1 //===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // 11 // This file defines the interleaved-load-combine pass. The pass searches for 12 // ShuffleVectorInstruction that execute interleaving loads. If a matching 13 // pattern is found, it adds a combined load and further instructions in a 14 // pattern that is detectable by InterleavedAccesPass. The old instructions are 15 // left dead to be removed later. The pass is specifically designed to be 16 // executed just before InterleavedAccesPass to find any left-over instances 17 // that are not detected within former passes. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/MemoryLocation.h" 23 #include "llvm/Analysis/MemorySSA.h" 24 #include "llvm/Analysis/MemorySSAUpdater.h" 25 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/CodeGen/TargetLowering.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/LegacyPassManager.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetMachine.h" 44 45 #include <algorithm> 46 #include <cassert> 47 #include <list> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "interleaved-load-combine" 52 53 namespace { 54 55 /// Statistic counter 56 STATISTIC(NumInterleavedLoadCombine, "Number of combined loads"); 57 58 /// Option to disable the pass 59 static cl::opt<bool> DisableInterleavedLoadCombine( 60 "disable-" DEBUG_TYPE, cl::init(false), cl::Hidden, 61 cl::desc("Disable combining of interleaved loads")); 62 63 struct VectorInfo; 64 65 struct InterleavedLoadCombineImpl { 66 public: 67 InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA, 68 TargetMachine &TM) 69 : F(F), DT(DT), MSSA(MSSA), 70 TLI(*TM.getSubtargetImpl(F)->getTargetLowering()), 71 TTI(TM.getTargetTransformInfo(F)) {} 72 73 /// Scan the function for interleaved load candidates and execute the 74 /// replacement if applicable. 75 bool run(); 76 77 private: 78 /// Function this pass is working on 79 Function &F; 80 81 /// Dominator Tree Analysis 82 DominatorTree &DT; 83 84 /// Memory Alias Analyses 85 MemorySSA &MSSA; 86 87 /// Target Lowering Information 88 const TargetLowering &TLI; 89 90 /// Target Transform Information 91 const TargetTransformInfo TTI; 92 93 /// Find the instruction in sets LIs that dominates all others, return nullptr 94 /// if there is none. 95 LoadInst *findFirstLoad(const std::set<LoadInst *> &LIs); 96 97 /// Replace interleaved load candidates. It does additional 98 /// analyses if this makes sense. Returns true on success and false 99 /// of nothing has been changed. 100 bool combine(std::list<VectorInfo> &InterleavedLoad, 101 OptimizationRemarkEmitter &ORE); 102 103 /// Given a set of VectorInfo containing candidates for a given interleave 104 /// factor, find a set that represents a 'factor' interleaved load. 105 bool findPattern(std::list<VectorInfo> &Candidates, 106 std::list<VectorInfo> &InterleavedLoad, unsigned Factor, 107 const DataLayout &DL); 108 }; // InterleavedLoadCombine 109 110 /// First Order Polynomial on an n-Bit Integer Value 111 /// 112 /// Polynomial(Value) = Value * B + A + E*2^(n-e) 113 /// 114 /// A and B are the coefficients. E*2^(n-e) is an error within 'e' most 115 /// significant bits. It is introduced if an exact computation cannot be proven 116 /// (e.q. division by 2). 117 /// 118 /// As part of this optimization multiple loads will be combined. It necessary 119 /// to prove that loads are within some relative offset to each other. This 120 /// class is used to prove relative offsets of values loaded from memory. 121 /// 122 /// Representing an integer in this form is sound since addition in two's 123 /// complement is associative (trivial) and multiplication distributes over the 124 /// addition (see Proof(1) in Polynomial::mul). Further, both operations 125 /// commute. 126 // 127 // Example: 128 // declare @fn(i64 %IDX, <4 x float>* %PTR) { 129 // %Pa1 = add i64 %IDX, 2 130 // %Pa2 = lshr i64 %Pa1, 1 131 // %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2 132 // %Va = load <4 x float>, <4 x float>* %Pa3 133 // 134 // %Pb1 = add i64 %IDX, 4 135 // %Pb2 = lshr i64 %Pb1, 1 136 // %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2 137 // %Vb = load <4 x float>, <4 x float>* %Pb3 138 // ... } 139 // 140 // The goal is to prove that two loads load consecutive addresses. 141 // 142 // In this case the polynomials are constructed by the following 143 // steps. 144 // 145 // The number tag #e specifies the error bits. 146 // 147 // Pa_0 = %IDX #0 148 // Pa_1 = %IDX + 2 #0 | add 2 149 // Pa_2 = %IDX/2 + 1 #1 | lshr 1 150 // Pa_3 = %IDX/2 + 1 #1 | GEP, step signext to i64 151 // Pa_4 = (%IDX/2)*16 + 16 #0 | GEP, multiply index by sizeof(4) for floats 152 // Pa_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components 153 // 154 // Pb_0 = %IDX #0 155 // Pb_1 = %IDX + 4 #0 | add 2 156 // Pb_2 = %IDX/2 + 2 #1 | lshr 1 157 // Pb_3 = %IDX/2 + 2 #1 | GEP, step signext to i64 158 // Pb_4 = (%IDX/2)*16 + 32 #0 | GEP, multiply index by sizeof(4) for floats 159 // Pb_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components 160 // 161 // Pb_5 - Pa_5 = 16 #0 | subtract to get the offset 162 // 163 // Remark: %PTR is not maintained within this class. So in this instance the 164 // offset of 16 can only be assumed if the pointers are equal. 