1 //===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // 11 // This file defines the interleaved-load-combine pass. The pass searches for 12 // ShuffleVectorInstruction that execute interleaving loads. If a matching 13 // pattern is found, it adds a combined load and further instructions in a 14 // pattern that is detectable by InterleavedAccesPass. The old instructions are 15 // left dead to be removed later. The pass is specifically designed to be 16 // executed just before InterleavedAccesPass to find any left-over instances 17 // that are not detected within former passes. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/MemorySSA.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/CodeGen/InterleavedLoadCombine.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/CodeGen/TargetLowering.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/InitializePasses.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetMachine.h" 43 44 #include <algorithm> 45 #include <cassert> 46 #include <list> 47 48 using namespace llvm; 49 50 #define DEBUG_TYPE "interleaved-load-combine" 51 52 namespace { 53 54 /// Statistic counter 55 STATISTIC(NumInterleavedLoadCombine, "Number of combined loads"); 56 57 /// Option to disable the pass 58 static cl::opt<bool> DisableInterleavedLoadCombine( 59 "disable-" DEBUG_TYPE, cl::init(false), cl::Hidden, 60 cl::desc("Disable combining of interleaved loads")); 61 62 struct VectorInfo; 63 64 struct InterleavedLoadCombineImpl { 65 public: 66 InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA, 67 const TargetTransformInfo &TTI, 68 const TargetMachine &TM) 69 : F(F), DT(DT), MSSA(MSSA), 70 TLI(*TM.getSubtargetImpl(F)->getTargetLowering()), TTI(TTI) {} 71 72 /// Scan the function for interleaved load candidates and execute the 73 /// replacement if applicable. 74 bool run(); 75 76 private: 77 /// Function this pass is working on 78 Function &F; 79 80 /// Dominator Tree Analysis 81 DominatorTree &DT; 82 83 /// Memory Alias Analyses 84 MemorySSA &MSSA; 85 86 /// Target Lowering Information 87 const TargetLowering &TLI; 88 89 /// Target Transform Information 90 const TargetTransformInfo &TTI; 91 92 /// Find the instruction in sets LIs that dominates all others, return nullptr 93 /// if there is none. 94 LoadInst *findFirstLoad(const std::set<LoadInst *> &LIs); 95 96 /// Replace interleaved load candidates. It does additional 97 /// analyses if this makes sense. Returns true on success and false 98 /// of nothing has been changed. 99 bool combine(std::list<VectorInfo> &InterleavedLoad, 100 OptimizationRemarkEmitter &ORE); 101 102 /// Given a set of VectorInfo containing candidates for a given interleave 103 /// factor, find a set that represents a 'factor' interleaved load. 104 bool findPattern(std::list<VectorInfo> &Candidates, 105 std::list<VectorInfo> &InterleavedLoad, unsigned Factor, 106 const DataLayout &DL); 107 }; // InterleavedLoadCombine 108 109 /// First Order Polynomial on an n-Bit Integer Value 110 /// 111 /// Polynomial(Value) = Value * B + A + E*2^(n-e) 112 /// 113 /// A and B are the coefficients. E*2^(n-e) is an error within 'e' most 114 /// significant bits. It is introduced if an exact computation cannot be proven 115 /// (e.q. division by 2). 116 /// 117 /// As part of this optimization multiple loads will be combined. It necessary 118 /// to prove that loads are within some relative offset to each other. This 119 /// class is used to prove relative offsets of values loaded from memory. 120 /// 121 /// Representing an integer in this form is sound since addition in two's 122 /// complement is associative (trivial) and multiplication distributes over the 123 /// addition (see Proof(1) in Polynomial::mul). Further, both operations 124 /// commute. 125 // 126 // Example: 127 // declare @fn(i64 %IDX, <4 x float>* %PTR) { 128 // %Pa1 = add i64 %IDX, 2 129 // %Pa2 = lshr i64 %Pa1, 1 130 // %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2 131 // %Va = load <4 x float>, <4 x float>* %Pa3 132 // 133 // %Pb1 = add i64 %IDX, 4 134 // %Pb2 = lshr i64 %Pb1, 1 135 // %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2 136 // %Vb = load <4 x float>, <4 x float>* %Pb3 137 // ... } 138 // 139 // The goal is to prove that two loads load consecutive addresses. 140 // 141 // In this case the polynomials are constructed by the following 142 // steps. 143 // 144 // The number tag #e specifies the error bits. 145 // 146 // Pa_0 = %IDX #0 147 // Pa_1 = %IDX + 2 #0 | add 2 148 // Pa_2 = %IDX/2 + 1 #1 | lshr 1 149 // Pa_3 = %IDX/2 + 1 #1 | GEP, step signext to i64 150 // Pa_4 = (%IDX/2)*16 + 16 #0 | GEP, multiply index by sizeof(4) for floats 151 // Pa_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components 152 // 153 // Pb_0 = %IDX #0 154 // Pb_1 = %IDX + 4 #0 | add 2 155 // Pb_2 = %IDX/2 + 2 #1 | lshr 1 156 // Pb_3 = %IDX/2 + 2 #1 | GEP, step signext to i64 157 // Pb_4 = (%IDX/2)*16 + 32 #0 | GEP, multiply index by sizeof(4) for floats 158 // Pb_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components 159 // 160 // Pb_5 - Pa_5 = 16 #0 | subtract to get the offset 161 // 162 // Remark: %PTR is not maintained within this class. So in this instance the 163 // offset of 16 can only be assumed if the pointers are equal. 