xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/InterleavedLoadCombinePass.cpp (revision 77a1348b3c1cfe8547be49a121b56299a1e18b69)
1 //===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 //
11 // This file defines the interleaved-load-combine pass. The pass searches for
12 // ShuffleVectorInstruction that execute interleaving loads. If a matching
13 // pattern is found, it adds a combined load and further instructions in a
14 // pattern that is detectable by InterleavedAccesPass. The old instructions are
15 // left dead to be removed later. The pass is specifically designed to be
16 // executed just before InterleavedAccesPass to find any left-over instances
17 // that are not detected within former passes.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/MemoryLocation.h"
23 #include "llvm/Analysis/MemorySSA.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/CodeGen/TargetLowering.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/LegacyPassManager.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/InitializePasses.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetMachine.h"
43 
44 #include <algorithm>
45 #include <cassert>
46 #include <list>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "interleaved-load-combine"
51 
52 namespace {
53 
54 /// Statistic counter
55 STATISTIC(NumInterleavedLoadCombine, "Number of combined loads");
56 
57 /// Option to disable the pass
58 static cl::opt<bool> DisableInterleavedLoadCombine(
59     "disable-" DEBUG_TYPE, cl::init(false), cl::Hidden,
60     cl::desc("Disable combining of interleaved loads"));
61 
62 struct VectorInfo;
63 
64 struct InterleavedLoadCombineImpl {
65 public:
66   InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA,
67                              TargetMachine &TM)
68       : F(F), DT(DT), MSSA(MSSA),
69         TLI(*TM.getSubtargetImpl(F)->getTargetLowering()),
70         TTI(TM.getTargetTransformInfo(F)) {}
71 
72   /// Scan the function for interleaved load candidates and execute the
73   /// replacement if applicable.
74   bool run();
75 
76 private:
77   /// Function this pass is working on
78   Function &F;
79 
80   /// Dominator Tree Analysis
81   DominatorTree &DT;
82 
83   /// Memory Alias Analyses
84   MemorySSA &MSSA;
85 
86   /// Target Lowering Information
87   const TargetLowering &TLI;
88 
89   /// Target Transform Information
90   const TargetTransformInfo TTI;
91 
92   /// Find the instruction in sets LIs that dominates all others, return nullptr
93   /// if there is none.
94   LoadInst *findFirstLoad(const std::set<LoadInst *> &LIs);
95 
96   /// Replace interleaved load candidates. It does additional
97   /// analyses if this makes sense. Returns true on success and false
98   /// of nothing has been changed.
99   bool combine(std::list<VectorInfo> &InterleavedLoad,
100                OptimizationRemarkEmitter &ORE);
101 
102   /// Given a set of VectorInfo containing candidates for a given interleave
103   /// factor, find a set that represents a 'factor' interleaved load.
104   bool findPattern(std::list<VectorInfo> &Candidates,
105                    std::list<VectorInfo> &InterleavedLoad, unsigned Factor,
106                    const DataLayout &DL);
107 }; // InterleavedLoadCombine
108 
109 /// First Order Polynomial on an n-Bit Integer Value
110 ///
111 /// Polynomial(Value) = Value * B + A + E*2^(n-e)
112 ///
113 /// A and B are the coefficients. E*2^(n-e) is an error within 'e' most
114 /// significant bits. It is introduced if an exact computation cannot be proven
115 /// (e.q. division by 2).
116 ///
117 /// As part of this optimization multiple loads will be combined. It necessary
118 /// to prove that loads are within some relative offset to each other. This
119 /// class is used to prove relative offsets of values loaded from memory.
120 ///
121 /// Representing an integer in this form is sound since addition in two's
122 /// complement is associative (trivial) and multiplication distributes over the
123 /// addition (see Proof(1) in Polynomial::mul). Further, both operations
124 /// commute.
