebugValues disbelieves calls and
1001   // regmasks that claim to clobber SP).
1002   Register SP = TLI.getStackPointerRegisterToSaveRestore();
1003   if (SP) {
1004     unsigned ID = getLocID(SP);
1005     (void)lookupOrTrackRegister(ID);
1006 
1007     for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI)
1008       SPAliases.insert(*RAI);
1009   }
1010 
1011   // Build some common stack positions -- full registers being spilt to the
1012   // stack.
1013   StackSlotIdxes.insert({{8, 0}, 0});
1014   StackSlotIdxes.insert({{16, 0}, 1});
1015   StackSlotIdxes.insert({{32, 0}, 2});
1016   StackSlotIdxes.insert({{64, 0}, 3});
1017   StackSlotIdxes.insert({{128, 0}, 4});
1018   StackSlotIdxes.insert({{256, 0}, 5});
1019   StackSlotIdxes.insert({{512, 0}, 6});
1020 
1021   // Traverse all the subregister idxes, and ensure there's an index for them.
1022   // Duplicates are no problem: we're interested in their position in the
1023   // stack slot, we don't want to type the slot.
1024   for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) {
1025     unsigned Size = TRI.getSubRegIdxSize(I);
1026     unsigned Offs = TRI.getSubRegIdxOffset(I);
1027     unsigned Idx = StackSlotIdxes.size();
1028 
1029     // Some subregs have -1, -2 and so forth fed into their fields, to mean
1030     // special backend things. Ignore those.
1031     if (Size > 60000 || Offs > 60000)
1032       continue;
1033 
1034     StackSlotIdxes.insert({{Size, Offs}, Idx});
1035   }
1036 
1037   // There may also be strange register class sizes (think x86 fp80s).
1038   for (const TargetRegisterClass *RC : TRI.regclasses()) {
1039     unsigned Size = TRI.getRegSizeInBits(*RC);
1040 
1041     // We might see special reserved values as sizes, and classes for other
1042     // stuff the machine tries to model. If it's more than 512 bits, then it
1043     // is very unlikely to be a register than can be spilt.
1044     if (Size > 512)
1045       continue;
1046 
1047     unsigned Idx = StackSlotIdxes.size();
1048     StackSlotIdxes.insert({{Size, 0}, Idx});
1049   }
1050 
1051   for (auto &Idx : StackSlotIdxes)
1052     StackIdxesToPos[Idx.second] = Idx.first;
1053 
1054   NumSlotIdxes = StackSlotIdxes.size();
1055 }
1056 
1057 LocIdx MLocTracker::trackRegister(unsigned ID) {
1058   assert(ID != 0);
1059   LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
1060   LocIdxToIDNum.grow(NewIdx);
1061   LocIdxToLocID.grow(NewIdx);
1062 
1063   // Default: it's an mphi.
1064   ValueIDNum ValNum = {CurBB, 0, NewIdx};
1065   // Was this reg ever touched by a regmask?
1066   for (const auto &MaskPair : reverse(Masks)) {
1067     if (MaskPair.first->clobbersPhysReg(ID)) {
1068       // There was an earlier def we skipped.
1069       ValNum = {CurBB, MaskPair.second, NewIdx};
1070       break;
1071     }
1072   }
1073 
1074   LocIdxToIDNum[NewIdx] = ValNum;
1075   LocIdxToLocID[NewIdx] = ID;
1076   return NewIdx;
1077 }
1078 
1079 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB,
1080                                unsigned InstID) {
1081   // Def any register we track have that isn't preserved. The regmask
1082   // terminates the liveness of a register, meaning its value can't be
1083   // relied upon -- we represent this by giving it a new value.
1084   for (auto Location : locations()) {
1085     unsigned ID = LocIdxToLocID[Location.Idx];
1086     // Don't clobber SP, even if the mask says it's clobbered.
1087     if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID))
1088       defReg(ID, CurBB, InstID);
1089   }
1090   Masks.push_back(std::make_pair(MO, InstID));
1091 }
1092 
1093 std::optional<SpillLocationNo> MLocTracker::getOrTrackSpillLoc(SpillLoc L) {
1094   SpillLocationNo SpillID(SpillLocs.idFor(L));
1095 
1096   if (SpillID.id() == 0) {
1097     // If there is no location, and we have reached the limit of how many stack
1098     // slots to track, then don't track this one.
1099     if (SpillLocs.size() >= StackWorkingSetLimit)
1100       return std::nullopt;
1101 
1102     // Spill location is untracked: create record for this one, and all
1103     // subregister slots too.
1104     SpillID = SpillLocationNo(SpillLocs.insert(L));
1105     for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) {
1106       unsigned L = getSpillIDWithIdx(SpillID, StackIdx);
1107       LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
1108       LocIdxToIDNum.grow(Idx);
1109       LocIdxToLocID.grow(Idx);
1110       LocIDToLocIdx.push_back(Idx);
1111       LocIdxToLocID[Idx] = L;
1112       // Initialize to PHI value; corresponds to the location's live-in value
1113       // during transfer function construction.
1114       LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx);
1115     }
1116   }
1117   return SpillID;
1118 }
1119 
1120 std::string MLocTracker::LocIdxToName(LocIdx Idx) const {
1121   unsigned ID = LocIdxToLocID[Idx];
1122   if (ID >= NumRegs) {
1123     StackSlotPos Pos = locIDToSpillIdx(ID);
1124     ID -= NumRegs;
1125     unsigned Slot = ID / NumSlotIdxes;
1126     return Twine("slot ")
1127         .concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first)
1128         .concat(Twine(" offs ").concat(Twine(Pos.second))))))
1129         .str();
1130   } else {
1131     return TRI.getRegAsmName(ID).str();
1132   }
1133 }
1134 
1135 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const {
1136   std::string DefName = LocIdxToName(Num.getLoc());
1137   return Num.asString(DefName);
1138 }
1139 
1140 #ifndef NDEBUG
1141 LLVM_DUMP_METHOD void MLocTracker::dump() {
1142   for (auto Location : locations()) {
1143     std::string MLocName = LocIdxToName(Location.Value.getLoc());
1144     std::string DefName = Location.Value.asString(MLocName);
1145     dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
1146   }
1147 }
1148 
1149 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() {
1150   for (auto Location : locations()) {
1151     std::string foo = LocIdxToName(Location.Idx);
1152     dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
1153   }
1154 }
1155 #endif
1156 
1157 MachineInstrBuilder
1158 MLocTracker::emitLoc(const SmallVectorImpl<ResolvedDbgOp> &DbgOps,
1159                      const DebugVariable &Var,
1160                      const DbgValueProperties &Properties) {
1161   DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
1162                                 Var.getVariable()->getScope(),
1163                                 const_cast<DILocation *>(Var.getInlinedAt()));
1164 
1165   const MCInstrDesc &Desc = Properties.IsVariadic
1166                                 ? TII.get(TargetOpcode::DBG_VALUE_LIST)
1167                                 : TII.get(TargetOpcode::DBG_VALUE);
1168 
1169 #ifdef EXPENSIVE_CHECKS
1170   assert(all_of(DbgOps,
1171                 [](const ResolvedDbgOp &Op) {
1172                   return Op.IsConst || !Op.Loc.isIllegal();
1173                 }) &&
1174          "Did not expect illegal ops in DbgOps.");
1175   assert((DbgOps.size() == 0 ||
1176           DbgOps.size() == Properties.getLocationOpCount()) &&
1177          "Expected to have either one DbgOp per MI LocationOp, or none.");
1178 #endif
1179 
1180   auto GetRegOp = [](unsigned Reg) -> MachineOperand {
1181     return MachineOperand::CreateReg(
1182         /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
1183         /* isKill */ false, /* isDead */ false,
1184         /* isUndef */ false, /* isEarlyClobber */ false,
1185         /* SubReg */ 0, /* isDebug */ true);
1186   };
1187 
1188   SmallVector<MachineOperand> MOs;
1189 
1190   auto EmitUndef = [&]() {
1191     MOs.clear();
1192     MOs.assign(Properties.getLocationOpCount(), GetRegOp(0));
1193     return BuildMI(MF, DL, Desc, false, MOs, Var.getVariable(),
1194                    Properties.DIExpr);
1195   };
1196 
1197   // Don't bother passing any real operands to BuildMI if any of them would be
1198   // $noreg.
1199   if (DbgOps.empty())
1200     return EmitUndef();
1201 
1202   bool Indirect = Properties.Indirect;
1203 
1204   const DIExpression *Expr = Properties.DIExpr;
1205 
1206   assert(DbgOps.size() == Properties.getLocationOpCount());
1207 
1208   // If all locations are valid, accumulate them into our list of
1209   // MachineOperands. For any spilled locations, either update the indirectness
1210   // register or apply the appropriate transformations in the DIExpression.
1211   for (size_t Idx = 0; Idx < Properties.getLocationOpCount(); ++Idx) {
1212     const ResolvedDbgOp &Op = DbgOps[Idx];
1213 
1214     if (Op.IsConst) {
1215       MOs.push_back(Op.MO);
1216       continue;
1217     }
1218 
1219     LocIdx MLoc = Op.Loc;
1220     unsigned LocID = LocIdxToLocID[MLoc];
1221     if (LocID >= NumRegs) {
1222       SpillLocationNo SpillID = locIDToSpill(LocID);
1223       StackSlotPos StackIdx = locIDToSpillIdx(LocID);
1224       unsigned short Offset = StackIdx.second;
1225 
1226       // TODO: support variables that are located in spill slots, with non-zero
1227       // offsets from the start of the spill slot. It would require some more
1228       // complex DIExpression calculations. This doesn't seem to be produced by
1229       // LLVM right now, so don't try and support it.
1230       // Accept no-subregister slots and subregisters where the offset is zero.
1231       // The consumer should already have type information to work out how large
1232       // the variable is.
1233       if (Offset == 0) {
1234         const SpillLoc &Spill = SpillLocs[SpillID.id()];
1235         unsigned Base = Spill.SpillBase;
1236 
1237         // There are several ways we can dereference things, and several inputs
1238         // to consider:
1239         // * NRVO variables will appear with IsIndirect set, but should have
1240         //   nothing else in their DIExpressions,
1241         // * Variables with DW_OP_stack_value in their expr already need an
1242         //   explicit dereference of the stack location,
1243         // * Values that don't match the variable size need DW_OP_deref_size,
1244         // * Everything else can just become a simple location expression.
1245 
1246         // We need to use deref_size whenever there's a mismatch between the
1247         // size of value and the size of variable portion being read.
1248         // Additionally, we should use it whenever dealing with stack_value
1249         // fragments, to avoid the consumer having to determine the deref size
1250         // from DW_OP_piece.
1251         bool UseDerefSize = false;
1252         unsigned ValueSizeInBits = getLocSizeInBits(MLoc);
1253         unsigned DerefSizeInBytes = ValueSizeInBits / 8;
1254         if (auto Fragment = Var.getFragment()) {
1255           unsigned VariableSizeInBits = Fragment->SizeInBits;
1256           if (VariableSizeInBits != ValueSizeInBits || Expr->isComplex())
1257             UseDerefSize = true;
1258         } else if (auto Size = Var.getVariable()->getSizeInBits()) {
1259           if (*Size != ValueSizeInBits) {
1260             UseDerefSize = true;
1261           }
1262         }
1263 
1264         SmallVector<uint64_t, 5> OffsetOps;
1265         TRI.getOffsetOpcodes(Spill.SpillOffset, OffsetOps);
1266         bool StackValue = false;
1267 
1268         if (Properties.Indirect) {
1269           // This is something like an NRVO variable, where the pointer has been
1270           // spilt to the stack. It should end up being a memory location, with
1271           // the pointer to the variable loaded off the stack with a deref:
1272           assert(!Expr->isImplicit());
1273           OffsetOps.push_back(dwarf::DW_OP_deref);
1274         } else if (UseDerefSize && Expr->isSingleLocationExpression()) {
1275           // TODO: Figure out how to handle deref size issues for variadic
1276           // values.
1277           // We're loading a value off the stack that's not the same size as the
1278           // variable. Add / subtract stack offset, explicitly deref with a
1279           // size, and add DW_OP_stack_value if not already present.
1280           OffsetOps.push_back(dwarf::DW_OP_deref_size);
1281           OffsetOps.push_back(DerefSizeInBytes);
1282           StackValue = true;
1283         } else if (Expr->isComplex() || Properties.IsVariadic) {
1284           // A variable with no size ambiguity, but with extra elements in it's
1285           // expression. Manually dereference the stack location.
1286           OffsetOps.push_back(dwarf::DW_OP_deref);
1287         } else {
1288           // A plain value that has been spilt to the stack, with no further
1289           // context. Request a location expression, marking the DBG_VALUE as
1290           // IsIndirect.
1291           Indirect = true;
1292         }
1293 
1294         Expr = DIExpression::appendOpsToArg(Expr, OffsetOps, Idx, StackValue);
1295         MOs.push_back(GetRegOp(Base));
1296       } else {
1297         // This is a stack location with a weird subregister offset: emit an
1298         // undef DBG_VALUE instead.
1299         return EmitUndef();
1300       }
1301     } else {
1302       // Non-empty, non-stack slot, must be a plain register.
1303       MOs.push_back(GetRegOp(LocID));
1304     }
1305   }
1306 
1307   return BuildMI(MF, DL, Desc, Indirect, MOs, Var.getVariable(), Expr);
1308 }
1309 
1310 /// Default construct and initialize the pass.
1311 InstrRefBasedLDV::InstrRefBasedLDV() = default;
1312 
1313 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const {
1314   unsigned Reg = MTracker->LocIdxToLocID[L];
1315   return isCalleeSavedReg(Reg);
1316 }
1317 bool InstrRefBasedLDV::isCalleeSavedReg(Register R) const {
1318   for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI)
1319     if (CalleeSavedRegs.test(*RAI))
1320       return true;
1321   return false;
1322 }
1323 
1324 //===----------------------------------------------------------------------===//
1325 //            Debug Range Extension Implementation
1326 //===----------------------------------------------------------------------===//
1327 
1328 #ifndef NDEBUG
1329 // Something to restore in the future.
1330 // void InstrRefBasedLDV::printVarLocInMBB(..)
1331 #endif
1332 
1333 std::optional<SpillLocationNo>
1334 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
1335   assert(MI.hasOneMemOperand() &&
1336          "Spill instruction does not have exactly one memory operand?");
1337   auto MMOI = MI.memoperands_begin();
1338   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1339   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
1340          "Inconsistent memory operand in spill instruction");
1341   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
1342   const MachineBasicBlock *MBB = MI.getParent();
1343   Register Reg;
1344   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
1345   return MTracker->getOrTrackSpillLoc({Reg, Offset});
1346 }
1347 
1348 std::optional<LocIdx>
1349 InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) {
1350   std::optional<SpillLocationNo> SpillLoc = extractSpillBaseRegAndOffset(MI);
1351   if (!SpillLoc)
1352     return std::nullopt;
1353 
1354   // Where in the stack slot is this value defined -- i.e., what size of value
1355   // is this? An important question, because it could be loaded into a register
1356   // from the stack at some point. Happily the memory operand will tell us
1357   // the size written to the stack.
1358   auto *MemOperand = *MI.memoperands_begin();
1359   unsigned SizeInBits = MemOperand->getSizeInBits();
1360 
1361   // Find that position in the stack indexes we're tracking.
1362   auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0});
1363   if (IdxIt == MTracker->StackSlotIdxes.end())
1364     // That index is not tracked. This is suprising, and unlikely to ever
1365     // occur, but the safe action is to indicate the variable is optimised out.
1366     return std::nullopt;
1367 
1368   unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillLoc, IdxIt->second);
1369   return MTracker->getSpillMLoc(SpillID);
1370 }
1371 
1372 /// End all previous ranges related to @MI and start a new range from @MI
1373 /// if it is a DBG_VALUE instr.
1374 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
1375   if (!MI.isDebugValue())
1376     return false;
1377 
1378   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
1379          "Expected inlined-at fields to agree");
1380 
1381   // If there are no instructions in this lexical scope, do no location tracking
1382   // at all, this variable shouldn't get a legitimate location range.
1383   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1384   if (Scope == nullptr)
1385     return true; // handled it; by doing nothing
1386 
1387   // MLocTracker needs to know that this register is read, even if it's only
1388   // read by a debug inst.
