xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/InterleavedLoadCombinePass.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 //
11 // This file defines the interleaved-load-combine pass. The pass searches for
12 // ShuffleVectorInstruction that execute interleaving loads. If a matching
13 // pattern is found, it adds a combined load and further instructions in a
14 // pattern that is detectable by InterleavedAccesPass. The old instructions are
15 // left dead to be removed later. The pass is specifically designed to be
16 // executed just before InterleavedAccesPass to find any left-over instances
17 // that are not detected within former passes.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/MemoryLocation.h"
23 #include "llvm/Analysis/MemorySSA.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/CodeGen/TargetLowering.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/LegacyPassManager.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetMachine.h"
42 
43 #include <algorithm>
44 #include <cassert>
45 #include <list>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "interleaved-load-combine"
50 
51 namespace {
52 
53 /// Statistic counter
54 STATISTIC(NumInterleavedLoadCombine, "Number of combined loads");
55 
56 /// Option to disable the pass
57 static cl::opt<bool> DisableInterleavedLoadCombine(
58     "disable-" DEBUG_TYPE, cl::init(false), cl::Hidden,
59     cl::desc("Disable combining of interleaved loads"));
60 
61 struct VectorInfo;
62 
63 struct InterleavedLoadCombineImpl {
64 public:
65   InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA,
66                              TargetMachine &TM)
67       : F(F), DT(DT), MSSA(MSSA),
68         TLI(*TM.getSubtargetImpl(F)->getTargetLowering()),
69         TTI(TM.getTargetTransformInfo(F)) {}
70 
71   /// Scan the function for interleaved load candidates and execute the
72   /// replacement if applicable.
73   bool run();
74 
75 private:
76   /// Function this pass is working on
77   Function &F;
78 
79   /// Dominator Tree Analysis
80   DominatorTree &DT;
81 
82   /// Memory Alias Analyses
83   MemorySSA &MSSA;
84 
85   /// Target Lowering Information
86   const TargetLowering &TLI;
87 
88   /// Target Transform Information
89   const TargetTransformInfo TTI;
90 
91   /// Find the instruction in sets LIs that dominates all others, return nullptr
92   /// if there is none.
93   LoadInst *findFirstLoad(const std::set<LoadInst *> &LIs);
94 
95   /// Replace interleaved load candidates. It does additional
96   /// analyses if this makes sense. Returns true on success and false
97   /// of nothing has been changed.
98   bool combine(std::list<VectorInfo> &InterleavedLoad,
99                OptimizationRemarkEmitter &ORE);
100 
101   /// Given a set of VectorInfo containing candidates for a given interleave
102   /// factor, find a set that represents a 'factor' interleaved load.
103   bool findPattern(std::list<VectorInfo> &Candidates,
104                    std::list<VectorInfo> &InterleavedLoad, unsigned Factor,
105                    const DataLayout &DL);
106 }; // InterleavedLoadCombine
107 
108 /// First Order Polynomial on an n-Bit Integer Value
109 ///
110 /// Polynomial(Value) = Value * B + A + E*2^(n-e)
111 ///
112 /// A and B are the coefficients. E*2^(n-e) is an error within 'e' most
113 /// significant bits. It is introduced if an exact computation cannot be proven
114 /// (e.q. division by 2).
115 ///
116 /// As part of this optimization multiple loads will be combined. It necessary
117 /// to prove that loads are within some relative offset to each other. This
118 /// class is used to prove relative offsets of values loaded from memory.
119 ///
120 /// Representing an integer in this form is sound since addition in two's
121 /// complement is associative (trivial) and multiplication distributes over the
122 /// addition (see Proof(1) in Polynomial::mul). Further, both operations
123 /// commute.
124 //
125 // Example:
126 // declare @fn(i64 %IDX, <4 x float>* %PTR) {
127 //   %Pa1 = add i64 %IDX, 2
128 //   %Pa2 = lshr i64 %Pa1, 1
129 //   %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2
130 //   %Va = load <4 x float>, <4 x float>* %Pa3
131 //
132 //   %Pb1 = add i64 %IDX, 4
133 //   %Pb2 = lshr i64 %Pb1, 1
134 //   %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2
135 //   %Vb = load <4 x float>, <4 x float>* %Pb3
136 // ... }
137 //
138 // The goal is to prove that two loads load consecutive addresses.
139 //
140 // In this case the polynomials are constructed by the following
141 // steps.
142 //
143 // The number tag #e specifies the error bits.
144 //
145 // Pa_0 = %IDX              #0
146 // Pa_1 = %IDX + 2          #0 | add 2
147 // Pa_2 = %IDX/2 + 1        #1 | lshr 1
148 // Pa_3 = %IDX/2 + 1        #1 | GEP, step signext to i64
149 // Pa_4 = (%IDX/2)*16 + 16  #0 | GEP, multiply index by sizeof(4) for floats
150 // Pa_5 = (%IDX/2)*16 + 16  #0 | GEP, add offset of leading components
151 //
152 // Pb_0 = %IDX              #0
153 // Pb_1 = %IDX + 4          #0 | add 2
154 // Pb_2 = %IDX/2 + 2        #1 | lshr 1
155 // Pb_3 = %IDX/2 + 2        #1 | GEP, step signext to i64
156 // Pb_4 = (%IDX/2)*16 + 32  #0 | GEP, multiply index by sizeof(4) for floats
157 // Pb_5 = (%IDX/2)*16 + 16  #0 | GEP, add offset of leading components
158 //
159 // Pb_5 - Pa_5 = 16         #0 | subtract to get the offset
160 //
161 // Remark: %PTR is not maintained within this class. So in this instance the
162 // offset of 16 can only be assumed if the pointers are equal.
