1 //===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // 11 // This file defines the interleaved-load-combine pass. The pass searches for 12 // ShuffleVectorInstruction that execute interleaving loads. If a matching 13 // pattern is found, it adds a combined load and further instructions in a 14 // pattern that is detectable by InterleavedAccesPass. The old instructions are 15 // left dead to be removed later. The pass is specifically designed to be 16 // executed just before InterleavedAccesPass to find any left-over instances 17 // that are not detected within former passes. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/MemorySSA.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/CodeGen/Passes.h" 27 #include "llvm/CodeGen/TargetLowering.h" 28 #include "llvm/CodeGen/TargetPassConfig.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetMachine.h" 42 43 #include <algorithm> 44 #include <cassert> 45 #include <list> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "interleaved-load-combine" 50 51 namespace { 52 53 /// Statistic counter 54 STATISTIC(NumInterleavedLoadCombine, "Number of combined loads"); 55 56 /// Option to disable the pass 57 static cl::opt<bool> DisableInterleavedLoadCombine( 58 "disable-" DEBUG_TYPE, cl::init(false), cl::Hidden, 59 cl::desc("Disable combining of interleaved loads")); 60 61 struct VectorInfo; 62 63 struct InterleavedLoadCombineImpl { 64 public: 65 InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA, 66 TargetMachine &TM) 67 : F(F), DT(DT), MSSA(MSSA), 68 TLI(*TM.getSubtargetImpl(F)->getTargetLowering()), 69 TTI(TM.getTargetTransformInfo(F)) {} 70 71 /// Scan the function for interleaved load candidates and execute the 72 /// replacement if applicable. 73 bool run(); 74 75 private: 76 /// Function this pass is working on 77 Function &F; 78 79 /// Dominator Tree Analysis 80 DominatorTree &DT; 81 82 /// Memory Alias Analyses 83 MemorySSA &MSSA; 84 85 /// Target Lowering Information 86 const TargetLowering &TLI; 87 88 /// Target Transform Information 89 const TargetTransformInfo TTI; 90 91 /// Find the instruction in sets LIs that dominates all others, return nullptr 92 /// if there is none. 93 LoadInst *findFirstLoad(const std::set<LoadInst *> &LIs); 94 95 /// Replace interleaved load candidates. It does additional 96 /// analyses if this makes sense. Returns true on success and false 97 /// of nothing has been changed. 98 bool combine(std::list<VectorInfo> &InterleavedLoad, 99 OptimizationRemarkEmitter &ORE); 100 101 /// Given a set of VectorInfo containing candidates for a given interleave 102 /// factor, find a set that represents a 'factor' interleaved load. 103 bool findPattern(std::list<VectorInfo> &Candidates, 104 std::list<VectorInfo> &InterleavedLoad, unsigned Factor, 105 const DataLayout &DL); 106 }; // InterleavedLoadCombine 107 108 /// First Order Polynomial on an n-Bit Integer Value 109 /// 110 /// Polynomial(Value) = Value * B + A + E*2^(n-e) 111 /// 112 /// A and B are the coefficients. E*2^(n-e) is an error within 'e' most 113 /// significant bits. It is introduced if an exact computation cannot be proven 114 /// (e.q. division by 2). 115 /// 116 /// As part of this optimization multiple loads will be combined. It necessary 117 /// to prove that loads are within some relative offset to each other. This 118 /// class is used to prove relative offsets of values loaded from memory. 119 /// 120 /// Representing an integer in this form is sound since addition in two's 121 /// complement is associative (trivial) and multiplication distributes over the 122 /// addition (see Proof(1) in Polynomial::mul). Further, both operations 123 /// commute. 124 // 125 // Example: 126 // declare @fn(i64 %IDX, <4 x float>* %PTR) { 127 // %Pa1 = add i64 %IDX, 2 128 // %Pa2 = lshr i64 %Pa1, 1 129 // %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2 130 // %Va = load <4 x float>, <4 x float>* %Pa3 131 // 132 // %Pb1 = add i64 %IDX, 4 133 // %Pb2 = lshr i64 %Pb1, 1 134 // %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2 135 // %Vb = load <4 x float>, <4 x float>* %Pb3 136 // ... } 137 // 138 // The goal is to prove that two loads load consecutive addresses. 139 // 140 // In this case the polynomials are constructed by the following 141 // steps. 142 // 143 // The number tag #e specifies the error bits. 144 // 145 // Pa_0 = %IDX #0 146 // Pa_1 = %IDX + 2 #0 | add 2 147 // Pa_2 = %IDX/2 + 1 #1 | lshr 1 148 // Pa_3 = %IDX/2 + 1 #1 | GEP, step signext to i64 149 // Pa_4 = (%IDX/2)*16 + 16 #0 | GEP, multiply index by sizeof(4) for floats 150 // Pa_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components 151 // 152 // Pb_0 = %IDX #0 153 // Pb_1 = %IDX + 4 #0 | add 2 154 // Pb_2 = %IDX/2 + 2 #1 | lshr 1 155 // Pb_3 = %IDX/2 + 2 #1 | GEP, step signext to i64 156 // Pb_4 = (%IDX/2)*16 + 32 #0 | GEP, multiply index by sizeof(4) for floats 157 // Pb_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components 158 // 159 // Pb_5 - Pa_5 = 16 #0 | subtract to get the offset 160 // 161 // Remark: %PTR is not maintained within this class. So in this instance the 162 // offset of 16 can only be assumed if the pointers are equal. 