164 // 165 class Polynomial { 166 /// Operations on B 167 enum BOps { 168 LShr, 169 Mul, 170 SExt, 171 Trunc, 172 }; 173 174 /// Number of Error Bits e 175 unsigned ErrorMSBs = (unsigned)-1; 176 177 /// Value 178 Value *V = nullptr; 179 180 /// Coefficient B 181 SmallVector<std::pair<BOps, APInt>, 4> B; 182 183 /// Coefficient A 184 APInt A; 185 186 public: 187 Polynomial(Value *V) : V(V) { 188 IntegerType *Ty = dyn_cast<IntegerType>(V->getType()); 189 if (Ty) { 190 ErrorMSBs = 0; 191 this->V = V; 192 A = APInt(Ty->getBitWidth(), 0); 193 } 194 } 195 196 Polynomial(const APInt &A, unsigned ErrorMSBs = 0) 197 : ErrorMSBs(ErrorMSBs), A(A) {} 198 199 Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0) 200 : ErrorMSBs(ErrorMSBs), A(BitWidth, A) {} 201 202 Polynomial() = default; 203 204 /// Increment and clamp the number of undefined bits. 205 void incErrorMSBs(unsigned amt) { 206 if (ErrorMSBs == (unsigned)-1) 207 return; 208 209 ErrorMSBs += amt; 210 if (ErrorMSBs > A.getBitWidth()) 211 ErrorMSBs = A.getBitWidth(); 212 } 213 214 /// Decrement and clamp the number of undefined bits. 215 void decErrorMSBs(unsigned amt) { 216 if (ErrorMSBs == (unsigned)-1) 217 return; 218 219 if (ErrorMSBs > amt) 220 ErrorMSBs -= amt; 221 else 222 ErrorMSBs = 0; 223 } 224 225 /// Apply an add on the polynomial 226 Polynomial &add(const APInt &C) { 227 // Note: Addition is associative in two's complement even when in case of 228 // signed overflow. 229 // 230 // Error bits can only propagate into higher significant bits. As these are 231 // already regarded as undefined, there is no change. 232 // 233 // Theorem: Adding a constant to a polynomial does not change the error 234 // term. 235 // 236 // Proof: 237 // 238 // Since the addition is associative and commutes: 239 // 240 // (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e) 241 // [qed] 242 243 if (C.getBitWidth() != A.getBitWidth()) { 244 ErrorMSBs = (unsigned)-1; 245 return *this; 246 } 247 248 A += C; 249 return *this; 250 } 251 252 /// Apply a multiplication onto the polynomial. 253 Polynomial &mul(const APInt &C) { 254 // Note: Multiplication distributes over the addition 255 // 256 // Theorem: Multiplication distributes over the addition 257 // 258 // Proof(1): 259 // 260 // (B+A)*C =- 261 // = (B + A) + (B + A) + .. {C Times} 262 // addition is associative and commutes, hence 263 // = B + B + .. {C Times} .. + A + A + .. {C times} 264 // = B*C + A*C 265 // (see (function add) for signed values and overflows) 266 // [qed] 267 // 268 // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out 269 // to the left. 270 // 271 // Proof(2): 272 // 273 // Let B' and A' be the n-Bit inputs with some unknown errors EA, 274 // EB at e leading bits. B' and A' can be written down as: 275 // 276 // B' = B + 2^(n-e)*EB 277 // A' = A + 2^(n-e)*EA 278 // 279 // Let C' be an input with c trailing zero bits. C' can be written as 280 // 281 // C' = C*2^c 282 // 283 // Therefore we can compute the result by using distributivity and 284 // commutativity. 285 // 286 // (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' = 287 // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' = 288 // = (B'+A') * C' = 289 // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' = 290 // = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' = 291 // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' = 292 // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c = 293 // = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c = 294 // 295 // Let EC be the final error with EC = C*(EB + EA) 296 // 297 // = (B + A)*C' + EC*2^(n-e)*2^c = 298 // = (B + A)*C' + EC*2^(n-(e-c)) 299 // 300 // Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c 301 // less error bits than the input. c bits are shifted out to the left. 302 // [qed] 303 304 if (C.getBitWidth() != A.getBitWidth()) { 305 ErrorMSBs = (unsigned)-1; 306 return *this; 307 } 308 309 // Multiplying by one is a no-op. 310 if (C.isOne()) { 311 return *this; 312 } 313 314 // Multiplying by zero removes the coefficient B and defines all bits. 315 if (C.isZero()) { 316 ErrorMSBs = 0; 317 deleteB(); 318 } 319 320 // See Proof(2): Trailing zero bits indicate a left shift. This removes 321 // leading bits from the result even if they are undefined. 322 decErrorMSBs(C.countr_zero()); 323 324 A *= C; 325 pushBOperation(Mul, C); 326 return *this; 327 } 328 329 /// Apply a logical shift right on the polynomial 330 Polynomial &lshr(const APInt &C) { 331 // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e') 332 // where 333 // e' = e + 1, 334 // E is a e-bit number, 335 // E' is a e'-bit number, 336 // holds under the following precondition: 337 // pre(1): A % 2 = 0 338 // pre(2): e < n, (see Theorem(2) for the trivial case with e=n) 339 // where >> expresses a logical shift to the right, with adding zeros. 340 // 341 // We need to show that for every, E there is a E' 342 // 343 // B = b_h * 2^(n-1) + b_m * 2 + b_l 344 // A = a_h * 2^(n-1) + a_m * 2 (pre(1)) 345 // 346 // where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers 347 // 348 // Let X = (B + A + E*2^(n-e)) >> 1 349 // Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1 350 // 351 // X = [B + A + E*2^(n-e)] >> 1 = 352 // = [ b_h * 2^(n-1) + b_m * 2 + b_l + 353 // + a_h * 2^(n-1) + a_m * 2 + 354 // + E * 2^(n-e) ] >> 1 = 355 // 356 // The sum is built by putting the overflow of [a_m + b+n] into the term 357 // 2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within 358 // this bit is discarded. This is expressed by % 2. 