165 // 166 class Polynomial { 167 /// Operations on B 168 enum BOps { 169 LShr, 170 Mul, 171 SExt, 172 Trunc, 173 }; 174 175 /// Number of Error Bits e 176 unsigned ErrorMSBs; 177 178 /// Value 179 Value *V; 180 181 /// Coefficient B 182 SmallVector<std::pair<BOps, APInt>, 4> B; 183 184 /// Coefficient A 185 APInt A; 186 187 public: 188 Polynomial(Value *V) : ErrorMSBs((unsigned)-1), V(V), B(), A() { 189 IntegerType *Ty = dyn_cast<IntegerType>(V->getType()); 190 if (Ty) { 191 ErrorMSBs = 0; 192 this->V = V; 193 A = APInt(Ty->getBitWidth(), 0); 194 } 195 } 196 197 Polynomial(const APInt &A, unsigned ErrorMSBs = 0) 198 : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(A) {} 199 200 Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0) 201 : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(BitWidth, A) {} 202 203 Polynomial() : ErrorMSBs((unsigned)-1), V(NULL), B(), A() {} 204 205 /// Increment and clamp the number of undefined bits. 206 void incErrorMSBs(unsigned amt) { 207 if (ErrorMSBs == (unsigned)-1) 208 return; 209 210 ErrorMSBs += amt; 211 if (ErrorMSBs > A.getBitWidth()) 212 ErrorMSBs = A.getBitWidth(); 213 } 214 215 /// Decrement and clamp the number of undefined bits. 216 void decErrorMSBs(unsigned amt) { 217 if (ErrorMSBs == (unsigned)-1) 218 return; 219 220 if (ErrorMSBs > amt) 221 ErrorMSBs -= amt; 222 else 223 ErrorMSBs = 0; 224 } 225 226 /// Apply an add on the polynomial 227 Polynomial &add(const APInt &C) { 228 // Note: Addition is associative in two's complement even when in case of 229 // signed overflow. 230 // 231 // Error bits can only propagate into higher significant bits. As these are 232 // already regarded as undefined, there is no change. 233 // 234 // Theorem: Adding a constant to a polynomial does not change the error 235 // term. 236 // 237 // Proof: 238 // 239 // Since the addition is associative and commutes: 240 // 241 // (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e) 242 // [qed] 243 244 if (C.getBitWidth() != A.getBitWidth()) { 245 ErrorMSBs = (unsigned)-1; 246 return *this; 247 } 248 249 A += C; 250 return *this; 251 } 252 253 /// Apply a multiplication onto the polynomial. 254 Polynomial &mul(const APInt &C) { 255 // Note: Multiplication distributes over the addition 256 // 257 // Theorem: Multiplication distributes over the addition 258 // 259 // Proof(1): 260 // 261 // (B+A)*C =- 262 // = (B + A) + (B + A) + .. {C Times} 263 // addition is associative and commutes, hence 264 // = B + B + .. {C Times} .. + A + A + .. {C times} 265 // = B*C + A*C 266 // (see (function add) for signed values and overflows) 267 // [qed] 268 // 269 // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out 270 // to the left. 271 // 272 // Proof(2): 273 // 274 // Let B' and A' be the n-Bit inputs with some unknown errors EA, 275 // EB at e leading bits. B' and A' can be written down as: 276 // 277 // B' = B + 2^(n-e)*EB 278 // A' = A + 2^(n-e)*EA 279 // 280 // Let C' be an input with c trailing zero bits. C' can be written as 281 // 282 // C' = C*2^c 283 // 284 // Therefore we can compute the result by using distributivity and 285 // commutativity. 286 // 287 // (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' = 288 // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' = 289 // = (B'+A') * C' = 290 // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' = 291 // = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' = 292 // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' = 293 // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c = 294 // = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c = 295 // 296 // Let EC be the final error with EC = C*(EB + EA) 297 // 298 // = (B + A)*C' + EC*2^(n-e)*2^c = 299 // = (B + A)*C' + EC*2^(n-(e-c)) 300 // 301 // Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c 302 // less error bits than the input. c bits are shifted out to the left. 303 // [qed] 304 305 if (C.getBitWidth() != A.getBitWidth()) { 306 ErrorMSBs = (unsigned)-1; 307 return *this; 308 } 309 310 // Multiplying by one is a no-op. 311 if (C.isOneValue()) { 312 return *this; 313 } 314 315 // Multiplying by zero removes the coefficient B and defines all bits. 316 if (C.isNullValue()) { 317 ErrorMSBs = 0; 318 deleteB(); 319 } 320 321 // See Proof(2): Trailing zero bits indicate a left shift. This removes 322 // leading bits from the result even if they are undefined. 323 decErrorMSBs(C.countTrailingZeros()); 324 325 A *= C; 326 pushBOperation(Mul, C); 327 return *this; 328 } 329 330 /// Apply a logical shift right on the polynomial 331 Polynomial &lshr(const APInt &C) { 332 // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e') 333 // where 334 // e' = e + 1, 335 // E is a e-bit number, 336 // E' is a e'-bit number, 337 // holds under the following precondition: 338 // pre(1): A % 2 = 0 339 // pre(2): e < n, (see Theorem(2) for the trivial case with e=n) 340 // where >> expresses a logical shift to the right, with adding zeros. 