1389   for (const MachineOperand &MO : MI.debug_operands())
1390     if (MO.isReg() && MO.getReg() != 0)
1391       (void)MTracker->readReg(MO.getReg());
1392 
1393   // If we're preparing for the second analysis (variables), the machine value
1394   // locations are already solved, and we report this DBG_VALUE and the value
1395   // it refers to to VLocTracker.
1396   if (VTracker) {
1397     SmallVector<DbgOpID> DebugOps;
1398     // Feed defVar the new variable location, or if this is a DBG_VALUE $noreg,
1399     // feed defVar None.
1400     if (!MI.isUndefDebugValue()) {
1401       for (const MachineOperand &MO : MI.debug_operands()) {
1402         // There should be no undef registers here, as we've screened for undef
1403         // debug values.
1404         if (MO.isReg()) {
1405           DebugOps.push_back(DbgOpStore.insert(MTracker->readReg(MO.getReg())));
1406         } else if (MO.isImm() || MO.isFPImm() || MO.isCImm()) {
1407           DebugOps.push_back(DbgOpStore.insert(MO));
1408         } else {
1409           llvm_unreachable("Unexpected debug operand type.");
1410         }
1411       }
1412     }
1413     VTracker->defVar(MI, DbgValueProperties(MI), DebugOps);
1414   }
1415 
1416   // If performing final tracking of transfers, report this variable definition
1417   // to the TransferTracker too.
1418   if (TTracker)
1419     TTracker->redefVar(MI);
1420   return true;
1421 }
1422 
1423 std::optional<ValueIDNum> InstrRefBasedLDV::getValueForInstrRef(
1424     unsigned InstNo, unsigned OpNo, MachineInstr &MI,
1425     const FuncValueTable *MLiveOuts, const FuncValueTable *MLiveIns) {
1426   // Various optimizations may have happened to the value during codegen,
1427   // recorded in the value substitution table. Apply any substitutions to
1428   // the instruction / operand number in this DBG_INSTR_REF, and collect
1429   // any subregister extractions performed during optimization.
1430   const MachineFunction &MF = *MI.getParent()->getParent();
1431 
1432   // Create dummy substitution with Src set, for lookup.
1433   auto SoughtSub =
1434       MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
1435 
1436   SmallVector<unsigned, 4> SeenSubregs;
1437   auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1438   while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
1439          LowerBoundIt->Src == SoughtSub.Src) {
1440     std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
1441     SoughtSub.Src = LowerBoundIt->Dest;
1442     if (unsigned Subreg = LowerBoundIt->Subreg)
1443       SeenSubregs.push_back(Subreg);
1444     LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1445   }
1446 
1447   // Default machine value number is <None> -- if no instruction defines
1448   // the corresponding value, it must have been optimized out.
1449   std::optional<ValueIDNum> NewID;
1450 
1451   // Try to lookup the instruction number, and find the machine value number
1452   // that it defines. It could be an instruction, or a PHI.
1453   auto InstrIt = DebugInstrNumToInstr.find(InstNo);
1454   auto PHIIt = llvm::lower_bound(DebugPHINumToValue, InstNo);
1455   if (InstrIt != DebugInstrNumToInstr.end()) {
1456     const MachineInstr &TargetInstr = *InstrIt->second.first;
1457     uint64_t BlockNo = TargetInstr.getParent()->getNumber();
1458 
1459     // Pick out the designated operand. It might be a memory reference, if
1460     // a register def was folded into a stack store.
1461     if (OpNo == MachineFunction::DebugOperandMemNumber &&
1462         TargetInstr.hasOneMemOperand()) {
1463       std::optional<LocIdx> L = findLocationForMemOperand(TargetInstr);
1464       if (L)
1465         NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L);
1466     } else if (OpNo != MachineFunction::DebugOperandMemNumber) {
1467       // Permit the debug-info to be completely wrong: identifying a nonexistant
1468       // operand, or one that is not a register definition, means something
1469       // unexpected happened during optimisation. Broken debug-info, however,
1470       // shouldn't crash the compiler -- instead leave the variable value as
1471       // None, which will make it appear "optimised out".
1472       if (OpNo < TargetInstr.getNumOperands()) {
1473         const MachineOperand &MO = TargetInstr.getOperand(OpNo);
1474 
1475         if (MO.isReg() && MO.isDef() && MO.getReg()) {
1476           unsigned LocID = MTracker->getLocID(MO.getReg());
1477           LocIdx L = MTracker->LocIDToLocIdx[LocID];
1478           NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
1479         }
1480       }
1481 
1482       if (!NewID) {
1483         LLVM_DEBUG(
1484             { dbgs() << "Seen instruction reference to illegal operand\n"; });
1485       }
1486     }
1487     // else: NewID is left as None.
1488   } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
1489     // It's actually a PHI value. Which value it is might not be obvious, use
1490     // the resolver helper to find out.
1491     assert(MLiveOuts && MLiveIns);
1492     NewID = resolveDbgPHIs(*MI.getParent()->getParent(), *MLiveOuts, *MLiveIns,
1493                            MI, InstNo);
1494   }
1495 
1496   // Apply any subregister extractions, in reverse. We might have seen code
1497   // like this:
1498   //    CALL64 @foo, implicit-def $rax
1499   //    %0:gr64 = COPY $rax
1500   //    %1:gr32 = COPY %0.sub_32bit
1501   //    %2:gr16 = COPY %1.sub_16bit
1502   //    %3:gr8  = COPY %2.sub_8bit
1503   // In which case each copy would have been recorded as a substitution with
1504   // a subregister qualifier. Apply those qualifiers now.
1505   if (NewID && !SeenSubregs.empty()) {
1506     unsigned Offset = 0;
1507     unsigned Size = 0;
1508 
1509     // Look at each subregister that we passed through, and progressively
1510     // narrow in, accumulating any offsets that occur. Substitutions should
1511     // only ever be the same or narrower width than what they read from;
1512     // iterate in reverse order so that we go from wide to small.
1513     for (unsigned Subreg : reverse(SeenSubregs)) {
1514       unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
1515       unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
1516       Offset += ThisOffset;
1517       Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
1518     }
1519 
1520     // If that worked, look for an appropriate subregister with the register
1521     // where the define happens. Don't look at values that were defined during
1522     // a stack write: we can't currently express register locations within
1523     // spills.
1524     LocIdx L = NewID->getLoc();
1525     if (NewID && !MTracker->isSpill(L)) {
1526       // Find the register class for the register where this def happened.
1527       // FIXME: no index for this?
1528       Register Reg = MTracker->LocIdxToLocID[L];
1529       const TargetRegisterClass *TRC = nullptr;
1530       for (const auto *TRCI : TRI->regclasses())
1531         if (TRCI->contains(Reg))
1532           TRC = TRCI;
1533       assert(TRC && "Couldn't find target register class?");
1534 
1535       // If the register we have isn't the right size or in the right place,
1536       // Try to find a subregister inside it.
1537       unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
1538       if (Size != MainRegSize || Offset) {
1539         // Enumerate all subregisters, searching.
1540         Register NewReg = 0;
1541         for (MCPhysReg SR : TRI->subregs(Reg)) {
1542           unsigned Subreg = TRI->getSubRegIndex(Reg, SR);
1543           unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
1544           unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
1545           if (SubregSize == Size && SubregOffset == Offset) {
1546             NewReg = SR;
1547             break;
1548           }
1549         }
1550 
1551         // If we didn't find anything: there's no way to express our value.
1552         if (!NewReg) {
1553           NewID = std::nullopt;
1554         } else {
1555           // Re-state the value as being defined within the subregister
1556           // that we found.
1557           LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
1558           NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
1559         }
1560       }
1561     } else {
1562       // If we can't handle subregisters, unset the new value.
1563       NewID = std::nullopt;
1564     }
1565   }
1566 
1567   return NewID;
1568 }
1569 
1570 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
1571                                              const FuncValueTable *MLiveOuts,
1572                                              const FuncValueTable *MLiveIns) {
1573   if (!MI.isDebugRef())
1574     return false;
1575 
1576   // Only handle this instruction when we are building the variable value
1577   // transfer function.
1578   if (!VTracker && !TTracker)
1579     return false;
1580 
1581   const DILocalVariable *Var = MI.getDebugVariable();
1582   const DIExpression *Expr = MI.getDebugExpression();
1583   const DILocation *DebugLoc = MI.getDebugLoc();
1584   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1585   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1586          "Expected inlined-at fields to agree");
1587 
1588   DebugVariable V(Var, Expr, InlinedAt);
1589 
1590   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1591   if (Scope == nullptr)
1592     return true; // Handled by doing nothing. This variable is never in scope.
1593 
1594   SmallVector<DbgOpID> DbgOpIDs;
1595   for (const MachineOperand &MO : MI.debug_operands()) {
1596     if (!MO.isDbgInstrRef()) {
1597       assert(!MO.isReg() && "DBG_INSTR_REF should not contain registers");
1598       DbgOpID ConstOpID = DbgOpStore.insert(DbgOp(MO));
1599       DbgOpIDs.push_back(ConstOpID);
1600       continue;
1601     }
1602 
1603     unsigned InstNo = MO.getInstrRefInstrIndex();
1604     unsigned OpNo = MO.getInstrRefOpIndex();
1605 
1606     // Default machine value number is <None> -- if no instruction defines
1607     // the corresponding value, it must have been optimized out.
1608     std::optional<ValueIDNum> NewID =
1609         getValueForInstrRef(InstNo, OpNo, MI, MLiveOuts, MLiveIns);
1610     // We have a value number or std::nullopt. If the latter, then kill the
1611     // entire debug value.
1612     if (NewID) {
1613       DbgOpIDs.push_back(DbgOpStore.insert(*NewID));
1614     } else {
1615       DbgOpIDs.clear();
1616       break;
1617     }
1618   }
1619 
1620   // We have a DbgOpID for every value or for none. Tell the variable value
1621   // tracker about it. The rest of this LiveDebugValues implementation acts
1622   // exactly the same for DBG_INSTR_REFs as DBG_VALUEs (just, the former can
1623   // refer to values that aren't immediately available).
1624   DbgValueProperties Properties(Expr, false, true);
1625   if (VTracker)
1626     VTracker->defVar(MI, Properties, DbgOpIDs);
1627 
1628   // If we're on the final pass through the function, decompose this INSTR_REF
1629   // into a plain DBG_VALUE.
1630   if (!TTracker)
1631     return true;
1632 
1633   // Fetch the concrete DbgOps now, as we will need them later.
1634   SmallVector<DbgOp> DbgOps;
1635   for (DbgOpID OpID : DbgOpIDs) {
1636     DbgOps.push_back(DbgOpStore.find(OpID));
1637   }
1638 
1639   // Pick a location for the machine value number, if such a location exists.
1640   // (This information could be stored in TransferTracker to make it faster).
1641   SmallDenseMap<ValueIDNum, TransferTracker::LocationAndQuality> FoundLocs;
1642   SmallVector<ValueIDNum> ValuesToFind;
1643   // Initialized the preferred-location map with illegal locations, to be
1644   // filled in later.
1645   for (const DbgOp &Op : DbgOps) {
1646     if (!Op.IsConst)
1647       if (FoundLocs.insert({Op.ID, TransferTracker::LocationAndQuality()})
1648               .second)
1649         ValuesToFind.push_back(Op.ID);
1650   }
1651 
1652   for (auto Location : MTracker->locations()) {
1653     LocIdx CurL = Location.Idx;
1654     ValueIDNum ID = MTracker->readMLoc(CurL);
1655     auto ValueToFindIt = find(ValuesToFind, ID);
1656     if (ValueToFindIt == ValuesToFind.end())
1657       continue;
1658     auto &Previous = FoundLocs.find(ID)->second;
1659     // If this is the first location with that value, pick it. Otherwise,
1660     // consider whether it's a "longer term" location.
1661     std::optional<TransferTracker::LocationQuality> ReplacementQuality =
1662         TTracker->getLocQualityIfBetter(CurL, Previous.getQuality());
1663     if (ReplacementQuality) {
1664       Previous = TransferTracker::LocationAndQuality(CurL, *ReplacementQuality);
1665       if (Previous.isBest()) {
1666         ValuesToFind.erase(ValueToFindIt);
1667         if (ValuesToFind.empty())
1668           break;
1669       }
1670     }
1671   }
1672 
1673   SmallVector<ResolvedDbgOp> NewLocs;
1674   for (const DbgOp &DbgOp : DbgOps) {
1675     if (DbgOp.IsConst) {
1676       NewLocs.push_back(DbgOp.MO);
1677       continue;
1678     }
1679     LocIdx FoundLoc = FoundLocs.find(DbgOp.ID)->second.getLoc();
1680     if (FoundLoc.isIllegal()) {
1681       NewLocs.clear();
1682       break;
1683     }
1684     NewLocs.push_back(FoundLoc);
1685   }
1686   // Tell transfer tracker that the variable value has changed.
1687   TTracker->redefVar(MI, Properties, NewLocs);
1688 
1689   // If there were values with no location, but all such values are defined in
1690   // later instructions in this block, this is a block-local use-before-def.
1691   if (!DbgOps.empty() && NewLocs.empty()) {
1692     bool IsValidUseBeforeDef = true;
1693     uint64_t LastUseBeforeDef = 0;
1694     for (auto ValueLoc : FoundLocs) {
1695       ValueIDNum NewID = ValueLoc.first;
1696       LocIdx FoundLoc = ValueLoc.second.getLoc();
1697       if (!FoundLoc.isIllegal())
1698         continue;
1699       // If we have an value with no location that is not defined in this block,
1700       // then it has no location in this block, leaving this value undefined.
1701       if (NewID.getBlock() != CurBB || NewID.getInst() <= CurInst) {
1702         IsValidUseBeforeDef = false;
1703         break;
1704       }
1705       LastUseBeforeDef = std::max(LastUseBeforeDef, NewID.getInst());
1706     }
1707     if (IsValidUseBeforeDef) {
1708       TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false, true},
1709                                 DbgOps, LastUseBeforeDef);
1710     }
1711   }
1712 
1713   // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
1714   // This DBG_VALUE is potentially a $noreg / undefined location, if
1715   // FoundLoc is illegal.
1716   // (XXX -- could morph the DBG_INSTR_REF in the future).
1717   MachineInstr *DbgMI = MTracker->emitLoc(NewLocs, V, Properties);
1718 
1719   TTracker->PendingDbgValues.push_back(DbgMI);
1720   TTracker->flushDbgValues(MI.getIterator(), nullptr);
1721   return true;
1722 }
1723 
1724 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
1725   if (!MI.isDebugPHI())
1726     return false;
1727 
1728   // Analyse these only when solving the machine value location problem.
1729   if (VTracker || TTracker)
1730     return true;
1731 
1732   // First operand is the value location, either a stack slot or register.
1733   // Second is the debug instruction number of the original PHI.
1734   const MachineOperand &MO = MI.getOperand(0);
1735   unsigned InstrNum = MI.getOperand(1).getImm();
1736 
1737   auto EmitBadPHI = [this, &MI, InstrNum]() -> bool {
1738     // Helper lambda to do any accounting when we fail to find a location for
1739     // a DBG_PHI. This can happen if DBG_PHIs are malformed, or refer to a
1740     // dead stack slot, for example.
1741     // Record a DebugPHIRecord with an empty value + location.
1742     DebugPHINumToValue.push_back(
1743         {InstrNum, MI.getParent(), std::nullopt, std::nullopt});
1744     return true;
1745   };
1746 
1747   if (MO.isReg() && MO.getReg()) {
1748     // The value is whatever's currently in the register. Read and record it,
1749     // to be analysed later.
1750     Register Reg = MO.getReg();
1751     ValueIDNum Num = MTracker->readReg(Reg);
1752     auto PHIRec = DebugPHIRecord(
1753         {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
1754     DebugPHINumToValue.push_back(PHIRec);
1755 
1756     // Ensure this register is tracked.
1757     for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1758       MTracker->lookupOrTrackRegister(*RAI);
1759   } else if (MO.isFI()) {
1760     // The value is whatever's in this stack slot.
1761     unsigned FI = MO.getIndex();
1762 
1763     // If the stack slot is dead, then this was optimized away.
1764     // FIXME: stack slot colouring should account for slots that get merged.
1765     if (MFI->isDeadObjectIndex(FI))
1766       return EmitBadPHI();
1767 
1768     // Identify this spill slot, ensure it's tracked.
1769     Register Base;
1770     StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
1771     SpillLoc SL = {Base, Offs};
1772     std::optional<SpillLocationNo> SpillNo = MTracker->getOrTrackSpillLoc(SL);
1773 
1774     // We might be able to find a value, but have chosen not to, to avoid
1775     // tracking too much stack information.
