1 //===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // 11 // This file defines the interleaved-load-combine pass. The pass searches for 12 // ShuffleVectorInstruction that execute interleaving loads. If a matching 13 // pattern is found, it adds a combined load and further instructions in a 14 // pattern that is detectable by InterleavedAccesPass. The old instructions are 15 // left dead to be removed later. The pass is specifically designed to be 16 // executed just before InterleavedAccesPass to find any left-over instances 17 // that are not detected within former passes. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/MemoryLocation.h" 23 #include "llvm/Analysis/MemorySSA.h" 24 #include "llvm/Analysis/MemorySSAUpdater.h" 25 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/CodeGen/TargetLowering.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/LegacyPassManager.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/InitializePasses.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetMachine.h" 43 44 #include <algorithm> 45 #include <cassert> 46 #include <list> 47 48 using namespace llvm; 49 50 #define DEBUG_TYPE "interleaved-load-combine" 51 52 namespace { 53 54 /// Statistic counter 55 STATISTIC(NumInterleavedLoadCombine, "Number of combined loads"); 56 57 /// Option to disable the pass 58 static cl::opt<bool> DisableInterleavedLoadCombine( 59 "disable-" DEBUG_TYPE, cl::init(false), cl::Hidden, 60 cl::desc("Disable combining of interleaved loads")); 61 62 struct VectorInfo; 63 64 struct InterleavedLoadCombineImpl { 65 public: 66 InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA, 67 TargetMachine &TM) 68 : F(F), DT(DT), MSSA(MSSA), 69 TLI(*TM.getSubtargetImpl(F)->getTargetLowering()), 70 TTI(TM.getTargetTransformInfo(F)) {} 71 72 /// Scan the function for interleaved load candidates and execute the 73 /// replacement if applicable. 74 bool run(); 75 76 private: 77 /// Function this pass is working on 78 Function &F; 79 80 /// Dominator Tree Analysis 81 DominatorTree &DT; 82 83 /// Memory Alias Analyses 84 MemorySSA &MSSA; 85 86 /// Target Lowering Information 87 const TargetLowering &TLI; 88 89 /// Target Transform Information 90 const TargetTransformInfo TTI; 91 92 /// Find the instruction in sets LIs that dominates all others, return nullptr 93 /// if there is none. 94 LoadInst *findFirstLoad(const std::set<LoadInst *> &LIs); 95 96 /// Replace interleaved load candidates. It does additional 97 /// analyses if this makes sense. Returns true on success and false 98 /// of nothing has been changed. 99 bool combine(std::list<VectorInfo> &InterleavedLoad, 100 OptimizationRemarkEmitter &ORE); 101 102 /// Given a set of VectorInfo containing candidates for a given interleave 103 /// factor, find a set that represents a 'factor' interleaved load. 104 bool findPattern(std::list<VectorInfo> &Candidates, 105 std::list<VectorInfo> &InterleavedLoad, unsigned Factor, 106 const DataLayout &DL); 107 }; // InterleavedLoadCombine 108 109 /// First Order Polynomial on an n-Bit Integer Value 110 /// 111 /// Polynomial(Value) = Value * B + A + E*2^(n-e) 112 /// 113 /// A and B are the coefficients. E*2^(n-e) is an error within 'e' most 114 /// significant bits. It is introduced if an exact computation cannot be proven 115 /// (e.q. division by 2). 116 /// 117 /// As part of this optimization multiple loads will be combined. It necessary 118 /// to prove that loads are within some relative offset to each other. This 119 /// class is used to prove relative offsets of values loaded from memory. 120 /// 121 /// Representing an integer in this form is sound since addition in two's 122 /// complement is associative (trivial) and multiplication distributes over the 123 /// addition (see Proof(1) in Polynomial::mul). Further, both operations 124 /// commute. 125 // 126 // Example: 127 // declare @fn(i64 %IDX, <4 x float>* %PTR) { 128 // %Pa1 = add i64 %IDX, 2 129 // %Pa2 = lshr i64 %Pa1, 1 130 // %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2 131 // %Va = load <4 x float>, <4 x float>* %Pa3 132 // 133 // %Pb1 = add i64 %IDX, 4 134 // %Pb2 = lshr i64 %Pb1, 1 135 // %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2 136 // %Vb = load <4 x float>, <4 x float>* %Pb3 137 // ... } 138 // 139 // The goal is to prove that two loads load consecutive addresses. 140 // 141 // In this case the polynomials are constructed by the following 142 // steps. 143 // 144 // The number tag #e specifies the error bits. 145 // 146 // Pa_0 = %IDX #0 147 // Pa_1 = %IDX + 2 #0 | add 2 148 // Pa_2 = %IDX/2 + 1 #1 | lshr 1 149 // Pa_3 = %IDX/2 + 1 #1 | GEP, step signext to i64 150 // Pa_4 = (%IDX/2)*16 + 16 #0 | GEP, multiply index by sizeof(4) for floats 151 // Pa_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components 152 // 153 // Pb_0 = %IDX #0 154 // Pb_1 = %IDX + 4 #0 | add 2 155 // Pb_2 = %IDX/2 + 2 #1 | lshr 1 156 // Pb_3 = %IDX/2 + 2 #1 | GEP, step signext to i64 157 // Pb_4 = (%IDX/2)*16 + 32 #0 | GEP, multiply index by sizeof(4) for floats 158 // Pb_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components 159 // 160 // Pb_5 - Pa_5 = 16 #0 | subtract to get the offset 161 // 162 // Remark: %PTR is not maintained within this class. So in this instance the 163 // offset of 16 can only be assumed if the pointers are equal. 