341 // 342 // We need to show that for every, E there is a E' 343 // 344 // B = b_h * 2^(n-1) + b_m * 2 + b_l 345 // A = a_h * 2^(n-1) + a_m * 2 (pre(1)) 346 // 347 // where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers 348 // 349 // Let X = (B + A + E*2^(n-e)) >> 1 350 // Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1 351 // 352 // X = [B + A + E*2^(n-e)] >> 1 = 353 // = [ b_h * 2^(n-1) + b_m * 2 + b_l + 354 // + a_h * 2^(n-1) + a_m * 2 + 355 // + E * 2^(n-e) ] >> 1 = 356 // 357 // The sum is built by putting the overflow of [a_m + b+n] into the term 358 // 2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within 359 // this bit is discarded. This is expressed by % 2. 360 // 361 // The bit in position 0 cannot overflow into the term (b_m + a_m). 362 // 363 // = [ ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) + 364 // + ((b_m + a_m) % 2^(n-2)) * 2 + 365 // + b_l + E * 2^(n-e) ] >> 1 = 366 // 367 // The shift is computed by dividing the terms by 2 and by cutting off 368 // b_l. 369 // 370 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 371 // + ((b_m + a_m) % 2^(n-2)) + 372 // + E * 2^(n-(e+1)) = 373 // 374 // by the definition in the Theorem e+1 = e' 375 // 376 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 377 // + ((b_m + a_m) % 2^(n-2)) + 378 // + E * 2^(n-e') = 379 // 380 // Compute Y by applying distributivity first 381 // 382 // Y = (B >> 1) + (A >> 1) + E*2^(n-e') = 383 // = (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 + 384 // + (a_h * 2^(n-1) + a_m * 2) >> 1 + 385 // + E * 2^(n-e) >> 1 = 386 // 387 // Again, the shift is computed by dividing the terms by 2 and by cutting 388 // off b_l. 389 // 390 // = b_h * 2^(n-2) + b_m + 391 // + a_h * 2^(n-2) + a_m + 392 // + E * 2^(n-(e+1)) = 393 // 394 // Again, the sum is built by putting the overflow of [a_m + b+n] into 395 // the term 2^(n-1). But this time there is room for a second bit in the 396 // term 2^(n-2) we add this bit to a new term and denote it o_h in a 397 // second step. 398 // 399 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) + 400 // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 401 // + ((b_m + a_m) % 2^(n-2)) + 402 // + E * 2^(n-(e+1)) = 403 // 404 // Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1 405 // Further replace e+1 by e'. 406 // 407 // = o_h * 2^(n-1) + 408 // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 409 // + ((b_m + a_m) % 2^(n-2)) + 410 // + E * 2^(n-e') = 411 // 412 // Move o_h into the error term and construct E'. To ensure that there is 413 // no 2^x with negative x, this step requires pre(2) (e < n). 414 // 415 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 416 // + ((b_m + a_m) % 2^(n-2)) + 417 // + o_h * 2^(e'-1) * 2^(n-e') + | pre(2), move 2^(e'-1) 418 // | out of the old exponent 419 // + E * 2^(n-e') = 420 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 421 // + ((b_m + a_m) % 2^(n-2)) + 422 // + [o_h * 2^(e'-1) + E] * 2^(n-e') + | move 2^(e'-1) out of 423 // | the old exponent 424 // 425 // Let E' = o_h * 2^(e'-1) + E 426 // 427 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 428 // + ((b_m + a_m) % 2^(n-2)) + 429 // + E' * 2^(n-e') 430 // 431 // Because X and Y are distinct only in there error terms and E' can be 432 // constructed as shown the theorem holds. 433 // [qed] 434 // 435 // For completeness in case of the case e=n it is also required to show that 436 // distributivity can be applied. 437 // 438 // In this case Theorem(1) transforms to (the pre-condition on A can also be 439 // dropped) 440 // 441 // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E' 442 // where 443 // A, B, E, E' are two's complement numbers with the same bit 444 // width 445 // 446 // Let A + B + E = X 447 // Let (B >> 1) + (A >> 1) = Y 448 // 449 // Therefore we need to show that for every X and Y there is an E' which 450 // makes the equation 451 // 452 // X = Y + E' 453 // 454 // hold. This is trivially the case for E' = X - Y. 455 // 456 // [qed] 457 // 458 // Remark: Distributing lshr with and arbitrary number n can be expressed as 459 // ((((B + A) lshr 1) lshr 1) ... ) {n times}. 460 // This construction induces n additional error bits at the left. 461 462 if (C.getBitWidth() != A.getBitWidth()) { 463 ErrorMSBs = (unsigned)-1; 464 return *this; 465 } 466 467 if (C.isNullValue()) 468 return *this; 469 470 // Test if the result will be zero 471 unsigned shiftAmt = C.getZExtValue(); 472 if (shiftAmt >= C.getBitWidth()) 473 return mul(APInt(C.getBitWidth(), 0)); 474 475 // The proof that shiftAmt LSBs are zero for at least one summand is only 476 // possible for the constant number. 477 // 478 // If this can be proven add shiftAmt to the error counter 479 // `ErrorMSBs`. Otherwise set all bits as undefined. 480 if (A.countTrailingZeros() < shiftAmt) 481 ErrorMSBs = A.getBitWidth(); 482 else 483 incErrorMSBs(shiftAmt); 484 485 // Apply the operation. 486 pushBOperation(LShr, C); 487 A = A.lshr(shiftAmt); 488 489 return *this; 490 } 491 492 /// Apply a sign-extend or truncate operation on the polynomial. 493 Polynomial &sextOrTrunc(unsigned n) { 494 if (n < A.getBitWidth()) { 495 // Truncate: Clearly undefined Bits on the MSB side are removed 496 // if there are any. 497 decErrorMSBs(A.getBitWidth() - n); 498 A = A.trunc(n); 499 pushBOperation(Trunc, APInt(sizeof(n) * 8, n)); 500 } 501 if (n > A.getBitWidth()) { 502 // Extend: Clearly extending first and adding later is different 503 // to adding first and extending later in all extended bits. 504 incErrorMSBs(n - A.getBitWidth()); 505 A = A.sext(n); 506 pushBOperation(SExt, APInt(sizeof(n) * 8, n)); 507 } 508 509 return *this; 510 } 511 512 /// Test if there is a coefficient B. 513 bool isFirstOrder() const { return V != nullptr; } 514 515 /// Test coefficient B of two Polynomials are equal. 