1776     if (!SpillNo)
1777       return EmitBadPHI();
1778 
1779     // Any stack location DBG_PHI should have an associate bit-size.
1780     assert(MI.getNumOperands() == 3 && "Stack DBG_PHI with no size?");
1781     unsigned slotBitSize = MI.getOperand(2).getImm();
1782 
1783     unsigned SpillID = MTracker->getLocID(*SpillNo, {slotBitSize, 0});
1784     LocIdx SpillLoc = MTracker->getSpillMLoc(SpillID);
1785     ValueIDNum Result = MTracker->readMLoc(SpillLoc);
1786 
1787     // Record this DBG_PHI for later analysis.
1788     auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), Result, SpillLoc});
1789     DebugPHINumToValue.push_back(DbgPHI);
1790   } else {
1791     // Else: if the operand is neither a legal register or a stack slot, then
1792     // we're being fed illegal debug-info. Record an empty PHI, so that any
1793     // debug users trying to read this number will be put off trying to
1794     // interpret the value.
1795     LLVM_DEBUG(
1796         { dbgs() << "Seen DBG_PHI with unrecognised operand format\n"; });
1797     return EmitBadPHI();
1798   }
1799 
1800   return true;
1801 }
1802 
1803 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
1804   // Meta Instructions do not affect the debug liveness of any register they
1805   // define.
1806   if (MI.isImplicitDef()) {
1807     // Except when there's an implicit def, and the location it's defining has
1808     // no value number. The whole point of an implicit def is to announce that
1809     // the register is live, without be specific about it's value. So define
1810     // a value if there isn't one already.
1811     ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
1812     // Has a legitimate value -> ignore the implicit def.
1813     if (Num.getLoc() != 0)
1814       return;
1815     // Otherwise, def it here.
1816   } else if (MI.isMetaInstruction())
1817     return;
1818 
1819   // We always ignore SP defines on call instructions, they don't actually
1820   // change the value of the stack pointer... except for win32's _chkstk. This
1821   // is rare: filter quickly for the common case (no stack adjustments, not a
1822   // call, etc). If it is a call that modifies SP, recognise the SP register
1823   // defs.
1824   bool CallChangesSP = false;
1825   if (AdjustsStackInCalls && MI.isCall() && MI.getOperand(0).isSymbol() &&
1826       !strcmp(MI.getOperand(0).getSymbolName(), StackProbeSymbolName.data()))
1827     CallChangesSP = true;
1828 
1829   // Test whether we should ignore a def of this register due to it being part
1830   // of the stack pointer.
1831   auto IgnoreSPAlias = [this, &MI, CallChangesSP](Register R) -> bool {
1832     if (CallChangesSP)
1833       return false;
1834     return MI.isCall() && MTracker->SPAliases.count(R);
1835   };
1836 
1837   // Find the regs killed by MI, and find regmasks of preserved regs.
1838   // Max out the number of statically allocated elements in `DeadRegs`, as this
1839   // prevents fallback to std::set::count() operations.
1840   SmallSet<uint32_t, 32> DeadRegs;
1841   SmallVector<const uint32_t *, 4> RegMasks;
1842   SmallVector<const MachineOperand *, 4> RegMaskPtrs;
1843   for (const MachineOperand &MO : MI.operands()) {
1844     // Determine whether the operand is a register def.
1845     if (MO.isReg() && MO.isDef() && MO.getReg() && MO.getReg().isPhysical() &&
1846         !IgnoreSPAlias(MO.getReg())) {
1847       // Remove ranges of all aliased registers.
1848       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1849         // FIXME: Can we break out of this loop early if no insertion occurs?
1850         DeadRegs.insert(*RAI);
1851     } else if (MO.isRegMask()) {
1852       RegMasks.push_back(MO.getRegMask());
1853       RegMaskPtrs.push_back(&MO);
1854     }
1855   }
1856 
1857   // Tell MLocTracker about all definitions, of regmasks and otherwise.
1858   for (uint32_t DeadReg : DeadRegs)
1859     MTracker->defReg(DeadReg, CurBB, CurInst);
1860 
1861   for (const auto *MO : RegMaskPtrs)
1862     MTracker->writeRegMask(MO, CurBB, CurInst);
1863 
1864   // If this instruction writes to a spill slot, def that slot.
1865   if (hasFoldedStackStore(MI)) {
1866     if (std::optional<SpillLocationNo> SpillNo =
1867             extractSpillBaseRegAndOffset(MI)) {
1868       for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1869         unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
1870         LocIdx L = MTracker->getSpillMLoc(SpillID);
1871         MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L));
1872       }
1873     }
1874   }
1875 
1876   if (!TTracker)
1877     return;
1878 
1879   // When committing variable values to locations: tell transfer tracker that
1880   // we've clobbered things. It may be able to recover the variable from a
1881   // different location.
1882 
1883   // Inform TTracker about any direct clobbers.
1884   for (uint32_t DeadReg : DeadRegs) {
1885     LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
1886     TTracker->clobberMloc(Loc, MI.getIterator(), false);
1887   }
1888 
1889   // Look for any clobbers performed by a register mask. Only test locations
1890   // that are actually being tracked.
1891   if (!RegMaskPtrs.empty()) {
1892     for (auto L : MTracker->locations()) {
1893       // Stack locations can't be clobbered by regmasks.
1894       if (MTracker->isSpill(L.Idx))
1895         continue;
1896 
1897       Register Reg = MTracker->LocIdxToLocID[L.Idx];
1898       if (IgnoreSPAlias(Reg))
1899         continue;
1900 
1901       for (const auto *MO : RegMaskPtrs)
1902         if (MO->clobbersPhysReg(Reg))
1903           TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
1904     }
1905   }
1906 
1907   // Tell TTracker about any folded stack store.
1908   if (hasFoldedStackStore(MI)) {
1909     if (std::optional<SpillLocationNo> SpillNo =
1910             extractSpillBaseRegAndOffset(MI)) {
1911       for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1912         unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
1913         LocIdx L = MTracker->getSpillMLoc(SpillID);
1914         TTracker->clobberMloc(L, MI.getIterator(), true);
1915       }
1916     }
1917   }
1918 }
1919 
1920 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
1921   // In all circumstances, re-def all aliases. It's definitely a new value now.
1922   for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI)
1923     MTracker->defReg(*RAI, CurBB, CurInst);
1924 
1925   ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
1926   MTracker->setReg(DstRegNum, SrcValue);
1927 
1928   // Copy subregisters from one location to another.
1929   for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
1930     unsigned SrcSubReg = SRI.getSubReg();
1931     unsigned SubRegIdx = SRI.getSubRegIndex();
1932     unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
1933     if (!DstSubReg)
1934       continue;
1935 
1936     // Do copy. There are two matching subregisters, the source value should
1937     // have been def'd when the super-reg was, the latter might not be tracked
1938     // yet.
1939     // This will force SrcSubReg to be tracked, if it isn't yet. Will read
1940     // mphi values if it wasn't tracked.
1941     LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg);
1942     LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg);
1943     (void)SrcL;
1944     (void)DstL;
1945     ValueIDNum CpyValue = MTracker->readReg(SrcSubReg);
1946 
1947     MTracker->setReg(DstSubReg, CpyValue);
1948   }
1949 }
1950 
1951 std::optional<SpillLocationNo>
1952 InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
1953                                      MachineFunction *MF) {
1954   // TODO: Handle multiple stores folded into one.
1955   if (!MI.hasOneMemOperand())
1956     return std::nullopt;
1957 
1958   // Reject any memory operand that's aliased -- we can't guarantee its value.
1959   auto MMOI = MI.memoperands_begin();
1960   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1961   if (PVal->isAliased(MFI))
1962     return std::nullopt;
1963 
1964   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1965     return std::nullopt; // This is not a spill instruction, since no valid size
1966                          // was returned from either function.
1967 
1968   return extractSpillBaseRegAndOffset(MI);
1969 }
1970 
1971 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
1972                                        MachineFunction *MF, unsigned &Reg) {
1973   if (!isSpillInstruction(MI, MF))
1974     return false;
1975 
1976   int FI;
1977   Reg = TII->isStoreToStackSlotPostFE(MI, FI);
1978   return Reg != 0;
1979 }
1980 
1981 std::optional<SpillLocationNo>
1982 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1983                                        MachineFunction *MF, unsigned &Reg) {
1984   if (!MI.hasOneMemOperand())
1985     return std::nullopt;
1986 
1987   // FIXME: Handle folded restore instructions with more than one memory
1988   // operand.
1989   if (MI.getRestoreSize(TII)) {
1990     Reg = MI.getOperand(0).getReg();
1991     return extractSpillBaseRegAndOffset(MI);
1992   }
1993   return std::nullopt;
1994 }
1995 
1996 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
1997   // XXX -- it's too difficult to implement VarLocBasedImpl's  stack location
1998   // limitations under the new model. Therefore, when comparing them, compare
1999   // versions that don't attempt spills or restores at all.
2000   if (EmulateOldLDV)
2001     return false;
2002 
2003   // Strictly limit ourselves to plain loads and stores, not all instructions
2004   // that can access the stack.
2005   int DummyFI = -1;
2006   if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) &&
2007       !TII->isLoadFromStackSlotPostFE(MI, DummyFI))
2008     return false;
2009 
2010   MachineFunction *MF = MI.getMF();
2011   unsigned Reg;
2012 
2013   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
2014 
2015   // Strictly limit ourselves to plain loads and stores, not all instructions
2016   // that can access the stack.
2017   int FIDummy;
2018   if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) &&
2019       !TII->isLoadFromStackSlotPostFE(MI, FIDummy))
2020     return false;
2021 
2022   // First, if there are any DBG_VALUEs pointing at a spill slot that is
2023   // written to, terminate that variable location. The value in memory
2024   // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
2025   if (std::optional<SpillLocationNo> Loc = isSpillInstruction(MI, MF)) {
2026     // Un-set this location and clobber, so that earlier locations don't
2027     // continue past this store.
2028     for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) {
2029       unsigned SpillID = MTracker->getSpillIDWithIdx(*Loc, SlotIdx);
2030       std::optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID);
2031       if (!MLoc)
2032         continue;
2033 
2034       // We need to over-write the stack slot with something (here, a def at
2035       // this instruction) to ensure no values are preserved in this stack slot
2036       // after the spill. It also prevents TTracker from trying to recover the
2037       // location and re-installing it in the same place.
2038       ValueIDNum Def(CurBB, CurInst, *MLoc);
2039       MTracker->setMLoc(*MLoc, Def);
2040       if (TTracker)
2041         TTracker->clobberMloc(*MLoc, MI.getIterator());
2042     }
2043   }
2044 
2045   // Try to recognise spill and restore instructions that may transfer a value.
2046   if (isLocationSpill(MI, MF, Reg)) {
2047     // isLocationSpill returning true should guarantee we can extract a
2048     // location.
2049     SpillLocationNo Loc = *extractSpillBaseRegAndOffset(MI);
2050 
2051     auto DoTransfer = [&](Register SrcReg, unsigned SpillID) {
2052       auto ReadValue = MTracker->readReg(SrcReg);
2053       LocIdx DstLoc = MTracker->getSpillMLoc(SpillID);
2054       MTracker->setMLoc(DstLoc, ReadValue);
2055 
2056       if (TTracker) {
2057         LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg);
2058         TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator());
2059       }
2060     };
2061 
2062     // Then, transfer subreg bits.
2063     for (MCPhysReg SR : TRI->subregs(Reg)) {
2064       // Ensure this reg is tracked,
2065       (void)MTracker->lookupOrTrackRegister(SR);
2066       unsigned SubregIdx = TRI->getSubRegIndex(Reg, SR);
2067       unsigned SpillID = MTracker->getLocID(Loc, SubregIdx);
2068       DoTransfer(SR, SpillID);
2069     }
2070 
2071     // Directly lookup size of main source reg, and transfer.
2072     unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
2073     unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
2074     DoTransfer(Reg, SpillID);
2075   } else {
2076     std::optional<SpillLocationNo> Loc = isRestoreInstruction(MI, MF, Reg);
2077     if (!Loc)
2078       return false;
2079 
2080     // Assumption: we're reading from the base of the stack slot, not some
2081     // offset into it. It seems very unlikely LLVM would ever generate
2082     // restores where this wasn't true. This then becomes a question of what
2083     // subregisters in the destination register line up with positions in the
2084     // stack slot.
2085 
2086     // Def all registers that alias the destination.
2087     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
2088       MTracker->defReg(*RAI, CurBB, CurInst);
2089 
2090     // Now find subregisters within the destination register, and load values
2091     // from stack slot positions.
2092     auto DoTransfer = [&](Register DestReg, unsigned SpillID) {
2093       LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID);
2094       auto ReadValue = MTracker->readMLoc(SrcIdx);
2095       MTracker->setReg(DestReg, ReadValue);
2096     };
2097 
2098     for (MCPhysReg SR : TRI->subregs(Reg)) {
2099       unsigned Subreg = TRI->getSubRegIndex(Reg, SR);
2100       unsigned SpillID = MTracker->getLocID(*Loc, Subreg);
2101       DoTransfer(SR, SpillID);
2102     }
2103 
2104     // Directly look up this registers slot idx by size, and transfer.
2105     unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
2106     unsigned SpillID = MTracker->getLocID(*Loc, {Size, 0});
2107     DoTransfer(Reg, SpillID);
2108   }
2109   return true;
2110 }
2111 
2112 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
2113   auto DestSrc = TII->isCopyLikeInstr(MI);
2114   if (!DestSrc)
2115     return false;
2116 
2117   const MachineOperand *DestRegOp = DestSrc->Destination;
2118   const MachineOperand *SrcRegOp = DestSrc->Source;
2119 
2120   Register SrcReg = SrcRegOp->getReg();
2121   Register DestReg = DestRegOp->getReg();
2122 
2123   // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
2124   if (SrcReg == DestReg)
2125     return true;
2126 
2127   // For emulating VarLocBasedImpl:
2128   // We want to recognize instructions where destination register is callee
2129   // saved register. If register that could be clobbered by the call is
2130   // included, there would be a great chance that it is going to be clobbered
2131   // soon. It is more likely that previous register, which is callee saved, is
2132   // going to stay unclobbered longer, even if it is killed.
2133   //
2134   // For InstrRefBasedImpl, we can track multiple locations per value, so
2135   // ignore this condition.
2136   if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
2137     return false;
2138 
2139   // InstrRefBasedImpl only followed killing copies.
2140   if (EmulateOldLDV && !SrcRegOp->isKill())
2141     return false;
2142 
2143   // Before we update MTracker, remember which values were present in each of
2144   // the locations about to be overwritten, so that we can recover any
2145   // potentially clobbered variables.
2146   DenseMap<LocIdx, ValueIDNum> ClobberedLocs;
2147   if (TTracker) {
2148     for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
2149       LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
2150       auto MLocIt = TTracker->ActiveMLocs.find(ClobberedLoc);
2151       // If ActiveMLocs isn't tracking this location or there are no variables
2152       // using it, don't bother remembering.
2153       if (MLocIt == TTracker->ActiveMLocs.end() || MLocIt->second.empty())
2154         continue;
2155       ValueIDNum Value = MTracker->readReg(*RAI);
2156       ClobberedLocs[ClobberedLoc] = Value;
2157     }
2158   }
2159 
2160   // Copy MTracker info, including subregs if available.
2161   InstrRefBasedLDV::performCopy(SrcReg, DestReg);
2162 
2163   // The copy might have clobbered variables based on the destination register.
2164   // Tell TTracker about it, passing the old ValueIDNum to search for
2165   // alternative locations (or else terminating those variables).
2166   if (TTracker) {
2167     for (auto LocVal : ClobberedLocs) {
2168       TTracker->clobberMloc(LocVal.first, LocVal.second, MI.getIterator(), false);
2169     }
2170   }
2171 
2172   // Only produce a transfer of DBG_VALUE within a block where old LDV
2173   // would have. We might make use of the additional value tracking in some
2174   // other way, later.
2175   if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
2176     TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
2177                             MTracker->getRegMLoc(DestReg), MI.getIterator());
2178 
2179   // VarLocBasedImpl would quit tracking the old location after copying.