163 // 164 class Polynomial { 165 /// Operations on B 166 enum BOps { 167 LShr, 168 Mul, 169 SExt, 170 Trunc, 171 }; 172 173 /// Number of Error Bits e 174 unsigned ErrorMSBs = (unsigned)-1; 175 176 /// Value 177 Value *V = nullptr; 178 179 /// Coefficient B 180 SmallVector<std::pair<BOps, APInt>, 4> B; 181 182 /// Coefficient A 183 APInt A; 184 185 public: 186 Polynomial(Value *V) : V(V) { 187 IntegerType *Ty = dyn_cast<IntegerType>(V->getType()); 188 if (Ty) { 189 ErrorMSBs = 0; 190 this->V = V; 191 A = APInt(Ty->getBitWidth(), 0); 192 } 193 } 194 195 Polynomial(const APInt &A, unsigned ErrorMSBs = 0) 196 : ErrorMSBs(ErrorMSBs), A(A) {} 197 198 Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0) 199 : ErrorMSBs(ErrorMSBs), A(BitWidth, A) {} 200 201 Polynomial() = default; 202 203 /// Increment and clamp the number of undefined bits. 204 void incErrorMSBs(unsigned amt) { 205 if (ErrorMSBs == (unsigned)-1) 206 return; 207 208 ErrorMSBs += amt; 209 if (ErrorMSBs > A.getBitWidth()) 210 ErrorMSBs = A.getBitWidth(); 211 } 212 213 /// Decrement and clamp the number of undefined bits. 214 void decErrorMSBs(unsigned amt) { 215 if (ErrorMSBs == (unsigned)-1) 216 return; 217 218 if (ErrorMSBs > amt) 219 ErrorMSBs -= amt; 220 else 221 ErrorMSBs = 0; 222 } 223 224 /// Apply an add on the polynomial 225 Polynomial &add(const APInt &C) { 226 // Note: Addition is associative in two's complement even when in case of 227 // signed overflow. 228 // 229 // Error bits can only propagate into higher significant bits. As these are 230 // already regarded as undefined, there is no change. 231 // 232 // Theorem: Adding a constant to a polynomial does not change the error 233 // term. 234 // 235 // Proof: 236 // 237 // Since the addition is associative and commutes: 238 // 239 // (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e) 240 // [qed] 241 242 if (C.getBitWidth() != A.getBitWidth()) { 243 ErrorMSBs = (unsigned)-1; 244 return *this; 245 } 246 247 A += C; 248 return *this; 249 } 250 251 /// Apply a multiplication onto the polynomial. 252 Polynomial &mul(const APInt &C) { 253 // Note: Multiplication distributes over the addition 254 // 255 // Theorem: Multiplication distributes over the addition 256 // 257 // Proof(1): 258 // 259 // (B+A)*C =- 260 // = (B + A) + (B + A) + .. {C Times} 261 // addition is associative and commutes, hence 262 // = B + B + .. {C Times} .. + A + A + .. {C times} 263 // = B*C + A*C 264 // (see (function add) for signed values and overflows) 265 // [qed] 266 // 267 // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out 268 // to the left. 269 // 270 // Proof(2): 271 // 272 // Let B' and A' be the n-Bit inputs with some unknown errors EA, 273 // EB at e leading bits. B' and A' can be written down as: 274 // 275 // B' = B + 2^(n-e)*EB 276 // A' = A + 2^(n-e)*EA 277 // 278 // Let C' be an input with c trailing zero bits. C' can be written as 279 // 280 // C' = C*2^c 281 // 282 // Therefore we can compute the result by using distributivity and 283 // commutativity. 284 // 285 // (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' = 286 // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' = 287 // = (B'+A') * C' = 288 // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' = 289 // = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' = 290 // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' = 291 // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c = 292 // = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c = 293 // 294 // Let EC be the final error with EC = C*(EB + EA) 295 // 296 // = (B + A)*C' + EC*2^(n-e)*2^c = 297 // = (B + A)*C' + EC*2^(n-(e-c)) 298 // 299 // Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c 300 // less error bits than the input. c bits are shifted out to the left. 301 // [qed] 302 303 if (C.getBitWidth() != A.getBitWidth()) { 304 ErrorMSBs = (unsigned)-1; 305 return *this; 306 } 307 308 // Multiplying by one is a no-op. 309 if (C.isOne()) { 310 return *this; 311 } 312 313 // Multiplying by zero removes the coefficient B and defines all bits. 314 if (C.isZero()) { 315 ErrorMSBs = 0; 316 deleteB(); 317 } 318 319 // See Proof(2): Trailing zero bits indicate a left shift. This removes 320 // leading bits from the result even if they are undefined. 321 decErrorMSBs(C.countTrailingZeros()); 322 323 A *= C; 324 pushBOperation(Mul, C); 325 return *this; 326 } 327 328 /// Apply a logical shift right on the polynomial 329 Polynomial &lshr(const APInt &C) { 330 // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e') 331 // where 332 // e' = e + 1, 333 // E is a e-bit number, 334 // E' is a e'-bit number, 335 // holds under the following precondition: 336 // pre(1): A % 2 = 0 337 // pre(2): e < n, (see Theorem(2) for the trivial case with e=n) 338 // where >> expresses a logical shift to the right, with adding zeros. 339 // 340 // We need to show that for every, E there is a E' 341 // 342 // B = b_h * 2^(n-1) + b_m * 2 + b_l 343 // A = a_h * 2^(n-1) + a_m * 2 (pre(1)) 344 // 345 // where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers 346 // 347 // Let X = (B + A + E*2^(n-e)) >> 1 348 // Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1 349 // 350 // X = [B + A + E*2^(n-e)] >> 1 = 351 // = [ b_h * 2^(n-1) + b_m * 2 + b_l + 352 // + a_h * 2^(n-1) + a_m * 2 + 353 // + E * 2^(n-e) ] >> 1 = 354 // 355 // The sum is built by putting the overflow of [a_m + b+n] into the term 356 // 2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within 357 // this bit is discarded. This is expressed by % 2. 