516 bool isCompatibleTo(const Polynomial &o) const { 517 // The polynomial use different bit width. 518 if (A.getBitWidth() != o.A.getBitWidth()) 519 return false; 520 521 // If neither Polynomial has the Coefficient B. 522 if (!isFirstOrder() && !o.isFirstOrder()) 523 return true; 524 525 // The index variable is different. 526 if (V != o.V) 527 return false; 528 529 // Check the operations. 530 if (B.size() != o.B.size()) 531 return false; 532 533 auto ob = o.B.begin(); 534 for (auto &b : B) { 535 if (b != *ob) 536 return false; 537 ob++; 538 } 539 540 return true; 541 } 542 543 /// Subtract two polynomials, return an undefined polynomial if 544 /// subtraction is not possible. 545 Polynomial operator-(const Polynomial &o) const { 546 // Return an undefined polynomial if incompatible. 547 if (!isCompatibleTo(o)) 548 return Polynomial(); 549 550 // If the polynomials are compatible (meaning they have the same 551 // coefficient on B), B is eliminated. Thus a polynomial solely 552 // containing A is returned 553 return Polynomial(A - o.A, std::max(ErrorMSBs, o.ErrorMSBs)); 554 } 555 556 /// Subtract a constant from a polynomial, 557 Polynomial operator-(uint64_t C) const { 558 Polynomial Result(*this); 559 Result.A -= C; 560 return Result; 561 } 562 563 /// Add a constant to a polynomial, 564 Polynomial operator+(uint64_t C) const { 565 Polynomial Result(*this); 566 Result.A += C; 567 return Result; 568 } 569 570 /// Returns true if it can be proven that two Polynomials are equal. 571 bool isProvenEqualTo(const Polynomial &o) { 572 // Subtract both polynomials and test if it is fully defined and zero. 573 Polynomial r = *this - o; 574 return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isNullValue()); 575 } 576 577 /// Print the polynomial into a stream. 578 void print(raw_ostream &OS) const { 579 OS << "[{#ErrBits:" << ErrorMSBs << "} "; 580 581 if (V) { 582 for (auto b : B) 583 OS << "("; 584 OS << "(" << *V << ") "; 585 586 for (auto b : B) { 587 switch (b.first) { 588 case LShr: 589 OS << "LShr "; 590 break; 591 case Mul: 592 OS << "Mul "; 593 break; 594 case SExt: 595 OS << "SExt "; 596 break; 597 case Trunc: 598 OS << "Trunc "; 599 break; 600 } 601 602 OS << b.second << ") "; 603 } 604 } 605 606 OS << "+ " << A << "]"; 607 } 608 609 private: 610 void deleteB() { 611 V = nullptr; 612 B.clear(); 613 } 614 615 void pushBOperation(const BOps Op, const APInt &C) { 616 if (isFirstOrder()) { 617 B.push_back(std::make_pair(Op, C)); 618 return; 619 } 620 } 621 }; 622 623 #ifndef NDEBUG 624 static raw_ostream &operator<<(raw_ostream &OS, const Polynomial &S) { 625 S.print(OS); 626 return OS; 627 } 628 #endif 629 630 /// VectorInfo stores abstract the following information for each vector 631 /// element: 632 /// 633 /// 1) The the memory address loaded into the element as Polynomial 634 /// 2) a set of load instruction necessary to construct the vector, 635 /// 3) a set of all other instructions that are necessary to create the vector and 636 /// 4) a pointer value that can be used as relative base for all elements. 637 struct VectorInfo { 638 private: 639 VectorInfo(const VectorInfo &c) : VTy(c.VTy) { 640 llvm_unreachable( 641 "Copying VectorInfo is neither implemented nor necessary,"); 642 } 643 644 public: 645 /// Information of a Vector Element 646 struct ElementInfo { 647 /// Offset Polynomial. 648 Polynomial Ofs; 649 650 /// The Load Instruction used to Load the entry. LI is null if the pointer 651 /// of the load instruction does not point on to the entry 652 LoadInst *LI; 653 654 ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr) 655 : Ofs(Offset), LI(LI) {} 656 }; 657 658 /// Basic-block the load instructions are within 659 BasicBlock *BB; 660 661 /// Pointer value of all participation load instructions 662 Value *PV; 663 664 /// Participating load instructions 665 std::set<LoadInst *> LIs; 666 667 /// Participating instructions 668 std::set<Instruction *> Is; 669 670 /// Final shuffle-vector instruction 671 ShuffleVectorInst *SVI; 672 673 /// Information of the offset for each vector element 674 ElementInfo *EI; 675 676 /// Vector Type 677 FixedVectorType *const VTy; 678 679 VectorInfo(FixedVectorType *VTy) 680 : BB(nullptr), PV(nullptr), LIs(), Is(), SVI(nullptr), VTy(VTy) { 681 EI = new ElementInfo[VTy->getNumElements()]; 682 } 683 684 virtual ~VectorInfo() { delete[] EI; } 685 686 unsigned getDimension() const { return VTy->getNumElements(); } 687 688 /// Test if the VectorInfo can be part of an interleaved load with the 689 /// specified factor. 