2180   if (EmulateOldLDV && SrcReg != DestReg)
2181     MTracker->defReg(SrcReg, CurBB, CurInst);
2182 
2183   return true;
2184 }
2185 
2186 /// Accumulate a mapping between each DILocalVariable fragment and other
2187 /// fragments of that DILocalVariable which overlap. This reduces work during
2188 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
2189 /// known-to-overlap fragments are present".
2190 /// \param MI A previously unprocessed debug instruction to analyze for
2191 ///           fragment usage.
2192 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
2193   assert(MI.isDebugValueLike());
2194   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
2195                       MI.getDebugLoc()->getInlinedAt());
2196   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
2197 
2198   // If this is the first sighting of this variable, then we are guaranteed
2199   // there are currently no overlapping fragments either. Initialize the set
2200   // of seen fragments, record no overlaps for the current one, and return.
2201   auto SeenIt = SeenFragments.find(MIVar.getVariable());
2202   if (SeenIt == SeenFragments.end()) {
2203     SmallSet<FragmentInfo, 4> OneFragment;
2204     OneFragment.insert(ThisFragment);
2205     SeenFragments.insert({MIVar.getVariable(), OneFragment});
2206 
2207     OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
2208     return;
2209   }
2210 
2211   // If this particular Variable/Fragment pair already exists in the overlap
2212   // map, it has already been accounted for.
2213   auto IsInOLapMap =
2214       OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
2215   if (!IsInOLapMap.second)
2216     return;
2217 
2218   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
2219   auto &AllSeenFragments = SeenIt->second;
2220 
2221   // Otherwise, examine all other seen fragments for this variable, with "this"
2222   // fragment being a previously unseen fragment. Record any pair of
2223   // overlapping fragments.
2224   for (const auto &ASeenFragment : AllSeenFragments) {
2225     // Does this previously seen fragment overlap?
2226     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
2227       // Yes: Mark the current fragment as being overlapped.
2228       ThisFragmentsOverlaps.push_back(ASeenFragment);
2229       // Mark the previously seen fragment as being overlapped by the current
2230       // one.
2231       auto ASeenFragmentsOverlaps =
2232           OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
2233       assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
2234              "Previously seen var fragment has no vector of overlaps");
2235       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
2236     }
2237   }
2238 
2239   AllSeenFragments.insert(ThisFragment);
2240 }
2241 
2242 void InstrRefBasedLDV::process(MachineInstr &MI,
2243                                const FuncValueTable *MLiveOuts,
2244                                const FuncValueTable *MLiveIns) {
2245   // Try to interpret an MI as a debug or transfer instruction. Only if it's
2246   // none of these should we interpret it's register defs as new value
2247   // definitions.
2248   if (transferDebugValue(MI))
2249     return;
2250   if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
2251     return;
2252   if (transferDebugPHI(MI))
2253     return;
2254   if (transferRegisterCopy(MI))
2255     return;
2256   if (transferSpillOrRestoreInst(MI))
2257     return;
2258   transferRegisterDef(MI);
2259 }
2260 
2261 void InstrRefBasedLDV::produceMLocTransferFunction(
2262     MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
2263     unsigned MaxNumBlocks) {
2264   // Because we try to optimize around register mask operands by ignoring regs
2265   // that aren't currently tracked, we set up something ugly for later: RegMask
2266   // operands that are seen earlier than the first use of a register, still need
2267   // to clobber that register in the transfer function. But this information
2268   // isn't actively recorded. Instead, we track each RegMask used in each block,
2269   // and accumulated the clobbered but untracked registers in each block into
2270   // the following bitvector. Later, if new values are tracked, we can add
2271   // appropriate clobbers.
2272   SmallVector<BitVector, 32> BlockMasks;
2273   BlockMasks.resize(MaxNumBlocks);
2274 
2275   // Reserve one bit per register for the masks described above.
2276   unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
2277   for (auto &BV : BlockMasks)
2278     BV.resize(TRI->getNumRegs(), true);
2279 
2280   // Step through all instructions and inhale the transfer function.
2281   for (auto &MBB : MF) {
2282     // Object fields that are read by trackers to know where we are in the
2283     // function.
2284     CurBB = MBB.getNumber();
2285     CurInst = 1;
2286 
2287     // Set all machine locations to a PHI value. For transfer function
2288     // production only, this signifies the live-in value to the block.
2289     MTracker->reset();
2290     MTracker->setMPhis(CurBB);
2291 
2292     // Step through each instruction in this block.
2293     for (auto &MI : MBB) {
2294       // Pass in an empty unique_ptr for the value tables when accumulating the
2295       // machine transfer function.
2296       process(MI, nullptr, nullptr);
2297 
2298       // Also accumulate fragment map.
2299       if (MI.isDebugValueLike())
2300         accumulateFragmentMap(MI);
2301 
2302       // Create a map from the instruction number (if present) to the
2303       // MachineInstr and its position.
2304       if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
2305         auto InstrAndPos = std::make_pair(&MI, CurInst);
2306         auto InsertResult =
2307             DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
2308 
2309         // There should never be duplicate instruction numbers.
2310         assert(InsertResult.second);
2311         (void)InsertResult;
2312       }
2313 
2314       ++CurInst;
2315     }
2316 
2317     // Produce the transfer function, a map of machine location to new value. If
2318     // any machine location has the live-in phi value from the start of the
2319     // block, it's live-through and doesn't need recording in the transfer
2320     // function.
2321     for (auto Location : MTracker->locations()) {
2322       LocIdx Idx = Location.Idx;
2323       ValueIDNum &P = Location.Value;
2324       if (P.isPHI() && P.getLoc() == Idx.asU64())
2325         continue;
2326 
2327       // Insert-or-update.
2328       auto &TransferMap = MLocTransfer[CurBB];
2329       auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
2330       if (!Result.second)
2331         Result.first->second = P;
2332     }
2333 
2334     // Accumulate any bitmask operands into the clobbered reg mask for this
2335     // block.
2336     for (auto &P : MTracker->Masks) {
2337       BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
2338     }
2339   }
2340 
2341   // Compute a bitvector of all the registers that are tracked in this block.
2342   BitVector UsedRegs(TRI->getNumRegs());
2343   for (auto Location : MTracker->locations()) {
2344     unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
2345     // Ignore stack slots, and aliases of the stack pointer.
2346     if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID))
2347       continue;
2348     UsedRegs.set(ID);
2349   }
2350 
2351   // Check that any regmask-clobber of a register that gets tracked, is not
2352   // live-through in the transfer function. It needs to be clobbered at the
2353   // very least.
2354   for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
2355     BitVector &BV = BlockMasks[I];
2356     BV.flip();
2357     BV &= UsedRegs;
2358     // This produces all the bits that we clobber, but also use. Check that
2359     // they're all clobbered or at least set in the designated transfer
2360     // elem.
2361     for (unsigned Bit : BV.set_bits()) {
2362       unsigned ID = MTracker->getLocID(Bit);
2363       LocIdx Idx = MTracker->LocIDToLocIdx[ID];
2364       auto &TransferMap = MLocTransfer[I];
2365 
2366       // Install a value representing the fact that this location is effectively
2367       // written to in this block. As there's no reserved value, instead use
2368       // a value number that is never generated. Pick the value number for the
2369       // first instruction in the block, def'ing this location, which we know
2370       // this block never used anyway.
2371       ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
2372       auto Result =
2373         TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
2374       if (!Result.second) {
2375         ValueIDNum &ValueID = Result.first->second;
2376         if (ValueID.getBlock() == I && ValueID.isPHI())
2377           // It was left as live-through. Set it to clobbered.
2378           ValueID = NotGeneratedNum;
2379       }
2380     }
2381   }
2382 }
2383 
2384 bool InstrRefBasedLDV::mlocJoin(
2385     MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
2386     FuncValueTable &OutLocs, ValueTable &InLocs) {
2387   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2388   bool Changed = false;
2389 
2390   // Handle value-propagation when control flow merges on entry to a block. For
2391   // any location without a PHI already placed, the location has the same value
2392   // as its predecessors. If a PHI is placed, test to see whether it's now a
2393   // redundant PHI that we can eliminate.
2394 
2395   SmallVector<const MachineBasicBlock *, 8> BlockOrders;
2396   for (auto *Pred : MBB.predecessors())
2397     BlockOrders.push_back(Pred);
2398 
2399   // Visit predecessors in RPOT order.
2400   auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
2401     return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
2402   };
2403   llvm::sort(BlockOrders, Cmp);
2404 
2405   // Skip entry block.
2406   if (BlockOrders.size() == 0) {
2407     // FIXME: We don't use assert here to prevent instr-ref-unreachable.mir
2408     // failing.
2409     LLVM_DEBUG(if (!MBB.isEntryBlock()) dbgs()
2410                << "Found not reachable block " << MBB.getFullName()
2411                << " from entry which may lead out of "
2412                   "bound access to VarLocs\n");
2413     return false;
2414   }
2415 
2416   // Step through all machine locations, look at each predecessor and test
2417   // whether we can eliminate redundant PHIs.
2418   for (auto Location : MTracker->locations()) {
2419     LocIdx Idx = Location.Idx;
2420 
2421     // Pick out the first predecessors live-out value for this location. It's
2422     // guaranteed to not be a backedge, as we order by RPO.
2423     ValueIDNum FirstVal = OutLocs[*BlockOrders[0]][Idx.asU64()];
2424 
2425     // If we've already eliminated a PHI here, do no further checking, just
2426     // propagate the first live-in value into this block.
2427     if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) {
2428       if (InLocs[Idx.asU64()] != FirstVal) {
2429         InLocs[Idx.asU64()] = FirstVal;
2430         Changed |= true;
2431       }
2432       continue;
2433     }
2434 
2435     // We're now examining a PHI to see whether it's un-necessary. Loop around
2436     // the other live-in values and test whether they're all the same.
2437     bool Disagree = false;
2438     for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
2439       const MachineBasicBlock *PredMBB = BlockOrders[I];
2440       const ValueIDNum &PredLiveOut = OutLocs[*PredMBB][Idx.asU64()];
2441 
2442       // Incoming values agree, continue trying to eliminate this PHI.
2443       if (FirstVal == PredLiveOut)
2444         continue;
2445 
2446       // We can also accept a PHI value that feeds back into itself.
2447       if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx))
2448         continue;
2449 
2450       // Live-out of a predecessor disagrees with the first predecessor.
2451       Disagree = true;
2452     }
2453 
2454     // No disagreement? No PHI. Otherwise, leave the PHI in live-ins.
2455     if (!Disagree) {
2456       InLocs[Idx.asU64()] = FirstVal;
2457       Changed |= true;
2458     }
2459   }
2460 
2461   // TODO: Reimplement NumInserted and NumRemoved.
2462   return Changed;
2463 }
2464 
2465 void InstrRefBasedLDV::findStackIndexInterference(
2466     SmallVectorImpl<unsigned> &Slots) {
2467   // We could spend a bit of time finding the exact, minimal, set of stack
2468   // indexes that interfere with each other, much like reg units. Or, we can
2469   // rely on the fact that:
2470   //  * The smallest / lowest index will interfere with everything at zero
2471   //    offset, which will be the largest set of registers,
2472   //  * Most indexes with non-zero offset will end up being interference units
2473   //    anyway.
2474   // So just pick those out and return them.
2475 
2476   // We can rely on a single-byte stack index existing already, because we
2477   // initialize them in MLocTracker.
2478   auto It = MTracker->StackSlotIdxes.find({8, 0});
2479   assert(It != MTracker->StackSlotIdxes.end());
2480   Slots.push_back(It->second);
2481 
2482   // Find anything that has a non-zero offset and add that too.
2483   for (auto &Pair : MTracker->StackSlotIdxes) {
2484     // Is offset zero? If so, ignore.
2485     if (!Pair.first.second)
2486       continue;
2487     Slots.push_back(Pair.second);
2488   }
2489 }
2490 
2491 void InstrRefBasedLDV::placeMLocPHIs(
2492     MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
2493     FuncValueTable &MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2494   SmallVector<unsigned, 4> StackUnits;
2495   findStackIndexInterference(StackUnits);
2496 
2497   // To avoid repeatedly running the PHI placement algorithm, leverage the
2498   // fact that a def of register MUST also def its register units. Find the
2499   // units for registers, place PHIs for them, and then replicate them for
2500   // aliasing registers. Some inputs that are never def'd (DBG_PHIs of
2501   // arguments) don't lead to register units being tracked, just place PHIs for
2502   // those registers directly. Stack slots have their own form of "unit",
2503   // store them to one side.
2504   SmallSet<Register, 32> RegUnitsToPHIUp;
2505   SmallSet<LocIdx, 32> NormalLocsToPHI;
2506   SmallSet<SpillLocationNo, 32> StackSlots;
2507   for (auto Location : MTracker->locations()) {
2508     LocIdx L = Location.Idx;
2509     if (MTracker->isSpill(L)) {
2510       StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L]));
2511       continue;
2512     }
2513 
2514     Register R = MTracker->LocIdxToLocID[L];
2515     SmallSet<Register, 8> FoundRegUnits;
2516     bool AnyIllegal = false;
2517     for (MCRegUnit Unit : TRI->regunits(R.asMCReg())) {
2518       for (MCRegUnitRootIterator URoot(Unit, TRI); URoot.isValid(); ++URoot) {
2519         if (!MTracker->isRegisterTracked(*URoot)) {
2520           // Not all roots were loaded into the tracking map: this register
2521           // isn't actually def'd anywhere, we only read from it. Generate PHIs
2522           // for this reg, but don't iterate units.
2523           AnyIllegal = true;
2524         } else {
2525           FoundRegUnits.insert(*URoot);
2526         }
2527       }
2528     }
2529 
2530     if (AnyIllegal) {
2531       NormalLocsToPHI.insert(L);
2532       continue;
2533     }
2534 
2535     RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end());
2536   }
2537 
2538   // Lambda to fetch PHIs for a given location, and write into the PHIBlocks
2539   // collection.
2540   SmallVector<MachineBasicBlock *, 32> PHIBlocks;
2541   auto CollectPHIsForLoc = [&](LocIdx L) {
2542     // Collect the set of defs.
2543     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
2544     for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
2545       MachineBasicBlock *MBB = OrderToBB[I];
2546       const auto &TransferFunc = MLocTransfer[MBB->getNumber()];
2547       if (TransferFunc.contains(L))
2548         DefBlocks.insert(MBB);
2549     }
2550 
2551     // The entry block defs the location too: it's the live-in / argument value.
2552     // Only insert if there are other defs though; everything is trivially live
2553     // through otherwise.
2554     if (!DefBlocks.empty())
2555       DefBlocks.insert(&*MF.begin());
2556 
2557     // Ask the SSA construction algorithm where we should put PHIs. Clear
2558     // anything that might have been hanging around from earlier.
2559     PHIBlocks.clear();
2560     BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks);
2561   };
2562 
2563   auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) {
2564     for (const MachineBasicBlock *MBB : PHIBlocks)
2565       MInLocs[*MBB][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L);
2566   };
2567 
2568   // For locations with no reg units, just place PHIs.
2569   for (LocIdx L : NormalLocsToPHI) {
2570     CollectPHIsForLoc(L);
2571     // Install those PHI values into the live-in value array.
2572     InstallPHIsAtLoc(L);
2573   }
2574 
2575   // For stack slots, calculate PHIs for the equivalent of the units, then
2576   // install for each index.
2577   for (SpillLocationNo Slot : StackSlots) {
2578     for (unsigned Idx : StackUnits) {
2579       unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx);
2580       LocIdx L = MTracker->getSpillMLoc(SpillID);
2581       CollectPHIsForLoc(L);
2582       InstallPHIsAtLoc(L);
2583 
2584       // Find anything that aliases this stack index, install PHIs for it too.
2585       unsigned Size, Offset;
2586       std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx];
2587       for (auto &Pair : MTracker->StackSlotIdxes) {
2588         unsigned ThisSize, ThisOffset;
2589         std::tie(ThisSize, ThisOffset) = Pair.first;
2590         if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset)
2591           continue;
2592 
2593         unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second);
2594         LocIdx ThisL = MTracker->getSpillMLoc(ThisID);
2595         InstallPHIsAtLoc(ThisL);
2596       }
2597     }
2598   }
2599 
2600   // For reg units, place PHIs, and then place them for any aliasing registers.
2601   for (Register R : RegUnitsToPHIUp) {
2602     LocIdx L = MTracker->lookupOrTrackRegister(R);
2603     CollectPHIsForLoc(L);
2604 
2605     // Install those PHI values into the live-in value array.