164 // 165 class Polynomial { 166 /// Operations on B 167 enum BOps { 168 LShr, 169 Mul, 170 SExt, 171 Trunc, 172 }; 173 174 /// Number of Error Bits e 175 unsigned ErrorMSBs; 176 177 /// Value 178 Value *V; 179 180 /// Coefficient B 181 SmallVector<std::pair<BOps, APInt>, 4> B; 182 183 /// Coefficient A 184 APInt A; 185 186 public: 187 Polynomial(Value *V) : ErrorMSBs((unsigned)-1), V(V), B(), A() { 188 IntegerType *Ty = dyn_cast<IntegerType>(V->getType()); 189 if (Ty) { 190 ErrorMSBs = 0; 191 this->V = V; 192 A = APInt(Ty->getBitWidth(), 0); 193 } 194 } 195 196 Polynomial(const APInt &A, unsigned ErrorMSBs = 0) 197 : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(A) {} 198 199 Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0) 200 : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(BitWidth, A) {} 201 202 Polynomial() : ErrorMSBs((unsigned)-1), V(NULL), B(), A() {} 203 204 /// Increment and clamp the number of undefined bits. 205 void incErrorMSBs(unsigned amt) { 206 if (ErrorMSBs == (unsigned)-1) 207 return; 208 209 ErrorMSBs += amt; 210 if (ErrorMSBs > A.getBitWidth()) 211 ErrorMSBs = A.getBitWidth(); 212 } 213 214 /// Decrement and clamp the number of undefined bits. 215 void decErrorMSBs(unsigned amt) { 216 if (ErrorMSBs == (unsigned)-1) 217 return; 218 219 if (ErrorMSBs > amt) 220 ErrorMSBs -= amt; 221 else 222 ErrorMSBs = 0; 223 } 224 225 /// Apply an add on the polynomial 226 Polynomial &add(const APInt &C) { 227 // Note: Addition is associative in two's complement even when in case of 228 // signed overflow. 229 // 230 // Error bits can only propagate into higher significant bits. As these are 231 // already regarded as undefined, there is no change. 232 // 233 // Theorem: Adding a constant to a polynomial does not change the error 234 // term. 235 // 236 // Proof: 237 // 238 // Since the addition is associative and commutes: 239 // 240 // (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e) 241 // [qed] 242 243 if (C.getBitWidth() != A.getBitWidth()) { 244 ErrorMSBs = (unsigned)-1; 245 return *this; 246 } 247 248 A += C; 249 return *this; 250 } 251 252 /// Apply a multiplication onto the polynomial. 253 Polynomial &mul(const APInt &C) { 254 // Note: Multiplication distributes over the addition 255 // 256 // Theorem: Multiplication distributes over the addition 257 // 258 // Proof(1): 259 // 260 // (B+A)*C =- 261 // = (B + A) + (B + A) + .. {C Times} 262 // addition is associative and commutes, hence 263 // = B + B + .. {C Times} .. + A + A + .. {C times} 264 // = B*C + A*C 265 // (see (function add) for signed values and overflows) 266 // [qed] 267 // 268 // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out 269 // to the left. 270 // 271 // Proof(2): 272 // 273 // Let B' and A' be the n-Bit inputs with some unknown errors EA, 274 // EB at e leading bits. B' and A' can be written down as: 275 // 276 // B' = B + 2^(n-e)*EB 277 // A' = A + 2^(n-e)*EA 278 // 279 // Let C' be an input with c trailing zero bits. C' can be written as 280 // 281 // C' = C*2^c 282 // 283 // Therefore we can compute the result by using distributivity and 284 // commutativity. 285 // 286 // (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' = 287 // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' = 288 // = (B'+A') * C' = 289 // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' = 290 // = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' = 291 // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' = 292 // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c = 293 // = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c = 294 // 295 // Let EC be the final error with EC = C*(EB + EA) 296 // 297 // = (B + A)*C' + EC*2^(n-e)*2^c = 298 // = (B + A)*C' + EC*2^(n-(e-c)) 299 // 300 // Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c 301 // less error bits than the input. c bits are shifted out to the left. 302 // [qed] 303 304 if (C.getBitWidth() != A.getBitWidth()) { 305 ErrorMSBs = (unsigned)-1; 306 return *this; 307 } 308 309 // Multiplying by one is a no-op. 310 if (C.isOneValue()) { 311 return *this; 312 } 313 314 // Multiplying by zero removes the coefficient B and defines all bits. 315 if (C.isNullValue()) { 316 ErrorMSBs = 0; 317 deleteB(); 318 } 319 320 // See Proof(2): Trailing zero bits indicate a left shift. This removes 321 // leading bits from the result even if they are undefined. 322 decErrorMSBs(C.countTrailingZeros()); 323 324 A *= C; 325 pushBOperation(Mul, C); 326 return *this; 327 } 328 329 /// Apply a logical shift right on the polynomial 330 Polynomial &lshr(const APInt &C) { 331 // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e') 332 // where 333 // e' = e + 1, 334 // E is a e-bit number, 335 // E' is a e'-bit number, 336 // holds under the following precondition: 337 // pre(1): A % 2 = 0 338 // pre(2): e < n, (see Theorem(2) for the trivial case with e=n) 339 // where >> expresses a logical shift to the right, with adding zeros. 