358 // 359 // The bit in position 0 cannot overflow into the term (b_m + a_m). 360 // 361 // = [ ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) + 362 // + ((b_m + a_m) % 2^(n-2)) * 2 + 363 // + b_l + E * 2^(n-e) ] >> 1 = 364 // 365 // The shift is computed by dividing the terms by 2 and by cutting off 366 // b_l. 367 // 368 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 369 // + ((b_m + a_m) % 2^(n-2)) + 370 // + E * 2^(n-(e+1)) = 371 // 372 // by the definition in the Theorem e+1 = e' 373 // 374 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 375 // + ((b_m + a_m) % 2^(n-2)) + 376 // + E * 2^(n-e') = 377 // 378 // Compute Y by applying distributivity first 379 // 380 // Y = (B >> 1) + (A >> 1) + E*2^(n-e') = 381 // = (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 + 382 // + (a_h * 2^(n-1) + a_m * 2) >> 1 + 383 // + E * 2^(n-e) >> 1 = 384 // 385 // Again, the shift is computed by dividing the terms by 2 and by cutting 386 // off b_l. 387 // 388 // = b_h * 2^(n-2) + b_m + 389 // + a_h * 2^(n-2) + a_m + 390 // + E * 2^(n-(e+1)) = 391 // 392 // Again, the sum is built by putting the overflow of [a_m + b+n] into 393 // the term 2^(n-1). But this time there is room for a second bit in the 394 // term 2^(n-2) we add this bit to a new term and denote it o_h in a 395 // second step. 396 // 397 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) + 398 // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 399 // + ((b_m + a_m) % 2^(n-2)) + 400 // + E * 2^(n-(e+1)) = 401 // 402 // Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1 403 // Further replace e+1 by e'. 404 // 405 // = o_h * 2^(n-1) + 406 // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 407 // + ((b_m + a_m) % 2^(n-2)) + 408 // + E * 2^(n-e') = 409 // 410 // Move o_h into the error term and construct E'. To ensure that there is 411 // no 2^x with negative x, this step requires pre(2) (e < n). 412 // 413 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 414 // + ((b_m + a_m) % 2^(n-2)) + 415 // + o_h * 2^(e'-1) * 2^(n-e') + | pre(2), move 2^(e'-1) 416 // | out of the old exponent 417 // + E * 2^(n-e') = 418 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 419 // + ((b_m + a_m) % 2^(n-2)) + 420 // + [o_h * 2^(e'-1) + E] * 2^(n-e') + | move 2^(e'-1) out of 421 // | the old exponent 422 // 423 // Let E' = o_h * 2^(e'-1) + E 424 // 425 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 426 // + ((b_m + a_m) % 2^(n-2)) + 427 // + E' * 2^(n-e') 428 // 429 // Because X and Y are distinct only in there error terms and E' can be 430 // constructed as shown the theorem holds. 431 // [qed] 432 // 433 // For completeness in case of the case e=n it is also required to show that 434 // distributivity can be applied. 435 // 436 // In this case Theorem(1) transforms to (the pre-condition on A can also be 437 // dropped) 438 // 439 // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E' 440 // where 441 // A, B, E, E' are two's complement numbers with the same bit 442 // width 443 // 444 // Let A + B + E = X 445 // Let (B >> 1) + (A >> 1) = Y 446 // 447 // Therefore we need to show that for every X and Y there is an E' which 448 // makes the equation 449 // 450 // X = Y + E' 451 // 452 // hold. This is trivially the case for E' = X - Y. 453 // 454 // [qed] 455 // 456 // Remark: Distributing lshr with and arbitrary number n can be expressed as 457 // ((((B + A) lshr 1) lshr 1) ... ) {n times}. 458 // This construction induces n additional error bits at the left. 459 460 if (C.getBitWidth() != A.getBitWidth()) { 461 ErrorMSBs = (unsigned)-1; 462 return *this; 463 } 464 465 if (C.isZero()) 466 return *this; 467 468 // Test if the result will be zero 469 unsigned shiftAmt = C.getZExtValue(); 470 if (shiftAmt >= C.getBitWidth()) 471 return mul(APInt(C.getBitWidth(), 0)); 472 473 // The proof that shiftAmt LSBs are zero for at least one summand is only 474 // possible for the constant number. 475 // 476 // If this can be proven add shiftAmt to the error counter 477 // `ErrorMSBs`. Otherwise set all bits as undefined. 478 if (A.countTrailingZeros() < shiftAmt) 479 ErrorMSBs = A.getBitWidth(); 480 else 481 incErrorMSBs(shiftAmt); 482 483 // Apply the operation. 484 pushBOperation(LShr, C); 485 A = A.lshr(shiftAmt); 486 487 return *this; 488 } 489 490 /// Apply a sign-extend or truncate operation on the polynomial. 491 Polynomial &sextOrTrunc(unsigned n) { 492 if (n < A.getBitWidth()) { 493 // Truncate: Clearly undefined Bits on the MSB side are removed 494 // if there are any. 495 decErrorMSBs(A.getBitWidth() - n); 496 A = A.trunc(n); 497 pushBOperation(Trunc, APInt(sizeof(n) * 8, n)); 498 } 499 if (n > A.getBitWidth()) { 500 // Extend: Clearly extending first and adding later is different 501 // to adding first and extending later in all extended bits. 502 incErrorMSBs(n - A.getBitWidth()); 503 A = A.sext(n); 504 pushBOperation(SExt, APInt(sizeof(n) * 8, n)); 505 } 506 507 return *this; 508 } 509 510 /// Test if there is a coefficient B. 511 bool isFirstOrder() const { return V != nullptr; } 512 513 /// Test coefficient B of two Polynomials are equal. 