2606     InstallPHIsAtLoc(L);
2607 
2608     // Now find aliases and install PHIs for those.
2609     for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) {
2610       // Super-registers that are "above" the largest register read/written by
2611       // the function will alias, but will not be tracked.
2612       if (!MTracker->isRegisterTracked(*RAI))
2613         continue;
2614 
2615       LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI);
2616       InstallPHIsAtLoc(AliasLoc);
2617     }
2618   }
2619 }
2620 
2621 void InstrRefBasedLDV::buildMLocValueMap(
2622     MachineFunction &MF, FuncValueTable &MInLocs, FuncValueTable &MOutLocs,
2623     SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2624   std::priority_queue<unsigned int, std::vector<unsigned int>,
2625                       std::greater<unsigned int>>
2626       Worklist, Pending;
2627 
2628   // We track what is on the current and pending worklist to avoid inserting
2629   // the same thing twice. We could avoid this with a custom priority queue,
2630   // but this is probably not worth it.
2631   SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
2632 
2633   // Initialize worklist with every block to be visited. Also produce list of
2634   // all blocks.
2635   SmallPtrSet<MachineBasicBlock *, 32> AllBlocks;
2636   for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
2637     Worklist.push(I);
2638     OnWorklist.insert(OrderToBB[I]);
2639     AllBlocks.insert(OrderToBB[I]);
2640   }
2641 
2642   // Initialize entry block to PHIs. These represent arguments.
2643   for (auto Location : MTracker->locations())
2644     MInLocs.tableForEntryMBB()[Location.Idx.asU64()] =
2645         ValueIDNum(0, 0, Location.Idx);
2646 
2647   MTracker->reset();
2648 
2649   // Start by placing PHIs, using the usual SSA constructor algorithm. Consider
2650   // any machine-location that isn't live-through a block to be def'd in that
2651   // block.
2652   placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer);
2653 
2654   // Propagate values to eliminate redundant PHIs. At the same time, this
2655   // produces the table of Block x Location => Value for the entry to each
2656   // block.
2657   // The kind of PHIs we can eliminate are, for example, where one path in a
2658   // conditional spills and restores a register, and the register still has
2659   // the same value once control flow joins, unbeknowns to the PHI placement
2660   // code. Propagating values allows us to identify such un-necessary PHIs and
2661   // remove them.
2662   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2663   while (!Worklist.empty() || !Pending.empty()) {
2664     // Vector for storing the evaluated block transfer function.
2665     SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
2666 
2667     while (!Worklist.empty()) {
2668       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2669       CurBB = MBB->getNumber();
2670       Worklist.pop();
2671 
2672       // Join the values in all predecessor blocks.
2673       bool InLocsChanged;
2674       InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[*MBB]);
2675       InLocsChanged |= Visited.insert(MBB).second;
2676 
2677       // Don't examine transfer function if we've visited this loc at least
2678       // once, and inlocs haven't changed.
2679       if (!InLocsChanged)
2680         continue;
2681 
2682       // Load the current set of live-ins into MLocTracker.
2683       MTracker->loadFromArray(MInLocs[*MBB], CurBB);
2684 
2685       // Each element of the transfer function can be a new def, or a read of
2686       // a live-in value. Evaluate each element, and store to "ToRemap".
2687       ToRemap.clear();
2688       for (auto &P : MLocTransfer[CurBB]) {
2689         if (P.second.getBlock() == CurBB && P.second.isPHI()) {
2690           // This is a movement of whatever was live in. Read it.
2691           ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc());
2692           ToRemap.push_back(std::make_pair(P.first, NewID));
2693         } else {
2694           // It's a def. Just set it.
2695           assert(P.second.getBlock() == CurBB);
2696           ToRemap.push_back(std::make_pair(P.first, P.second));
2697         }
2698       }
2699 
2700       // Commit the transfer function changes into mloc tracker, which
2701       // transforms the contents of the MLocTracker into the live-outs.
2702       for (auto &P : ToRemap)
2703         MTracker->setMLoc(P.first, P.second);
2704 
2705       // Now copy out-locs from mloc tracker into out-loc vector, checking
2706       // whether changes have occurred. These changes can have come from both
2707       // the transfer function, and mlocJoin.
2708       bool OLChanged = false;
2709       for (auto Location : MTracker->locations()) {
2710         OLChanged |= MOutLocs[*MBB][Location.Idx.asU64()] != Location.Value;
2711         MOutLocs[*MBB][Location.Idx.asU64()] = Location.Value;
2712       }
2713 
2714       MTracker->reset();
2715 
2716       // No need to examine successors again if out-locs didn't change.
2717       if (!OLChanged)
2718         continue;
2719 
2720       // All successors should be visited: put any back-edges on the pending
2721       // list for the next pass-through, and any other successors to be
2722       // visited this pass, if they're not going to be already.
2723       for (auto *s : MBB->successors()) {
2724         // Does branching to this successor represent a back-edge?
2725         if (BBToOrder[s] > BBToOrder[MBB]) {
2726           // No: visit it during this dataflow iteration.
2727           if (OnWorklist.insert(s).second)
2728             Worklist.push(BBToOrder[s]);
2729         } else {
2730           // Yes: visit it on the next iteration.
2731           if (OnPending.insert(s).second)
2732             Pending.push(BBToOrder[s]);
2733         }
2734       }
2735     }
2736 
2737     Worklist.swap(Pending);
2738     std::swap(OnPending, OnWorklist);
2739     OnPending.clear();
2740     // At this point, pending must be empty, since it was just the empty
2741     // worklist
2742     assert(Pending.empty() && "Pending should be empty");
2743   }
2744 
2745   // Once all the live-ins don't change on mlocJoin(), we've eliminated all
2746   // redundant PHIs.
2747 }
2748 
2749 void InstrRefBasedLDV::BlockPHIPlacement(
2750     const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
2751     const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
2752     SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) {
2753   // Apply IDF calculator to the designated set of location defs, storing
2754   // required PHIs into PHIBlocks. Uses the dominator tree stored in the
2755   // InstrRefBasedLDV object.
2756   IDFCalculatorBase<MachineBasicBlock, false> IDF(DomTree->getBase());
2757 
2758   IDF.setLiveInBlocks(AllBlocks);
2759   IDF.setDefiningBlocks(DefBlocks);
2760   IDF.calculate(PHIBlocks);
2761 }
2762 
2763 bool InstrRefBasedLDV::pickVPHILoc(
2764     SmallVectorImpl<DbgOpID> &OutValues, const MachineBasicBlock &MBB,
2765     const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs,
2766     const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
2767 
2768   // No predecessors means no PHIs.
2769   if (BlockOrders.empty())
2770     return false;
2771 
2772   // All the location operands that do not already agree need to be joined,
2773   // track the indices of each such location operand here.
2774   SmallDenseSet<unsigned> LocOpsToJoin;
2775 
2776   auto FirstValueIt = LiveOuts.find(BlockOrders[0]);
2777   if (FirstValueIt == LiveOuts.end())
2778     return false;
2779   const DbgValue &FirstValue = *FirstValueIt->second;
2780 
2781   for (const auto p : BlockOrders) {
2782     auto OutValIt = LiveOuts.find(p);
2783     if (OutValIt == LiveOuts.end())
2784       // If we have a predecessor not in scope, we'll never find a PHI position.
2785       return false;
2786     const DbgValue &OutVal = *OutValIt->second;
2787 
2788     // No-values cannot have locations we can join on.
2789     if (OutVal.Kind == DbgValue::NoVal)
2790       return false;
2791 
2792     // For unjoined VPHIs where we don't know the location, we definitely
2793     // can't find a join loc unless the VPHI is a backedge.
2794     if (OutVal.isUnjoinedPHI() && OutVal.BlockNo != MBB.getNumber())
2795       return false;
2796 
2797     if (!FirstValue.Properties.isJoinable(OutVal.Properties))
2798       return false;
2799 
2800     for (unsigned Idx = 0; Idx < FirstValue.getLocationOpCount(); ++Idx) {
2801       // An unjoined PHI has no defined locations, and so a shared location must
2802       // be found for every operand.
2803       if (OutVal.isUnjoinedPHI()) {
2804         LocOpsToJoin.insert(Idx);
2805         continue;
2806       }
2807       DbgOpID FirstValOp = FirstValue.getDbgOpID(Idx);
2808       DbgOpID OutValOp = OutVal.getDbgOpID(Idx);
2809       if (FirstValOp != OutValOp) {
2810         // We can never join constant ops - the ops must either both be equal
2811         // constant ops or non-const ops.
2812         if (FirstValOp.isConst() || OutValOp.isConst())
2813           return false;
2814         else
2815           LocOpsToJoin.insert(Idx);
2816       }
2817     }
2818   }
2819 
2820   SmallVector<DbgOpID> NewDbgOps;
2821 
2822   for (unsigned Idx = 0; Idx < FirstValue.getLocationOpCount(); ++Idx) {
2823     // If this op doesn't need to be joined because the values agree, use that
2824     // already-agreed value.
2825     if (!LocOpsToJoin.contains(Idx)) {
2826       NewDbgOps.push_back(FirstValue.getDbgOpID(Idx));
2827       continue;
2828     }
2829 
2830     std::optional<ValueIDNum> JoinedOpLoc =
2831         pickOperandPHILoc(Idx, MBB, LiveOuts, MOutLocs, BlockOrders);
2832 
2833     if (!JoinedOpLoc)
2834       return false;
2835 
2836     NewDbgOps.push_back(DbgOpStore.insert(*JoinedOpLoc));
2837   }
2838 
2839   OutValues.append(NewDbgOps);
2840   return true;
2841 }
2842 
2843 std::optional<ValueIDNum> InstrRefBasedLDV::pickOperandPHILoc(
2844     unsigned DbgOpIdx, const MachineBasicBlock &MBB, const LiveIdxT &LiveOuts,
2845     FuncValueTable &MOutLocs,
2846     const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
2847 
2848   // Collect a set of locations from predecessor where its live-out value can
2849   // be found.
2850   SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
2851   unsigned NumLocs = MTracker->getNumLocs();
2852 
2853   for (const auto p : BlockOrders) {
2854     auto OutValIt = LiveOuts.find(p);
2855     assert(OutValIt != LiveOuts.end());
2856     const DbgValue &OutVal = *OutValIt->second;
2857     DbgOpID OutValOpID = OutVal.getDbgOpID(DbgOpIdx);
2858     DbgOp OutValOp = DbgOpStore.find(OutValOpID);
2859     assert(!OutValOp.IsConst);
2860 
2861     // Create new empty vector of locations.
2862     Locs.resize(Locs.size() + 1);
2863 
2864     // If the live-in value is a def, find the locations where that value is
2865     // present. Do the same for VPHIs where we know the VPHI value.
2866     if (OutVal.Kind == DbgValue::Def ||
2867         (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() &&
2868          !OutValOp.isUndef())) {
2869       ValueIDNum ValToLookFor = OutValOp.ID;
2870       // Search the live-outs of the predecessor for the specified value.
2871       for (unsigned int I = 0; I < NumLocs; ++I) {
2872         if (MOutLocs[*p][I] == ValToLookFor)
2873           Locs.back().push_back(LocIdx(I));
2874       }
2875     } else {
2876       assert(OutVal.Kind == DbgValue::VPHI);
2877       // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e.
2878       // a value that's live-through the whole loop. (It has to be a backedge,
2879       // because a block can't dominate itself). We can accept as a PHI location
2880       // any location where the other predecessors agree, _and_ the machine
2881       // locations feed back into themselves. Therefore, add all self-looping
2882       // machine-value PHI locations.
2883       for (unsigned int I = 0; I < NumLocs; ++I) {
2884         ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I));
2885         if (MOutLocs[*p][I] == MPHI)
2886           Locs.back().push_back(LocIdx(I));
2887       }
2888     }
2889   }
2890   // We should have found locations for all predecessors, or returned.
2891   assert(Locs.size() == BlockOrders.size());
2892 
2893   // Starting with the first set of locations, take the intersection with
2894   // subsequent sets.
2895   SmallVector<LocIdx, 4> CandidateLocs = Locs[0];
2896   for (unsigned int I = 1; I < Locs.size(); ++I) {
2897     auto &LocVec = Locs[I];
2898     SmallVector<LocIdx, 4> NewCandidates;
2899     std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(),
2900                           LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin()));
2901     CandidateLocs = NewCandidates;
2902   }
2903   if (CandidateLocs.empty())
2904     return std::nullopt;
2905 
2906   // We now have a set of LocIdxes that contain the right output value in
2907   // each of the predecessors. Pick the lowest; if there's a register loc,
2908   // that'll be it.
2909   LocIdx L = *CandidateLocs.begin();
2910 
2911   // Return a PHI-value-number for the found location.
2912   ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
2913   return PHIVal;
2914 }
2915 
2916 bool InstrRefBasedLDV::vlocJoin(
2917     MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
2918     SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
2919     DbgValue &LiveIn) {
2920   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2921   bool Changed = false;
2922 
2923   // Order predecessors by RPOT order, for exploring them in that order.
2924   SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
2925 
2926   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2927     return BBToOrder[A] < BBToOrder[B];
2928   };
2929 
2930   llvm::sort(BlockOrders, Cmp);
2931 
2932   unsigned CurBlockRPONum = BBToOrder[&MBB];
2933 
2934   // Collect all the incoming DbgValues for this variable, from predecessor
2935   // live-out values.
2936   SmallVector<InValueT, 8> Values;
2937   bool Bail = false;
2938   int BackEdgesStart = 0;
2939   for (auto *p : BlockOrders) {
2940     // If the predecessor isn't in scope / to be explored, we'll never be
2941     // able to join any locations.
2942     if (!BlocksToExplore.contains(p)) {
2943       Bail = true;
2944       break;
2945     }
2946 
2947     // All Live-outs will have been initialized.
2948     DbgValue &OutLoc = *VLOCOutLocs.find(p)->second;
2949 
2950     // Keep track of where back-edges begin in the Values vector. Relies on
2951     // BlockOrders being sorted by RPO.
2952     unsigned ThisBBRPONum = BBToOrder[p];
2953     if (ThisBBRPONum < CurBlockRPONum)
2954       ++BackEdgesStart;
2955 
2956     Values.push_back(std::make_pair(p, &OutLoc));
2957   }
2958 
2959   // If there were no values, or one of the predecessors couldn't have a
2960   // value, then give up immediately. It's not safe to produce a live-in
2961   // value. Leave as whatever it was before.
2962   if (Bail || Values.size() == 0)
2963     return false;
2964 
2965   // All (non-entry) blocks have at least one non-backedge predecessor.
2966   // Pick the variable value from the first of these, to compare against
2967   // all others.
2968   const DbgValue &FirstVal = *Values[0].second;
2969 
2970   // If the old live-in value is not a PHI then either a) no PHI is needed
2971   // here, or b) we eliminated the PHI that was here. If so, we can just
2972   // propagate in the first parent's incoming value.
2973   if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) {
2974     Changed = LiveIn != FirstVal;
2975     if (Changed)
2976       LiveIn = FirstVal;
2977     return Changed;
2978   }
2979 
2980   // Scan for variable values that can never be resolved: if they have
2981   // different DIExpressions, different indirectness, or are mixed constants /
2982   // non-constants.
2983   for (const auto &V : Values) {
2984     if (!V.second->Properties.isJoinable(FirstVal.Properties))
2985       return false;
2986     if (V.second->Kind == DbgValue::NoVal)
2987       return false;
2988     if (!V.second->hasJoinableLocOps(FirstVal))
2989       return false;
2990   }
2991 
2992   // Try to eliminate this PHI. Do the incoming values all agree?
2993   bool Disagree = false;
2994   for (auto &V : Values) {
2995     if (*V.second == FirstVal)
2996       continue; // No disagreement.
2997 
2998     // If both values are not equal but have equal non-empty IDs then they refer
2999     // to the same value from different sources (e.g. one is VPHI and the other
3000     // is Def), which does not cause disagreement.
3001     if (V.second->hasIdenticalValidLocOps(FirstVal))
3002       continue;
3003 
3004     // Eliminate if a backedge feeds a VPHI back into itself.
3005     if (V.second->Kind == DbgValue::VPHI &&
3006         V.second->BlockNo == MBB.getNumber() &&
3007         // Is this a backedge?
3008         std::distance(Values.begin(), &V) >= BackEdgesStart)
3009       continue;
3010 
3011     Disagree = true;
3012   }
3013 
3014   // No disagreement -> live-through value.