359 // 360 // The bit in position 0 cannot overflow into the term (b_m + a_m). 361 // 362 // = [ ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) + 363 // + ((b_m + a_m) % 2^(n-2)) * 2 + 364 // + b_l + E * 2^(n-e) ] >> 1 = 365 // 366 // The shift is computed by dividing the terms by 2 and by cutting off 367 // b_l. 368 // 369 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 370 // + ((b_m + a_m) % 2^(n-2)) + 371 // + E * 2^(n-(e+1)) = 372 // 373 // by the definition in the Theorem e+1 = e' 374 // 375 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 376 // + ((b_m + a_m) % 2^(n-2)) + 377 // + E * 2^(n-e') = 378 // 379 // Compute Y by applying distributivity first 380 // 381 // Y = (B >> 1) + (A >> 1) + E*2^(n-e') = 382 // = (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 + 383 // + (a_h * 2^(n-1) + a_m * 2) >> 1 + 384 // + E * 2^(n-e) >> 1 = 385 // 386 // Again, the shift is computed by dividing the terms by 2 and by cutting 387 // off b_l. 388 // 389 // = b_h * 2^(n-2) + b_m + 390 // + a_h * 2^(n-2) + a_m + 391 // + E * 2^(n-(e+1)) = 392 // 393 // Again, the sum is built by putting the overflow of [a_m + b+n] into 394 // the term 2^(n-1). But this time there is room for a second bit in the 395 // term 2^(n-2) we add this bit to a new term and denote it o_h in a 396 // second step. 397 // 398 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) + 399 // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 400 // + ((b_m + a_m) % 2^(n-2)) + 401 // + E * 2^(n-(e+1)) = 402 // 403 // Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1 404 // Further replace e+1 by e'. 405 // 406 // = o_h * 2^(n-1) + 407 // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 408 // + ((b_m + a_m) % 2^(n-2)) + 409 // + E * 2^(n-e') = 410 // 411 // Move o_h into the error term and construct E'. To ensure that there is 412 // no 2^x with negative x, this step requires pre(2) (e < n). 413 // 414 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 415 // + ((b_m + a_m) % 2^(n-2)) + 416 // + o_h * 2^(e'-1) * 2^(n-e') + | pre(2), move 2^(e'-1) 417 // | out of the old exponent 418 // + E * 2^(n-e') = 419 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 420 // + ((b_m + a_m) % 2^(n-2)) + 421 // + [o_h * 2^(e'-1) + E] * 2^(n-e') + | move 2^(e'-1) out of 422 // | the old exponent 423 // 424 // Let E' = o_h * 2^(e'-1) + E 425 // 426 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 427 // + ((b_m + a_m) % 2^(n-2)) + 428 // + E' * 2^(n-e') 429 // 430 // Because X and Y are distinct only in there error terms and E' can be 431 // constructed as shown the theorem holds. 432 // [qed] 433 // 434 // For completeness in case of the case e=n it is also required to show that 435 // distributivity can be applied. 436 // 437 // In this case Theorem(1) transforms to (the pre-condition on A can also be 438 // dropped) 439 // 440 // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E' 441 // where 442 // A, B, E, E' are two's complement numbers with the same bit 443 // width 444 // 445 // Let A + B + E = X 446 // Let (B >> 1) + (A >> 1) = Y 447 // 448 // Therefore we need to show that for every X and Y there is an E' which 449 // makes the equation 450 // 451 // X = Y + E' 452 // 453 // hold. This is trivially the case for E' = X - Y. 454 // 455 // [qed] 456 // 457 // Remark: Distributing lshr with and arbitrary number n can be expressed as 458 // ((((B + A) lshr 1) lshr 1) ... ) {n times}. 459 // This construction induces n additional error bits at the left. 460 461 if (C.getBitWidth() != A.getBitWidth()) { 462 ErrorMSBs = (unsigned)-1; 463 return *this; 464 } 465 466 if (C.isZero()) 467 return *this; 468 469 // Test if the result will be zero 470 unsigned shiftAmt = C.getZExtValue(); 471 if (shiftAmt >= C.getBitWidth()) 472 return mul(APInt(C.getBitWidth(), 0)); 473 474 // The proof that shiftAmt LSBs are zero for at least one summand is only 475 // possible for the constant number. 476 // 477 // If this can be proven add shiftAmt to the error counter 478 // `ErrorMSBs`. Otherwise set all bits as undefined. 479 if (A.countr_zero() < shiftAmt) 480 ErrorMSBs = A.getBitWidth(); 481 else 482 incErrorMSBs(shiftAmt); 483 484 // Apply the operation. 485 pushBOperation(LShr, C); 486 A = A.lshr(shiftAmt); 487 488 return *this; 489 } 490 491 /// Apply a sign-extend or truncate operation on the polynomial. 492 Polynomial &sextOrTrunc(unsigned n) { 493 if (n < A.getBitWidth()) { 494 // Truncate: Clearly undefined Bits on the MSB side are removed 495 // if there are any. 496 decErrorMSBs(A.getBitWidth() - n); 497 A = A.trunc(n); 498 pushBOperation(Trunc, APInt(sizeof(n) * 8, n)); 499 } 500 if (n > A.getBitWidth()) { 501 // Extend: Clearly extending first and adding later is different 502 // to adding first and extending later in all extended bits. 503 incErrorMSBs(n - A.getBitWidth()); 504 A = A.sext(n); 505 pushBOperation(SExt, APInt(sizeof(n) * 8, n)); 506 } 507 508 return *this; 509 } 510 511 /// Test if there is a coefficient B. 512 bool isFirstOrder() const { return V != nullptr; } 513 514 /// Test coefficient B of two Polynomials are equal. 