690 /// 691 /// \param Factor of the interleave 692 /// \param DL Targets Datalayout 693 /// 694 /// \returns true if this is possible and false if not 695 bool isInterleaved(unsigned Factor, const DataLayout &DL) const { 696 unsigned Size = DL.getTypeAllocSize(VTy->getElementType()); 697 for (unsigned i = 1; i < getDimension(); i++) { 698 if (!EI[i].Ofs.isProvenEqualTo(EI[0].Ofs + i * Factor * Size)) { 699 return false; 700 } 701 } 702 return true; 703 } 704 705 /// Recursively computes the vector information stored in V. 706 /// 707 /// This function delegates the work to specialized implementations 708 /// 709 /// \param V Value to operate on 710 /// \param Result Result of the computation 711 /// 712 /// \returns false if no sensible information can be gathered. 713 static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) { 714 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V); 715 if (SVI) 716 return computeFromSVI(SVI, Result, DL); 717 LoadInst *LI = dyn_cast<LoadInst>(V); 718 if (LI) 719 return computeFromLI(LI, Result, DL); 720 BitCastInst *BCI = dyn_cast<BitCastInst>(V); 721 if (BCI) 722 return computeFromBCI(BCI, Result, DL); 723 return false; 724 } 725 726 /// BitCastInst specialization to compute the vector information. 727 /// 728 /// \param BCI BitCastInst to operate on 729 /// \param Result Result of the computation 730 /// 731 /// \returns false if no sensible information can be gathered. 732 static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result, 733 const DataLayout &DL) { 734 Instruction *Op = dyn_cast<Instruction>(BCI->getOperand(0)); 735 736 if (!Op) 737 return false; 738 739 FixedVectorType *VTy = dyn_cast<FixedVectorType>(Op->getType()); 740 if (!VTy) 741 return false; 742 743 // We can only cast from large to smaller vectors 744 if (Result.VTy->getNumElements() % VTy->getNumElements()) 745 return false; 746 747 unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements(); 748 unsigned NewSize = DL.getTypeAllocSize(Result.VTy->getElementType()); 749 unsigned OldSize = DL.getTypeAllocSize(VTy->getElementType()); 750 751 if (NewSize * Factor != OldSize) 752 return false; 753 754 VectorInfo Old(VTy); 755 if (!compute(Op, Old, DL)) 756 return false; 757 758 for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) { 759 for (unsigned j = 0; j < Factor; j++) { 760 Result.EI[i + j] = 761 ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize, 762 j == 0 ? Old.EI[i / Factor].LI : nullptr); 763 } 764 } 765 766 Result.BB = Old.BB; 767 Result.PV = Old.PV; 768 Result.LIs.insert(Old.LIs.begin(), Old.LIs.end()); 769 Result.Is.insert(Old.Is.begin(), Old.Is.end()); 770 Result.Is.insert(BCI); 771 Result.SVI = nullptr; 772 773 return true; 774 } 775 776 /// ShuffleVectorInst specialization to compute vector information. 777 /// 778 /// \param SVI ShuffleVectorInst to operate on 779 /// \param Result Result of the computation 780 /// 781 /// Compute the left and the right side vector information and merge them by 782 /// applying the shuffle operation. This function also ensures that the left 783 /// and right side have compatible loads. This means that all loads are with 784 /// in the same basic block and are based on the same pointer. 785 /// 786 /// \returns false if no sensible information can be gathered. 787 static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result, 788 const DataLayout &DL) { 789 FixedVectorType *ArgTy = 790 cast<FixedVectorType>(SVI->getOperand(0)->getType()); 791 792 // Compute the left hand vector information. 793 VectorInfo LHS(ArgTy); 794 if (!compute(SVI->getOperand(0), LHS, DL)) 795 LHS.BB = nullptr; 796 797 // Compute the right hand vector information. 798 VectorInfo RHS(ArgTy); 799 if (!compute(SVI->getOperand(1), RHS, DL)) 800 RHS.BB = nullptr; 801 802 // Neither operand produced sensible results? 803 if (!LHS.BB && !RHS.BB) 804 return false; 805 // Only RHS produced sensible results? 806 else if (!LHS.BB) { 807 Result.BB = RHS.BB; 808 Result.PV = RHS.PV; 809 } 810 // Only LHS produced sensible results? 811 else if (!RHS.BB) { 812 Result.BB = LHS.BB; 813 Result.PV = LHS.PV; 814 } 815 // Both operands produced sensible results? 816 else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) { 817 Result.BB = LHS.BB; 818 Result.PV = LHS.PV; 819 } 820 // Both operands produced sensible results but they are incompatible. 821 else { 822 return false; 823 } 824 825 // Merge and apply the operation on the offset information. 826 if (LHS.BB) { 827 Result.LIs.insert(LHS.LIs.begin(), LHS.LIs.end()); 828 Result.Is.insert(LHS.Is.begin(), LHS.Is.end()); 829 } 830 if (RHS.BB) { 831 Result.LIs.insert(RHS.LIs.begin(), RHS.LIs.end()); 832 Result.Is.insert(RHS.Is.begin(), RHS.Is.end()); 833 } 834 Result.Is.insert(SVI); 835 Result.SVI = SVI; 836 837 int j = 0; 838 for (int i : SVI->getShuffleMask()) { 839 assert((i < 2 * (signed)ArgTy->getNumElements()) && 840 "Invalid ShuffleVectorInst (index out of bounds)"); 841 842 if (i < 0) 843 Result.EI[j] = ElementInfo(); 844 else if (i < (signed)ArgTy->getNumElements()) { 845 if (LHS.BB) 846 Result.EI[j] = LHS.EI[i]; 847 else 848 Result.EI[j] = ElementInfo(); 849 } else { 850 if (RHS.BB) 851 Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()]; 852 else 853 Result.EI[j] = ElementInfo(); 854 } 855 j++; 856 } 857 858 return true; 859 } 860 861 /// LoadInst specialization to compute vector information. 862 /// 863 /// This function also acts as abort condition to the recursion. 864 /// 865 /// \param LI LoadInst to operate on 866 /// \param Result Result of the computation 867 /// 868 /// \returns false if no sensible information can be gathered. 