3015   if (!Disagree) {
3016     Changed = LiveIn != FirstVal;
3017     if (Changed)
3018       LiveIn = FirstVal;
3019     return Changed;
3020   } else {
3021     // Otherwise use a VPHI.
3022     DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI);
3023     Changed = LiveIn != VPHI;
3024     if (Changed)
3025       LiveIn = VPHI;
3026     return Changed;
3027   }
3028 }
3029 
3030 void InstrRefBasedLDV::getBlocksForScope(
3031     const DILocation *DILoc,
3032     SmallPtrSetImpl<const MachineBasicBlock *> &BlocksToExplore,
3033     const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks) {
3034   // Get the set of "normal" in-lexical-scope blocks.
3035   LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
3036 
3037   // VarLoc LiveDebugValues tracks variable locations that are defined in
3038   // blocks not in scope. This is something we could legitimately ignore, but
3039   // lets allow it for now for the sake of coverage.
3040   BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
3041 
3042   // Storage for artificial blocks we intend to add to BlocksToExplore.
3043   DenseSet<const MachineBasicBlock *> ToAdd;
3044 
3045   // To avoid needlessly dropping large volumes of variable locations, propagate
3046   // variables through aritifical blocks, i.e. those that don't have any
3047   // instructions in scope at all. To accurately replicate VarLoc
3048   // LiveDebugValues, this means exploring all artificial successors too.
3049   // Perform a depth-first-search to enumerate those blocks.
3050   for (const auto *MBB : BlocksToExplore) {
3051     // Depth-first-search state: each node is a block and which successor
3052     // we're currently exploring.
3053     SmallVector<std::pair<const MachineBasicBlock *,
3054                           MachineBasicBlock::const_succ_iterator>,
3055                 8>
3056         DFS;
3057 
3058     // Find any artificial successors not already tracked.
3059     for (auto *succ : MBB->successors()) {
3060       if (BlocksToExplore.count(succ))
3061         continue;
3062       if (!ArtificialBlocks.count(succ))
3063         continue;
3064       ToAdd.insert(succ);
3065       DFS.push_back({succ, succ->succ_begin()});
3066     }
3067 
3068     // Search all those blocks, depth first.
3069     while (!DFS.empty()) {
3070       const MachineBasicBlock *CurBB = DFS.back().first;
3071       MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
3072       // Walk back if we've explored this blocks successors to the end.
3073       if (CurSucc == CurBB->succ_end()) {
3074         DFS.pop_back();
3075         continue;
3076       }
3077 
3078       // If the current successor is artificial and unexplored, descend into
3079       // it.
3080       if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
3081         ToAdd.insert(*CurSucc);
3082         DFS.push_back({*CurSucc, (*CurSucc)->succ_begin()});
3083         continue;
3084       }
3085 
3086       ++CurSucc;
3087     }
3088   };
3089 
3090   BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
3091 }
3092 
3093 void InstrRefBasedLDV::buildVLocValueMap(
3094     const DILocation *DILoc, const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
3095     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
3096     FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
3097     SmallVectorImpl<VLocTracker> &AllTheVLocs) {
3098   // This method is much like buildMLocValueMap: but focuses on a single
3099   // LexicalScope at a time. Pick out a set of blocks and variables that are
3100   // to have their value assignments solved, then run our dataflow algorithm
3101   // until a fixedpoint is reached.
3102   std::priority_queue<unsigned int, std::vector<unsigned int>,
3103                       std::greater<unsigned int>>
3104       Worklist, Pending;
3105   SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
3106 
3107   // The set of blocks we'll be examining.
3108   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
3109 
3110   // The order in which to examine them (RPO).
3111   SmallVector<MachineBasicBlock *, 8> BlockOrders;
3112 
3113   // RPO ordering function.
3114   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3115     return BBToOrder[A] < BBToOrder[B];
3116   };
3117 
3118   getBlocksForScope(DILoc, BlocksToExplore, AssignBlocks);
3119 
3120   // Single block scope: not interesting! No propagation at all. Note that
3121   // this could probably go above ArtificialBlocks without damage, but
3122   // that then produces output differences from original-live-debug-values,
3123   // which propagates from a single block into many artificial ones.
3124   if (BlocksToExplore.size() == 1)
3125     return;
3126 
3127   // Convert a const set to a non-const set. LexicalScopes
3128   // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones.
3129   // (Neither of them mutate anything).
3130   SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore;
3131   for (const auto *MBB : BlocksToExplore)
3132     MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB));
3133 
3134   // Picks out relevants blocks RPO order and sort them.
3135   for (const auto *MBB : BlocksToExplore)
3136     BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
3137 
3138   llvm::sort(BlockOrders, Cmp);
3139   unsigned NumBlocks = BlockOrders.size();
3140 
3141   // Allocate some vectors for storing the live ins and live outs. Large.
3142   SmallVector<DbgValue, 32> LiveIns, LiveOuts;
3143   LiveIns.reserve(NumBlocks);
3144   LiveOuts.reserve(NumBlocks);
3145 
3146   // Initialize all values to start as NoVals. This signifies "it's live
3147   // through, but we don't know what it is".
3148   DbgValueProperties EmptyProperties(EmptyExpr, false, false);
3149   for (unsigned int I = 0; I < NumBlocks; ++I) {
3150     DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
3151     LiveIns.push_back(EmptyDbgValue);
3152     LiveOuts.push_back(EmptyDbgValue);
3153   }
3154 
3155   // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
3156   // vlocJoin.
3157   LiveIdxT LiveOutIdx, LiveInIdx;
3158   LiveOutIdx.reserve(NumBlocks);
3159   LiveInIdx.reserve(NumBlocks);
3160   for (unsigned I = 0; I < NumBlocks; ++I) {
3161     LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
3162     LiveInIdx[BlockOrders[I]] = &LiveIns[I];
3163   }
3164 
3165   // Loop over each variable and place PHIs for it, then propagate values
3166   // between blocks. This keeps the locality of working on one lexical scope at
3167   // at time, but avoids re-processing variable values because some other
3168   // variable has been assigned.
3169   for (const auto &Var : VarsWeCareAbout) {
3170     // Re-initialize live-ins and live-outs, to clear the remains of previous
3171     // variables live-ins / live-outs.
3172     for (unsigned int I = 0; I < NumBlocks; ++I) {
3173       DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
3174       LiveIns[I] = EmptyDbgValue;
3175       LiveOuts[I] = EmptyDbgValue;
3176     }
3177 
3178     // Place PHIs for variable values, using the LLVM IDF calculator.
3179     // Collect the set of blocks where variables are def'd.
3180     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
3181     for (const MachineBasicBlock *ExpMBB : BlocksToExplore) {
3182       auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars;
3183       if (TransferFunc.contains(Var))
3184         DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB));
3185     }
3186 
3187     SmallVector<MachineBasicBlock *, 32> PHIBlocks;
3188 
3189     // Request the set of PHIs we should insert for this variable. If there's
3190     // only one value definition, things are very simple.
3191     if (DefBlocks.size() == 1) {
3192       placePHIsForSingleVarDefinition(MutBlocksToExplore, *DefBlocks.begin(),
3193                                       AllTheVLocs, Var, Output);
3194       continue;
3195     }
3196 
3197     // Otherwise: we need to place PHIs through SSA and propagate values.
3198     BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks);
3199 
3200     // Insert PHIs into the per-block live-in tables for this variable.
3201     for (MachineBasicBlock *PHIMBB : PHIBlocks) {
3202       unsigned BlockNo = PHIMBB->getNumber();
3203       DbgValue *LiveIn = LiveInIdx[PHIMBB];
3204       *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI);
3205     }
3206 
3207     for (auto *MBB : BlockOrders) {
3208       Worklist.push(BBToOrder[MBB]);
3209       OnWorklist.insert(MBB);
3210     }
3211 
3212     // Iterate over all the blocks we selected, propagating the variables value.
3213     // This loop does two things:
3214     //  * Eliminates un-necessary VPHIs in vlocJoin,
3215     //  * Evaluates the blocks transfer function (i.e. variable assignments) and
3216     //    stores the result to the blocks live-outs.
3217     // Always evaluate the transfer function on the first iteration, and when
3218     // the live-ins change thereafter.
3219     bool FirstTrip = true;
3220     while (!Worklist.empty() || !Pending.empty()) {
3221       while (!Worklist.empty()) {
3222         auto *MBB = OrderToBB[Worklist.top()];
3223         CurBB = MBB->getNumber();
3224         Worklist.pop();
3225 
3226         auto LiveInsIt = LiveInIdx.find(MBB);
3227         assert(LiveInsIt != LiveInIdx.end());
3228         DbgValue *LiveIn = LiveInsIt->second;
3229 
3230         // Join values from predecessors. Updates LiveInIdx, and writes output
3231         // into JoinedInLocs.
3232         bool InLocsChanged =
3233             vlocJoin(*MBB, LiveOutIdx, BlocksToExplore, *LiveIn);
3234 
3235         SmallVector<const MachineBasicBlock *, 8> Preds;
3236         for (const auto *Pred : MBB->predecessors())
3237           Preds.push_back(Pred);
3238 
3239         // If this block's live-in value is a VPHI, try to pick a machine-value
3240         // for it. This makes the machine-value available and propagated
3241         // through all blocks by the time value propagation finishes. We can't
3242         // do this any earlier as it needs to read the block live-outs.
3243         if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) {
3244           // There's a small possibility that on a preceeding path, a VPHI is
3245           // eliminated and transitions from VPHI-with-location to
3246           // live-through-value. As a result, the selected location of any VPHI
3247           // might change, so we need to re-compute it on each iteration.
3248           SmallVector<DbgOpID> JoinedOps;
3249 
3250           if (pickVPHILoc(JoinedOps, *MBB, LiveOutIdx, MOutLocs, Preds)) {
3251             bool NewLocPicked = !equal(LiveIn->getDbgOpIDs(), JoinedOps);
3252             InLocsChanged |= NewLocPicked;
3253             if (NewLocPicked)
3254               LiveIn->setDbgOpIDs(JoinedOps);
3255           }
3256         }
3257 
3258         if (!InLocsChanged && !FirstTrip)
3259           continue;
3260 
3261         DbgValue *LiveOut = LiveOutIdx[MBB];
3262         bool OLChanged = false;
3263 
3264         // Do transfer function.
3265         auto &VTracker = AllTheVLocs[MBB->getNumber()];
3266         auto TransferIt = VTracker.Vars.find(Var);
3267         if (TransferIt != VTracker.Vars.end()) {
3268           // Erase on empty transfer (DBG_VALUE $noreg).
3269           if (TransferIt->second.Kind == DbgValue::Undef) {
3270             DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal);
3271             if (*LiveOut != NewVal) {
3272               *LiveOut = NewVal;
3273               OLChanged = true;
3274             }
3275           } else {
3276             // Insert new variable value; or overwrite.
3277             if (*LiveOut != TransferIt->second) {
3278               *LiveOut = TransferIt->second;
3279               OLChanged = true;
3280             }
3281           }
3282         } else {
3283           // Just copy live-ins to live-outs, for anything not transferred.
3284           if (*LiveOut != *LiveIn) {
3285             *LiveOut = *LiveIn;
3286             OLChanged = true;
3287           }
3288         }
3289 
3290         // If no live-out value changed, there's no need to explore further.
3291         if (!OLChanged)
3292           continue;
3293 
3294         // We should visit all successors. Ensure we'll visit any non-backedge
3295         // successors during this dataflow iteration; book backedge successors
3296         // to be visited next time around.
3297         for (auto *s : MBB->successors()) {
3298           // Ignore out of scope / not-to-be-explored successors.
3299           if (!LiveInIdx.contains(s))
3300             continue;
3301 
3302           if (BBToOrder[s] > BBToOrder[MBB]) {
3303             if (OnWorklist.insert(s).second)
3304               Worklist.push(BBToOrder[s]);
3305           } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
3306             Pending.push(BBToOrder[s]);
3307           }
3308         }
3309       }
3310       Worklist.swap(Pending);
3311       std::swap(OnWorklist, OnPending);
3312       OnPending.clear();
3313       assert(Pending.empty());
3314       FirstTrip = false;
3315     }
3316 
3317     // Save live-ins to output vector. Ignore any that are still marked as being
3318     // VPHIs with no location -- those are variables that we know the value of,
3319     // but are not actually available in the register file.
3320     for (auto *MBB : BlockOrders) {
3321       DbgValue *BlockLiveIn = LiveInIdx[MBB];
3322       if (BlockLiveIn->Kind == DbgValue::NoVal)
3323         continue;
3324       if (BlockLiveIn->isUnjoinedPHI())
3325         continue;
3326       if (BlockLiveIn->Kind == DbgValue::VPHI)
3327         BlockLiveIn->Kind = DbgValue::Def;
3328       assert(BlockLiveIn->Properties.DIExpr->getFragmentInfo() ==
3329              Var.getFragment() && "Fragment info missing during value prop");
3330       Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn));
3331     }
3332   } // Per-variable loop.
3333 
3334   BlockOrders.clear();
3335   BlocksToExplore.clear();
3336 }
3337 
3338 void InstrRefBasedLDV::placePHIsForSingleVarDefinition(
3339     const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
3340     MachineBasicBlock *AssignMBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
3341     const DebugVariable &Var, LiveInsT &Output) {
3342   // If there is a single definition of the variable, then working out it's
3343   // value everywhere is very simple: it's every block dominated by the
3344   // definition. At the dominance frontier, the usual algorithm would:
3345   //  * Place PHIs,
3346   //  * Propagate values into them,
3347   //  * Find there's no incoming variable value from the other incoming branches
3348   //    of the dominance frontier,
3349   //  * Specify there's no variable value in blocks past the frontier.
3350   // This is a common case, hence it's worth special-casing it.
3351 
3352   // Pick out the variables value from the block transfer function.
3353   VLocTracker &VLocs = AllTheVLocs[AssignMBB->getNumber()];
3354   auto ValueIt = VLocs.Vars.find(Var);
3355   const DbgValue &Value = ValueIt->second;
3356 
3357   // If it's an explicit assignment of "undef", that means there is no location
3358   // anyway, anywhere.
3359   if (Value.Kind == DbgValue::Undef)
3360     return;
3361 
3362   // Assign the variable value to entry to each dominated block that's in scope.
3363   // Skip the definition block -- it's assigned the variable value in the middle
3364   // of the block somewhere.
3365   for (auto *ScopeBlock : InScopeBlocks) {
3366     if (!DomTree->properlyDominates(AssignMBB, ScopeBlock))
3367       continue;
3368 
3369     Output[ScopeBlock->getNumber()].push_back({Var, Value});
3370   }
3371 
3372   // All blocks that aren't dominated have no live-in value, thus no variable
3373   // value will be given to them.
3374 }
3375 
3376 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3377 void InstrRefBasedLDV::dump_mloc_transfer(
3378     const MLocTransferMap &mloc_transfer) const {
3379   for (const auto &P : mloc_transfer) {
3380     std::string foo = MTracker->LocIdxToName(P.first);
3381     std::string bar = MTracker->IDAsString(P.second);
3382     dbgs() << "Loc " << foo << " --> " << bar << "\n";
3383   }
3384 }
3385 #endif
3386 
3387 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
3388   // Build some useful data structures.
3389 
3390   LLVMContext &Context = MF.getFunction().getContext();
3391   EmptyExpr = DIExpression::get(Context, {});
3392 
3393   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
3394     if (const DebugLoc &DL = MI.getDebugLoc())
3395       return DL.getLine() != 0;
3396     return false;
3397   };
3398   // Collect a set of all the artificial blocks.
3399   for (auto &MBB : MF)
3400     if (none_of(MBB.instrs(), hasNonArtificialLocation))
3401       ArtificialBlocks.insert(&MBB);
3402 
3403   // Compute mappings of block <=> RPO order.
3404   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
3405   unsigned int RPONumber = 0;
3406   auto processMBB = [&](MachineBasicBlock *MBB) {
3407     OrderToBB[RPONumber] = MBB;
3408     BBToOrder[MBB] = RPONumber;
3409     BBNumToRPO[MBB->getNumber()] = RPONumber;
3410     ++RPONumber;
3411   };
3412   for (MachineBasicBlock *MBB : RPOT)
3413     processMBB(MBB);
3414   for (MachineBasicBlock &MBB : MF)
3415     if (!BBToOrder.contains(&MBB))
3416       processMBB(&MBB);
3417 
3418   // Order value substitutions by their "source" operand pair, for quick lookup.