515 bool isCompatibleTo(const Polynomial &o) const { 516 // The polynomial use different bit width. 517 if (A.getBitWidth() != o.A.getBitWidth()) 518 return false; 519 520 // If neither Polynomial has the Coefficient B. 521 if (!isFirstOrder() && !o.isFirstOrder()) 522 return true; 523 524 // The index variable is different. 525 if (V != o.V) 526 return false; 527 528 // Check the operations. 529 if (B.size() != o.B.size()) 530 return false; 531 532 auto *ob = o.B.begin(); 533 for (const auto &b : B) { 534 if (b != *ob) 535 return false; 536 ob++; 537 } 538 539 return true; 540 } 541 542 /// Subtract two polynomials, return an undefined polynomial if 543 /// subtraction is not possible. 544 Polynomial operator-(const Polynomial &o) const { 545 // Return an undefined polynomial if incompatible. 546 if (!isCompatibleTo(o)) 547 return Polynomial(); 548 549 // If the polynomials are compatible (meaning they have the same 550 // coefficient on B), B is eliminated. Thus a polynomial solely 551 // containing A is returned 552 return Polynomial(A - o.A, std::max(ErrorMSBs, o.ErrorMSBs)); 553 } 554 555 /// Subtract a constant from a polynomial, 556 Polynomial operator-(uint64_t C) const { 557 Polynomial Result(*this); 558 Result.A -= C; 559 return Result; 560 } 561 562 /// Add a constant to a polynomial, 563 Polynomial operator+(uint64_t C) const { 564 Polynomial Result(*this); 565 Result.A += C; 566 return Result; 567 } 568 569 /// Returns true if it can be proven that two Polynomials are equal. 570 bool isProvenEqualTo(const Polynomial &o) { 571 // Subtract both polynomials and test if it is fully defined and zero. 572 Polynomial r = *this - o; 573 return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isZero()); 574 } 575 576 /// Print the polynomial into a stream. 577 void print(raw_ostream &OS) const { 578 OS << "[{#ErrBits:" << ErrorMSBs << "} "; 579 580 if (V) { 581 for (auto b : B) 582 OS << "("; 583 OS << "(" << *V << ") "; 584 585 for (auto b : B) { 586 switch (b.first) { 587 case LShr: 588 OS << "LShr "; 589 break; 590 case Mul: 591 OS << "Mul "; 592 break; 593 case SExt: 594 OS << "SExt "; 595 break; 596 case Trunc: 597 OS << "Trunc "; 598 break; 599 } 600 601 OS << b.second << ") "; 602 } 603 } 604 605 OS << "+ " << A << "]"; 606 } 607 608 private: 609 void deleteB() { 610 V = nullptr; 611 B.clear(); 612 } 613 614 void pushBOperation(const BOps Op, const APInt &C) { 615 if (isFirstOrder()) { 616 B.push_back(std::make_pair(Op, C)); 617 return; 618 } 619 } 620 }; 621 622 #ifndef NDEBUG 623 static raw_ostream &operator<<(raw_ostream &OS, const Polynomial &S) { 624 S.print(OS); 625 return OS; 626 } 627 #endif 628 629 /// VectorInfo stores abstract the following information for each vector 630 /// element: 631 /// 632 /// 1) The memory address loaded into the element as Polynomial 633 /// 2) a set of load instruction necessary to construct the vector, 634 /// 3) a set of all other instructions that are necessary to create the vector and 635 /// 4) a pointer value that can be used as relative base for all elements. 636 struct VectorInfo { 637 private: 638 VectorInfo(const VectorInfo &c) : VTy(c.VTy) { 639 llvm_unreachable( 640 "Copying VectorInfo is neither implemented nor necessary,"); 641 } 642 643 public: 644 /// Information of a Vector Element 645 struct ElementInfo { 646 /// Offset Polynomial. 647 Polynomial Ofs; 648 649 /// The Load Instruction used to Load the entry. LI is null if the pointer 650 /// of the load instruction does not point on to the entry 651 LoadInst *LI; 652 653 ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr) 654 : Ofs(Offset), LI(LI) {} 655 }; 656 657 /// Basic-block the load instructions are within 658 BasicBlock *BB = nullptr; 659 660 /// Pointer value of all participation load instructions 661 Value *PV = nullptr; 662 663 /// Participating load instructions 664 std::set<LoadInst *> LIs; 665 666 /// Participating instructions 667 std::set<Instruction *> Is; 668 669 /// Final shuffle-vector instruction 670 ShuffleVectorInst *SVI = nullptr; 671 672 /// Information of the offset for each vector element 673 ElementInfo *EI; 674 675 /// Vector Type 676 FixedVectorType *const VTy; 677 678 VectorInfo(FixedVectorType *VTy) : VTy(VTy) { 679 EI = new ElementInfo[VTy->getNumElements()]; 680 } 681 682 VectorInfo &operator=(const VectorInfo &other) = delete; 683 684 virtual ~VectorInfo() { delete[] EI; } 685 686 unsigned getDimension() const { return VTy->getNumElements(); } 687 688 /// Test if the VectorInfo can be part of an interleaved load with the 689 /// specified factor. 690 /// 691 /// \param Factor of the interleave 692 /// \param DL Targets Datalayout 693 /// 694 /// \returns true if this is possible and false if not 695 bool isInterleaved(unsigned Factor, const DataLayout &DL) const { 696 unsigned Size = DL.getTypeAllocSize(VTy->getElementType()); 697 for (unsigned i = 1; i < getDimension(); i++) { 698 if (!EI[i].Ofs.isProvenEqualTo(EI[0].Ofs + i * Factor * Size)) { 699 return false; 700 } 701 } 702 return true; 703 } 704 705 /// Recursively computes the vector information stored in V. 706 /// 707 /// This function delegates the work to specialized implementations 708 /// 709 /// \param V Value to operate on 710 /// \param Result Result of the computation 711 /// 712 /// \returns false if no sensible information can be gathered. 