869 static bool computeFromLI(LoadInst *LI, VectorInfo &Result, 870 const DataLayout &DL) { 871 Value *BasePtr; 872 Polynomial Offset; 873 874 if (LI->isVolatile()) 875 return false; 876 877 if (LI->isAtomic()) 878 return false; 879 880 // Get the base polynomial 881 computePolynomialFromPointer(*LI->getPointerOperand(), Offset, BasePtr, DL); 882 883 Result.BB = LI->getParent(); 884 Result.PV = BasePtr; 885 Result.LIs.insert(LI); 886 Result.Is.insert(LI); 887 888 for (unsigned i = 0; i < Result.getDimension(); i++) { 889 Value *Idx[2] = { 890 ConstantInt::get(Type::getInt32Ty(LI->getContext()), 0), 891 ConstantInt::get(Type::getInt32Ty(LI->getContext()), i), 892 }; 893 int64_t Ofs = DL.getIndexedOffsetInType(Result.VTy, makeArrayRef(Idx, 2)); 894 Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr); 895 } 896 897 return true; 898 } 899 900 /// Recursively compute polynomial of a value. 901 /// 902 /// \param BO Input binary operation 903 /// \param Result Result polynomial 904 static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) { 905 Value *LHS = BO.getOperand(0); 906 Value *RHS = BO.getOperand(1); 907 908 // Find the RHS Constant if any 909 ConstantInt *C = dyn_cast<ConstantInt>(RHS); 910 if ((!C) && BO.isCommutative()) { 911 C = dyn_cast<ConstantInt>(LHS); 912 if (C) 913 std::swap(LHS, RHS); 914 } 915 916 switch (BO.getOpcode()) { 917 case Instruction::Add: 918 if (!C) 919 break; 920 921 computePolynomial(*LHS, Result); 922 Result.add(C->getValue()); 923 return; 924 925 case Instruction::LShr: 926 if (!C) 927 break; 928 929 computePolynomial(*LHS, Result); 930 Result.lshr(C->getValue()); 931 return; 932 933 default: 934 break; 935 } 936 937 Result = Polynomial(&BO); 938 } 939 940 /// Recursively compute polynomial of a value 941 /// 942 /// \param V input value 943 /// \param Result result polynomial 944 static void computePolynomial(Value &V, Polynomial &Result) { 945 if (auto *BO = dyn_cast<BinaryOperator>(&V)) 946 computePolynomialBinOp(*BO, Result); 947 else 948 Result = Polynomial(&V); 949 } 950 951 /// Compute the Polynomial representation of a Pointer type. 952 /// 953 /// \param Ptr input pointer value 954 /// \param Result result polynomial 955 /// \param BasePtr pointer the polynomial is based on 956 /// \param DL Datalayout of the target machine 957 static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result, 958 Value *&BasePtr, 959 const DataLayout &DL) { 960 // Not a pointer type? Return an undefined polynomial 961 PointerType *PtrTy = dyn_cast<PointerType>(Ptr.getType()); 962 if (!PtrTy) { 963 Result = Polynomial(); 964 BasePtr = nullptr; 965 return; 966 } 967 unsigned PointerBits = 968 DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()); 969 970 /// Skip pointer casts. Return Zero polynomial otherwise 971 if (isa<CastInst>(&Ptr)) { 972 CastInst &CI = *cast<CastInst>(&Ptr); 973 switch (CI.getOpcode()) { 974 case Instruction::BitCast: 975 computePolynomialFromPointer(*CI.getOperand(0), Result, BasePtr, DL); 976 break; 977 default: 978 BasePtr = &Ptr; 979 Polynomial(PointerBits, 0); 980 break; 981 } 982 } 983 /// Resolve GetElementPtrInst. 984 else if (isa<GetElementPtrInst>(&Ptr)) { 985 GetElementPtrInst &GEP = *cast<GetElementPtrInst>(&Ptr); 986 987 APInt BaseOffset(PointerBits, 0); 988 989 // Check if we can compute the Offset with accumulateConstantOffset 990 if (GEP.accumulateConstantOffset(DL, BaseOffset)) { 991 Result = Polynomial(BaseOffset); 992 BasePtr = GEP.getPointerOperand(); 993 return; 994 } else { 995 // Otherwise we allow that the last index operand of the GEP is 996 // non-constant. 997 unsigned idxOperand, e; 998 SmallVector<Value *, 4> Indices; 999 for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e; 1000 idxOperand++) { 1001 ConstantInt *IDX = dyn_cast<ConstantInt>(GEP.getOperand(idxOperand)); 1002 if (!IDX) 1003 break; 1004 Indices.push_back(IDX); 1005 } 1006 1007 // It must also be the last operand. 1008 if (idxOperand + 1 != e) { 1009 Result = Polynomial(); 1010 BasePtr = nullptr; 1011 return; 1012 } 1013 1014 // Compute the polynomial of the index operand. 1015 computePolynomial(*GEP.getOperand(idxOperand), Result); 1016 1017 // Compute base offset from zero based index, excluding the last 1018 // variable operand. 1019 BaseOffset = 1020 DL.getIndexedOffsetInType(GEP.getSourceElementType(), Indices); 1021 1022 // Apply the operations of GEP to the polynomial. 1023 unsigned ResultSize = DL.getTypeAllocSize(GEP.getResultElementType()); 1024 Result.sextOrTrunc(PointerBits); 1025 Result.mul(APInt(PointerBits, ResultSize)); 1026 Result.add(BaseOffset); 1027 BasePtr = GEP.getPointerOperand(); 1028 } 1029 } 1030 // All other instructions are handled by using the value as base pointer and 1031 // a zero polynomial. 