3419   llvm::sort(MF.DebugValueSubstitutions);
3420 
3421 #ifdef EXPENSIVE_CHECKS
3422   // As an expensive check, test whether there are any duplicate substitution
3423   // sources in the collection.
3424   if (MF.DebugValueSubstitutions.size() > 2) {
3425     for (auto It = MF.DebugValueSubstitutions.begin();
3426          It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
3427       assert(It->Src != std::next(It)->Src && "Duplicate variable location "
3428                                               "substitution seen");
3429     }
3430   }
3431 #endif
3432 }
3433 
3434 // Produce an "ejection map" for blocks, i.e., what's the highest-numbered
3435 // lexical scope it's used in. When exploring in DFS order and we pass that
3436 // scope, the block can be processed and any tracking information freed.
3437 void InstrRefBasedLDV::makeDepthFirstEjectionMap(
3438     SmallVectorImpl<unsigned> &EjectionMap,
3439     const ScopeToDILocT &ScopeToDILocation,
3440     ScopeToAssignBlocksT &ScopeToAssignBlocks) {
3441   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
3442   SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
3443   auto *TopScope = LS.getCurrentFunctionScope();
3444 
3445   // Unlike lexical scope explorers, we explore in reverse order, to find the
3446   // "last" lexical scope used for each block early.
3447   WorkStack.push_back({TopScope, TopScope->getChildren().size() - 1});
3448 
3449   while (!WorkStack.empty()) {
3450     auto &ScopePosition = WorkStack.back();
3451     LexicalScope *WS = ScopePosition.first;
3452     ssize_t ChildNum = ScopePosition.second--;
3453 
3454     const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
3455     if (ChildNum >= 0) {
3456       // If ChildNum is positive, there are remaining children to explore.
3457       // Push the child and its children-count onto the stack.
3458       auto &ChildScope = Children[ChildNum];
3459       WorkStack.push_back(
3460           std::make_pair(ChildScope, ChildScope->getChildren().size() - 1));
3461     } else {
3462       WorkStack.pop_back();
3463 
3464       // We've explored all children and any later blocks: examine all blocks
3465       // in our scope. If they haven't yet had an ejection number set, then
3466       // this scope will be the last to use that block.
3467       auto DILocationIt = ScopeToDILocation.find(WS);
3468       if (DILocationIt != ScopeToDILocation.end()) {
3469         getBlocksForScope(DILocationIt->second, BlocksToExplore,
3470                           ScopeToAssignBlocks.find(WS)->second);
3471         for (const auto *MBB : BlocksToExplore) {
3472           unsigned BBNum = MBB->getNumber();
3473           if (EjectionMap[BBNum] == 0)
3474             EjectionMap[BBNum] = WS->getDFSOut();
3475         }
3476 
3477         BlocksToExplore.clear();
3478       }
3479     }
3480   }
3481 }
3482 
3483 bool InstrRefBasedLDV::depthFirstVLocAndEmit(
3484     unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation,
3485     const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToAssignBlocks,
3486     LiveInsT &Output, FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
3487     SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF,
3488     DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
3489     const TargetPassConfig &TPC) {
3490   TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
3491   unsigned NumLocs = MTracker->getNumLocs();
3492   VTracker = nullptr;
3493 
3494   // No scopes? No variable locations.
3495   if (!LS.getCurrentFunctionScope())
3496     return false;
3497 
3498   // Build map from block number to the last scope that uses the block.
3499   SmallVector<unsigned, 16> EjectionMap;
3500   EjectionMap.resize(MaxNumBlocks, 0);
3501   makeDepthFirstEjectionMap(EjectionMap, ScopeToDILocation,
3502                             ScopeToAssignBlocks);
3503 
3504   // Helper lambda for ejecting a block -- if nothing is going to use the block,
3505   // we can translate the variable location information into DBG_VALUEs and then
3506   // free all of InstrRefBasedLDV's data structures.
3507   auto EjectBlock = [&](MachineBasicBlock &MBB) -> void {
3508     unsigned BBNum = MBB.getNumber();
3509     AllTheVLocs[BBNum].clear();
3510 
3511     // Prime the transfer-tracker, and then step through all the block
3512     // instructions, installing transfers.
3513     MTracker->reset();
3514     MTracker->loadFromArray(MInLocs[MBB], BBNum);
3515     TTracker->loadInlocs(MBB, MInLocs[MBB], DbgOpStore, Output[BBNum], NumLocs);
3516 
3517     CurBB = BBNum;
3518     CurInst = 1;
3519     for (auto &MI : MBB) {
3520       process(MI, &MOutLocs, &MInLocs);
3521       TTracker->checkInstForNewValues(CurInst, MI.getIterator());
3522       ++CurInst;
3523     }
3524 
3525     // Free machine-location tables for this block.
3526     MInLocs.ejectTableForBlock(MBB);
3527     MOutLocs.ejectTableForBlock(MBB);
3528     // We don't need live-in variable values for this block either.
3529     Output[BBNum].clear();
3530     AllTheVLocs[BBNum].clear();
3531   };
3532 
3533   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
3534   SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
3535   WorkStack.push_back({LS.getCurrentFunctionScope(), 0});
3536   unsigned HighestDFSIn = 0;
3537 
3538   // Proceed to explore in depth first order.
3539   while (!WorkStack.empty()) {
3540     auto &ScopePosition = WorkStack.back();
3541     LexicalScope *WS = ScopePosition.first;
3542     ssize_t ChildNum = ScopePosition.second++;
3543 
3544     // We obesrve scopes with children twice here, once descending in, once
3545     // ascending out of the scope nest. Use HighestDFSIn as a ratchet to ensure
3546     // we don't process a scope twice. Additionally, ignore scopes that don't
3547     // have a DILocation -- by proxy, this means we never tracked any variable
3548     // assignments in that scope.
3549     auto DILocIt = ScopeToDILocation.find(WS);
3550     if (HighestDFSIn <= WS->getDFSIn() && DILocIt != ScopeToDILocation.end()) {
3551       const DILocation *DILoc = DILocIt->second;
3552       auto &VarsWeCareAbout = ScopeToVars.find(WS)->second;
3553       auto &BlocksInScope = ScopeToAssignBlocks.find(WS)->second;
3554 
3555       buildVLocValueMap(DILoc, VarsWeCareAbout, BlocksInScope, Output, MOutLocs,
3556                         MInLocs, AllTheVLocs);
3557     }
3558 
3559     HighestDFSIn = std::max(HighestDFSIn, WS->getDFSIn());
3560 
3561     // Descend into any scope nests.
3562     const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
3563     if (ChildNum < (ssize_t)Children.size()) {
3564       // There are children to explore -- push onto stack and continue.
3565       auto &ChildScope = Children[ChildNum];
3566       WorkStack.push_back(std::make_pair(ChildScope, 0));
3567     } else {
3568       WorkStack.pop_back();
3569 
3570       // We've explored a leaf, or have explored all the children of a scope.
3571       // Try to eject any blocks where this is the last scope it's relevant to.
3572       auto DILocationIt = ScopeToDILocation.find(WS);
3573       if (DILocationIt == ScopeToDILocation.end())
3574         continue;
3575 
3576       getBlocksForScope(DILocationIt->second, BlocksToExplore,
3577                         ScopeToAssignBlocks.find(WS)->second);
3578       for (const auto *MBB : BlocksToExplore)
3579         if (WS->getDFSOut() == EjectionMap[MBB->getNumber()])
3580           EjectBlock(const_cast<MachineBasicBlock &>(*MBB));
3581 
3582       BlocksToExplore.clear();
3583     }
3584   }
3585 
3586   // Some artificial blocks may not have been ejected, meaning they're not
3587   // connected to an actual legitimate scope. This can technically happen
3588   // with things like the entry block. In theory, we shouldn't need to do
3589   // anything for such out-of-scope blocks, but for the sake of being similar
3590   // to VarLocBasedLDV, eject these too.
3591   for (auto *MBB : ArtificialBlocks)
3592     if (MInLocs.hasTableFor(*MBB))
3593       EjectBlock(*MBB);
3594 
3595   return emitTransfers(AllVarsNumbering);
3596 }
3597 
3598 bool InstrRefBasedLDV::emitTransfers(
3599     DenseMap<DebugVariable, unsigned> &AllVarsNumbering) {
3600   // Go through all the transfers recorded in the TransferTracker -- this is
3601   // both the live-ins to a block, and any movements of values that happen
3602   // in the middle.
3603   for (const auto &P : TTracker->Transfers) {
3604     // We have to insert DBG_VALUEs in a consistent order, otherwise they
3605     // appear in DWARF in different orders. Use the order that they appear
3606     // when walking through each block / each instruction, stored in
3607     // AllVarsNumbering.
3608     SmallVector<std::pair<unsigned, MachineInstr *>> Insts;
3609     for (MachineInstr *MI : P.Insts) {
3610       DebugVariable Var(MI->getDebugVariable(), MI->getDebugExpression(),
3611                         MI->getDebugLoc()->getInlinedAt());
3612       Insts.emplace_back(AllVarsNumbering.find(Var)->second, MI);
3613     }
3614     llvm::sort(Insts, llvm::less_first());
3615 
3616     // Insert either before or after the designated point...
3617     if (P.MBB) {
3618       MachineBasicBlock &MBB = *P.MBB;
3619       for (const auto &Pair : Insts)
3620         MBB.insert(P.Pos, Pair.second);
3621     } else {
3622       // Terminators, like tail calls, can clobber things. Don't try and place
3623       // transfers after them.
3624       if (P.Pos->isTerminator())
3625         continue;
3626 
3627       MachineBasicBlock &MBB = *P.Pos->getParent();
3628       for (const auto &Pair : Insts)
3629         MBB.insertAfterBundle(P.Pos, Pair.second);
3630     }
3631   }
3632 
3633   return TTracker->Transfers.size() != 0;
3634 }
3635 
3636 /// Calculate the liveness information for the given machine function and
3637 /// extend ranges across basic blocks.
3638 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
3639                                     MachineDominatorTree *DomTree,
3640                                     TargetPassConfig *TPC,
3641                                     unsigned InputBBLimit,
3642                                     unsigned InputDbgValLimit) {
3643   // No subprogram means this function contains no debuginfo.
3644   if (!MF.getFunction().getSubprogram())
3645     return false;
3646 
3647   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
3648   this->TPC = TPC;
3649 
3650   this->DomTree = DomTree;
3651   TRI = MF.getSubtarget().getRegisterInfo();
3652   MRI = &MF.getRegInfo();
3653   TII = MF.getSubtarget().getInstrInfo();
3654   TFI = MF.getSubtarget().getFrameLowering();
3655   TFI->getCalleeSaves(MF, CalleeSavedRegs);
3656   MFI = &MF.getFrameInfo();
3657   LS.initialize(MF);
3658 
3659   const auto &STI = MF.getSubtarget();
3660   AdjustsStackInCalls = MFI->adjustsStack() &&
3661                         STI.getFrameLowering()->stackProbeFunctionModifiesSP();
3662   if (AdjustsStackInCalls)
3663     StackProbeSymbolName = STI.getTargetLowering()->getStackProbeSymbolName(MF);
3664 
3665   MTracker =
3666       new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
3667   VTracker = nullptr;
3668   TTracker = nullptr;
3669 
3670   SmallVector<MLocTransferMap, 32> MLocTransfer;
3671   SmallVector<VLocTracker, 8> vlocs;
3672   LiveInsT SavedLiveIns;
3673 
3674   int MaxNumBlocks = -1;
3675   for (auto &MBB : MF)
3676     MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
3677   assert(MaxNumBlocks >= 0);
3678   ++MaxNumBlocks;
3679 
3680   initialSetup(MF);
3681 
3682   MLocTransfer.resize(MaxNumBlocks);
3683   vlocs.resize(MaxNumBlocks, VLocTracker(OverlapFragments, EmptyExpr));
3684   SavedLiveIns.resize(MaxNumBlocks);
3685 
3686   produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
3687 
3688   // Allocate and initialize two array-of-arrays for the live-in and live-out
3689   // machine values. The outer dimension is the block number; while the inner
3690   // dimension is a LocIdx from MLocTracker.
3691   unsigned NumLocs = MTracker->getNumLocs();
3692   FuncValueTable MOutLocs(MaxNumBlocks, NumLocs);
3693   FuncValueTable MInLocs(MaxNumBlocks, NumLocs);
3694 
3695   // Solve the machine value dataflow problem using the MLocTransfer function,
3696   // storing the computed live-ins / live-outs into the array-of-arrays. We use
3697   // both live-ins and live-outs for decision making in the variable value
3698   // dataflow problem.
3699   buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer);
3700 
3701   // Patch up debug phi numbers, turning unknown block-live-in values into
3702   // either live-through machine values, or PHIs.
3703   for (auto &DBG_PHI : DebugPHINumToValue) {
3704     // Identify unresolved block-live-ins.
3705     if (!DBG_PHI.ValueRead)
3706       continue;
3707 
3708     ValueIDNum &Num = *DBG_PHI.ValueRead;
3709     if (!Num.isPHI())
3710       continue;
3711 
3712     unsigned BlockNo = Num.getBlock();
3713     LocIdx LocNo = Num.getLoc();
3714     ValueIDNum ResolvedValue = MInLocs[BlockNo][LocNo.asU64()];
3715     // If there is no resolved value for this live-in then it is not directly
3716     // reachable from the entry block -- model it as a PHI on entry to this
3717     // block, which means we leave the ValueIDNum unchanged.
3718     if (ResolvedValue != ValueIDNum::EmptyValue)
3719       Num = ResolvedValue;
3720   }
3721   // Later, we'll be looking up ranges of instruction numbers.
3722   llvm::sort(DebugPHINumToValue);
3723 
3724   // Walk back through each block / instruction, collecting DBG_VALUE
3725   // instructions and recording what machine value their operands refer to.
3726   for (auto &OrderPair : OrderToBB) {
3727     MachineBasicBlock &MBB = *OrderPair.second;
3728     CurBB = MBB.getNumber();
3729     VTracker = &vlocs[CurBB];
3730     VTracker->MBB = &MBB;
3731     MTracker->loadFromArray(MInLocs[MBB], CurBB);
3732     CurInst = 1;
3733     for (auto &MI : MBB) {
3734       process(MI, &MOutLocs, &MInLocs);
3735       ++CurInst;
3736     }
3737     MTracker->reset();
3738   }
3739 
3740   // Number all variables in the order that they appear, to be used as a stable
3741   // insertion order later.
3742   DenseMap<DebugVariable, unsigned> AllVarsNumbering;
3743 
3744   // Map from one LexicalScope to all the variables in that scope.
3745   ScopeToVarsT ScopeToVars;
3746 
3747   // Map from One lexical scope to all blocks where assignments happen for
3748   // that scope.
3749   ScopeToAssignBlocksT ScopeToAssignBlocks;
3750 
3751   // Store map of DILocations that describes scopes.
3752   ScopeToDILocT ScopeToDILocation;
3753 
3754   // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
3755   // the order is unimportant, it just has to be stable.
3756   unsigned VarAssignCount = 0;
3757   for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
3758     auto *MBB = OrderToBB[I];
3759     auto *VTracker = &vlocs[MBB->getNumber()];
3760     // Collect each variable with a DBG_VALUE in this block.
3761     for (auto &idx : VTracker->Vars) {
3762       const auto &Var = idx.first;
3763       const DILocation *ScopeLoc = VTracker->Scopes[Var];
3764       assert(ScopeLoc != nullptr);
3765       auto *Scope = LS.findLexicalScope(ScopeLoc);
3766 
3767       // No insts in scope -> shouldn't have been recorded.
3768       assert(Scope != nullptr);
3769 
3770       AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
3771       ScopeToVars[Scope].insert(Var);
3772       ScopeToAssignBlocks[Scope].insert(VTracker->MBB);
3773       ScopeToDILocation[Scope] = ScopeLoc;
3774       ++VarAssignCount;
3775     }
3776   }
3777 
3778   bool Changed = false;
3779 
3780   // If we have an extremely large number of variable assignments and blocks,
3781   // bail out at this point. We've burnt some time doing analysis already,
3782   // however we should cut our losses.
3783   if ((unsigned)MaxNumBlocks > InputBBLimit &&
3784       VarAssignCount > InputDbgValLimit) {
3785     LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
3786                       << " has " << MaxNumBlocks << " basic blocks and "
3787                       << VarAssignCount
3788                       << " variable assignments, exceeding limits.\n");
3789   } else {
3790     // Optionally, solve the variable value problem and emit to blocks by using
3791     // a lexical-scope-depth search. It should be functionally identical to
3792     // the "else" block of this condition.