163 //
164 class Polynomial {
165   /// Operations on B
166   enum BOps {
167     LShr,
168     Mul,
169     SExt,
170     Trunc,
171   };
172 
173   /// Number of Error Bits e
174   unsigned ErrorMSBs;
175 
176   /// Value
177   Value *V;
178 
179   /// Coefficient B
180   SmallVector<std::pair<BOps, APInt>, 4> B;
181 
182   /// Coefficient A
183   APInt A;
184 
185 public:
186   Polynomial(Value *V) : ErrorMSBs((unsigned)-1), V(V), B(), A() {
187     IntegerType *Ty = dyn_cast<IntegerType>(V->getType());
188     if (Ty) {
189       ErrorMSBs = 0;
190       this->V = V;
191       A = APInt(Ty->getBitWidth(), 0);
192     }
193   }
194 
195   Polynomial(const APInt &A, unsigned ErrorMSBs = 0)
196       : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(A) {}
197 
198   Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0)
199       : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(BitWidth, A) {}
200 
201   Polynomial() : ErrorMSBs((unsigned)-1), V(NULL), B(), A() {}
202 
203   /// Increment and clamp the number of undefined bits.
204   void incErrorMSBs(unsigned amt) {
205     if (ErrorMSBs == (unsigned)-1)
206       return;
207 
208     ErrorMSBs += amt;
209     if (ErrorMSBs > A.getBitWidth())
210       ErrorMSBs = A.getBitWidth();
211   }
212 
213   /// Decrement and clamp the number of undefined bits.
214   void decErrorMSBs(unsigned amt) {
215     if (ErrorMSBs == (unsigned)-1)
216       return;
217 
218     if (ErrorMSBs > amt)
219       ErrorMSBs -= amt;
220     else
221       ErrorMSBs = 0;
222   }
223 
224   /// Apply an add on the polynomial
225   Polynomial &add(const APInt &C) {
226     // Note: Addition is associative in two's complement even when in case of
227     // signed overflow.
228     //
229     // Error bits can only propagate into higher significant bits. As these are
230     // already regarded as undefined, there is no change.
231     //
232     // Theorem: Adding a constant to a polynomial does not change the error
233     // term.
234     //
235     // Proof:
236     //
237     //   Since the addition is associative and commutes:
238     //
239     //   (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e)
240     // [qed]
241 
242     if (C.getBitWidth() != A.getBitWidth()) {
243       ErrorMSBs = (unsigned)-1;
244       return *this;
245     }
246 
247     A += C;
248     return *this;
249   }
250 
251   /// Apply a multiplication onto the polynomial.
252   Polynomial &mul(const APInt &C) {
253     // Note: Multiplication distributes over the addition
254     //
255     // Theorem: Multiplication distributes over the addition
256     //
257     // Proof(1):
258     //
259     //   (B+A)*C =-
260     //        = (B + A) + (B + A) + .. {C Times}
261     //         addition is associative and commutes, hence
262     //        = B + B + .. {C Times} .. + A + A + .. {C times}
263     //        = B*C + A*C
264     //   (see (function add) for signed values and overflows)
265     // [qed]
266     //
267     // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out
268     // to the left.
269     //
270     // Proof(2):
271     //
272     //   Let B' and A' be the n-Bit inputs with some unknown errors EA,
273     //   EB at e leading bits. B' and A' can be written down as:
274     //
275     //     B' = B + 2^(n-e)*EB
276     //     A' = A + 2^(n-e)*EA
277     //
278     //   Let C' be an input with c trailing zero bits. C' can be written as
279     //
280     //     C' = C*2^c
281     //
282     //   Therefore we can compute the result by using distributivity and
283     //   commutativity.
284     //
285     //     (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' =
286     //                     = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
287     //                     = (B'+A') * C' =
288     //                     = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
289     //                     = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' =
290     //                     = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' =
291     //                     = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c =
292     //                     = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c =
293     //
294     //   Let EC be the final error with EC = C*(EB + EA)
295     //
296     //                     = (B + A)*C' + EC*2^(n-e)*2^c =
297     //                     = (B + A)*C' + EC*2^(n-(e-c))
298     //
299     //   Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c
300     //   less error bits than the input. c bits are shifted out to the left.
301     // [qed]
302 
303     if (C.getBitWidth() != A.getBitWidth()) {
304       ErrorMSBs = (unsigned)-1;
305       return *this;
306     }
307 
308     // Multiplying by one is a no-op.
309     if (C.isOneValue()) {
310       return *this;
311     }
312 
313     // Multiplying by zero removes the coefficient B and defines all bits.
314     if (C.isNullValue()) {
315       ErrorMSBs = 0;
316       deleteB();
317     }
318 
319     // See Proof(2): Trailing zero bits indicate a left shift. This removes
320     // leading bits from the result even if they are undefined.
321     decErrorMSBs(C.countTrailingZeros());
322 
323     A *= C;
324     pushBOperation(Mul, C);
325     return *this;
326   }
327 
328   /// Apply a logical shift right on the polynomial
329   Polynomial &lshr(const APInt &C) {
330     // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e')
331     //          where
332     //             e' = e + 1,
333     //             E is a e-bit number,
334     //             E' is a e'-bit number,
335     //   holds under the following precondition:
336     //          pre(1): A % 2 = 0
337     //          pre(2): e < n, (see Theorem(2) for the trivial case with e=n)
338     //   where >> expresses a logical shift to the right, with adding zeros.
339     //
340     //  We need to show that for every, E there is a E'
341     //
342     //  B = b_h * 2^(n-1) + b_m * 2 + b_l
343     //  A = a_h * 2^(n-1) + a_m * 2         (pre(1))
344     //
345     //  where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers
346     //
347     //  Let X = (B + A + E*2^(n-e)) >> 1
348     //  Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1
349     //
350     //    X = [B + A + E*2^(n-e)] >> 1 =
351     //      = [  b_h * 2^(n-1) + b_m * 2 + b_l +
352     //         + a_h * 2^(n-1) + a_m * 2 +
353     //         + E * 2^(n-e) ] >> 1 =
354     //
355     //    The sum is built by putting the overflow of [a_m + b+n] into the term
356     //    2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within
357     //    this bit is discarded. This is expressed by % 2.