340 // 341 // We need to show that for every, E there is a E' 342 // 343 // B = b_h * 2^(n-1) + b_m * 2 + b_l 344 // A = a_h * 2^(n-1) + a_m * 2 (pre(1)) 345 // 346 // where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers 347 // 348 // Let X = (B + A + E*2^(n-e)) >> 1 349 // Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1 350 // 351 // X = [B + A + E*2^(n-e)] >> 1 = 352 // = [ b_h * 2^(n-1) + b_m * 2 + b_l + 353 // + a_h * 2^(n-1) + a_m * 2 + 354 // + E * 2^(n-e) ] >> 1 = 355 // 356 // The sum is built by putting the overflow of [a_m + b+n] into the term 357 // 2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within 358 // this bit is discarded. This is expressed by % 2. 359 // 360 // The bit in position 0 cannot overflow into the term (b_m + a_m). 361 // 362 // = [ ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) + 363 // + ((b_m + a_m) % 2^(n-2)) * 2 + 364 // + b_l + E * 2^(n-e) ] >> 1 = 365 // 366 // The shift is computed by dividing the terms by 2 and by cutting off 367 // b_l. 368 // 369 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 370 // + ((b_m + a_m) % 2^(n-2)) + 371 // + E * 2^(n-(e+1)) = 372 // 373 // by the definition in the Theorem e+1 = e' 374 // 375 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 376 // + ((b_m + a_m) % 2^(n-2)) + 377 // + E * 2^(n-e') = 378 // 379 // Compute Y by applying distributivity first 380 // 381 // Y = (B >> 1) + (A >> 1) + E*2^(n-e') = 382 // = (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 + 383 // + (a_h * 2^(n-1) + a_m * 2) >> 1 + 384 // + E * 2^(n-e) >> 1 = 385 // 386 // Again, the shift is computed by dividing the terms by 2 and by cutting 387 // off b_l. 388 // 389 // = b_h * 2^(n-2) + b_m + 390 // + a_h * 2^(n-2) + a_m + 391 // + E * 2^(n-(e+1)) = 392 // 393 // Again, the sum is built by putting the overflow of [a_m + b+n] into 394 // the term 2^(n-1). But this time there is room for a second bit in the 395 // term 2^(n-2) we add this bit to a new term and denote it o_h in a 396 // second step. 397 // 398 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) + 399 // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 400 // + ((b_m + a_m) % 2^(n-2)) + 401 // + E * 2^(n-(e+1)) = 402 // 403 // Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1 404 // Further replace e+1 by e'. 405 // 406 // = o_h * 2^(n-1) + 407 // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 408 // + ((b_m + a_m) % 2^(n-2)) + 409 // + E * 2^(n-e') = 410 // 411 // Move o_h into the error term and construct E'. To ensure that there is 412 // no 2^x with negative x, this step requires pre(2) (e < n). 413 // 414 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 415 // + ((b_m + a_m) % 2^(n-2)) + 416 // + o_h * 2^(e'-1) * 2^(n-e') + | pre(2), move 2^(e'-1) 417 // | out of the old exponent 418 // + E * 2^(n-e') = 419 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 420 // + ((b_m + a_m) % 2^(n-2)) + 421 // + [o_h * 2^(e'-1) + E] * 2^(n-e') + | move 2^(e'-1) out of 422 // | the old exponent 423 // 424 // Let E' = o_h * 2^(e'-1) + E 425 // 426 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 427 // + ((b_m + a_m) % 2^(n-2)) + 428 // + E' * 2^(n-e') 429 // 430 // Because X and Y are distinct only in there error terms and E' can be 431 // constructed as shown the theorem holds. 432 // [qed] 433 // 434 // For completeness in case of the case e=n it is also required to show that 435 // distributivity can be applied. 436 // 437 // In this case Theorem(1) transforms to (the pre-condition on A can also be 438 // dropped) 439 // 440 // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E' 441 // where 442 // A, B, E, E' are two's complement numbers with the same bit 443 // width 444 // 445 // Let A + B + E = X 446 // Let (B >> 1) + (A >> 1) = Y 447 // 448 // Therefore we need to show that for every X and Y there is an E' which 449 // makes the equation 450 // 451 // X = Y + E' 452 // 453 // hold. This is trivially the case for E' = X - Y. 454 // 455 // [qed] 456 // 457 // Remark: Distributing lshr with and arbitrary number n can be expressed as 458 // ((((B + A) lshr 1) lshr 1) ... ) {n times}. 459 // This construction induces n additional error bits at the left. 460 461 if (C.getBitWidth() != A.getBitWidth()) { 462 ErrorMSBs = (unsigned)-1; 463 return *this; 464 } 465 466 if (C.isNullValue()) 467 return *this; 468 469 // Test if the result will be zero 470 unsigned shiftAmt = C.getZExtValue(); 471 if (shiftAmt >= C.getBitWidth()) 472 return mul(APInt(C.getBitWidth(), 0)); 473 474 // The proof that shiftAmt LSBs are zero for at least one summand is only 475 // possible for the constant number. 476 // 477 // If this can be proven add shiftAmt to the error counter 478 // `ErrorMSBs`. Otherwise set all bits as undefined. 479 if (A.countTrailingZeros() < shiftAmt) 480 ErrorMSBs = A.getBitWidth(); 481 else 482 incErrorMSBs(shiftAmt); 483 484 // Apply the operation. 485 pushBOperation(LShr, C); 486 A = A.lshr(shiftAmt); 487 488 return *this; 489 } 490 491 /// Apply a sign-extend or truncate operation on the polynomial. 