713 static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) { 714 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V); 715 if (SVI) 716 return computeFromSVI(SVI, Result, DL); 717 LoadInst *LI = dyn_cast<LoadInst>(V); 718 if (LI) 719 return computeFromLI(LI, Result, DL); 720 BitCastInst *BCI = dyn_cast<BitCastInst>(V); 721 if (BCI) 722 return computeFromBCI(BCI, Result, DL); 723 return false; 724 } 725 726 /// BitCastInst specialization to compute the vector information. 727 /// 728 /// \param BCI BitCastInst to operate on 729 /// \param Result Result of the computation 730 /// 731 /// \returns false if no sensible information can be gathered. 732 static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result, 733 const DataLayout &DL) { 734 Instruction *Op = dyn_cast<Instruction>(BCI->getOperand(0)); 735 736 if (!Op) 737 return false; 738 739 FixedVectorType *VTy = dyn_cast<FixedVectorType>(Op->getType()); 740 if (!VTy) 741 return false; 742 743 // We can only cast from large to smaller vectors 744 if (Result.VTy->getNumElements() % VTy->getNumElements()) 745 return false; 746 747 unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements(); 748 unsigned NewSize = DL.getTypeAllocSize(Result.VTy->getElementType()); 749 unsigned OldSize = DL.getTypeAllocSize(VTy->getElementType()); 750 751 if (NewSize * Factor != OldSize) 752 return false; 753 754 VectorInfo Old(VTy); 755 if (!compute(Op, Old, DL)) 756 return false; 757 758 for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) { 759 for (unsigned j = 0; j < Factor; j++) { 760 Result.EI[i + j] = 761 ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize, 762 j == 0 ? Old.EI[i / Factor].LI : nullptr); 763 } 764 } 765 766 Result.BB = Old.BB; 767 Result.PV = Old.PV; 768 Result.LIs.insert(Old.LIs.begin(), Old.LIs.end()); 769 Result.Is.insert(Old.Is.begin(), Old.Is.end()); 770 Result.Is.insert(BCI); 771 Result.SVI = nullptr; 772 773 return true; 774 } 775 776 /// ShuffleVectorInst specialization to compute vector information. 777 /// 778 /// \param SVI ShuffleVectorInst to operate on 779 /// \param Result Result of the computation 780 /// 781 /// Compute the left and the right side vector information and merge them by 782 /// applying the shuffle operation. This function also ensures that the left 783 /// and right side have compatible loads. This means that all loads are with 784 /// in the same basic block and are based on the same pointer. 785 /// 786 /// \returns false if no sensible information can be gathered. 787 static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result, 788 const DataLayout &DL) { 789 FixedVectorType *ArgTy = 790 cast<FixedVectorType>(SVI->getOperand(0)->getType()); 791 792 // Compute the left hand vector information. 793 VectorInfo LHS(ArgTy); 794 if (!compute(SVI->getOperand(0), LHS, DL)) 795 LHS.BB = nullptr; 796 797 // Compute the right hand vector information. 798 VectorInfo RHS(ArgTy); 799 if (!compute(SVI->getOperand(1), RHS, DL)) 800 RHS.BB = nullptr; 801 802 // Neither operand produced sensible results? 803 if (!LHS.BB && !RHS.BB) 804 return false; 805 // Only RHS produced sensible results? 806 else if (!LHS.BB) { 807 Result.BB = RHS.BB; 808 Result.PV = RHS.PV; 809 } 810 // Only LHS produced sensible results? 811 else if (!RHS.BB) { 812 Result.BB = LHS.BB; 813 Result.PV = LHS.PV; 814 } 815 // Both operands produced sensible results? 816 else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) { 817 Result.BB = LHS.BB; 818 Result.PV = LHS.PV; 819 } 820 // Both operands produced sensible results but they are incompatible. 821 else { 822 return false; 823 } 824 825 // Merge and apply the operation on the offset information. 826 if (LHS.BB) { 827 Result.LIs.insert(LHS.LIs.begin(), LHS.LIs.end()); 828 Result.Is.insert(LHS.Is.begin(), LHS.Is.end()); 829 } 830 if (RHS.BB) { 831 Result.LIs.insert(RHS.LIs.begin(), RHS.LIs.end()); 832 Result.Is.insert(RHS.Is.begin(), RHS.Is.end()); 833 } 834 Result.Is.insert(SVI); 835 Result.SVI = SVI; 836 837 int j = 0; 838 for (int i : SVI->getShuffleMask()) { 839 assert((i < 2 * (signed)ArgTy->getNumElements()) && 840 "Invalid ShuffleVectorInst (index out of bounds)"); 841 842 if (i < 0) 843 Result.EI[j] = ElementInfo(); 844 else if (i < (signed)ArgTy->getNumElements()) { 845 if (LHS.BB) 846 Result.EI[j] = LHS.EI[i]; 847 else 848 Result.EI[j] = ElementInfo(); 849 } else { 850 if (RHS.BB) 851 Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()]; 852 else 853 Result.EI[j] = ElementInfo(); 854 } 855 j++; 856 } 857 858 return true; 859 } 860 861 /// LoadInst specialization to compute vector information. 862 /// 863 /// This function also acts as abort condition to the recursion. 864 /// 865 /// \param LI LoadInst to operate on 866 /// \param Result Result of the computation 867 /// 868 /// \returns false if no sensible information can be gathered. 