125 //
126 // Example:
127 // declare @fn(i64 %IDX, <4 x float>* %PTR) {
128 //   %Pa1 = add i64 %IDX, 2
129 //   %Pa2 = lshr i64 %Pa1, 1
130 //   %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2
131 //   %Va = load <4 x float>, <4 x float>* %Pa3
132 //
133 //   %Pb1 = add i64 %IDX, 4
134 //   %Pb2 = lshr i64 %Pb1, 1
135 //   %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2
136 //   %Vb = load <4 x float>, <4 x float>* %Pb3
137 // ... }
138 //
139 // The goal is to prove that two loads load consecutive addresses.
140 //
141 // In this case the polynomials are constructed by the following
142 // steps.
143 //
144 // The number tag #e specifies the error bits.
145 //
146 // Pa_0 = %IDX              #0
147 // Pa_1 = %IDX + 2          #0 | add 2
148 // Pa_2 = %IDX/2 + 1        #1 | lshr 1
149 // Pa_3 = %IDX/2 + 1        #1 | GEP, step signext to i64
150 // Pa_4 = (%IDX/2)*16 + 16  #0 | GEP, multiply index by sizeof(4) for floats
151 // Pa_5 = (%IDX/2)*16 + 16  #0 | GEP, add offset of leading components
152 //
153 // Pb_0 = %IDX              #0
154 // Pb_1 = %IDX + 4          #0 | add 2
155 // Pb_2 = %IDX/2 + 2        #1 | lshr 1
156 // Pb_3 = %IDX/2 + 2        #1 | GEP, step signext to i64
157 // Pb_4 = (%IDX/2)*16 + 32  #0 | GEP, multiply index by sizeof(4) for floats
158 // Pb_5 = (%IDX/2)*16 + 16  #0 | GEP, add offset of leading components
159 //
160 // Pb_5 - Pa_5 = 16         #0 | subtract to get the offset
161 //
162 // Remark: %PTR is not maintained within this class. So in this instance the
163 // offset of 16 can only be assumed if the pointers are equal.
164 //
165 class Polynomial {
166   /// Operations on B
167   enum BOps {
168     LShr,
169     Mul,
170     SExt,
171     Trunc,
172   };
173 
174   /// Number of Error Bits e
175   unsigned ErrorMSBs;
176 
177   /// Value
178   Value *V;
179 
180   /// Coefficient B
181   SmallVector<std::pair<BOps, APInt>, 4> B;
182 
183   /// Coefficient A
184   APInt A;
185 
186 public:
187   Polynomial(Value *V) : ErrorMSBs((unsigned)-1), V(V), B(), A() {
188     IntegerType *Ty = dyn_cast<IntegerType>(V->getType());
189     if (Ty) {
190       ErrorMSBs = 0;
191       this->V = V;
192       A = APInt(Ty->getBitWidth(), 0);
193     }
194   }
195 
196   Polynomial(const APInt &A, unsigned ErrorMSBs = 0)
197       : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(A) {}
198 
199   Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0)
200       : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(BitWidth, A) {}
201 
202   Polynomial() : ErrorMSBs((unsigned)-1), V(NULL), B(), A() {}
203 
204   /// Increment and clamp the number of undefined bits.
205   void incErrorMSBs(unsigned amt) {
206     if (ErrorMSBs == (unsigned)-1)
207       return;
208 
209     ErrorMSBs += amt;
210     if (ErrorMSBs > A.getBitWidth())
211       ErrorMSBs = A.getBitWidth();
212   }
213 
214   /// Decrement and clamp the number of undefined bits.
215   void decErrorMSBs(unsigned amt) {
216     if (ErrorMSBs == (unsigned)-1)
217       return;
218 
219     if (ErrorMSBs > amt)
220       ErrorMSBs -= amt;
221     else
222       ErrorMSBs = 0;
223   }
224 
225   /// Apply an add on the polynomial
226   Polynomial &add(const APInt &C) {
227     // Note: Addition is associative in two's complement even when in case of
228     // signed overflow.