1032 else { 1033 BasePtr = &Ptr; 1034 Polynomial(DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()), 0); 1035 } 1036 } 1037 1038 #ifndef NDEBUG 1039 void print(raw_ostream &OS) const { 1040 if (PV) 1041 OS << *PV; 1042 else 1043 OS << "(none)"; 1044 OS << " + "; 1045 for (unsigned i = 0; i < getDimension(); i++) 1046 OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs; 1047 OS << "]"; 1048 } 1049 #endif 1050 }; 1051 1052 } // anonymous namespace 1053 1054 bool InterleavedLoadCombineImpl::findPattern( 1055 std::list<VectorInfo> &Candidates, std::list<VectorInfo> &InterleavedLoad, 1056 unsigned Factor, const DataLayout &DL) { 1057 for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) { 1058 unsigned i; 1059 // Try to find an interleaved load using the front of Worklist as first line 1060 unsigned Size = DL.getTypeAllocSize(C0->VTy->getElementType()); 1061 1062 // List containing iterators pointing to the VectorInfos of the candidates 1063 std::vector<std::list<VectorInfo>::iterator> Res(Factor, Candidates.end()); 1064 1065 for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) { 1066 if (C->VTy != C0->VTy) 1067 continue; 1068 if (C->BB != C0->BB) 1069 continue; 1070 if (C->PV != C0->PV) 1071 continue; 1072 1073 // Check the current value matches any of factor - 1 remaining lines 1074 for (i = 1; i < Factor; i++) { 1075 if (C->EI[0].Ofs.isProvenEqualTo(C0->EI[0].Ofs + i * Size)) { 1076 Res[i] = C; 1077 } 1078 } 1079 1080 for (i = 1; i < Factor; i++) { 1081 if (Res[i] == Candidates.end()) 1082 break; 1083 } 1084 if (i == Factor) { 1085 Res[0] = C0; 1086 break; 1087 } 1088 } 1089 1090 if (Res[0] != Candidates.end()) { 1091 // Move the result into the output 1092 for (unsigned i = 0; i < Factor; i++) { 1093 InterleavedLoad.splice(InterleavedLoad.end(), Candidates, Res[i]); 1094 } 1095 1096 return true; 1097 } 1098 } 1099 return false; 1100 } 1101 1102 LoadInst * 1103 InterleavedLoadCombineImpl::findFirstLoad(const std::set<LoadInst *> &LIs) { 1104 assert(!LIs.empty() && "No load instructions given."); 1105 1106 // All LIs are within the same BB. Select the first for a reference. 1107 BasicBlock *BB = (*LIs.begin())->getParent(); 1108 BasicBlock::iterator FLI = llvm::find_if( 1109 *BB, [&LIs](Instruction &I) -> bool { return is_contained(LIs, &I); }); 1110 assert(FLI != BB->end()); 1111 1112 return cast<LoadInst>(FLI); 1113 } 1114 1115 bool InterleavedLoadCombineImpl::combine(std::list<VectorInfo> &InterleavedLoad, 1116 OptimizationRemarkEmitter &ORE) { 1117 LLVM_DEBUG(dbgs() << "Checking interleaved load\n"); 1118 1119 // The insertion point is the LoadInst which loads the first values. The 1120 // following tests are used to proof that the combined load can be inserted 1121 // just before InsertionPoint. 1122 LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI; 1123 1124 // Test if the offset is computed 1125 if (!InsertionPoint) 1126 return false; 1127 1128 std::set<LoadInst *> LIs; 1129 std::set<Instruction *> Is; 1130 std::set<Instruction *> SVIs; 1131 1132 InstructionCost InterleavedCost; 1133 InstructionCost InstructionCost = 0; 1134 1135 // Get the interleave factor 1136 unsigned Factor = InterleavedLoad.size(); 1137 1138 // Merge all input sets used in analysis 1139 for (auto &VI : InterleavedLoad) { 1140 // Generate a set of all load instructions to be combined 1141 LIs.insert(VI.LIs.begin(), VI.LIs.end()); 1142 1143 // Generate a set of all instructions taking part in load 1144 // interleaved. This list excludes the instructions necessary for the 1145 // polynomial construction. 1146 Is.insert(VI.Is.begin(), VI.Is.end()); 1147 1148 // Generate the set of the final ShuffleVectorInst. 1149 SVIs.insert(VI.SVI); 1150 } 1151 1152 // There is nothing to combine. 1153 if (LIs.size() < 2) 1154 return false; 1155 1156 // Test if all participating instruction will be dead after the 1157 // transformation. If intermediate results are used, no performance gain can 1158 // be expected. Also sum the cost of the Instructions beeing left dead. 1159 for (auto &I : Is) { 1160 // Compute the old cost 1161 InstructionCost += 1162 TTI.getInstructionCost(I, TargetTransformInfo::TCK_Latency); 1163 1164 // The final SVIs are allowed not to be dead, all uses will be replaced 1165 if (SVIs.find(I) != SVIs.end()) 1166 continue; 1167 1168 // If there are users outside the set to be eliminated, we abort the 1169 // transformation. No gain can be expected. 1170 for (auto *U : I->users()) { 1171 if (Is.find(dyn_cast<Instruction>(U)) == Is.end()) 1172 return false; 1173 } 1174 } 1175 1176 // We need to have a valid cost in order to proceed. 1177 if (!InstructionCost.isValid()) 1178 return false; 1179 1180 // We know that all LoadInst are within the same BB. This guarantees that 1181 // either everything or nothing is loaded. 1182 LoadInst *First = findFirstLoad(LIs); 1183 1184 // To be safe that the loads can be combined, iterate over all loads and test 1185 // that the corresponding defining access dominates first LI. This guarantees 1186 // that there are no aliasing stores in between the loads. 1187 auto FMA = MSSA.getMemoryAccess(First); 1188 for (auto LI : LIs) { 1189 auto MADef = MSSA.getMemoryAccess(LI)->getDefiningAccess(); 1190 if (!MSSA.dominates(MADef, FMA)) 1191 return false; 1192 } 1193 assert(!LIs.empty() && "There are no LoadInst to combine"); 1194 1195 // It is necessary that insertion point dominates all final ShuffleVectorInst. 