514 bool isCompatibleTo(const Polynomial &o) const { 515 // The polynomial use different bit width. 516 if (A.getBitWidth() != o.A.getBitWidth()) 517 return false; 518 519 // If neither Polynomial has the Coefficient B. 520 if (!isFirstOrder() && !o.isFirstOrder()) 521 return true; 522 523 // The index variable is different. 524 if (V != o.V) 525 return false; 526 527 // Check the operations. 528 if (B.size() != o.B.size()) 529 return false; 530 531 auto *ob = o.B.begin(); 532 for (const auto &b : B) { 533 if (b != *ob) 534 return false; 535 ob++; 536 } 537 538 return true; 539 } 540 541 /// Subtract two polynomials, return an undefined polynomial if 542 /// subtraction is not possible. 543 Polynomial operator-(const Polynomial &o) const { 544 // Return an undefined polynomial if incompatible. 545 if (!isCompatibleTo(o)) 546 return Polynomial(); 547 548 // If the polynomials are compatible (meaning they have the same 549 // coefficient on B), B is eliminated. Thus a polynomial solely 550 // containing A is returned 551 return Polynomial(A - o.A, std::max(ErrorMSBs, o.ErrorMSBs)); 552 } 553 554 /// Subtract a constant from a polynomial, 555 Polynomial operator-(uint64_t C) const { 556 Polynomial Result(*this); 557 Result.A -= C; 558 return Result; 559 } 560 561 /// Add a constant to a polynomial, 562 Polynomial operator+(uint64_t C) const { 563 Polynomial Result(*this); 564 Result.A += C; 565 return Result; 566 } 567 568 /// Returns true if it can be proven that two Polynomials are equal. 569 bool isProvenEqualTo(const Polynomial &o) { 570 // Subtract both polynomials and test if it is fully defined and zero. 571 Polynomial r = *this - o; 572 return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isZero()); 573 } 574 575 /// Print the polynomial into a stream. 576 void print(raw_ostream &OS) const { 577 OS << "[{#ErrBits:" << ErrorMSBs << "} "; 578 579 if (V) { 580 for (auto b : B) 581 OS << "("; 582 OS << "(" << *V << ") "; 583 584 for (auto b : B) { 585 switch (b.first) { 586 case LShr: 587 OS << "LShr "; 588 break; 589 case Mul: 590 OS << "Mul "; 591 break; 592 case SExt: 593 OS << "SExt "; 594 break; 595 case Trunc: 596 OS << "Trunc "; 597 break; 598 } 599 600 OS << b.second << ") "; 601 } 602 } 603 604 OS << "+ " << A << "]"; 605 } 606 607 private: 608 void deleteB() { 609 V = nullptr; 610 B.clear(); 611 } 612 613 void pushBOperation(const BOps Op, const APInt &C) { 614 if (isFirstOrder()) { 615 B.push_back(std::make_pair(Op, C)); 616 return; 617 } 618 } 619 }; 620 621 #ifndef NDEBUG 622 static raw_ostream &operator<<(raw_ostream &OS, const Polynomial &S) { 623 S.print(OS); 624 return OS; 625 } 626 #endif 627 628 /// VectorInfo stores abstract the following information for each vector 629 /// element: 630 /// 631 /// 1) The the memory address loaded into the element as Polynomial 632 /// 2) a set of load instruction necessary to construct the vector, 633 /// 3) a set of all other instructions that are necessary to create the vector and 634 /// 4) a pointer value that can be used as relative base for all elements. 635 struct VectorInfo { 636 private: 637 VectorInfo(const VectorInfo &c) : VTy(c.VTy) { 638 llvm_unreachable( 639 "Copying VectorInfo is neither implemented nor necessary,"); 640 } 641 642 public: 643 /// Information of a Vector Element 644 struct ElementInfo { 645 /// Offset Polynomial. 646 Polynomial Ofs; 647 648 /// The Load Instruction used to Load the entry. LI is null if the pointer 649 /// of the load instruction does not point on to the entry 650 LoadInst *LI; 651 652 ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr) 653 : Ofs(Offset), LI(LI) {} 654 }; 655 656 /// Basic-block the load instructions are within 657 BasicBlock *BB = nullptr; 658 659 /// Pointer value of all participation load instructions 660 Value *PV = nullptr; 661 662 /// Participating load instructions 663 std::set<LoadInst *> LIs; 664 665 /// Participating instructions 666 std::set<Instruction *> Is; 667 668 /// Final shuffle-vector instruction 669 ShuffleVectorInst *SVI = nullptr; 670 671 /// Information of the offset for each vector element 672 ElementInfo *EI; 673 674 /// Vector Type 675 FixedVectorType *const VTy; 676 677 VectorInfo(FixedVectorType *VTy) : VTy(VTy) { 678 EI = new ElementInfo[VTy->getNumElements()]; 679 } 680 681 virtual ~VectorInfo() { delete[] EI; } 682 683 unsigned getDimension() const { return VTy->getNumElements(); } 684 685 /// Test if the VectorInfo can be part of an interleaved load with the 686 /// specified factor. 687 /// 688 /// \param Factor of the interleave 689 /// \param DL Targets Datalayout 690 /// 691 /// \returns true if this is possible and false if not 692 bool isInterleaved(unsigned Factor, const DataLayout &DL) const { 693 unsigned Size = DL.getTypeAllocSize(VTy->getElementType()); 694 for (unsigned i = 1; i < getDimension(); i++) { 695 if (!EI[i].Ofs.isProvenEqualTo(EI[0].Ofs + i * Factor * Size)) { 696 return false; 697 } 698 } 699 return true; 700 } 701 702 /// Recursively computes the vector information stored in V. 703 /// 704 /// This function delegates the work to specialized implementations 705 /// 706 /// \param V Value to operate on 707 /// \param Result Result of the computation 708 /// 709 /// \returns false if no sensible information can be gathered. 