869 static bool computeFromLI(LoadInst *LI, VectorInfo &Result, 870 const DataLayout &DL) { 871 Value *BasePtr; 872 Polynomial Offset; 873 874 if (LI->isVolatile()) 875 return false; 876 877 if (LI->isAtomic()) 878 return false; 879 880 if (!DL.typeSizeEqualsStoreSize(Result.VTy->getElementType())) 881 return false; 882 883 // Get the base polynomial 884 computePolynomialFromPointer(*LI->getPointerOperand(), Offset, BasePtr, DL); 885 886 Result.BB = LI->getParent(); 887 Result.PV = BasePtr; 888 Result.LIs.insert(LI); 889 Result.Is.insert(LI); 890 891 for (unsigned i = 0; i < Result.getDimension(); i++) { 892 Value *Idx[2] = { 893 ConstantInt::get(Type::getInt32Ty(LI->getContext()), 0), 894 ConstantInt::get(Type::getInt32Ty(LI->getContext()), i), 895 }; 896 int64_t Ofs = DL.getIndexedOffsetInType(Result.VTy, Idx); 897 Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr); 898 } 899 900 return true; 901 } 902 903 /// Recursively compute polynomial of a value. 904 /// 905 /// \param BO Input binary operation 906 /// \param Result Result polynomial 907 static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) { 908 Value *LHS = BO.getOperand(0); 909 Value *RHS = BO.getOperand(1); 910 911 // Find the RHS Constant if any 912 ConstantInt *C = dyn_cast<ConstantInt>(RHS); 913 if ((!C) && BO.isCommutative()) { 914 C = dyn_cast<ConstantInt>(LHS); 915 if (C) 916 std::swap(LHS, RHS); 917 } 918 919 switch (BO.getOpcode()) { 920 case Instruction::Add: 921 if (!C) 922 break; 923 924 computePolynomial(*LHS, Result); 925 Result.add(C->getValue()); 926 return; 927 928 case Instruction::LShr: 929 if (!C) 930 break; 931 932 computePolynomial(*LHS, Result); 933 Result.lshr(C->getValue()); 934 return; 935 936 default: 937 break; 938 } 939 940 Result = Polynomial(&BO); 941 } 942 943 /// Recursively compute polynomial of a value 944 /// 945 /// \param V input value 946 /// \param Result result polynomial 947 static void computePolynomial(Value &V, Polynomial &Result) { 948 if (auto *BO = dyn_cast<BinaryOperator>(&V)) 949 computePolynomialBinOp(*BO, Result); 950 else 951 Result = Polynomial(&V); 952 } 953 954 /// Compute the Polynomial representation of a Pointer type. 955 /// 956 /// \param Ptr input pointer value 957 /// \param Result result polynomial 958 /// \param BasePtr pointer the polynomial is based on 959 /// \param DL Datalayout of the target machine 960 static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result, 961 Value *&BasePtr, 962 const DataLayout &DL) { 963 // Not a pointer type? Return an undefined polynomial 964 PointerType *PtrTy = dyn_cast<PointerType>(Ptr.getType()); 965 if (!PtrTy) { 966 Result = Polynomial(); 967 BasePtr = nullptr; 968 return; 969 } 970 unsigned PointerBits = 971 DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()); 972 973 /// Skip pointer casts. Return Zero polynomial otherwise 974 if (isa<CastInst>(&Ptr)) { 975 CastInst &CI = *cast<CastInst>(&Ptr); 976 switch (CI.getOpcode()) { 977 case Instruction::BitCast: 978 computePolynomialFromPointer(*CI.getOperand(0), Result, BasePtr, DL); 979 break; 980 default: 981 BasePtr = &Ptr; 982 Polynomial(PointerBits, 0); 983 break; 984 } 985 } 986 /// Resolve GetElementPtrInst. 987 else if (isa<GetElementPtrInst>(&Ptr)) { 988 GetElementPtrInst &GEP = *cast<GetElementPtrInst>(&Ptr); 989 990 APInt BaseOffset(PointerBits, 0); 991 992 // Check if we can compute the Offset with accumulateConstantOffset 993 if (GEP.accumulateConstantOffset(DL, BaseOffset)) { 994 Result = Polynomial(BaseOffset); 995 BasePtr = GEP.getPointerOperand(); 996 return; 997 } else { 998 // Otherwise we allow that the last index operand of the GEP is 999 // non-constant. 1000 unsigned idxOperand, e; 1001 SmallVector<Value *, 4> Indices; 1002 for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e; 1003 idxOperand++) { 1004 ConstantInt *IDX = dyn_cast<ConstantInt>(GEP.getOperand(idxOperand)); 1005 if (!IDX) 1006 break; 1007 Indices.push_back(IDX); 1008 } 1009 1010 // It must also be the last operand. 1011 if (idxOperand + 1 != e) { 1012 Result = Polynomial(); 1013 BasePtr = nullptr; 1014 return; 1015 } 1016 1017 // Compute the polynomial of the index operand. 1018 computePolynomial(*GEP.getOperand(idxOperand), Result); 1019 1020 // Compute base offset from zero based index, excluding the last 1021 // variable operand. 1022 BaseOffset = 1023 DL.getIndexedOffsetInType(GEP.getSourceElementType(), Indices); 1024 1025 // Apply the operations of GEP to the polynomial. 1026 unsigned ResultSize = DL.getTypeAllocSize(GEP.getResultElementType()); 1027 Result.sextOrTrunc(PointerBits); 1028 Result.mul(APInt(PointerBits, ResultSize)); 1029 Result.add(BaseOffset); 1030 BasePtr = GEP.getPointerOperand(); 1031 } 1032 } 1033 // All other instructions are handled by using the value as base pointer and 1034 // a zero polynomial. 1035 else { 1036 BasePtr = &Ptr; 1037 Polynomial(DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()), 0); 1038 } 1039 } 1040 1041 #ifndef NDEBUG 1042 void print(raw_ostream &OS) const { 1043 if (PV) 1044 OS << *PV; 1045 else 1046 OS << "(none)"; 1047 OS << " + "; 1048 for (unsigned i = 0; i < getDimension(); i++) 1049 OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs; 1050 OS << "]"; 1051 } 1052 #endif 1053 }; 1054 1055 } // anonymous namespace 1056 1057 bool InterleavedLoadCombineImpl::findPattern( 1058 std::list<VectorInfo> &Candidates, std::list<VectorInfo> &InterleavedLoad, 1059 unsigned Factor, const DataLayout &DL) { 1060 for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) { 1061 unsigned i; 1062 // Try to find an interleaved load using the front of Worklist as first line 1063 unsigned Size = DL.getTypeAllocSize(C0->VTy->getElementType()); 