xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/LatencyPriorityQueue.cpp (revision 82d4dc0621c92e3c05a86013eec35afbdec057a5)
1  //===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file implements the LatencyPriorityQueue class, which is a
10  // SchedulingPriorityQueue that schedules using latency information to
11  // reduce the length of the critical path through the basic block.
12  //
13  //===----------------------------------------------------------------------===//
14  
15  #include "llvm/CodeGen/LatencyPriorityQueue.h"
16  #include "llvm/Config/llvm-config.h"
17  #include "llvm/Support/Debug.h"
18  #include "llvm/Support/raw_ostream.h"
19  using namespace llvm;
20  
21  #define DEBUG_TYPE "scheduler"
22  
23  bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
24    // The isScheduleHigh flag allows nodes with wraparound dependencies that
25    // cannot easily be modeled as edges with latencies to be scheduled as
26    // soon as possible in a top-down schedule.
27    if (LHS->isScheduleHigh && !RHS->isScheduleHigh)
28      return false;
29    if (!LHS->isScheduleHigh && RHS->isScheduleHigh)
30      return true;
31  
32    unsigned LHSNum = LHS->NodeNum;
33    unsigned RHSNum = RHS->NodeNum;
34  
35    // The most important heuristic is scheduling the critical path.
36    unsigned LHSLatency = PQ->getLatency(LHSNum);
37    unsigned RHSLatency = PQ->getLatency(RHSNum);
38    if (LHSLatency < RHSLatency) return true;
39    if (LHSLatency > RHSLatency) return false;
40  
41    // After that, if two nodes have identical latencies, look to see if one will
42    // unblock more other nodes than the other.
43    unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
44    unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
45    if (LHSBlocked < RHSBlocked) return true;
46    if (LHSBlocked > RHSBlocked) return false;
47  
48    // Finally, just to provide a stable ordering, use the node number as a
49    // deciding factor.
50    return RHSNum < LHSNum;
51  }
52  
53  
54  /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
55  /// of SU, return it, otherwise return null.
56  SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
57    SUnit *OnlyAvailablePred = nullptr;
58    for (const SDep &P : SU->Preds) {
59      SUnit &Pred = *P.getSUnit();
60      if (!Pred.isScheduled) {
61        // We found an available, but not scheduled, predecessor.  If it's the
62        // only one we have found, keep track of it... otherwise give up.
63        if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
64          return nullptr;
65        OnlyAvailablePred = &Pred;
66      }
67    }
68  
69    return OnlyAvailablePred;
70  }
71  
72  void LatencyPriorityQueue::push(SUnit *SU) {
73    // Look at all of the successors of this node.  Count the number of nodes that
74    // this node is the sole unscheduled node for.
75    unsigned NumNodesBlocking = 0;
76    for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
77         I != E; ++I) {
78      if (getSingleUnscheduledPred(I->getSUnit()) == SU)
79        ++NumNodesBlocking;
80    }
81    NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
82  
83    Queue.push_back(SU);
84  }
85  
86  
87  // scheduledNode - As nodes are scheduled, we look to see if there are any
88  // successor nodes that have a single unscheduled predecessor.  If so, that
89  // single predecessor has a higher priority, since scheduling it will make
90  // the node available.
91  void LatencyPriorityQueue::scheduledNode(SUnit *SU) {
92    for (const SDep &Succ : SU->Succs)
93      AdjustPriorityOfUnscheduledPreds(Succ.getSUnit());
94  }
95  
96  /// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
97  /// scheduled.  If SU is not itself available, then there is at least one
98  /// predecessor node that has not been scheduled yet.  If SU has exactly ONE
99  /// unscheduled predecessor, we want to increase its priority: it getting
100  /// scheduled will make this node available, so it is better than some other
101  /// node of the same priority that will not make a node available.
102  void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
103    if (SU->isAvailable) return;  // All preds scheduled.
104  
105    SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
106    if (!OnlyAvailablePred || !OnlyAvailablePred->isAvailable) return;
107  
108    // Okay, we found a single predecessor that is available, but not scheduled.
109    // Since it is available, it must be in the priority queue.  First remove it.
110    remove(OnlyAvailablePred);
111  
112    // Reinsert the node into the priority queue, which recomputes its
113    // NumNodesSolelyBlocking value.
114    push(OnlyAvailablePred);
115  }
116  
117  SUnit *LatencyPriorityQueue::pop() {
118    if (empty()) return nullptr;
119    std::vector<SUnit *>::iterator Best = Queue.begin();
120    for (std::vector<SUnit *>::iterator I = std::next(Queue.begin()),
121         E = Queue.end(); I != E; ++I)
122      if (Picker(*Best, *I))
123        Best = I;
124    SUnit *V = *Best;
125    if (Best != std::prev(Queue.end()))
126      std::swap(*Best, Queue.back());
127    Queue.pop_back();
128    return V;
129  }
130  
131  void LatencyPriorityQueue::remove(SUnit *SU) {
132    assert(!Queue.empty() && "Queue is empty!");
133    std::vector<SUnit *>::iterator I = find(Queue, SU);
134    assert(I != Queue.end() && "Queue doesn't contain the SU being removed!");
135    if (I != std::prev(Queue.end()))
136      std::swap(*I, Queue.back());
137    Queue.pop_back();
138  }
139  
140  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
141  LLVM_DUMP_METHOD void LatencyPriorityQueue::dump(ScheduleDAG *DAG) const {
142    dbgs() << "Latency Priority Queue\n";
143    dbgs() << "  Number of Queue Entries: " << Queue.size() << "\n";
144    for (const SUnit *SU : Queue) {
145      dbgs() << "    ";
146      DAG->dumpNode(*SU);
147    }
148  }
149  #endif
150