710 static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) { 711 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V); 712 if (SVI) 713 return computeFromSVI(SVI, Result, DL); 714 LoadInst *LI = dyn_cast<LoadInst>(V); 715 if (LI) 716 return computeFromLI(LI, Result, DL); 717 BitCastInst *BCI = dyn_cast<BitCastInst>(V); 718 if (BCI) 719 return computeFromBCI(BCI, Result, DL); 720 return false; 721 } 722 723 /// BitCastInst specialization to compute the vector information. 724 /// 725 /// \param BCI BitCastInst to operate on 726 /// \param Result Result of the computation 727 /// 728 /// \returns false if no sensible information can be gathered. 729 static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result, 730 const DataLayout &DL) { 731 Instruction *Op = dyn_cast<Instruction>(BCI->getOperand(0)); 732 733 if (!Op) 734 return false; 735 736 FixedVectorType *VTy = dyn_cast<FixedVectorType>(Op->getType()); 737 if (!VTy) 738 return false; 739 740 // We can only cast from large to smaller vectors 741 if (Result.VTy->getNumElements() % VTy->getNumElements()) 742 return false; 743 744 unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements(); 745 unsigned NewSize = DL.getTypeAllocSize(Result.VTy->getElementType()); 746 unsigned OldSize = DL.getTypeAllocSize(VTy->getElementType()); 747 748 if (NewSize * Factor != OldSize) 749 return false; 750 751 VectorInfo Old(VTy); 752 if (!compute(Op, Old, DL)) 753 return false; 754 755 for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) { 756 for (unsigned j = 0; j < Factor; j++) { 757 Result.EI[i + j] = 758 ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize, 759 j == 0 ? Old.EI[i / Factor].LI : nullptr); 760 } 761 } 762 763 Result.BB = Old.BB; 764 Result.PV = Old.PV; 765 Result.LIs.insert(Old.LIs.begin(), Old.LIs.end()); 766 Result.Is.insert(Old.Is.begin(), Old.Is.end()); 767 Result.Is.insert(BCI); 768 Result.SVI = nullptr; 769 770 return true; 771 } 772 773 /// ShuffleVectorInst specialization to compute vector information. 774 /// 775 /// \param SVI ShuffleVectorInst to operate on 776 /// \param Result Result of the computation 777 /// 778 /// Compute the left and the right side vector information and merge them by 779 /// applying the shuffle operation. This function also ensures that the left 780 /// and right side have compatible loads. This means that all loads are with 781 /// in the same basic block and are based on the same pointer. 782 /// 783 /// \returns false if no sensible information can be gathered. 784 static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result, 785 const DataLayout &DL) { 786 FixedVectorType *ArgTy = 787 cast<FixedVectorType>(SVI->getOperand(0)->getType()); 788 789 // Compute the left hand vector information. 790 VectorInfo LHS(ArgTy); 791 if (!compute(SVI->getOperand(0), LHS, DL)) 792 LHS.BB = nullptr; 793 794 // Compute the right hand vector information. 795 VectorInfo RHS(ArgTy); 796 if (!compute(SVI->getOperand(1), RHS, DL)) 797 RHS.BB = nullptr; 798 799 // Neither operand produced sensible results? 800 if (!LHS.BB && !RHS.BB) 801 return false; 802 // Only RHS produced sensible results? 803 else if (!LHS.BB) { 804 Result.BB = RHS.BB; 805 Result.PV = RHS.PV; 806 } 807 // Only LHS produced sensible results? 808 else if (!RHS.BB) { 809 Result.BB = LHS.BB; 810 Result.PV = LHS.PV; 811 } 812 // Both operands produced sensible results? 813 else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) { 814 Result.BB = LHS.BB; 815 Result.PV = LHS.PV; 816 } 817 // Both operands produced sensible results but they are incompatible. 818 else { 819 return false; 820 } 821 822 // Merge and apply the operation on the offset information. 823 if (LHS.BB) { 824 Result.LIs.insert(LHS.LIs.begin(), LHS.LIs.end()); 825 Result.Is.insert(LHS.Is.begin(), LHS.Is.end()); 826 } 827 if (RHS.BB) { 828 Result.LIs.insert(RHS.LIs.begin(), RHS.LIs.end()); 829 Result.Is.insert(RHS.Is.begin(), RHS.Is.end()); 830 } 831 Result.Is.insert(SVI); 832 Result.SVI = SVI; 833 834 int j = 0; 835 for (int i : SVI->getShuffleMask()) { 836 assert((i < 2 * (signed)ArgTy->getNumElements()) && 837 "Invalid ShuffleVectorInst (index out of bounds)"); 838 839 if (i < 0) 840 Result.EI[j] = ElementInfo(); 841 else if (i < (signed)ArgTy->getNumElements()) { 842 if (LHS.BB) 843 Result.EI[j] = LHS.EI[i]; 844 else 845 Result.EI[j] = ElementInfo(); 846 } else { 847 if (RHS.BB) 848 Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()]; 849 else 850 Result.EI[j] = ElementInfo(); 851 } 852 j++; 853 } 854 855 return true; 856 } 857 858 /// LoadInst specialization to compute vector information. 859 /// 860 /// This function also acts as abort condition to the recursion. 861 /// 862 /// \param LI LoadInst to operate on 863 /// \param Result Result of the computation 864 /// 865 /// \returns false if no sensible information can be gathered. 