229     //
230     // Error bits can only propagate into higher significant bits. As these are
231     // already regarded as undefined, there is no change.
232     //
233     // Theorem: Adding a constant to a polynomial does not change the error
234     // term.
235     //
236     // Proof:
237     //
238     //   Since the addition is associative and commutes:
239     //
240     //   (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e)
241     // [qed]
242 
243     if (C.getBitWidth() != A.getBitWidth()) {
244       ErrorMSBs = (unsigned)-1;
245       return *this;
246     }
247 
248     A += C;
249     return *this;
250   }
251 
252   /// Apply a multiplication onto the polynomial.
253   Polynomial &mul(const APInt &C) {
254     // Note: Multiplication distributes over the addition
255     //
256     // Theorem: Multiplication distributes over the addition
257     //
258     // Proof(1):
259     //
260     //   (B+A)*C =-
261     //        = (B + A) + (B + A) + .. {C Times}
262     //         addition is associative and commutes, hence
263     //        = B + B + .. {C Times} .. + A + A + .. {C times}
264     //        = B*C + A*C
265     //   (see (function add) for signed values and overflows)
266     // [qed]
267     //
268     // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out
269     // to the left.
270     //
271     // Proof(2):
272     //
273     //   Let B' and A' be the n-Bit inputs with some unknown errors EA,
274     //   EB at e leading bits. B' and A' can be written down as:
275     //
276     //     B' = B + 2^(n-e)*EB
277     //     A' = A + 2^(n-e)*EA
278     //
279     //   Let C' be an input with c trailing zero bits. C' can be written as
280     //
281     //     C' = C*2^c
282     //
283     //   Therefore we can compute the result by using distributivity and
284     //   commutativity.
285     //
286     //     (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' =
287     //                     = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
288     //                     = (B'+A') * C' =
289     //                     = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
290     //                     = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' =
291     //                     = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' =
292     //                     = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c =
293     //                     = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c =
294     //
295     //   Let EC be the final error with EC = C*(EB + EA)
296     //
297     //                     = (B + A)*C' + EC*2^(n-e)*2^c =
298     //                     = (B + A)*C' + EC*2^(n-(e-c))
299     //
300     //   Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c
301     //   less error bits than the input. c bits are shifted out to the left.
302     // [qed]
303 
304     if (C.getBitWidth() != A.getBitWidth()) {
305       ErrorMSBs = (unsigned)-1;
306       return *this;
307     }
308 
309     // Multiplying by one is a no-op.
310     if (C.isOneValue()) {
311       return *this;
312     }
313 
314     // Multiplying by zero removes the coefficient B and defines all bits.
315     if (C.isNullValue()) {
316       ErrorMSBs = 0;
317       deleteB();
318     }
319 
320     // See Proof(2): Trailing zero bits indicate a left shift. This removes
321     // leading bits from the result even if they are undefined.
322     decErrorMSBs(C.countTrailingZeros());
323 
324     A *= C;
325     pushBOperation(Mul, C);
326     return *this;
327   }
328 
329   /// Apply a logical shift right on the polynomial
330   Polynomial &lshr(const APInt &C) {
331     // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e')
332     //          where
333     //             e' = e + 1,
334     //             E is a e-bit number,
335     //             E' is a e'-bit number,
336     //   holds under the following precondition:
337     //          pre(1): A % 2 = 0
338     //          pre(2): e < n, (see Theorem(2) for the trivial case with e=n)
339     //   where >> expresses a logical shift to the right, with adding zeros.
340     //
341     //  We need to show that for every, E there is a E'
342     //
343     //  B = b_h * 2^(n-1) + b_m * 2 + b_l
344     //  A = a_h * 2^(n-1) + a_m * 2         (pre(1))
345     //
346     //  where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers
347     //
348     //  Let X = (B + A + E*2^(n-e)) >> 1
349     //  Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1
350     //
351     //    X = [B + A + E*2^(n-e)] >> 1 =
352     //      = [  b_h * 2^(n-1) + b_m * 2 + b_l +
353     //         + a_h * 2^(n-1) + a_m * 2 +
354     //         + E * 2^(n-e) ] >> 1 =
355     //
356     //    The sum is built by putting the overflow of [a_m + b+n] into the term
357     //    2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within
358     //    this bit is discarded. This is expressed by % 2.