1064 1065 // List containing iterators pointing to the VectorInfos of the candidates 1066 std::vector<std::list<VectorInfo>::iterator> Res(Factor, Candidates.end()); 1067 1068 for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) { 1069 if (C->VTy != C0->VTy) 1070 continue; 1071 if (C->BB != C0->BB) 1072 continue; 1073 if (C->PV != C0->PV) 1074 continue; 1075 1076 // Check the current value matches any of factor - 1 remaining lines 1077 for (i = 1; i < Factor; i++) { 1078 if (C->EI[0].Ofs.isProvenEqualTo(C0->EI[0].Ofs + i * Size)) { 1079 Res[i] = C; 1080 } 1081 } 1082 1083 for (i = 1; i < Factor; i++) { 1084 if (Res[i] == Candidates.end()) 1085 break; 1086 } 1087 if (i == Factor) { 1088 Res[0] = C0; 1089 break; 1090 } 1091 } 1092 1093 if (Res[0] != Candidates.end()) { 1094 // Move the result into the output 1095 for (unsigned i = 0; i < Factor; i++) { 1096 InterleavedLoad.splice(InterleavedLoad.end(), Candidates, Res[i]); 1097 } 1098 1099 return true; 1100 } 1101 } 1102 return false; 1103 } 1104 1105 LoadInst * 1106 InterleavedLoadCombineImpl::findFirstLoad(const std::set<LoadInst *> &LIs) { 1107 assert(!LIs.empty() && "No load instructions given."); 1108 1109 // All LIs are within the same BB. Select the first for a reference. 1110 BasicBlock *BB = (*LIs.begin())->getParent(); 1111 BasicBlock::iterator FLI = llvm::find_if( 1112 *BB, [&LIs](Instruction &I) -> bool { return is_contained(LIs, &I); }); 1113 assert(FLI != BB->end()); 1114 1115 return cast<LoadInst>(FLI); 1116 } 1117 1118 bool InterleavedLoadCombineImpl::combine(std::list<VectorInfo> &InterleavedLoad, 1119 OptimizationRemarkEmitter &ORE) { 1120 LLVM_DEBUG(dbgs() << "Checking interleaved load\n"); 1121 1122 // The insertion point is the LoadInst which loads the first values. The 1123 // following tests are used to proof that the combined load can be inserted 1124 // just before InsertionPoint. 1125 LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI; 1126 1127 // Test if the offset is computed 1128 if (!InsertionPoint) 1129 return false; 1130 1131 std::set<LoadInst *> LIs; 1132 std::set<Instruction *> Is; 1133 std::set<Instruction *> SVIs; 1134 1135 InstructionCost InterleavedCost; 1136 InstructionCost InstructionCost = 0; 1137 const TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency; 1138 1139 // Get the interleave factor 1140 unsigned Factor = InterleavedLoad.size(); 1141 1142 // Merge all input sets used in analysis 1143 for (auto &VI : InterleavedLoad) { 1144 // Generate a set of all load instructions to be combined 1145 LIs.insert(VI.LIs.begin(), VI.LIs.end()); 1146 1147 // Generate a set of all instructions taking part in load 1148 // interleaved. This list excludes the instructions necessary for the 1149 // polynomial construction. 1150 Is.insert(VI.Is.begin(), VI.Is.end()); 1151 1152 // Generate the set of the final ShuffleVectorInst. 1153 SVIs.insert(VI.SVI); 1154 } 1155 1156 // There is nothing to combine. 1157 if (LIs.size() < 2) 1158 return false; 1159 1160 // Test if all participating instruction will be dead after the 1161 // transformation. If intermediate results are used, no performance gain can 1162 // be expected. Also sum the cost of the Instructions beeing left dead. 1163 for (const auto &I : Is) { 1164 // Compute the old cost 1165 InstructionCost += TTI.getInstructionCost(I, CostKind); 1166 1167 // The final SVIs are allowed not to be dead, all uses will be replaced 1168 if (SVIs.find(I) != SVIs.end()) 1169 continue; 1170 1171 // If there are users outside the set to be eliminated, we abort the 1172 // transformation. No gain can be expected. 1173 for (auto *U : I->users()) { 1174 if (Is.find(dyn_cast<Instruction>(U)) == Is.end()) 1175 return false; 1176 } 1177 } 1178 1179 // We need to have a valid cost in order to proceed. 1180 if (!InstructionCost.isValid()) 1181 return false; 1182 1183 // We know that all LoadInst are within the same BB. This guarantees that 1184 // either everything or nothing is loaded. 1185 LoadInst *First = findFirstLoad(LIs); 1186 1187 // To be safe that the loads can be combined, iterate over all loads and test 1188 // that the corresponding defining access dominates first LI. This guarantees 1189 // that there are no aliasing stores in between the loads. 1190 auto FMA = MSSA.getMemoryAccess(First); 1191 for (auto *LI : LIs) { 1192 auto MADef = MSSA.getMemoryAccess(LI)->getDefiningAccess(); 1193 if (!MSSA.dominates(MADef, FMA)) 1194 return false; 1195 } 1196 assert(!LIs.empty() && "There are no LoadInst to combine"); 1197 1198 // It is necessary that insertion point dominates all final ShuffleVectorInst. 1199 for (auto &VI : InterleavedLoad) { 1200 if (!DT.dominates(InsertionPoint, VI.SVI)) 1201 return false; 1202 } 1203 1204 // All checks are done. Add instructions detectable by InterleavedAccessPass 1205 // The old instruction will are left dead. 1206 IRBuilder<> Builder(InsertionPoint); 1207 Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType(); 1208 unsigned ElementsPerSVI = 1209 cast<FixedVectorType>(InterleavedLoad.front().SVI->getType()) 1210 ->getNumElements(); 1211 FixedVectorType *ILTy = FixedVectorType::get(ETy, Factor * ElementsPerSVI); 1212 1213 auto Indices = llvm::to_vector<4>(llvm::seq<unsigned>(0, Factor)); 1214 InterleavedCost = TTI.getInterleavedMemoryOpCost( 1215 Instruction::Load, ILTy, Factor, Indices, InsertionPoint->getAlign(), 1216 InsertionPoint->getPointerAddressSpace(), CostKind); 1217 1218 if (InterleavedCost >= InstructionCost) { 1219 return false; 1220 } 1221 1222 // Create the wide load and update the MemorySSA. 