866 static bool computeFromLI(LoadInst *LI, VectorInfo &Result, 867 const DataLayout &DL) { 868 Value *BasePtr; 869 Polynomial Offset; 870 871 if (LI->isVolatile()) 872 return false; 873 874 if (LI->isAtomic()) 875 return false; 876 877 // Get the base polynomial 878 computePolynomialFromPointer(*LI->getPointerOperand(), Offset, BasePtr, DL); 879 880 Result.BB = LI->getParent(); 881 Result.PV = BasePtr; 882 Result.LIs.insert(LI); 883 Result.Is.insert(LI); 884 885 for (unsigned i = 0; i < Result.getDimension(); i++) { 886 Value *Idx[2] = { 887 ConstantInt::get(Type::getInt32Ty(LI->getContext()), 0), 888 ConstantInt::get(Type::getInt32Ty(LI->getContext()), i), 889 }; 890 int64_t Ofs = DL.getIndexedOffsetInType(Result.VTy, makeArrayRef(Idx, 2)); 891 Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr); 892 } 893 894 return true; 895 } 896 897 /// Recursively compute polynomial of a value. 898 /// 899 /// \param BO Input binary operation 900 /// \param Result Result polynomial 901 static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) { 902 Value *LHS = BO.getOperand(0); 903 Value *RHS = BO.getOperand(1); 904 905 // Find the RHS Constant if any 906 ConstantInt *C = dyn_cast<ConstantInt>(RHS); 907 if ((!C) && BO.isCommutative()) { 908 C = dyn_cast<ConstantInt>(LHS); 909 if (C) 910 std::swap(LHS, RHS); 911 } 912 913 switch (BO.getOpcode()) { 914 case Instruction::Add: 915 if (!C) 916 break; 917 918 computePolynomial(*LHS, Result); 919 Result.add(C->getValue()); 920 return; 921 922 case Instruction::LShr: 923 if (!C) 924 break; 925 926 computePolynomial(*LHS, Result); 927 Result.lshr(C->getValue()); 928 return; 929 930 default: 931 break; 932 } 933 934 Result = Polynomial(&BO); 935 } 936 937 /// Recursively compute polynomial of a value 938 /// 939 /// \param V input value 940 /// \param Result result polynomial 941 static void computePolynomial(Value &V, Polynomial &Result) { 942 if (auto *BO = dyn_cast<BinaryOperator>(&V)) 943 computePolynomialBinOp(*BO, Result); 944 else 945 Result = Polynomial(&V); 946 } 947 948 /// Compute the Polynomial representation of a Pointer type. 949 /// 950 /// \param Ptr input pointer value 951 /// \param Result result polynomial 952 /// \param BasePtr pointer the polynomial is based on 953 /// \param DL Datalayout of the target machine 954 static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result, 955 Value *&BasePtr, 956 const DataLayout &DL) { 957 // Not a pointer type? Return an undefined polynomial 958 PointerType *PtrTy = dyn_cast<PointerType>(Ptr.getType()); 959 if (!PtrTy) { 960 Result = Polynomial(); 961 BasePtr = nullptr; 962 return; 963 } 964 unsigned PointerBits = 965 DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()); 966 967 /// Skip pointer casts. Return Zero polynomial otherwise 968 if (isa<CastInst>(&Ptr)) { 969 CastInst &CI = *cast<CastInst>(&Ptr); 970 switch (CI.getOpcode()) { 971 case Instruction::BitCast: 972 computePolynomialFromPointer(*CI.getOperand(0), Result, BasePtr, DL); 973 break; 974 default: 975 BasePtr = &Ptr; 976 Polynomial(PointerBits, 0); 977 break; 978 } 979 } 980 /// Resolve GetElementPtrInst. 981 else if (isa<GetElementPtrInst>(&Ptr)) { 982 GetElementPtrInst &GEP = *cast<GetElementPtrInst>(&Ptr); 983 984 APInt BaseOffset(PointerBits, 0); 985 986 // Check if we can compute the Offset with accumulateConstantOffset 987 if (GEP.accumulateConstantOffset(DL, BaseOffset)) { 988 Result = Polynomial(BaseOffset); 989 BasePtr = GEP.getPointerOperand(); 990 return; 991 } else { 992 // Otherwise we allow that the last index operand of the GEP is 993 // non-constant. 994 unsigned idxOperand, e; 995 SmallVector<Value *, 4> Indices; 996 for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e; 997 idxOperand++) { 998 ConstantInt *IDX = dyn_cast<ConstantInt>(GEP.getOperand(idxOperand)); 999 if (!IDX) 1000 break; 1001 Indices.push_back(IDX); 1002 } 1003 1004 // It must also be the last operand. 1005 if (idxOperand + 1 != e) { 1006 Result = Polynomial(); 1007 BasePtr = nullptr; 1008 return; 1009 } 1010 1011 // Compute the polynomial of the index operand. 1012 computePolynomial(*GEP.getOperand(idxOperand), Result); 1013 1014 // Compute base offset from zero based index, excluding the last 1015 // variable operand. 1016 BaseOffset = 1017 DL.getIndexedOffsetInType(GEP.getSourceElementType(), Indices); 1018 1019 // Apply the operations of GEP to the polynomial. 1020 unsigned ResultSize = DL.getTypeAllocSize(GEP.getResultElementType()); 1021 Result.sextOrTrunc(PointerBits); 1022 Result.mul(APInt(PointerBits, ResultSize)); 1023 Result.add(BaseOffset); 1024 BasePtr = GEP.getPointerOperand(); 1025 } 1026 } 1027 // All other instructions are handled by using the value as base pointer and 1028 // a zero polynomial. 