358     //
359     //    The bit in position 0 cannot overflow into the term (b_m + a_m).
360     //
361     //      = [  ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) +
362     //         + ((b_m + a_m) % 2^(n-2)) * 2 +
363     //         + b_l + E * 2^(n-e) ] >> 1 =
364     //
365     //    The shift is computed by dividing the terms by 2 and by cutting off
366     //    b_l.
367     //
368     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
369     //         + ((b_m + a_m) % 2^(n-2)) +
370     //         + E * 2^(n-(e+1)) =
371     //
372     //    by the definition in the Theorem e+1 = e'
373     //
374     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
375     //         + ((b_m + a_m) % 2^(n-2)) +
376     //         + E * 2^(n-e') =
377     //
378     //    Compute Y by applying distributivity first
379     //
380     //    Y =  (B >> 1) + (A >> 1) + E*2^(n-e') =
381     //      =    (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 +
382     //         + (a_h * 2^(n-1) + a_m * 2) >> 1 +
383     //         + E * 2^(n-e) >> 1 =
384     //
385     //    Again, the shift is computed by dividing the terms by 2 and by cutting
386     //    off b_l.
387     //
388     //      =     b_h * 2^(n-2) + b_m +
389     //         +  a_h * 2^(n-2) + a_m +
390     //         +  E * 2^(n-(e+1)) =
391     //
392     //    Again, the sum is built by putting the overflow of [a_m + b+n] into
393     //    the term 2^(n-1). But this time there is room for a second bit in the
394     //    term 2^(n-2) we add this bit to a new term and denote it o_h in a
395     //    second step.
396     //
397     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) +
398     //         + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
399     //         + ((b_m + a_m) % 2^(n-2)) +
400     //         + E * 2^(n-(e+1)) =
401     //
402     //    Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1
403     //    Further replace e+1 by e'.
404     //
405     //      =    o_h * 2^(n-1) +
406     //         + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
407     //         + ((b_m + a_m) % 2^(n-2)) +
408     //         + E * 2^(n-e') =
409     //
410     //    Move o_h into the error term and construct E'. To ensure that there is
411     //    no 2^x with negative x, this step requires pre(2) (e < n).
412     //
413     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
414     //         + ((b_m + a_m) % 2^(n-2)) +
415     //         + o_h * 2^(e'-1) * 2^(n-e') +               | pre(2), move 2^(e'-1)
416     //                                                     | out of the old exponent
417     //         + E * 2^(n-e') =
418     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
419     //         + ((b_m + a_m) % 2^(n-2)) +
420     //         + [o_h * 2^(e'-1) + E] * 2^(n-e') +         | move 2^(e'-1) out of
421     //                                                     | the old exponent
422     //
423     //    Let E' = o_h * 2^(e'-1) + E
424     //
425     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
426     //         + ((b_m + a_m) % 2^(n-2)) +
427     //         + E' * 2^(n-e')
428     //
429     //    Because X and Y are distinct only in there error terms and E' can be
430     //    constructed as shown the theorem holds.
431     // [qed]
432     //
433     // For completeness in case of the case e=n it is also required to show that
434     // distributivity can be applied.
435     //
436     // In this case Theorem(1) transforms to (the pre-condition on A can also be
437     // dropped)
438     //
439     // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E'
440     //          where
441     //             A, B, E, E' are two's complement numbers with the same bit
442     //             width
443     //
444     //   Let A + B + E = X
445     //   Let (B >> 1) + (A >> 1) = Y
446     //
447     //   Therefore we need to show that for every X and Y there is an E' which
448     //   makes the equation
449     //
450     //     X = Y + E'
451     //
452     //   hold. This is trivially the case for E' = X - Y.
453     //
454     // [qed]
455     //
456     // Remark: Distributing lshr with and arbitrary number n can be expressed as
457     //   ((((B + A) lshr 1) lshr 1) ... ) {n times}.
458     // This construction induces n additional error bits at the left.
459 
460     if (C.getBitWidth() != A.getBitWidth()) {
461       ErrorMSBs = (unsigned)-1;
462       return *this;
463     }
464 
465     if (C.isNullValue())
466       return *this;
467 
468     // Test if the result will be zero
469     unsigned shiftAmt = C.getZExtValue();
470     if (shiftAmt >= C.getBitWidth())
471       return mul(APInt(C.getBitWidth(), 0));
472 
473     // The proof that shiftAmt LSBs are zero for at least one summand is only
474     // possible for the constant number.
475     //
476     // If this can be proven add shiftAmt to the error counter
477     // `ErrorMSBs`. Otherwise set all bits as undefined.
478     if (A.countTrailingZeros() < shiftAmt)
479       ErrorMSBs = A.getBitWidth();
480     else
481       incErrorMSBs(shiftAmt);
482 
483     // Apply the operation.
484     pushBOperation(LShr, C);
485     A = A.lshr(shiftAmt);
486 
487     return *this;
488   }
489 
490   /// Apply a sign-extend or truncate operation on the polynomial.
491   Polynomial &sextOrTrunc(unsigned n) {
492     if (n < A.getBitWidth()) {
493       // Truncate: Clearly undefined Bits on the MSB side are removed
494       // if there are any.
495       decErrorMSBs(A.getBitWidth() - n);
496       A = A.trunc(n);
497       pushBOperation(Trunc, APInt(sizeof(n) * 8, n));
498     }
499     if (n > A.getBitWidth()) {
500       // Extend: Clearly extending first and adding later is different
501       // to adding first and extending later in all extended bits.
502       incErrorMSBs(n - A.getBitWidth());
503       A = A.sext(n);
504       pushBOperation(SExt, APInt(sizeof(n) * 8, n));
505     }
506 
507     return *this;
508   }
509 
510   /// Test if there is a coefficient B.
511   bool isFirstOrder() const { return V != nullptr; }
512 
513   /// Test coefficient B of two Polynomials are equal.