359     //
360     //    The bit in position 0 cannot overflow into the term (b_m + a_m).
361     //
362     //      = [  ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) +
363     //         + ((b_m + a_m) % 2^(n-2)) * 2 +
364     //         + b_l + E * 2^(n-e) ] >> 1 =
365     //
366     //    The shift is computed by dividing the terms by 2 and by cutting off
367     //    b_l.
368     //
369     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
370     //         + ((b_m + a_m) % 2^(n-2)) +
371     //         + E * 2^(n-(e+1)) =
372     //
373     //    by the definition in the Theorem e+1 = e'
374     //
375     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
376     //         + ((b_m + a_m) % 2^(n-2)) +
377     //         + E * 2^(n-e') =
378     //
379     //    Compute Y by applying distributivity first
380     //
381     //    Y =  (B >> 1) + (A >> 1) + E*2^(n-e') =
382     //      =    (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 +
383     //         + (a_h * 2^(n-1) + a_m * 2) >> 1 +
384     //         + E * 2^(n-e) >> 1 =
385     //
386     //    Again, the shift is computed by dividing the terms by 2 and by cutting
387     //    off b_l.
388     //
389     //      =     b_h * 2^(n-2) + b_m +
390     //         +  a_h * 2^(n-2) + a_m +
391     //         +  E * 2^(n-(e+1)) =
392     //
393     //    Again, the sum is built by putting the overflow of [a_m + b+n] into
394     //    the term 2^(n-1). But this time there is room for a second bit in the
395     //    term 2^(n-2) we add this bit to a new term and denote it o_h in a
396     //    second step.
397     //
398     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) +
399     //         + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
400     //         + ((b_m + a_m) % 2^(n-2)) +
401     //         + E * 2^(n-(e+1)) =
402     //
403     //    Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1
404     //    Further replace e+1 by e'.
405     //
406     //      =    o_h * 2^(n-1) +
407     //         + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
408     //         + ((b_m + a_m) % 2^(n-2)) +
409     //         + E * 2^(n-e') =
410     //
411     //    Move o_h into the error term and construct E'. To ensure that there is
412     //    no 2^x with negative x, this step requires pre(2) (e < n).
413     //
414     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
415     //         + ((b_m + a_m) % 2^(n-2)) +
416     //         + o_h * 2^(e'-1) * 2^(n-e') +               | pre(2), move 2^(e'-1)
417     //                                                     | out of the old exponent
418     //         + E * 2^(n-e') =
419     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
420     //         + ((b_m + a_m) % 2^(n-2)) +
421     //         + [o_h * 2^(e'-1) + E] * 2^(n-e') +         | move 2^(e'-1) out of
422     //                                                     | the old exponent
423     //
424     //    Let E' = o_h * 2^(e'-1) + E
425     //
426     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
427     //         + ((b_m + a_m) % 2^(n-2)) +
428     //         + E' * 2^(n-e')
429     //
430     //    Because X and Y are distinct only in there error terms and E' can be
431     //    constructed as shown the theorem holds.
432     // [qed]
433     //
434     // For completeness in case of the case e=n it is also required to show that
435     // distributivity can be applied.
436     //
437     // In this case Theorem(1) transforms to (the pre-condition on A can also be
438     // dropped)
439     //
440     // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E'
441     //          where
442     //             A, B, E, E' are two's complement numbers with the same bit
443     //             width
444     //
445     //   Let A + B + E = X
446     //   Let (B >> 1) + (A >> 1) = Y
447     //
448     //   Therefore we need to show that for every X and Y there is an E' which
449     //   makes the equation
450     //
451     //     X = Y + E'
452     //
453     //   hold. This is trivially the case for E' = X - Y.