1029 else { 1030 BasePtr = &Ptr; 1031 Polynomial(DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()), 0); 1032 } 1033 } 1034 1035 #ifndef NDEBUG 1036 void print(raw_ostream &OS) const { 1037 if (PV) 1038 OS << *PV; 1039 else 1040 OS << "(none)"; 1041 OS << " + "; 1042 for (unsigned i = 0; i < getDimension(); i++) 1043 OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs; 1044 OS << "]"; 1045 } 1046 #endif 1047 }; 1048 1049 } // anonymous namespace 1050 1051 bool InterleavedLoadCombineImpl::findPattern( 1052 std::list<VectorInfo> &Candidates, std::list<VectorInfo> &InterleavedLoad, 1053 unsigned Factor, const DataLayout &DL) { 1054 for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) { 1055 unsigned i; 1056 // Try to find an interleaved load using the front of Worklist as first line 1057 unsigned Size = DL.getTypeAllocSize(C0->VTy->getElementType()); 1058 1059 // List containing iterators pointing to the VectorInfos of the candidates 1060 std::vector<std::list<VectorInfo>::iterator> Res(Factor, Candidates.end()); 1061 1062 for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) { 1063 if (C->VTy != C0->VTy) 1064 continue; 1065 if (C->BB != C0->BB) 1066 continue; 1067 if (C->PV != C0->PV) 1068 continue; 1069 1070 // Check the current value matches any of factor - 1 remaining lines 1071 for (i = 1; i < Factor; i++) { 1072 if (C->EI[0].Ofs.isProvenEqualTo(C0->EI[0].Ofs + i * Size)) { 1073 Res[i] = C; 1074 } 1075 } 1076 1077 for (i = 1; i < Factor; i++) { 1078 if (Res[i] == Candidates.end()) 1079 break; 1080 } 1081 if (i == Factor) { 1082 Res[0] = C0; 1083 break; 1084 } 1085 } 1086 1087 if (Res[0] != Candidates.end()) { 1088 // Move the result into the output 1089 for (unsigned i = 0; i < Factor; i++) { 1090 InterleavedLoad.splice(InterleavedLoad.end(), Candidates, Res[i]); 1091 } 1092 1093 return true; 1094 } 1095 } 1096 return false; 1097 } 1098 1099 LoadInst * 1100 InterleavedLoadCombineImpl::findFirstLoad(const std::set<LoadInst *> &LIs) { 1101 assert(!LIs.empty() && "No load instructions given."); 1102 1103 // All LIs are within the same BB. Select the first for a reference. 1104 BasicBlock *BB = (*LIs.begin())->getParent(); 1105 BasicBlock::iterator FLI = llvm::find_if( 1106 *BB, [&LIs](Instruction &I) -> bool { return is_contained(LIs, &I); }); 1107 assert(FLI != BB->end()); 1108 1109 return cast<LoadInst>(FLI); 1110 } 1111 1112 bool InterleavedLoadCombineImpl::combine(std::list<VectorInfo> &InterleavedLoad, 1113 OptimizationRemarkEmitter &ORE) { 1114 LLVM_DEBUG(dbgs() << "Checking interleaved load\n"); 1115 1116 // The insertion point is the LoadInst which loads the first values. The 1117 // following tests are used to proof that the combined load can be inserted 1118 // just before InsertionPoint. 1119 LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI; 1120 1121 // Test if the offset is computed 1122 if (!InsertionPoint) 1123 return false; 1124 1125 std::set<LoadInst *> LIs; 1126 std::set<Instruction *> Is; 1127 std::set<Instruction *> SVIs; 1128 1129 InstructionCost InterleavedCost; 1130 InstructionCost InstructionCost = 0; 1131 const TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency; 1132 1133 // Get the interleave factor 1134 unsigned Factor = InterleavedLoad.size(); 1135 1136 // Merge all input sets used in analysis 1137 for (auto &VI : InterleavedLoad) { 1138 // Generate a set of all load instructions to be combined 1139 LIs.insert(VI.LIs.begin(), VI.LIs.end()); 1140 1141 // Generate a set of all instructions taking part in load 1142 // interleaved. This list excludes the instructions necessary for the 1143 // polynomial construction. 1144 Is.insert(VI.Is.begin(), VI.Is.end()); 1145 1146 // Generate the set of the final ShuffleVectorInst. 1147 SVIs.insert(VI.SVI); 1148 } 1149 1150 // There is nothing to combine. 1151 if (LIs.size() < 2) 1152 return false; 1153 1154 // Test if all participating instruction will be dead after the 1155 // transformation. If intermediate results are used, no performance gain can 1156 // be expected. Also sum the cost of the Instructions beeing left dead. 1157 for (const auto &I : Is) { 1158 // Compute the old cost 1159 InstructionCost += TTI.getInstructionCost(I, CostKind); 1160 1161 // The final SVIs are allowed not to be dead, all uses will be replaced 1162 if (SVIs.find(I) != SVIs.end()) 1163 continue; 1164 1165 // If there are users outside the set to be eliminated, we abort the 1166 // transformation. No gain can be expected. 1167 for (auto *U : I->users()) { 1168 if (Is.find(dyn_cast<Instruction>(U)) == Is.end()) 1169 return false; 1170 } 1171 } 1172 1173 // We need to have a valid cost in order to proceed. 1174 if (!InstructionCost.isValid()) 1175 return false; 1176 1177 // We know that all LoadInst are within the same BB. This guarantees that 1178 // either everything or nothing is loaded. 1179 LoadInst *First = findFirstLoad(LIs); 1180 1181 // To be safe that the loads can be combined, iterate over all loads and test 1182 // that the corresponding defining access dominates first LI. This guarantees 1183 // that there are no aliasing stores in between the loads. 1184 auto FMA = MSSA.getMemoryAccess(First); 1185 for (auto *LI : LIs) { 1186 auto MADef = MSSA.getMemoryAccess(LI)->getDefiningAccess(); 1187 if (!MSSA.dominates(MADef, FMA)) 1188 return false; 1189 } 1190 assert(!LIs.empty() && "There are no LoadInst to combine"); 1191 1192 // It is necessary that insertion point dominates all final ShuffleVectorInst. 