514   bool isCompatibleTo(const Polynomial &o) const {
515     // The polynomial use different bit width.
516     if (A.getBitWidth() != o.A.getBitWidth())
517       return false;
518 
519     // If neither Polynomial has the Coefficient B.
520     if (!isFirstOrder() && !o.isFirstOrder())
521       return true;
522 
523     // The index variable is different.
524     if (V != o.V)
525       return false;
526 
527     // Check the operations.
528     if (B.size() != o.B.size())
529       return false;
530 
531     auto ob = o.B.begin();
532     for (auto &b : B) {
533       if (b != *ob)
534         return false;
535       ob++;
536     }
537 
538     return true;
539   }
540 
541   /// Subtract two polynomials, return an undefined polynomial if
542   /// subtraction is not possible.
543   Polynomial operator-(const Polynomial &o) const {
544     // Return an undefined polynomial if incompatible.
545     if (!isCompatibleTo(o))
546       return Polynomial();
547 
548     // If the polynomials are compatible (meaning they have the same
549     // coefficient on B), B is eliminated. Thus a polynomial solely
550     // containing A is returned
551     return Polynomial(A - o.A, std::max(ErrorMSBs, o.ErrorMSBs));
552   }
553 
554   /// Subtract a constant from a polynomial,
555   Polynomial operator-(uint64_t C) const {
556     Polynomial Result(*this);
557     Result.A -= C;
558     return Result;
559   }
560 
561   /// Add a constant to a polynomial,
562   Polynomial operator+(uint64_t C) const {
563     Polynomial Result(*this);
564     Result.A += C;
565     return Result;
566   }
567 
568   /// Returns true if it can be proven that two Polynomials are equal.
569   bool isProvenEqualTo(const Polynomial &o) {
570     // Subtract both polynomials and test if it is fully defined and zero.
571     Polynomial r = *this - o;
572     return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isNullValue());
573   }
574 
575   /// Print the polynomial into a stream.
576   void print(raw_ostream &OS) const {
577     OS << "[{#ErrBits:" << ErrorMSBs << "} ";
578 
579     if (V) {
580       for (auto b : B)
581         OS << "(";
582       OS << "(" << *V << ") ";
583 
584       for (auto b : B) {
585         switch (b.first) {
586         case LShr:
587           OS << "LShr ";
588           break;
589         case Mul:
590           OS << "Mul ";
591           break;
592         case SExt:
593           OS << "SExt ";
594           break;
595         case Trunc:
596           OS << "Trunc ";
597           break;
598         }
599 
600         OS << b.second << ") ";
601       }
602     }
603 
604     OS << "+ " << A << "]";
605   }
606 
607 private:
608   void deleteB() {
609     V = nullptr;
610     B.clear();
611   }
612 
613   void pushBOperation(const BOps Op, const APInt &C) {
614     if (isFirstOrder()) {
615       B.push_back(std::make_pair(Op, C));
616       return;
617     }
618   }
619 };
620 
621 #ifndef NDEBUG
622 static raw_ostream &operator<<(raw_ostream &OS, const Polynomial &S) {
623   S.print(OS);
624   return OS;
625 }
626 #endif
627 
628 /// VectorInfo stores abstract the following information for each vector
629 /// element:
630 ///
631 /// 1) The the memory address loaded into the element as Polynomial
632 /// 2) a set of load instruction necessary to construct the vector,
633 /// 3) a set of all other instructions that are necessary to create the vector and
634 /// 4) a pointer value that can be used as relative base for all elements.
635 struct VectorInfo {
636 private:
637   VectorInfo(const VectorInfo &c) : VTy(c.VTy) {
638     llvm_unreachable(
639         "Copying VectorInfo is neither implemented nor necessary,");
640   }
641 
642 public:
643   /// Information of a Vector Element
644   struct ElementInfo {
645     /// Offset Polynomial.
646     Polynomial Ofs;
647 
648     /// The Load Instruction used to Load the entry. LI is null if the pointer
649     /// of the load instruction does not point on to the entry
650     LoadInst *LI;
651 
652     ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr)
653         : Ofs(Offset), LI(LI) {}
654   };
655 
656   /// Basic-block the load instructions are within
657   BasicBlock *BB;
658 
659   /// Pointer value of all participation load instructions
660   Value *PV;
661 
662   /// Participating load instructions
663   std::set<LoadInst *> LIs;
664 
665   /// Participating instructions
666   std::set<Instruction *> Is;
667 
668   /// Final shuffle-vector instruction
669   ShuffleVectorInst *SVI;
670 
671   /// Information of the offset for each vector element
672   ElementInfo *EI;
673 
674   /// Vector Type
675   VectorType *const VTy;
676 
677   VectorInfo(VectorType *VTy)
678       : BB(nullptr), PV(nullptr), LIs(), Is(), SVI(nullptr), VTy(VTy) {
679     EI = new ElementInfo[VTy->getNumElements()];
680   }
681 
682   virtual ~VectorInfo() { delete[] EI; }
683 
684   unsigned getDimension() const { return VTy->getNumElements(); }
685 
686   /// Test if the VectorInfo can be part of an interleaved load with the
687   /// specified factor.
688   ///
689   /// \param Factor of the interleave
690   /// \param DL Targets Datalayout
691   ///
692   /// \returns true if this is possible and false if not
693   bool isInterleaved(unsigned Factor, const DataLayout &DL) const {
694     unsigned Size = DL.getTypeAllocSize(VTy->getElementType());
695     for (unsigned i = 1; i < getDimension(); i++) {
696       if (!EI[i].Ofs.isProvenEqualTo(EI[0].Ofs + i * Factor * Size)) {
697         return false;
698       }
699     }
700     return true;
701   }
702 
703   /// Recursively computes the vector information stored in V.
704   ///
705   /// This function delegates the work to specialized implementations
706   ///
707   /// \param V Value to operate on
708   /// \param Result Result of the computation
709   ///
710   /// \returns false if no sensible information can be gathered.