492 Polynomial &sextOrTrunc(unsigned n) { 493 if (n < A.getBitWidth()) { 494 // Truncate: Clearly undefined Bits on the MSB side are removed 495 // if there are any. 496 decErrorMSBs(A.getBitWidth() - n); 497 A = A.trunc(n); 498 pushBOperation(Trunc, APInt(sizeof(n) * 8, n)); 499 } 500 if (n > A.getBitWidth()) { 501 // Extend: Clearly extending first and adding later is different 502 // to adding first and extending later in all extended bits. 503 incErrorMSBs(n - A.getBitWidth()); 504 A = A.sext(n); 505 pushBOperation(SExt, APInt(sizeof(n) * 8, n)); 506 } 507 508 return *this; 509 } 510 511 /// Test if there is a coefficient B. 512 bool isFirstOrder() const { return V != nullptr; } 513 514 /// Test coefficient B of two Polynomials are equal. 515 bool isCompatibleTo(const Polynomial &o) const { 516 // The polynomial use different bit width. 517 if (A.getBitWidth() != o.A.getBitWidth()) 518 return false; 519 520 // If neither Polynomial has the Coefficient B. 521 if (!isFirstOrder() && !o.isFirstOrder()) 522 return true; 523 524 // The index variable is different. 525 if (V != o.V) 526 return false; 527 528 // Check the operations. 529 if (B.size() != o.B.size()) 530 return false; 531 532 auto ob = o.B.begin(); 533 for (auto &b : B) { 534 if (b != *ob) 535 return false; 536 ob++; 537 } 538 539 return true; 540 } 541 542 /// Subtract two polynomials, return an undefined polynomial if 543 /// subtraction is not possible. 544 Polynomial operator-(const Polynomial &o) const { 545 // Return an undefined polynomial if incompatible. 546 if (!isCompatibleTo(o)) 547 return Polynomial(); 548 549 // If the polynomials are compatible (meaning they have the same 550 // coefficient on B), B is eliminated. Thus a polynomial solely 551 // containing A is returned 552 return Polynomial(A - o.A, std::max(ErrorMSBs, o.ErrorMSBs)); 553 } 554 555 /// Subtract a constant from a polynomial, 556 Polynomial operator-(uint64_t C) const { 557 Polynomial Result(*this); 558 Result.A -= C; 559 return Result; 560 } 561 562 /// Add a constant to a polynomial, 563 Polynomial operator+(uint64_t C) const { 564 Polynomial Result(*this); 565 Result.A += C; 566 return Result; 567 } 568 569 /// Returns true if it can be proven that two Polynomials are equal. 570 bool isProvenEqualTo(const Polynomial &o) { 571 // Subtract both polynomials and test if it is fully defined and zero. 572 Polynomial r = *this - o; 573 return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isNullValue()); 574 } 575 576 /// Print the polynomial into a stream. 577 void print(raw_ostream &OS) const { 578 OS << "[{#ErrBits:" << ErrorMSBs << "} "; 579 580 if (V) { 581 for (auto b : B) 582 OS << "("; 583 OS << "(" << *V << ") "; 584 585 for (auto b : B) { 586 switch (b.first) { 587 case LShr: 588 OS << "LShr "; 589 break; 590 case Mul: 591 OS << "Mul "; 592 break; 593 case SExt: 594 OS << "SExt "; 595 break; 596 case Trunc: 597 OS << "Trunc "; 598 break; 599 } 600 601 OS << b.second << ") "; 602 } 603 } 604 605 OS << "+ " << A << "]"; 606 } 607 608 private: 609 void deleteB() { 610 V = nullptr; 611 B.clear(); 612 } 613 614 void pushBOperation(const BOps Op, const APInt &C) { 615 if (isFirstOrder()) { 616 B.push_back(std::make_pair(Op, C)); 617 return; 618 } 619 } 620 }; 621 622 #ifndef NDEBUG 623 static raw_ostream &operator<<(raw_ostream &OS, const Polynomial &S) { 624 S.print(OS); 625 return OS; 626 } 627 #endif 628 629 /// VectorInfo stores abstract the following information for each vector 630 /// element: 631 /// 632 /// 1) The the memory address loaded into the element as Polynomial 633 /// 2) a set of load instruction necessary to construct the vector, 634 /// 3) a set of all other instructions that are necessary to create the vector and 635 /// 4) a pointer value that can be used as relative base for all elements. 636 struct VectorInfo { 637 private: 638 VectorInfo(const VectorInfo &c) : VTy(c.VTy) { 639 llvm_unreachable( 640 "Copying VectorInfo is neither implemented nor necessary,"); 641 } 642 643 public: 644 /// Information of a Vector Element 645 struct ElementInfo { 646 /// Offset Polynomial. 647 Polynomial Ofs; 648 649 /// The Load Instruction used to Load the entry. LI is null if the pointer 650 /// of the load instruction does not point on to the entry 651 LoadInst *LI; 652 653 ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr) 654 : Ofs(Offset), LI(LI) {} 655 }; 656 657 /// Basic-block the load instructions are within 658 BasicBlock *BB; 659 660 /// Pointer value of all participation load instructions 661 Value *PV; 662 663 /// Participating load instructions 664 std::set<LoadInst *> LIs; 665 666 /// Participating instructions 667 std::set<Instruction *> Is; 668 669 /// Final shuffle-vector instruction 670 ShuffleVectorInst *SVI; 671 672 /// Information of the offset for each vector element 673 ElementInfo *EI; 674 675 /// Vector Type 676 FixedVectorType *const VTy; 677 678 VectorInfo(FixedVectorType *VTy) 679 : BB(nullptr), PV(nullptr), LIs(), Is(), SVI(nullptr), VTy(VTy) { 680 EI = new ElementInfo[VTy->getNumElements()]; 681 } 682 683 virtual ~VectorInfo() { delete[] EI; } 684 685 unsigned getDimension() const { return VTy->getNumElements(); } 686 687 /// Test if the VectorInfo can be part of an interleaved load with the 688 /// specified factor. 