454     //
455     // [qed]
456     //
457     // Remark: Distributing lshr with and arbitrary number n can be expressed as
458     //   ((((B + A) lshr 1) lshr 1) ... ) {n times}.
459     // This construction induces n additional error bits at the left.
460 
461     if (C.getBitWidth() != A.getBitWidth()) {
462       ErrorMSBs = (unsigned)-1;
463       return *this;
464     }
465 
466     if (C.isNullValue())
467       return *this;
468 
469     // Test if the result will be zero
470     unsigned shiftAmt = C.getZExtValue();
471     if (shiftAmt >= C.getBitWidth())
472       return mul(APInt(C.getBitWidth(), 0));
473 
474     // The proof that shiftAmt LSBs are zero for at least one summand is only
475     // possible for the constant number.
476     //
477     // If this can be proven add shiftAmt to the error counter
478     // `ErrorMSBs`. Otherwise set all bits as undefined.
479     if (A.countTrailingZeros() < shiftAmt)
480       ErrorMSBs = A.getBitWidth();
481     else
482       incErrorMSBs(shiftAmt);
483 
484     // Apply the operation.
485     pushBOperation(LShr, C);
486     A = A.lshr(shiftAmt);
487 
488     return *this;
489   }
490 
491   /// Apply a sign-extend or truncate operation on the polynomial.
492   Polynomial &sextOrTrunc(unsigned n) {
493     if (n < A.getBitWidth()) {
494       // Truncate: Clearly undefined Bits on the MSB side are removed
495       // if there are any.
496       decErrorMSBs(A.getBitWidth() - n);
497       A = A.trunc(n);
498       pushBOperation(Trunc, APInt(sizeof(n) * 8, n));
499     }
500     if (n > A.getBitWidth()) {
501       // Extend: Clearly extending first and adding later is different
502       // to adding first and extending later in all extended bits.
503       incErrorMSBs(n - A.getBitWidth());
504       A = A.sext(n);
505       pushBOperation(SExt, APInt(sizeof(n) * 8, n));
506     }
507 
508     return *this;
509   }
510 
511   /// Test if there is a coefficient B.
512   bool isFirstOrder() const { return V != nullptr; }
513 
514   /// Test coefficient B of two Polynomials are equal.
515   bool isCompatibleTo(const Polynomial &o) const {
516     // The polynomial use different bit width.
517     if (A.getBitWidth() != o.A.getBitWidth())
518       return false;
519 
520     // If neither Polynomial has the Coefficient B.
521     if (!isFirstOrder() && !o.isFirstOrder())
522       return true;
523 
524     // The index variable is different.
525     if (V != o.V)
526       return false;
527 
528     // Check the operations.
529     if (B.size() != o.B.size())
530       return false;
531 
532     auto ob = o.B.begin();
533     for (auto &b : B) {
534       if (b != *ob)
535         return false;
536       ob++;
537     }
538 
539     return true;
540   }
541 
542   /// Subtract two polynomials, return an undefined polynomial if
543   /// subtraction is not possible.
544   Polynomial operator-(const Polynomial &o) const {
545     // Return an undefined polynomial if incompatible.
546     if (!isCompatibleTo(o))
547       return Polynomial();
548 
549     // If the polynomials are compatible (meaning they have the same
550     // coefficient on B), B is eliminated. Thus a polynomial solely
551     // containing A is returned
552     return Polynomial(A - o.A, std::max(ErrorMSBs, o.ErrorMSBs));
553   }
554 
555   /// Subtract a constant from a polynomial,
556   Polynomial operator-(uint64_t C) const {
557     Polynomial Result(*this);
558     Result.A -= C;
559     return Result;
560   }
561 
562   /// Add a constant to a polynomial,
563   Polynomial operator+(uint64_t C) const {
564     Polynomial Result(*this);
565     Result.A += C;
566     return Result;
567   }
568 
569   /// Returns true if it can be proven that two Polynomials are equal.