711   static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) {
712     ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
713     if (SVI)
714       return computeFromSVI(SVI, Result, DL);
715     LoadInst *LI = dyn_cast<LoadInst>(V);
716     if (LI)
717       return computeFromLI(LI, Result, DL);
718     BitCastInst *BCI = dyn_cast<BitCastInst>(V);
719     if (BCI)
720       return computeFromBCI(BCI, Result, DL);
721     return false;
722   }
723 
724   /// BitCastInst specialization to compute the vector information.
725   ///
726   /// \param BCI BitCastInst to operate on
727   /// \param Result Result of the computation
728   ///
729   /// \returns false if no sensible information can be gathered.
730   static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result,
731                              const DataLayout &DL) {
732     Instruction *Op = dyn_cast<Instruction>(BCI->getOperand(0));
733 
734     if (!Op)
735       return false;
736 
737     VectorType *VTy = dyn_cast<VectorType>(Op->getType());
738     if (!VTy)
739       return false;
740 
741     // We can only cast from large to smaller vectors
742     if (Result.VTy->getNumElements() % VTy->getNumElements())
743       return false;
744 
745     unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements();
746     unsigned NewSize = DL.getTypeAllocSize(Result.VTy->getElementType());
747     unsigned OldSize = DL.getTypeAllocSize(VTy->getElementType());
748 
749     if (NewSize * Factor != OldSize)
750       return false;
751 
752     VectorInfo Old(VTy);
753     if (!compute(Op, Old, DL))
754       return false;
755 
756     for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) {
757       for (unsigned j = 0; j < Factor; j++) {
758         Result.EI[i + j] =
759             ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize,
760                         j == 0 ? Old.EI[i / Factor].LI : nullptr);
761       }
762     }
763 
764     Result.BB = Old.BB;
765     Result.PV = Old.PV;
766     Result.LIs.insert(Old.LIs.begin(), Old.LIs.end());
767     Result.Is.insert(Old.Is.begin(), Old.Is.end());
768     Result.Is.insert(BCI);
769     Result.SVI = nullptr;
770 
771     return true;
772   }
773 
774   /// ShuffleVectorInst specialization to compute vector information.
775   ///
776   /// \param SVI ShuffleVectorInst to operate on
777   /// \param Result Result of the computation
778   ///
779   /// Compute the left and the right side vector information and merge them by
780   /// applying the shuffle operation. This function also ensures that the left
781   /// and right side have compatible loads. This means that all loads are with
782   /// in the same basic block and are based on the same pointer.
783   ///
784   /// \returns false if no sensible information can be gathered.
785   static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result,
786                              const DataLayout &DL) {
787     VectorType *ArgTy = dyn_cast<VectorType>(SVI->getOperand(0)->getType());
788     assert(ArgTy && "ShuffleVector Operand is not a VectorType");
789 
790     // Compute the left hand vector information.
791     VectorInfo LHS(ArgTy);
792     if (!compute(SVI->getOperand(0), LHS, DL))
793       LHS.BB = nullptr;
794 
795     // Compute the right hand vector information.
796     VectorInfo RHS(ArgTy);
797     if (!compute(SVI->getOperand(1), RHS, DL))
798       RHS.BB = nullptr;
799 
800     // Neither operand produced sensible results?
801     if (!LHS.BB && !RHS.BB)
802       return false;
803     // Only RHS produced sensible results?
804     else if (!LHS.BB) {
805       Result.BB = RHS.BB;
806       Result.PV = RHS.PV;
807     }
808     // Only LHS produced sensible results?
809     else if (!RHS.BB) {
810       Result.BB = LHS.BB;
811       Result.PV = LHS.PV;
812     }
813     // Both operands produced sensible results?
814     else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) {
815       Result.BB = LHS.BB;
816       Result.PV = LHS.PV;
817     }
818     // Both operands produced sensible results but they are incompatible.
819     else {
820       return false;
821     }
822 
823     // Merge and apply the operation on the offset information.
824     if (LHS.BB) {
825       Result.LIs.insert(LHS.LIs.begin(), LHS.LIs.end());
826       Result.Is.insert(LHS.Is.begin(), LHS.Is.end());
827     }
828     if (RHS.BB) {
829       Result.LIs.insert(RHS.LIs.begin(), RHS.LIs.end());
830       Result.Is.insert(RHS.Is.begin(), RHS.Is.end());
831     }
832     Result.Is.insert(SVI);
833     Result.SVI = SVI;
834 
835     int j = 0;
836     for (int i : SVI->getShuffleMask()) {
837       assert((i < 2 * (signed)ArgTy->getNumElements()) &&
838              "Invalid ShuffleVectorInst (index out of bounds)");
839 
840       if (i < 0)
841         Result.EI[j] = ElementInfo();
842       else if (i < (signed)ArgTy->getNumElements()) {
843         if (LHS.BB)
844           Result.EI[j] = LHS.EI[i];
845         else
846           Result.EI[j] = ElementInfo();
847       } else {
848         if (RHS.BB)
849           Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()];
850         else
851           Result.EI[j] = ElementInfo();
852       }
853       j++;
854     }
855 
856     return true;
857   }
858 
859   /// LoadInst specialization to compute vector information.
860   ///
861   /// This function also acts as abort condition to the recursion.
862   ///
863   /// \param LI LoadInst to operate on
864   /// \param Result Result of the computation
865   ///
866   /// \returns false if no sensible information can be gathered.