689 /// 690 /// \param Factor of the interleave 691 /// \param DL Targets Datalayout 692 /// 693 /// \returns true if this is possible and false if not 694 bool isInterleaved(unsigned Factor, const DataLayout &DL) const { 695 unsigned Size = DL.getTypeAllocSize(VTy->getElementType()); 696 for (unsigned i = 1; i < getDimension(); i++) { 697 if (!EI[i].Ofs.isProvenEqualTo(EI[0].Ofs + i * Factor * Size)) { 698 return false; 699 } 700 } 701 return true; 702 } 703 704 /// Recursively computes the vector information stored in V. 705 /// 706 /// This function delegates the work to specialized implementations 707 /// 708 /// \param V Value to operate on 709 /// \param Result Result of the computation 710 /// 711 /// \returns false if no sensible information can be gathered. 712 static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) { 713 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V); 714 if (SVI) 715 return computeFromSVI(SVI, Result, DL); 716 LoadInst *LI = dyn_cast<LoadInst>(V); 717 if (LI) 718 return computeFromLI(LI, Result, DL); 719 BitCastInst *BCI = dyn_cast<BitCastInst>(V); 720 if (BCI) 721 return computeFromBCI(BCI, Result, DL); 722 return false; 723 } 724 725 /// BitCastInst specialization to compute the vector information. 726 /// 727 /// \param BCI BitCastInst to operate on 728 /// \param Result Result of the computation 729 /// 730 /// \returns false if no sensible information can be gathered. 731 static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result, 732 const DataLayout &DL) { 733 Instruction *Op = dyn_cast<Instruction>(BCI->getOperand(0)); 734 735 if (!Op) 736 return false; 737 738 FixedVectorType *VTy = dyn_cast<FixedVectorType>(Op->getType()); 739 if (!VTy) 740 return false; 741 742 // We can only cast from large to smaller vectors 743 if (Result.VTy->getNumElements() % VTy->getNumElements()) 744 return false; 745 746 unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements(); 747 unsigned NewSize = DL.getTypeAllocSize(Result.VTy->getElementType()); 748 unsigned OldSize = DL.getTypeAllocSize(VTy->getElementType()); 749 750 if (NewSize * Factor != OldSize) 751 return false; 752 753 VectorInfo Old(VTy); 754 if (!compute(Op, Old, DL)) 755 return false; 756 757 for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) { 758 for (unsigned j = 0; j < Factor; j++) { 759 Result.EI[i + j] = 760 ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize, 761 j == 0 ? Old.EI[i / Factor].LI : nullptr); 762 } 763 } 764 765 Result.BB = Old.BB; 766 Result.PV = Old.PV; 767 Result.LIs.insert(Old.LIs.begin(), Old.LIs.end()); 768 Result.Is.insert(Old.Is.begin(), Old.Is.end()); 769 Result.Is.insert(BCI); 770 Result.SVI = nullptr; 771 772 return true; 773 } 774 775 /// ShuffleVectorInst specialization to compute vector information. 776 /// 777 /// \param SVI ShuffleVectorInst to operate on 778 /// \param Result Result of the computation 779 /// 780 /// Compute the left and the right side vector information and merge them by 781 /// applying the shuffle operation. This function also ensures that the left 782 /// and right side have compatible loads. This means that all loads are with 783 /// in the same basic block and are based on the same pointer. 784 /// 785 /// \returns false if no sensible information can be gathered. 786 static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result, 787 const DataLayout &DL) { 788 FixedVectorType *ArgTy = 789 cast<FixedVectorType>(SVI->getOperand(0)->getType()); 790 791 // Compute the left hand vector information. 792 VectorInfo LHS(ArgTy); 793 if (!compute(SVI->getOperand(0), LHS, DL)) 794 LHS.BB = nullptr; 795 796 // Compute the right hand vector information. 797 VectorInfo RHS(ArgTy); 798 if (!compute(SVI->getOperand(1), RHS, DL)) 799 RHS.BB = nullptr; 800 801 // Neither operand produced sensible results? 802 if (!LHS.BB && !RHS.BB) 803 return false; 804 // Only RHS produced sensible results? 805 else if (!LHS.BB) { 806 Result.BB = RHS.BB; 807 Result.PV = RHS.PV; 808 } 809 // Only LHS produced sensible results? 810 else if (!RHS.BB) { 811 Result.BB = LHS.BB; 812 Result.PV = LHS.PV; 813 } 814 // Both operands produced sensible results? 815 else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) { 816 Result.BB = LHS.BB; 817 Result.PV = LHS.PV; 818 } 819 // Both operands produced sensible results but they are incompatible. 820 else { 821 return false; 822 } 823 824 // Merge and apply the operation on the offset information. 825 if (LHS.BB) { 826 Result.LIs.insert(LHS.LIs.begin(), LHS.LIs.end()); 827 Result.Is.insert(LHS.Is.begin(), LHS.Is.end()); 828 } 829 if (RHS.BB) { 830 Result.LIs.insert(RHS.LIs.begin(), RHS.LIs.end()); 831 Result.Is.insert(RHS.Is.begin(), RHS.Is.end()); 832 } 833 Result.Is.insert(SVI); 834 Result.SVI = SVI; 835 836 int j = 0; 837 for (int i : SVI->getShuffleMask()) { 838 assert((i < 2 * (signed)ArgTy->getNumElements()) && 839 "Invalid ShuffleVectorInst (index out of bounds)"); 840 841 if (i < 0) 842 Result.EI[j] = ElementInfo(); 843 else if (i < (signed)ArgTy->getNumElements()) { 844 if (LHS.BB) 845 Result.EI[j] = LHS.EI[i]; 846 else 847 Result.EI[j] = ElementInfo(); 848 } else { 849 if (RHS.BB) 850 Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()]; 851 else 852 Result.EI[j] = ElementInfo(); 853 } 854 j++; 855 } 856 857 return true; 858 } 859 860 /// LoadInst specialization to compute vector information. 861 /// 862 /// This function also acts as abort condition to the recursion. 