1193 for (auto &VI : InterleavedLoad) { 1194 if (!DT.dominates(InsertionPoint, VI.SVI)) 1195 return false; 1196 } 1197 1198 // All checks are done. Add instructions detectable by InterleavedAccessPass 1199 // The old instruction will are left dead. 1200 IRBuilder<> Builder(InsertionPoint); 1201 Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType(); 1202 unsigned ElementsPerSVI = 1203 cast<FixedVectorType>(InterleavedLoad.front().SVI->getType()) 1204 ->getNumElements(); 1205 FixedVectorType *ILTy = FixedVectorType::get(ETy, Factor * ElementsPerSVI); 1206 1207 auto Indices = llvm::to_vector<4>(llvm::seq<unsigned>(0, Factor)); 1208 InterleavedCost = TTI.getInterleavedMemoryOpCost( 1209 Instruction::Load, ILTy, Factor, Indices, InsertionPoint->getAlign(), 1210 InsertionPoint->getPointerAddressSpace(), CostKind); 1211 1212 if (InterleavedCost >= InstructionCost) { 1213 return false; 1214 } 1215 1216 // Create a pointer cast for the wide load. 1217 auto CI = Builder.CreatePointerCast(InsertionPoint->getOperand(0), 1218 ILTy->getPointerTo(), 1219 "interleaved.wide.ptrcast"); 1220 1221 // Create the wide load and update the MemorySSA. 1222 auto LI = Builder.CreateAlignedLoad(ILTy, CI, InsertionPoint->getAlign(), 1223 "interleaved.wide.load"); 1224 auto MSSAU = MemorySSAUpdater(&MSSA); 1225 MemoryUse *MSSALoad = cast<MemoryUse>(MSSAU.createMemoryAccessBefore( 1226 LI, nullptr, MSSA.getMemoryAccess(InsertionPoint))); 1227 MSSAU.insertUse(MSSALoad, /*RenameUses=*/ true); 1228 1229 // Create the final SVIs and replace all uses. 1230 int i = 0; 1231 for (auto &VI : InterleavedLoad) { 1232 SmallVector<int, 4> Mask; 1233 for (unsigned j = 0; j < ElementsPerSVI; j++) 1234 Mask.push_back(i + j * Factor); 1235 1236 Builder.SetInsertPoint(VI.SVI); 1237 auto SVI = Builder.CreateShuffleVector(LI, Mask, "interleaved.shuffle"); 1238 VI.SVI->replaceAllUsesWith(SVI); 1239 i++; 1240 } 1241 1242 NumInterleavedLoadCombine++; 1243 ORE.emit([&]() { 1244 return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI) 1245 << "Load interleaved combined with factor " 1246 << ore::NV("Factor", Factor); 1247 }); 1248 1249 return true; 1250 } 1251 1252 bool InterleavedLoadCombineImpl::run() { 1253 OptimizationRemarkEmitter ORE(&F); 1254 bool changed = false; 1255 unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor(); 1256 1257 auto &DL = F.getParent()->getDataLayout(); 1258 1259 // Start with the highest factor to avoid combining and recombining. 1260 for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) { 1261 std::list<VectorInfo> Candidates; 1262 1263 for (BasicBlock &BB : F) { 1264 for (Instruction &I : BB) { 1265 if (auto SVI = dyn_cast<ShuffleVectorInst>(&I)) { 1266 // We don't support scalable vectors in this pass. 1267 if (isa<ScalableVectorType>(SVI->getType())) 1268 continue; 1269 1270 Candidates.emplace_back(cast<FixedVectorType>(SVI->getType())); 1271 1272 if (!VectorInfo::computeFromSVI(SVI, Candidates.back(), DL)) { 1273 Candidates.pop_back(); 1274 continue; 1275 } 1276 1277 if (!Candidates.back().isInterleaved(Factor, DL)) { 1278 Candidates.pop_back(); 1279 } 1280 } 1281 } 1282 } 1283 1284 std::list<VectorInfo> InterleavedLoad; 1285 while (findPattern(Candidates, InterleavedLoad, Factor, DL)) { 1286 if (combine(InterleavedLoad, ORE)) { 1287 changed = true; 1288 } else { 1289 // Remove the first element of the Interleaved Load but put the others 1290 // back on the list and continue searching 1291 Candidates.splice(Candidates.begin(), InterleavedLoad, 1292 std::next(InterleavedLoad.begin()), 1293 InterleavedLoad.end()); 1294 } 1295 InterleavedLoad.clear(); 1296 } 1297 } 1298 1299 return changed; 1300 } 1301 1302 namespace { 1303 /// This pass combines interleaved loads into a pattern detectable by 1304 /// InterleavedAccessPass. 1305 struct InterleavedLoadCombine : public FunctionPass { 1306 static char ID; 1307 1308 InterleavedLoadCombine() : FunctionPass(ID) { 1309 initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry()); 1310 } 1311 1312 StringRef getPassName() const override { 1313 return "Interleaved Load Combine Pass"; 1314 } 1315 1316 bool runOnFunction(Function &F) override { 1317 if (DisableInterleavedLoadCombine) 1318 return false; 1319 1320 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 1321 if (!TPC) 1322 return false; 1323 1324 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() 1325 << "\n"); 1326 1327 return InterleavedLoadCombineImpl( 1328 F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 1329 getAnalysis<MemorySSAWrapperPass>().getMSSA(), 1330 TPC->getTM<TargetMachine>()) 1331 .run(); 1332 } 1333 1334 void getAnalysisUsage(AnalysisUsage &AU) const override { 1335 AU.addRequired<MemorySSAWrapperPass>(); 1336 AU.addRequired<DominatorTreeWrapperPass>(); 1337 FunctionPass::getAnalysisUsage(AU); 1338 } 1339 1340 private: 1341 }; 1342 } // anonymous namespace 1343 1344 char InterleavedLoadCombine::ID = 0; 1345 1346 INITIALIZE_PASS_BEGIN( 1347 InterleavedLoadCombine, DEBUG_TYPE, 1348 "Combine interleaved loads into wide loads and shufflevector instructions", 1349 false, false) 1350 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1351 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1352 INITIALIZE_PASS_END( 1353 InterleavedLoadCombine, DEBUG_TYPE, 1354 "Combine interleaved loads into wide loads and shufflevector instructions", 1355 false, false) 1356 1357 FunctionPass * 1358 llvm::createInterleavedLoadCombinePass() { 1359 auto P = new InterleavedLoadCombine(); 1360 return P; 1361 } 1362