867   static bool computeFromLI(LoadInst *LI, VectorInfo &Result,
868                             const DataLayout &DL) {
869     Value *BasePtr;
870     Polynomial Offset;
871 
872     if (LI->isVolatile())
873       return false;
874 
875     if (LI->isAtomic())
876       return false;
877 
878     // Get the base polynomial
879     computePolynomialFromPointer(*LI->getPointerOperand(), Offset, BasePtr, DL);
880 
881     Result.BB = LI->getParent();
882     Result.PV = BasePtr;
883     Result.LIs.insert(LI);
884     Result.Is.insert(LI);
885 
886     for (unsigned i = 0; i < Result.getDimension(); i++) {
887       Value *Idx[2] = {
888           ConstantInt::get(Type::getInt32Ty(LI->getContext()), 0),
889           ConstantInt::get(Type::getInt32Ty(LI->getContext()), i),
890       };
891       int64_t Ofs = DL.getIndexedOffsetInType(Result.VTy, makeArrayRef(Idx, 2));
892       Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr);
893     }
894 
895     return true;
896   }
897 
898   /// Recursively compute polynomial of a value.
899   ///
900   /// \param BO Input binary operation
901   /// \param Result Result polynomial
902   static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) {
903     Value *LHS = BO.getOperand(0);
904     Value *RHS = BO.getOperand(1);
905 
906     // Find the RHS Constant if any
907     ConstantInt *C = dyn_cast<ConstantInt>(RHS);
908     if ((!C) && BO.isCommutative()) {
909       C = dyn_cast<ConstantInt>(LHS);
910       if (C)
911         std::swap(LHS, RHS);
912     }
913 
914     switch (BO.getOpcode()) {
915     case Instruction::Add:
916       if (!C)
917         break;
918 
919       computePolynomial(*LHS, Result);
920       Result.add(C->getValue());
921       return;
922 
923     case Instruction::LShr:
924       if (!C)
925         break;
926 
927       computePolynomial(*LHS, Result);
928       Result.lshr(C->getValue());
929       return;
930 
931     default:
932       break;
933     }
934 
935     Result = Polynomial(&BO);
936   }
937 
938   /// Recursively compute polynomial of a value
939   ///
940   /// \param V input value
941   /// \param Result result polynomial
942   static void computePolynomial(Value &V, Polynomial &Result) {
943     if (auto *BO = dyn_cast<BinaryOperator>(&V))
944       computePolynomialBinOp(*BO, Result);
945     else
946       Result = Polynomial(&V);
947   }
948 
949   /// Compute the Polynomial representation of a Pointer type.
950   ///
951   /// \param Ptr input pointer value
952   /// \param Result result polynomial
953   /// \param BasePtr pointer the polynomial is based on
954   /// \param DL Datalayout of the target machine
955   static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result,
956                                            Value *&BasePtr,
957                                            const DataLayout &DL) {
958     // Not a pointer type? Return an undefined polynomial
959     PointerType *PtrTy = dyn_cast<PointerType>(Ptr.getType());
960     if (!PtrTy) {
961       Result = Polynomial();
962       BasePtr = nullptr;
963       return;
964     }
965     unsigned PointerBits =
966         DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace());
967 
968     /// Skip pointer casts. Return Zero polynomial otherwise
969     if (isa<CastInst>(&Ptr)) {
970       CastInst &CI = *cast<CastInst>(&Ptr);
971       switch (CI.getOpcode()) {
972       case Instruction::BitCast:
973         computePolynomialFromPointer(*CI.getOperand(0), Result, BasePtr, DL);
974         break;
975       default:
976         BasePtr = &Ptr;
977         Polynomial(PointerBits, 0);
978         break;
979       }
980     }
981     /// Resolve GetElementPtrInst.
982     else if (isa<GetElementPtrInst>(&Ptr)) {
983       GetElementPtrInst &GEP = *cast<GetElementPtrInst>(&Ptr);
984 
985       APInt BaseOffset(PointerBits, 0);
986 
987       // Check if we can compute the Offset with accumulateConstantOffset
988       if (GEP.accumulateConstantOffset(DL, BaseOffset)) {
989         Result = Polynomial(BaseOffset);
990         BasePtr = GEP.getPointerOperand();
991         return;
992       } else {
993         // Otherwise we allow that the last index operand of the GEP is
994         // non-constant.
995         unsigned idxOperand, e;
996         SmallVector<Value *, 4> Indices;
997         for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e;
998              idxOperand++) {
999           ConstantInt *IDX = dyn_cast<ConstantInt>(GEP.getOperand(idxOperand));
1000           if (!IDX)
1001             break;
1002           Indices.push_back(IDX);
1003         }
1004 
1005         // It must also be the last operand.
1006         if (idxOperand + 1 != e) {
1007           Result = Polynomial();
1008           BasePtr = nullptr;
1009           return;
1010         }
1011 
1012         // Compute the polynomial of the index operand.
1013         computePolynomial(*GEP.getOperand(idxOperand), Result);
1014 
1015         // Compute base offset from zero based index, excluding the last
1016         // variable operand.
1017         BaseOffset =
1018             DL.getIndexedOffsetInType(GEP.getSourceElementType(), Indices);
1019 
1020         // Apply the operations of GEP to the polynomial.
1021         unsigned ResultSize = DL.getTypeAllocSize(GEP.getResultElementType());
1022         Result.sextOrTrunc(PointerBits);
1023         Result.mul(APInt(PointerBits, ResultSize));
1024         Result.add(BaseOffset);
1025         BasePtr = GEP.getPointerOperand();
1026       }
1027     }
1028     // All other instructions are handled by using the value as base pointer and
1029     // a zero polynomial.