863 /// 864 /// \param LI LoadInst to operate on 865 /// \param Result Result of the computation 866 /// 867 /// \returns false if no sensible information can be gathered. 868 static bool computeFromLI(LoadInst *LI, VectorInfo &Result, 869 const DataLayout &DL) { 870 Value *BasePtr; 871 Polynomial Offset; 872 873 if (LI->isVolatile()) 874 return false; 875 876 if (LI->isAtomic()) 877 return false; 878 879 // Get the base polynomial 880 computePolynomialFromPointer(*LI->getPointerOperand(), Offset, BasePtr, DL); 881 882 Result.BB = LI->getParent(); 883 Result.PV = BasePtr; 884 Result.LIs.insert(LI); 885 Result.Is.insert(LI); 886 887 for (unsigned i = 0; i < Result.getDimension(); i++) { 888 Value *Idx[2] = { 889 ConstantInt::get(Type::getInt32Ty(LI->getContext()), 0), 890 ConstantInt::get(Type::getInt32Ty(LI->getContext()), i), 891 }; 892 int64_t Ofs = DL.getIndexedOffsetInType(Result.VTy, makeArrayRef(Idx, 2)); 893 Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr); 894 } 895 896 return true; 897 } 898 899 /// Recursively compute polynomial of a value. 900 /// 901 /// \param BO Input binary operation 902 /// \param Result Result polynomial 903 static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) { 904 Value *LHS = BO.getOperand(0); 905 Value *RHS = BO.getOperand(1); 906 907 // Find the RHS Constant if any 908 ConstantInt *C = dyn_cast<ConstantInt>(RHS); 909 if ((!C) && BO.isCommutative()) { 910 C = dyn_cast<ConstantInt>(LHS); 911 if (C) 912 std::swap(LHS, RHS); 913 } 914 915 switch (BO.getOpcode()) { 916 case Instruction::Add: 917 if (!C) 918 break; 919 920 computePolynomial(*LHS, Result); 921 Result.add(C->getValue()); 922 return; 923 924 case Instruction::LShr: 925 if (!C) 926 break; 927 928 computePolynomial(*LHS, Result); 929 Result.lshr(C->getValue()); 930 return; 931 932 default: 933 break; 934 } 935 936 Result = Polynomial(&BO); 937 } 938 939 /// Recursively compute polynomial of a value 940 /// 941 /// \param V input value 942 /// \param Result result polynomial 943 static void computePolynomial(Value &V, Polynomial &Result) { 944 if (auto *BO = dyn_cast<BinaryOperator>(&V)) 945 computePolynomialBinOp(*BO, Result); 946 else 947 Result = Polynomial(&V); 948 } 949 950 /// Compute the Polynomial representation of a Pointer type. 951 /// 952 /// \param Ptr input pointer value 953 /// \param Result result polynomial 954 /// \param BasePtr pointer the polynomial is based on 955 /// \param DL Datalayout of the target machine 956 static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result, 957 Value *&BasePtr, 958 const DataLayout &DL) { 959 // Not a pointer type? Return an undefined polynomial 960 PointerType *PtrTy = dyn_cast<PointerType>(Ptr.getType()); 961 if (!PtrTy) { 962 Result = Polynomial(); 963 BasePtr = nullptr; 964 return; 965 } 966 unsigned PointerBits = 967 DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()); 968 969 /// Skip pointer casts. Return Zero polynomial otherwise 970 if (isa<CastInst>(&Ptr)) { 971 CastInst &CI = *cast<CastInst>(&Ptr); 972 switch (CI.getOpcode()) { 973 case Instruction::BitCast: 974 computePolynomialFromPointer(*CI.getOperand(0), Result, BasePtr, DL); 975 break; 976 default: 977 BasePtr = &Ptr; 978 Polynomial(PointerBits, 0); 979 break; 980 } 981 } 982 /// Resolve GetElementPtrInst. 983 else if (isa<GetElementPtrInst>(&Ptr)) { 984 GetElementPtrInst &GEP = *cast<GetElementPtrInst>(&Ptr); 985 986 APInt BaseOffset(PointerBits, 0); 987 988 // Check if we can compute the Offset with accumulateConstantOffset 989 if (GEP.accumulateConstantOffset(DL, BaseOffset)) { 990 Result = Polynomial(BaseOffset); 991 BasePtr = GEP.getPointerOperand(); 992 return; 993 } else { 994 // Otherwise we allow that the last index operand of the GEP is 995 // non-constant. 996 unsigned idxOperand, e; 997 SmallVector<Value *, 4> Indices; 998 for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e; 999 idxOperand++) { 1000 ConstantInt *IDX = dyn_cast<ConstantInt>(GEP.getOperand(idxOperand)); 1001 if (!IDX) 1002 break; 1003 Indices.push_back(IDX); 1004 } 1005 1006 // It must also be the last operand. 1007 if (idxOperand + 1 != e) { 1008 Result = Polynomial(); 1009 BasePtr = nullptr; 1010 return; 1011 } 1012 1013 // Compute the polynomial of the index operand. 1014 computePolynomial(*GEP.getOperand(idxOperand), Result); 1015 1016 // Compute base offset from zero based index, excluding the last 1017 // variable operand. 1018 BaseOffset = 1019 DL.getIndexedOffsetInType(GEP.getSourceElementType(), Indices); 1020 1021 // Apply the operations of GEP to the polynomial. 1022 unsigned ResultSize = DL.getTypeAllocSize(GEP.getResultElementType()); 1023 Result.sextOrTrunc(PointerBits); 1024 Result.mul(APInt(PointerBits, ResultSize)); 1025 Result.add(BaseOffset); 1026 BasePtr = GEP.getPointerOperand(); 1027 } 1028 } 1029 // All other instructions are handled by using the value as base pointer and 1030 // a zero polynomial. 