1196 for (auto &VI : InterleavedLoad) { 1197 if (!DT.dominates(InsertionPoint, VI.SVI)) 1198 return false; 1199 } 1200 1201 // All checks are done. Add instructions detectable by InterleavedAccessPass 1202 // The old instruction will are left dead. 1203 IRBuilder<> Builder(InsertionPoint); 1204 Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType(); 1205 unsigned ElementsPerSVI = 1206 cast<FixedVectorType>(InterleavedLoad.front().SVI->getType()) 1207 ->getNumElements(); 1208 FixedVectorType *ILTy = FixedVectorType::get(ETy, Factor * ElementsPerSVI); 1209 1210 SmallVector<unsigned, 4> Indices; 1211 for (unsigned i = 0; i < Factor; i++) 1212 Indices.push_back(i); 1213 InterleavedCost = TTI.getInterleavedMemoryOpCost( 1214 Instruction::Load, ILTy, Factor, Indices, InsertionPoint->getAlign(), 1215 InsertionPoint->getPointerAddressSpace()); 1216 1217 if (InterleavedCost >= InstructionCost) { 1218 return false; 1219 } 1220 1221 // Create a pointer cast for the wide load. 1222 auto CI = Builder.CreatePointerCast(InsertionPoint->getOperand(0), 1223 ILTy->getPointerTo(), 1224 "interleaved.wide.ptrcast"); 1225 1226 // Create the wide load and update the MemorySSA. 1227 auto LI = Builder.CreateAlignedLoad(ILTy, CI, InsertionPoint->getAlign(), 1228 "interleaved.wide.load"); 1229 auto MSSAU = MemorySSAUpdater(&MSSA); 1230 MemoryUse *MSSALoad = cast<MemoryUse>(MSSAU.createMemoryAccessBefore( 1231 LI, nullptr, MSSA.getMemoryAccess(InsertionPoint))); 1232 MSSAU.insertUse(MSSALoad); 1233 1234 // Create the final SVIs and replace all uses. 1235 int i = 0; 1236 for (auto &VI : InterleavedLoad) { 1237 SmallVector<int, 4> Mask; 1238 for (unsigned j = 0; j < ElementsPerSVI; j++) 1239 Mask.push_back(i + j * Factor); 1240 1241 Builder.SetInsertPoint(VI.SVI); 1242 auto SVI = Builder.CreateShuffleVector(LI, Mask, "interleaved.shuffle"); 1243 VI.SVI->replaceAllUsesWith(SVI); 1244 i++; 1245 } 1246 1247 NumInterleavedLoadCombine++; 1248 ORE.emit([&]() { 1249 return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI) 1250 << "Load interleaved combined with factor " 1251 << ore::NV("Factor", Factor); 1252 }); 1253 1254 return true; 1255 } 1256 1257 bool InterleavedLoadCombineImpl::run() { 1258 OptimizationRemarkEmitter ORE(&F); 1259 bool changed = false; 1260 unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor(); 1261 1262 auto &DL = F.getParent()->getDataLayout(); 1263 1264 // Start with the highest factor to avoid combining and recombining. 1265 for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) { 1266 std::list<VectorInfo> Candidates; 1267 1268 for (BasicBlock &BB : F) { 1269 for (Instruction &I : BB) { 1270 if (auto SVI = dyn_cast<ShuffleVectorInst>(&I)) { 1271 // We don't support scalable vectors in this pass. 1272 if (isa<ScalableVectorType>(SVI->getType())) 1273 continue; 1274 1275 Candidates.emplace_back(cast<FixedVectorType>(SVI->getType())); 1276 1277 if (!VectorInfo::computeFromSVI(SVI, Candidates.back(), DL)) { 1278 Candidates.pop_back(); 1279 continue; 1280 } 1281 1282 if (!Candidates.back().isInterleaved(Factor, DL)) { 1283 Candidates.pop_back(); 1284 } 1285 } 1286 } 1287 } 1288 1289 std::list<VectorInfo> InterleavedLoad; 1290 while (findPattern(Candidates, InterleavedLoad, Factor, DL)) { 1291 if (combine(InterleavedLoad, ORE)) { 1292 changed = true; 1293 } else { 1294 // Remove the first element of the Interleaved Load but put the others 1295 // back on the list and continue searching 1296 Candidates.splice(Candidates.begin(), InterleavedLoad, 1297 std::next(InterleavedLoad.begin()), 1298 InterleavedLoad.end()); 1299 } 1300 InterleavedLoad.clear(); 1301 } 1302 } 1303 1304 return changed; 1305 } 1306 1307 namespace { 1308 /// This pass combines interleaved loads into a pattern detectable by 1309 /// InterleavedAccessPass. 1310 struct InterleavedLoadCombine : public FunctionPass { 1311 static char ID; 1312 1313 InterleavedLoadCombine() : FunctionPass(ID) { 1314 initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry()); 1315 } 1316 1317 StringRef getPassName() const override { 1318 return "Interleaved Load Combine Pass"; 1319 } 1320 1321 bool runOnFunction(Function &F) override { 1322 if (DisableInterleavedLoadCombine) 1323 return false; 1324 1325 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 1326 if (!TPC) 1327 return false; 1328 1329 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() 1330 << "\n"); 1331 1332 return InterleavedLoadCombineImpl( 1333 F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 1334 getAnalysis<MemorySSAWrapperPass>().getMSSA(), 1335 TPC->getTM<TargetMachine>()) 1336 .run(); 1337 } 1338 1339 void getAnalysisUsage(AnalysisUsage &AU) const override { 1340 AU.addRequired<MemorySSAWrapperPass>(); 1341 AU.addRequired<DominatorTreeWrapperPass>(); 1342 FunctionPass::getAnalysisUsage(AU); 1343 } 1344 1345 private: 1346 }; 1347 } // anonymous namespace 1348 1349 char InterleavedLoadCombine::ID = 0; 1350 1351 INITIALIZE_PASS_BEGIN( 1352 InterleavedLoadCombine, DEBUG_TYPE, 1353 "Combine interleaved loads into wide loads and shufflevector instructions", 1354 false, false) 1355 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1356 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1357 INITIALIZE_PASS_END( 1358 InterleavedLoadCombine, DEBUG_TYPE, 1359 "Combine interleaved loads into wide loads and shufflevector instructions", 1360 false, false) 1361 1362 FunctionPass * 1363 llvm::createInterleavedLoadCombinePass() { 1364 auto P = new InterleavedLoadCombine(); 1365 return P; 1366 } 1367