1030     else {
1031       BasePtr = &Ptr;
1032       Polynomial(DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()), 0);
1033     }
1034   }
1035 
1036 #ifndef NDEBUG
1037   void print(raw_ostream &OS) const {
1038     if (PV)
1039       OS << *PV;
1040     else
1041       OS << "(none)";
1042     OS << " + ";
1043     for (unsigned i = 0; i < getDimension(); i++)
1044       OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs;
1045     OS << "]";
1046   }
1047 #endif
1048 };
1049 
1050 } // anonymous namespace
1051 
1052 bool InterleavedLoadCombineImpl::findPattern(
1053     std::list<VectorInfo> &Candidates, std::list<VectorInfo> &InterleavedLoad,
1054     unsigned Factor, const DataLayout &DL) {
1055   for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) {
1056     unsigned i;
1057     // Try to find an interleaved load using the front of Worklist as first line
1058     unsigned Size = DL.getTypeAllocSize(C0->VTy->getElementType());
1059 
1060     // List containing iterators pointing to the VectorInfos of the candidates
1061     std::vector<std::list<VectorInfo>::iterator> Res(Factor, Candidates.end());
1062 
1063     for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) {
1064       if (C->VTy != C0->VTy)
1065         continue;
1066       if (C->BB != C0->BB)
1067         continue;
1068       if (C->PV != C0->PV)
1069         continue;
1070 
1071       // Check the current value matches any of factor - 1 remaining lines
1072       for (i = 1; i < Factor; i++) {
1073         if (C->EI[0].Ofs.isProvenEqualTo(C0->EI[0].Ofs + i * Size)) {
1074           Res[i] = C;
1075         }
1076       }
1077 
1078       for (i = 1; i < Factor; i++) {
1079         if (Res[i] == Candidates.end())
1080           break;
1081       }
1082       if (i == Factor) {
1083         Res[0] = C0;
1084         break;
1085       }
1086     }
1087 
1088     if (Res[0] != Candidates.end()) {
1089       // Move the result into the output
1090       for (unsigned i = 0; i < Factor; i++) {
1091         InterleavedLoad.splice(InterleavedLoad.end(), Candidates, Res[i]);
1092       }
1093 
1094       return true;
1095     }
1096   }
1097   return false;
1098 }
1099 
1100 LoadInst *
1101 InterleavedLoadCombineImpl::findFirstLoad(const std::set<LoadInst *> &LIs) {
1102   assert(!LIs.empty() && "No load instructions given.");
1103 
1104   // All LIs are within the same BB. Select the first for a reference.
1105   BasicBlock *BB = (*LIs.begin())->getParent();
1106   BasicBlock::iterator FLI =
1107       std::find_if(BB->begin(), BB->end(), [&LIs](Instruction &I) -> bool {
1108         return is_contained(LIs, &I);
1109       });
1110   assert(FLI != BB->end());
1111 
1112   return cast<LoadInst>(FLI);
1113 }
1114 
1115 bool InterleavedLoadCombineImpl::combine(std::list<VectorInfo> &InterleavedLoad,
1116                                          OptimizationRemarkEmitter &ORE) {
1117   LLVM_DEBUG(dbgs() << "Checking interleaved load\n");
1118 
1119   // The insertion point is the LoadInst which loads the first values. The
1120   // following tests are used to proof that the combined load can be inserted
1121   // just before InsertionPoint.
1122   LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI;
1123 
1124   // Test if the offset is computed
1125   if (!InsertionPoint)
1126     return false;
1127 
1128   std::set<LoadInst *> LIs;
1129   std::set<Instruction *> Is;
1130   std::set<Instruction *> SVIs;
1131 
1132   unsigned InterleavedCost;
1133   unsigned InstructionCost = 0;
1134 
1135   // Get the interleave factor
1136   unsigned Factor = InterleavedLoad.size();
1137 
1138   // Merge all input sets used in analysis
1139   for (auto &VI : InterleavedLoad) {
1140     // Generate a set of all load instructions to be combined
1141     LIs.insert(VI.LIs.begin(), VI.LIs.end());
1142 
1143     // Generate a set of all instructions taking part in load
1144     // interleaved. This list excludes the instructions necessary for the
1145     // polynomial construction.
1146     Is.insert(VI.Is.begin(), VI.Is.end());
1147 
1148     // Generate the set of the final ShuffleVectorInst.
1149     SVIs.insert(VI.SVI);
1150   }
1151 
1152   // There is nothing to combine.
1153   if (LIs.size() < 2)
1154     return false;
1155 
1156   // Test if all participating instruction will be dead after the
1157   // transformation. If intermediate results are used, no performance gain can
1158   // be expected. Also sum the cost of the Instructions beeing left dead.
1159   for (auto &I : Is) {
1160     // Compute the old cost
1161     InstructionCost +=
1162         TTI.getInstructionCost(I, TargetTransformInfo::TCK_Latency);
1163 
1164     // The final SVIs are allowed not to be dead, all uses will be replaced
1165     if (SVIs.find(I) != SVIs.end())
1166       continue;
1167 
1168     // If there are users outside the set to be eliminated, we abort the
1169     // transformation. No gain can be expected.
1170     for (const auto &U : I->users()) {
1171       if (Is.find(dyn_cast<Instruction>(U)) == Is.end())
1172         return false;
1173     }
1174   }
1175 
1176   // We know that all LoadInst are within the same BB. This guarantees that
1177   // either everything or nothing is loaded.
1178   LoadInst *First = findFirstLoad(LIs);
1179 
1180   // To be safe that the loads can be combined, iterate over all loads and test
1181   // that the corresponding defining access dominates first LI. This guarantees
1182   // that there are no aliasing stores in between the loads.
1183   auto FMA = MSSA.getMemoryAccess(First);
1184   for (auto LI : LIs) {
1185     auto MADef = MSSA.getMemoryAccess(LI)->getDefiningAccess();
1186     if (!MSSA.dominates(MADef, FMA))
1187       return false;
1188   }
1189   assert(!LIs.empty() && "There are no LoadInst to combine");
1190 
1191   // It is necessary that insertion point dominates all final ShuffleVectorInst.
1192   for (auto &VI : InterleavedLoad) {
1193     if (!DT.dominates(InsertionPoint, VI.SVI))
1194       return false;
1195   }
1196 
1197   // All checks are done. Add instructions detectable by InterleavedAccessPass
1198   // The old instruction will are left dead.