1031 else { 1032 BasePtr = &Ptr; 1033 Polynomial(DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()), 0); 1034 } 1035 } 1036 1037 #ifndef NDEBUG 1038 void print(raw_ostream &OS) const { 1039 if (PV) 1040 OS << *PV; 1041 else 1042 OS << "(none)"; 1043 OS << " + "; 1044 for (unsigned i = 0; i < getDimension(); i++) 1045 OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs; 1046 OS << "]"; 1047 } 1048 #endif 1049 }; 1050 1051 } // anonymous namespace 1052 1053 bool InterleavedLoadCombineImpl::findPattern( 1054 std::list<VectorInfo> &Candidates, std::list<VectorInfo> &InterleavedLoad, 1055 unsigned Factor, const DataLayout &DL) { 1056 for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) { 1057 unsigned i; 1058 // Try to find an interleaved load using the front of Worklist as first line 1059 unsigned Size = DL.getTypeAllocSize(C0->VTy->getElementType()); 1060 1061 // List containing iterators pointing to the VectorInfos of the candidates 1062 std::vector<std::list<VectorInfo>::iterator> Res(Factor, Candidates.end()); 1063 1064 for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) { 1065 if (C->VTy != C0->VTy) 1066 continue; 1067 if (C->BB != C0->BB) 1068 continue; 1069 if (C->PV != C0->PV) 1070 continue; 1071 1072 // Check the current value matches any of factor - 1 remaining lines 1073 for (i = 1; i < Factor; i++) { 1074 if (C->EI[0].Ofs.isProvenEqualTo(C0->EI[0].Ofs + i * Size)) { 1075 Res[i] = C; 1076 } 1077 } 1078 1079 for (i = 1; i < Factor; i++) { 1080 if (Res[i] == Candidates.end()) 1081 break; 1082 } 1083 if (i == Factor) { 1084 Res[0] = C0; 1085 break; 1086 } 1087 } 1088 1089 if (Res[0] != Candidates.end()) { 1090 // Move the result into the output 1091 for (unsigned i = 0; i < Factor; i++) { 1092 InterleavedLoad.splice(InterleavedLoad.end(), Candidates, Res[i]); 1093 } 1094 1095 return true; 1096 } 1097 } 1098 return false; 1099 } 1100 1101 LoadInst * 1102 InterleavedLoadCombineImpl::findFirstLoad(const std::set<LoadInst *> &LIs) { 1103 assert(!LIs.empty() && "No load instructions given."); 1104 1105 // All LIs are within the same BB. Select the first for a reference. 1106 BasicBlock *BB = (*LIs.begin())->getParent(); 1107 BasicBlock::iterator FLI = 1108 std::find_if(BB->begin(), BB->end(), [&LIs](Instruction &I) -> bool { 1109 return is_contained(LIs, &I); 1110 }); 1111 assert(FLI != BB->end()); 1112 1113 return cast<LoadInst>(FLI); 1114 } 1115 1116 bool InterleavedLoadCombineImpl::combine(std::list<VectorInfo> &InterleavedLoad, 1117 OptimizationRemarkEmitter &ORE) { 1118 LLVM_DEBUG(dbgs() << "Checking interleaved load\n"); 1119 1120 // The insertion point is the LoadInst which loads the first values. The 1121 // following tests are used to proof that the combined load can be inserted 1122 // just before InsertionPoint. 1123 LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI; 1124 1125 // Test if the offset is computed 1126 if (!InsertionPoint) 1127 return false; 1128 1129 std::set<LoadInst *> LIs; 1130 std::set<Instruction *> Is; 1131 std::set<Instruction *> SVIs; 1132 1133 unsigned InterleavedCost; 1134 unsigned InstructionCost = 0; 1135 1136 // Get the interleave factor 1137 unsigned Factor = InterleavedLoad.size(); 1138 1139 // Merge all input sets used in analysis 1140 for (auto &VI : InterleavedLoad) { 1141 // Generate a set of all load instructions to be combined 1142 LIs.insert(VI.LIs.begin(), VI.LIs.end()); 1143 1144 // Generate a set of all instructions taking part in load 1145 // interleaved. This list excludes the instructions necessary for the 1146 // polynomial construction. 1147 Is.insert(VI.Is.begin(), VI.Is.end()); 1148 1149 // Generate the set of the final ShuffleVectorInst. 1150 SVIs.insert(VI.SVI); 1151 } 1152 1153 // There is nothing to combine. 1154 if (LIs.size() < 2) 1155 return false; 1156 1157 // Test if all participating instruction will be dead after the 1158 // transformation. If intermediate results are used, no performance gain can 1159 // be expected. Also sum the cost of the Instructions beeing left dead. 1160 for (auto &I : Is) { 1161 // Compute the old cost 1162 InstructionCost += 1163 TTI.getInstructionCost(I, TargetTransformInfo::TCK_Latency); 1164 1165 // The final SVIs are allowed not to be dead, all uses will be replaced 1166 if (SVIs.find(I) != SVIs.end()) 1167 continue; 1168 1169 // If there are users outside the set to be eliminated, we abort the 1170 // transformation. No gain can be expected. 1171 for (auto *U : I->users()) { 1172 if (Is.find(dyn_cast<Instruction>(U)) == Is.end()) 1173 return false; 1174 } 1175 } 1176 1177 // We know that all LoadInst are within the same BB. This guarantees that 1178 // either everything or nothing is loaded. 1179 LoadInst *First = findFirstLoad(LIs); 1180 1181 // To be safe that the loads can be combined, iterate over all loads and test 1182 // that the corresponding defining access dominates first LI. This guarantees 1183 // that there are no aliasing stores in between the loads. 1184 auto FMA = MSSA.getMemoryAccess(First); 1185 for (auto LI : LIs) { 1186 auto MADef = MSSA.getMemoryAccess(LI)->getDefiningAccess(); 1187 if (!MSSA.dominates(MADef, FMA)) 1188 return false; 1189 } 1190 assert(!LIs.empty() && "There are no LoadInst to combine"); 1191 1192 // It is necessary that insertion point dominates all final ShuffleVectorInst. 