1223 auto Ptr = InsertionPoint->getPointerOperand(); 1224 auto LI = Builder.CreateAlignedLoad(ILTy, Ptr, InsertionPoint->getAlign(), 1225 "interleaved.wide.load"); 1226 auto MSSAU = MemorySSAUpdater(&MSSA); 1227 MemoryUse *MSSALoad = cast<MemoryUse>(MSSAU.createMemoryAccessBefore( 1228 LI, nullptr, MSSA.getMemoryAccess(InsertionPoint))); 1229 MSSAU.insertUse(MSSALoad, /*RenameUses=*/ true); 1230 1231 // Create the final SVIs and replace all uses. 1232 int i = 0; 1233 for (auto &VI : InterleavedLoad) { 1234 SmallVector<int, 4> Mask; 1235 for (unsigned j = 0; j < ElementsPerSVI; j++) 1236 Mask.push_back(i + j * Factor); 1237 1238 Builder.SetInsertPoint(VI.SVI); 1239 auto SVI = Builder.CreateShuffleVector(LI, Mask, "interleaved.shuffle"); 1240 VI.SVI->replaceAllUsesWith(SVI); 1241 i++; 1242 } 1243 1244 NumInterleavedLoadCombine++; 1245 ORE.emit([&]() { 1246 return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI) 1247 << "Load interleaved combined with factor " 1248 << ore::NV("Factor", Factor); 1249 }); 1250 1251 return true; 1252 } 1253 1254 bool InterleavedLoadCombineImpl::run() { 1255 OptimizationRemarkEmitter ORE(&F); 1256 bool changed = false; 1257 unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor(); 1258 1259 auto &DL = F.getDataLayout(); 1260 1261 // Start with the highest factor to avoid combining and recombining. 1262 for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) { 1263 std::list<VectorInfo> Candidates; 1264 1265 for (BasicBlock &BB : F) { 1266 for (Instruction &I : BB) { 1267 if (auto SVI = dyn_cast<ShuffleVectorInst>(&I)) { 1268 // We don't support scalable vectors in this pass. 1269 if (isa<ScalableVectorType>(SVI->getType())) 1270 continue; 1271 1272 Candidates.emplace_back(cast<FixedVectorType>(SVI->getType())); 1273 1274 if (!VectorInfo::computeFromSVI(SVI, Candidates.back(), DL)) { 1275 Candidates.pop_back(); 1276 continue; 1277 } 1278 1279 if (!Candidates.back().isInterleaved(Factor, DL)) { 1280 Candidates.pop_back(); 1281 } 1282 } 1283 } 1284 } 1285 1286 std::list<VectorInfo> InterleavedLoad; 1287 while (findPattern(Candidates, InterleavedLoad, Factor, DL)) { 1288 if (combine(InterleavedLoad, ORE)) { 1289 changed = true; 1290 } else { 1291 // Remove the first element of the Interleaved Load but put the others 1292 // back on the list and continue searching 1293 Candidates.splice(Candidates.begin(), InterleavedLoad, 1294 std::next(InterleavedLoad.begin()), 1295 InterleavedLoad.end()); 1296 } 1297 InterleavedLoad.clear(); 1298 } 1299 } 1300 1301 return changed; 1302 } 1303 1304 namespace { 1305 /// This pass combines interleaved loads into a pattern detectable by 1306 /// InterleavedAccessPass. 1307 struct InterleavedLoadCombine : public FunctionPass { 1308 static char ID; 1309 1310 InterleavedLoadCombine() : FunctionPass(ID) { 1311 initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry()); 1312 } 1313 1314 StringRef getPassName() const override { 1315 return "Interleaved Load Combine Pass"; 1316 } 1317 1318 bool runOnFunction(Function &F) override { 1319 if (DisableInterleavedLoadCombine) 1320 return false; 1321 1322 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 1323 if (!TPC) 1324 return false; 1325 1326 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() 1327 << "\n"); 1328 1329 return InterleavedLoadCombineImpl( 1330 F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 1331 getAnalysis<MemorySSAWrapperPass>().getMSSA(), 1332 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F), 1333 TPC->getTM<TargetMachine>()) 1334 .run(); 1335 } 1336 1337 void getAnalysisUsage(AnalysisUsage &AU) const override { 1338 AU.addRequired<MemorySSAWrapperPass>(); 1339 AU.addRequired<DominatorTreeWrapperPass>(); 1340 AU.addRequired<TargetTransformInfoWrapperPass>(); 1341 FunctionPass::getAnalysisUsage(AU); 1342 } 1343 1344 private: 1345 }; 1346 } // anonymous namespace 1347 1348 PreservedAnalyses 1349 InterleavedLoadCombinePass::run(Function &F, FunctionAnalysisManager &FAM) { 1350 1351 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 1352 auto &MemSSA = FAM.getResult<MemorySSAAnalysis>(F).getMSSA(); 1353 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 1354 bool Changed = InterleavedLoadCombineImpl(F, DT, MemSSA, TTI, *TM).run(); 1355 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1356 } 1357 1358 char InterleavedLoadCombine::ID = 0; 1359 1360 INITIALIZE_PASS_BEGIN( 1361 InterleavedLoadCombine, DEBUG_TYPE, 1362 "Combine interleaved loads into wide loads and shufflevector instructions", 1363 false, false) 1364 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1365 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1366 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1367 INITIALIZE_PASS_END( 1368 InterleavedLoadCombine, DEBUG_TYPE, 1369 "Combine interleaved loads into wide loads and shufflevector instructions", 1370 false, false) 1371 1372 FunctionPass * 1373 llvm::createInterleavedLoadCombinePass() { 1374 auto P = new InterleavedLoadCombine(); 1375 return P; 1376 } 1377