1199   IRBuilder<> Builder(InsertionPoint);
1200   Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType();
1201   unsigned ElementsPerSVI =
1202       InterleavedLoad.front().SVI->getType()->getNumElements();
1203   VectorType *ILTy = VectorType::get(ETy, Factor * ElementsPerSVI);
1204 
1205   SmallVector<unsigned, 4> Indices;
1206   for (unsigned i = 0; i < Factor; i++)
1207     Indices.push_back(i);
1208   InterleavedCost = TTI.getInterleavedMemoryOpCost(
1209       Instruction::Load, ILTy, Factor, Indices, InsertionPoint->getAlignment(),
1210       InsertionPoint->getPointerAddressSpace());
1211 
1212   if (InterleavedCost >= InstructionCost) {
1213     return false;
1214   }
1215 
1216   // Create a pointer cast for the wide load.
1217   auto CI = Builder.CreatePointerCast(InsertionPoint->getOperand(0),
1218                                       ILTy->getPointerTo(),
1219                                       "interleaved.wide.ptrcast");
1220 
1221   // Create the wide load and update the MemorySSA.
1222   auto LI = Builder.CreateAlignedLoad(ILTy, CI, InsertionPoint->getAlignment(),
1223                                       "interleaved.wide.load");
1224   auto MSSAU = MemorySSAUpdater(&MSSA);
1225   MemoryUse *MSSALoad = cast<MemoryUse>(MSSAU.createMemoryAccessBefore(
1226       LI, nullptr, MSSA.getMemoryAccess(InsertionPoint)));
1227   MSSAU.insertUse(MSSALoad);
1228 
1229   // Create the final SVIs and replace all uses.
1230   int i = 0;
1231   for (auto &VI : InterleavedLoad) {
1232     SmallVector<uint32_t, 4> Mask;
1233     for (unsigned j = 0; j < ElementsPerSVI; j++)
1234       Mask.push_back(i + j * Factor);
1235 
1236     Builder.SetInsertPoint(VI.SVI);
1237     auto SVI = Builder.CreateShuffleVector(LI, UndefValue::get(LI->getType()),
1238                                            Mask, "interleaved.shuffle");
1239     VI.SVI->replaceAllUsesWith(SVI);
1240     i++;
1241   }
1242 
1243   NumInterleavedLoadCombine++;
1244   ORE.emit([&]() {
1245     return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI)
1246            << "Load interleaved combined with factor "
1247            << ore::NV("Factor", Factor);
1248   });
1249 
1250   return true;
1251 }
1252 
1253 bool InterleavedLoadCombineImpl::run() {
1254   OptimizationRemarkEmitter ORE(&F);
1255   bool changed = false;
1256   unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor();
1257 
1258   auto &DL = F.getParent()->getDataLayout();
1259 
1260   // Start with the highest factor to avoid combining and recombining.
1261   for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) {
1262     std::list<VectorInfo> Candidates;
1263 
1264     for (BasicBlock &BB : F) {
1265       for (Instruction &I : BB) {
1266         if (auto SVI = dyn_cast<ShuffleVectorInst>(&I)) {
1267 
1268           Candidates.emplace_back(SVI->getType());
1269 
1270           if (!VectorInfo::computeFromSVI(SVI, Candidates.back(), DL)) {
1271             Candidates.pop_back();
1272             continue;
1273           }
1274 
1275           if (!Candidates.back().isInterleaved(Factor, DL)) {
1276             Candidates.pop_back();
1277           }
1278         }
1279       }
1280     }
1281 
1282     std::list<VectorInfo> InterleavedLoad;
1283     while (findPattern(Candidates, InterleavedLoad, Factor, DL)) {
1284       if (combine(InterleavedLoad, ORE)) {
1285         changed = true;
1286       } else {
1287         // Remove the first element of the Interleaved Load but put the others
1288         // back on the list and continue searching
1289         Candidates.splice(Candidates.begin(), InterleavedLoad,
1290                           std::next(InterleavedLoad.begin()),
1291                           InterleavedLoad.end());
1292       }
1293       InterleavedLoad.clear();
1294     }
1295   }
1296 
1297   return changed;
1298 }
1299 
1300 namespace {
1301 /// This pass combines interleaved loads into a pattern detectable by
1302 /// InterleavedAccessPass.
1303 struct InterleavedLoadCombine : public FunctionPass {
1304   static char ID;
1305 
1306   InterleavedLoadCombine() : FunctionPass(ID) {
1307     initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry());
1308   }
1309 
1310   StringRef getPassName() const override {
1311     return "Interleaved Load Combine Pass";
1312   }
1313 
1314   bool runOnFunction(Function &F) override {
1315     if (DisableInterleavedLoadCombine)
1316       return false;
1317 
1318     auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1319     if (!TPC)
1320       return false;
1321 
1322     LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName()
1323                       << "\n");
1324 
1325     return InterleavedLoadCombineImpl(
1326                F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
1327                getAnalysis<MemorySSAWrapperPass>().getMSSA(),
1328                TPC->getTM<TargetMachine>())
1329         .run();
1330   }
1331 
1332   void getAnalysisUsage(AnalysisUsage &AU) const override {
1333     AU.addRequired<MemorySSAWrapperPass>();
1334     AU.addRequired<DominatorTreeWrapperPass>();
1335     FunctionPass::getAnalysisUsage(AU);
1336   }
1337 
1338 private:
1339 };
1340 } // anonymous namespace
1341 
1342 char InterleavedLoadCombine::ID = 0;
1343 
1344 INITIALIZE_PASS_BEGIN(
1345     InterleavedLoadCombine, DEBUG_TYPE,
1346     "Combine interleaved loads into wide loads and shufflevector instructions",
1347     false, false)
1348 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1349 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1350 INITIALIZE_PASS_END(
1351     InterleavedLoadCombine, DEBUG_TYPE,
1352     "Combine interleaved loads into wide loads and shufflevector instructions",
1353     false, false)
1354 
1355 FunctionPass *
1356 llvm::createInterleavedLoadCombinePass() {
1357   auto P = new InterleavedLoadCombine();
1358   return P;
1359 }
1360