1193 for (auto &VI : InterleavedLoad) { 1194 if (!DT.dominates(InsertionPoint, VI.SVI)) 1195 return false; 1196 } 1197 1198 // All checks are done. Add instructions detectable by InterleavedAccessPass 1199 // The old instruction will are left dead. 1200 IRBuilder<> Builder(InsertionPoint); 1201 Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType(); 1202 unsigned ElementsPerSVI = 1203 cast<FixedVectorType>(InterleavedLoad.front().SVI->getType()) 1204 ->getNumElements(); 1205 FixedVectorType *ILTy = FixedVectorType::get(ETy, Factor * ElementsPerSVI); 1206 1207 SmallVector<unsigned, 4> Indices; 1208 for (unsigned i = 0; i < Factor; i++) 1209 Indices.push_back(i); 1210 InterleavedCost = TTI.getInterleavedMemoryOpCost( 1211 Instruction::Load, ILTy, Factor, Indices, InsertionPoint->getAlign(), 1212 InsertionPoint->getPointerAddressSpace()); 1213 1214 if (InterleavedCost >= InstructionCost) { 1215 return false; 1216 } 1217 1218 // Create a pointer cast for the wide load. 1219 auto CI = Builder.CreatePointerCast(InsertionPoint->getOperand(0), 1220 ILTy->getPointerTo(), 1221 "interleaved.wide.ptrcast"); 1222 1223 // Create the wide load and update the MemorySSA. 1224 auto LI = Builder.CreateAlignedLoad(ILTy, CI, InsertionPoint->getAlign(), 1225 "interleaved.wide.load"); 1226 auto MSSAU = MemorySSAUpdater(&MSSA); 1227 MemoryUse *MSSALoad = cast<MemoryUse>(MSSAU.createMemoryAccessBefore( 1228 LI, nullptr, MSSA.getMemoryAccess(InsertionPoint))); 1229 MSSAU.insertUse(MSSALoad); 1230 1231 // Create the final SVIs and replace all uses. 1232 int i = 0; 1233 for (auto &VI : InterleavedLoad) { 1234 SmallVector<int, 4> Mask; 1235 for (unsigned j = 0; j < ElementsPerSVI; j++) 1236 Mask.push_back(i + j * Factor); 1237 1238 Builder.SetInsertPoint(VI.SVI); 1239 auto SVI = Builder.CreateShuffleVector(LI, UndefValue::get(LI->getType()), 1240 Mask, "interleaved.shuffle"); 1241 VI.SVI->replaceAllUsesWith(SVI); 1242 i++; 1243 } 1244 1245 NumInterleavedLoadCombine++; 1246 ORE.emit([&]() { 1247 return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI) 1248 << "Load interleaved combined with factor " 1249 << ore::NV("Factor", Factor); 1250 }); 1251 1252 return true; 1253 } 1254 1255 bool InterleavedLoadCombineImpl::run() { 1256 OptimizationRemarkEmitter ORE(&F); 1257 bool changed = false; 1258 unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor(); 1259 1260 auto &DL = F.getParent()->getDataLayout(); 1261 1262 // Start with the highest factor to avoid combining and recombining. 1263 for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) { 1264 std::list<VectorInfo> Candidates; 1265 1266 for (BasicBlock &BB : F) { 1267 for (Instruction &I : BB) { 1268 if (auto SVI = dyn_cast<ShuffleVectorInst>(&I)) { 1269 // We don't support scalable vectors in this pass. 1270 if (isa<ScalableVectorType>(SVI->getType())) 1271 continue; 1272 1273 Candidates.emplace_back(cast<FixedVectorType>(SVI->getType())); 1274 1275 if (!VectorInfo::computeFromSVI(SVI, Candidates.back(), DL)) { 1276 Candidates.pop_back(); 1277 continue; 1278 } 1279 1280 if (!Candidates.back().isInterleaved(Factor, DL)) { 1281 Candidates.pop_back(); 1282 } 1283 } 1284 } 1285 } 1286 1287 std::list<VectorInfo> InterleavedLoad; 1288 while (findPattern(Candidates, InterleavedLoad, Factor, DL)) { 1289 if (combine(InterleavedLoad, ORE)) { 1290 changed = true; 1291 } else { 1292 // Remove the first element of the Interleaved Load but put the others 1293 // back on the list and continue searching 1294 Candidates.splice(Candidates.begin(), InterleavedLoad, 1295 std::next(InterleavedLoad.begin()), 1296 InterleavedLoad.end()); 1297 } 1298 InterleavedLoad.clear(); 1299 } 1300 } 1301 1302 return changed; 1303 } 1304 1305 namespace { 1306 /// This pass combines interleaved loads into a pattern detectable by 1307 /// InterleavedAccessPass. 1308 struct InterleavedLoadCombine : public FunctionPass { 1309 static char ID; 1310 1311 InterleavedLoadCombine() : FunctionPass(ID) { 1312 initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry()); 1313 } 1314 1315 StringRef getPassName() const override { 1316 return "Interleaved Load Combine Pass"; 1317 } 1318 1319 bool runOnFunction(Function &F) override { 1320 if (DisableInterleavedLoadCombine) 1321 return false; 1322 1323 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 1324 if (!TPC) 1325 return false; 1326 1327 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() 1328 << "\n"); 1329 1330 return InterleavedLoadCombineImpl( 1331 F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 1332 getAnalysis<MemorySSAWrapperPass>().getMSSA(), 1333 TPC->getTM<TargetMachine>()) 1334 .run(); 1335 } 1336 1337 void getAnalysisUsage(AnalysisUsage &AU) const override { 1338 AU.addRequired<MemorySSAWrapperPass>(); 1339 AU.addRequired<DominatorTreeWrapperPass>(); 1340 FunctionPass::getAnalysisUsage(AU); 1341 } 1342 1343 private: 1344 }; 1345 } // anonymous namespace 1346 1347 char InterleavedLoadCombine::ID = 0; 1348 1349 INITIALIZE_PASS_BEGIN( 1350 InterleavedLoadCombine, DEBUG_TYPE, 1351 "Combine interleaved loads into wide loads and shufflevector instructions", 1352 false, false) 1353 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1354 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1355 INITIALIZE_PASS_END( 1356 InterleavedLoadCombine, DEBUG_TYPE, 1357 "Combine interleaved loads into wide loads and shufflevector instructions", 1358 false, false) 1359 1360 FunctionPass * 1361 llvm::createInterleavedLoadCombinePass() { 1362 auto P = new InterleavedLoadCombine(); 1363 return P; 1364 } 1365