3793     Changed = depthFirstVLocAndEmit(
3794         MaxNumBlocks, ScopeToDILocation, ScopeToVars, ScopeToAssignBlocks,
3795         SavedLiveIns, MOutLocs, MInLocs, vlocs, MF, AllVarsNumbering, *TPC);
3796   }
3797 
3798   delete MTracker;
3799   delete TTracker;
3800   MTracker = nullptr;
3801   VTracker = nullptr;
3802   TTracker = nullptr;
3803 
3804   ArtificialBlocks.clear();
3805   OrderToBB.clear();
3806   BBToOrder.clear();
3807   BBNumToRPO.clear();
3808   DebugInstrNumToInstr.clear();
3809   DebugPHINumToValue.clear();
3810   OverlapFragments.clear();
3811   SeenFragments.clear();
3812   SeenDbgPHIs.clear();
3813   DbgOpStore.clear();
3814 
3815   return Changed;
3816 }
3817 
3818 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
3819   return new InstrRefBasedLDV();
3820 }
3821 
3822 namespace {
3823 class LDVSSABlock;
3824 class LDVSSAUpdater;
3825 
3826 // Pick a type to identify incoming block values as we construct SSA. We
3827 // can't use anything more robust than an integer unfortunately, as SSAUpdater
3828 // expects to zero-initialize the type.
3829 typedef uint64_t BlockValueNum;
3830 
3831 /// Represents an SSA PHI node for the SSA updater class. Contains the block
3832 /// this PHI is in, the value number it would have, and the expected incoming
3833 /// values from parent blocks.
3834 class LDVSSAPhi {
3835 public:
3836   SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
3837   LDVSSABlock *ParentBlock;
3838   BlockValueNum PHIValNum;
3839   LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
3840       : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
3841 
3842   LDVSSABlock *getParent() { return ParentBlock; }
3843 };
3844 
3845 /// Thin wrapper around a block predecessor iterator. Only difference from a
3846 /// normal block iterator is that it dereferences to an LDVSSABlock.
3847 class LDVSSABlockIterator {
3848 public:
3849   MachineBasicBlock::pred_iterator PredIt;
3850   LDVSSAUpdater &Updater;
3851 
3852   LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
3853                       LDVSSAUpdater &Updater)
3854       : PredIt(PredIt), Updater(Updater) {}
3855 
3856   bool operator!=(const LDVSSABlockIterator &OtherIt) const {
3857     return OtherIt.PredIt != PredIt;
3858   }
3859 
3860   LDVSSABlockIterator &operator++() {
3861     ++PredIt;
3862     return *this;
3863   }
3864 
3865   LDVSSABlock *operator*();
3866 };
3867 
3868 /// Thin wrapper around a block for SSA Updater interface. Necessary because
3869 /// we need to track the PHI value(s) that we may have observed as necessary
3870 /// in this block.
3871 class LDVSSABlock {
3872 public:
3873   MachineBasicBlock &BB;
3874   LDVSSAUpdater &Updater;
3875   using PHIListT = SmallVector<LDVSSAPhi, 1>;
3876   /// List of PHIs in this block. There should only ever be one.
3877   PHIListT PHIList;
3878 
3879   LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
3880       : BB(BB), Updater(Updater) {}
3881 
3882   LDVSSABlockIterator succ_begin() {
3883     return LDVSSABlockIterator(BB.succ_begin(), Updater);
3884   }
3885 
3886   LDVSSABlockIterator succ_end() {
3887     return LDVSSABlockIterator(BB.succ_end(), Updater);
3888   }
3889 
3890   /// SSAUpdater has requested a PHI: create that within this block record.
3891   LDVSSAPhi *newPHI(BlockValueNum Value) {
3892     PHIList.emplace_back(Value, this);
3893     return &PHIList.back();
3894   }
3895 
3896   /// SSAUpdater wishes to know what PHIs already exist in this block.
3897   PHIListT &phis() { return PHIList; }
3898 };
3899 
3900 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
3901 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
3902 // SSAUpdaterTraits<LDVSSAUpdater>.
3903 class LDVSSAUpdater {
3904 public:
3905   /// Map of value numbers to PHI records.
3906   DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
3907   /// Map of which blocks generate Undef values -- blocks that are not
3908   /// dominated by any Def.
3909   DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
3910   /// Map of machine blocks to our own records of them.
3911   DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
3912   /// Machine location where any PHI must occur.
3913   LocIdx Loc;
3914   /// Table of live-in machine value numbers for blocks / locations.
3915   const FuncValueTable &MLiveIns;
3916 
3917   LDVSSAUpdater(LocIdx L, const FuncValueTable &MLiveIns)
3918       : Loc(L), MLiveIns(MLiveIns) {}
3919 
3920   void reset() {
3921     for (auto &Block : BlockMap)
3922       delete Block.second;
3923 
3924     PHIs.clear();
3925     UndefMap.clear();
3926     BlockMap.clear();
3927   }
3928 
3929   ~LDVSSAUpdater() { reset(); }
3930 
3931   /// For a given MBB, create a wrapper block for it. Stores it in the
3932   /// LDVSSAUpdater block map.
3933   LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
3934     auto it = BlockMap.find(BB);
3935     if (it == BlockMap.end()) {
3936       BlockMap[BB] = new LDVSSABlock(*BB, *this);
3937       it = BlockMap.find(BB);
3938     }
3939     return it->second;
3940   }
3941 
3942   /// Find the live-in value number for the given block. Looks up the value at
3943   /// the PHI location on entry.
3944   BlockValueNum getValue(LDVSSABlock *LDVBB) {
3945     return MLiveIns[LDVBB->BB][Loc.asU64()].asU64();
3946   }
3947 };
3948 
3949 LDVSSABlock *LDVSSABlockIterator::operator*() {
3950   return Updater.getSSALDVBlock(*PredIt);
3951 }
3952 
3953 #ifndef NDEBUG
3954 
3955 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
3956   out << "SSALDVPHI " << PHI.PHIValNum;
3957   return out;
3958 }
3959 
3960 #endif
3961 
3962 } // namespace
3963 
3964 namespace llvm {
3965 
3966 /// Template specialization to give SSAUpdater access to CFG and value
3967 /// information. SSAUpdater calls methods in these traits, passing in the
3968 /// LDVSSAUpdater object, to learn about blocks and the values they define.
3969 /// It also provides methods to create PHI nodes and track them.
3970 template <> class SSAUpdaterTraits<LDVSSAUpdater> {
3971 public:
3972   using BlkT = LDVSSABlock;
3973   using ValT = BlockValueNum;
3974   using PhiT = LDVSSAPhi;
3975   using BlkSucc_iterator = LDVSSABlockIterator;
3976 
3977   // Methods to access block successors -- dereferencing to our wrapper class.
3978   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
3979   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
3980 
3981   /// Iterator for PHI operands.
3982   class PHI_iterator {
3983   private:
3984     LDVSSAPhi *PHI;
3985     unsigned Idx;
3986 
3987   public:
3988     explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
3989         : PHI(P), Idx(0) {}
3990     PHI_iterator(LDVSSAPhi *P, bool) // end iterator
3991         : PHI(P), Idx(PHI->IncomingValues.size()) {}
3992 
3993     PHI_iterator &operator++() {
3994       Idx++;
3995       return *this;
3996     }
3997     bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
3998     bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
3999 
4000     BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
4001 
4002     LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
4003   };
4004 
4005   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
4006 
4007   static inline PHI_iterator PHI_end(PhiT *PHI) {
4008     return PHI_iterator(PHI, true);
4009   }
4010 
4011   /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
4012   /// vector.
4013   static void FindPredecessorBlocks(LDVSSABlock *BB,
4014                                     SmallVectorImpl<LDVSSABlock *> *Preds) {
4015     for (MachineBasicBlock *Pred : BB->BB.predecessors())
4016       Preds->push_back(BB->Updater.getSSALDVBlock(Pred));
4017   }
4018 
4019   /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
4020   /// register. For LiveDebugValues, represents a block identified as not having
4021   /// any DBG_PHI predecessors.
4022   static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
4023     // Create a value number for this block -- it needs to be unique and in the
4024     // "undef" collection, so that we know it's not real. Use a number
4025     // representing a PHI into this block.
4026     BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
4027     Updater->UndefMap[&BB->BB] = Num;
4028     return Num;
4029   }
4030 
4031   /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
4032   /// SSAUpdater will populate it with information about incoming values. The
4033   /// value number of this PHI is whatever the  machine value number problem
4034   /// solution determined it to be. This includes non-phi values if SSAUpdater
4035   /// tries to create a PHI where the incoming values are identical.
4036   static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
4037                                    LDVSSAUpdater *Updater) {
4038     BlockValueNum PHIValNum = Updater->getValue(BB);
4039     LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
4040     Updater->PHIs[PHIValNum] = PHI;
4041     return PHIValNum;
4042   }
4043 
4044   /// AddPHIOperand - Add the specified value as an operand of the PHI for
4045   /// the specified predecessor block.
4046   static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
4047     PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
4048   }
4049 
4050   /// ValueIsPHI - Check if the instruction that defines the specified value
4051   /// is a PHI instruction.
4052   static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
4053     return Updater->PHIs.lookup(Val);
4054   }
4055 
4056   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
4057   /// operands, i.e., it was just added.
4058   static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
4059     LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
4060     if (PHI && PHI->IncomingValues.size() == 0)
4061       return PHI;
4062     return nullptr;
4063   }
4064 
4065   /// GetPHIValue - For the specified PHI instruction, return the value
4066   /// that it defines.
4067   static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
4068 };
4069 
4070 } // end namespace llvm
4071 
4072 std::optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(
4073     MachineFunction &MF, const FuncValueTable &MLiveOuts,
4074     const FuncValueTable &MLiveIns, MachineInstr &Here, uint64_t InstrNum) {
4075   // This function will be called twice per DBG_INSTR_REF, and might end up
4076   // computing lots of SSA information: memoize it.
4077   auto SeenDbgPHIIt = SeenDbgPHIs.find(std::make_pair(&Here, InstrNum));
4078   if (SeenDbgPHIIt != SeenDbgPHIs.end())
4079     return SeenDbgPHIIt->second;
4080 
4081   std::optional<ValueIDNum> Result =
4082       resolveDbgPHIsImpl(MF, MLiveOuts, MLiveIns, Here, InstrNum);
4083   SeenDbgPHIs.insert({std::make_pair(&Here, InstrNum), Result});
4084   return Result;
4085 }
4086 
4087 std::optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIsImpl(
4088     MachineFunction &MF, const FuncValueTable &MLiveOuts,
4089     const FuncValueTable &MLiveIns, MachineInstr &Here, uint64_t InstrNum) {
4090   // Pick out records of DBG_PHI instructions that have been observed. If there
4091   // are none, then we cannot compute a value number.
4092   auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
4093                                     DebugPHINumToValue.end(), InstrNum);
4094   auto LowerIt = RangePair.first;
4095   auto UpperIt = RangePair.second;
4096 
4097   // No DBG_PHI means there can be no location.
4098   if (LowerIt == UpperIt)
4099     return std::nullopt;
4100 
4101   // If any DBG_PHIs referred to a location we didn't understand, don't try to
4102   // compute a value. There might be scenarios where we could recover a value
4103   // for some range of DBG_INSTR_REFs, but at this point we can have high
4104   // confidence that we've seen a bug.
4105   auto DBGPHIRange = make_range(LowerIt, UpperIt);
4106   for (const DebugPHIRecord &DBG_PHI : DBGPHIRange)
4107     if (!DBG_PHI.ValueRead)
4108       return std::nullopt;
4109 
4110   // If there's only one DBG_PHI, then that is our value number.
4111   if (std::distance(LowerIt, UpperIt) == 1)
4112     return *LowerIt->ValueRead;
4113 
4114   // Pick out the location (physreg, slot) where any PHIs must occur. It's
4115   // technically possible for us to merge values in different registers in each
4116   // block, but highly unlikely that LLVM will generate such code after register
4117   // allocation.
4118   LocIdx Loc = *LowerIt->ReadLoc;
4119 
4120   // We have several DBG_PHIs, and a use position (the Here inst). All each
4121   // DBG_PHI does is identify a value at a program position. We can treat each
4122   // DBG_PHI like it's a Def of a value, and the use position is a Use of a
4123   // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
4124   // determine which Def is used at the Use, and any PHIs that happen along
4125   // the way.
4126   // Adapted LLVM SSA Updater:
4127   LDVSSAUpdater Updater(Loc, MLiveIns);
4128   // Map of which Def or PHI is the current value in each block.
4129   DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
4130   // Set of PHIs that we have created along the way.
4131   SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
4132 
4133   // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
4134   // for the SSAUpdater.
4135   for (const auto &DBG_PHI : DBGPHIRange) {
4136     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
4137     const ValueIDNum &Num = *DBG_PHI.ValueRead;
4138     AvailableValues.insert(std::make_pair(Block, Num.asU64()));
4139   }
4140 
4141   LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
4142   const auto &AvailIt = AvailableValues.find(HereBlock);
4143   if (AvailIt != AvailableValues.end()) {
4144     // Actually, we already know what the value is -- the Use is in the same
4145     // block as the Def.
4146     return ValueIDNum::fromU64(AvailIt->second);
4147   }
4148 
4149   // Otherwise, we must use the SSA Updater. It will identify the value number
4150   // that we are to use, and the PHIs that must happen along the way.
4151   SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
4152   BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
4153   ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
4154 
4155   // We have the number for a PHI, or possibly live-through value, to be used
4156   // at this Use. There are a number of things we have to check about it though:
4157   //  * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
4158   //    Use was not completely dominated by DBG_PHIs and we should abort.
4159   //  * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
4160   //    we've left SSA form. Validate that the inputs to each PHI are the
4161   //    expected values.
4162   //  * Is a PHI we've created actually a merging of values, or are all the
4163   //    predecessor values the same, leading to a non-PHI machine value number?
4164   //    (SSAUpdater doesn't know that either). Remap validated PHIs into the
4165   //    the ValidatedValues collection below to sort this out.
4166   DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
4167 
4168   // Define all the input DBG_PHI values in ValidatedValues.
4169   for (const auto &DBG_PHI : DBGPHIRange) {
4170     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
4171     const ValueIDNum &Num = *DBG_PHI.ValueRead;
4172     ValidatedValues.insert(std::make_pair(Block, Num));
4173   }
4174 
4175   // Sort PHIs to validate into RPO-order.
4176   SmallVector<LDVSSAPhi *, 8> SortedPHIs;
4177   for (auto &PHI : CreatedPHIs)
4178     SortedPHIs.push_back(PHI);
4179 
4180   llvm::sort(SortedPHIs, [&](LDVSSAPhi *A, LDVSSAPhi *B) {
4181     return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
4182   });
4183 
4184   for (auto &PHI : SortedPHIs) {
4185     ValueIDNum ThisBlockValueNum = MLiveIns[PHI->ParentBlock->BB][Loc.asU64()];
4186 
4187     // Are all these things actually defined?
4188     for (auto &PHIIt : PHI->IncomingValues) {
4189       // Any undef input means DBG_PHIs didn't dominate the use point.
4190       if (Updater.UndefMap.contains(&PHIIt.first->BB))
4191         return std::nullopt;
4192 
4193       ValueIDNum ValueToCheck;
4194       const ValueTable &BlockLiveOuts = MLiveOuts[PHIIt.first->BB];
4195 
4196       auto VVal = ValidatedValues.find(PHIIt.first);
4197       if (VVal == ValidatedValues.end()) {
4198         // We cross a loop, and this is a backedge. LLVMs tail duplication
4199         // happens so late that DBG_PHI instructions should not be able to
4200         // migrate into loops -- meaning we can only be live-through this
4201         // loop.
4202         ValueToCheck = ThisBlockValueNum;
4203       } else {
4204         // Does the block have as a live-out, in the location we're examining,
4205         // the value that we expect? If not, it's been moved or clobbered.
4206         ValueToCheck = VVal->second;
4207       }
4208 
4209       if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
4210         return std::nullopt;
4211     }
4212 
4213     // Record this value as validated.
4214     ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
4215   }
4216 
4217   // All the PHIs are valid: we can return what the SSAUpdater said our value
4218   // number was.
4219   return Result;
4220 }
4221