570   bool isProvenEqualTo(const Polynomial &o) {
571     // Subtract both polynomials and test if it is fully defined and zero.
572     Polynomial r = *this - o;
573     return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isNullValue());
574   }
575 
576   /// Print the polynomial into a stream.
577   void print(raw_ostream &OS) const {
578     OS << "[{#ErrBits:" << ErrorMSBs << "} ";
579 
580     if (V) {
581       for (auto b : B)
582         OS << "(";
583       OS << "(" << *V << ") ";
584 
585       for (auto b : B) {
586         switch (b.first) {
587         case LShr:
588           OS << "LShr ";
589           break;
590         case Mul:
591           OS << "Mul ";
592           break;
593         case SExt:
594           OS << "SExt ";
595           break;
596         case Trunc:
597           OS << "Trunc ";
598           break;
599         }
600 
601         OS << b.second << ") ";
602       }
603     }
604 
605     OS << "+ " << A << "]";
606   }
607 
608 private:
609   void deleteB() {
610     V = nullptr;
611     B.clear();
612   }
613 
614   void pushBOperation(const BOps Op, const APInt &C) {
615     if (isFirstOrder()) {
616       B.push_back(std::make_pair(Op, C));
617       return;
618     }
619   }
620 };
621 
622 #ifndef NDEBUG
623 static raw_ostream &operator<<(raw_ostream &OS, const Polynomial &S) {
624   S.print(OS);
625   return OS;
626 }
627 #endif
628 
629 /// VectorInfo stores abstract the following information for each vector
630 /// element:
631 ///
632 /// 1) The the memory address loaded into the element as Polynomial
633 /// 2) a set of load instruction necessary to construct the vector,
634 /// 3) a set of all other instructions that are necessary to create the vector and
635 /// 4) a pointer value that can be used as relative base for all elements.
636 struct VectorInfo {
637 private:
638   VectorInfo(const VectorInfo &c) : VTy(c.VTy) {
639     llvm_unreachable(
640         "Copying VectorInfo is neither implemented nor necessary,");
641   }
642 
643 public:
644   /// Information of a Vector Element
645   struct ElementInfo {
646     /// Offset Polynomial.
647     Polynomial Ofs;
648 
649     /// The Load Instruction used to Load the entry. LI is null if the pointer
650     /// of the load instruction does not point on to the entry
651     LoadInst *LI;
652 
653     ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr)
654         : Ofs(Offset), LI(LI) {}
655   };
656 
657   /// Basic-block the load instructions are within
658   BasicBlock *BB;
659 
660   /// Pointer value of all participation load instructions
661   Value *PV;
662 
663   /// Participating load instructions
664   std::set<LoadInst *> LIs;
665 
666   /// Participating instructions
667   std::set<Instruction *> Is;
668 
669   /// Final shuffle-vector instruction
670   ShuffleVectorInst *SVI;
671 
672   /// Information of the offset for each vector element
673   ElementInfo *EI;
674 
675   /// Vector Type
676   VectorType *const VTy;
677 
678   VectorInfo(VectorType *VTy)
679       : BB(nullptr), PV(nullptr), LIs(), Is(), SVI(nullptr), VTy(VTy) {
680     EI = new ElementInfo[VTy->getNumElements()];
681   }
682 
683   virtual ~VectorInfo() { delete[] EI; }
684 
685   unsigned getDimension() const { return VTy->getNumElements(); }
686 
687   /// Test if the VectorInfo can be part of an interleaved load with the
688   /// specified factor.
689   ///
690   /// \param Factor of the interleave
691   /// \param DL Targets Datalayout
692   ///
693   /// \returns true if this is possible and false if not
694   bool isInterleaved(unsigned Factor, const DataLayout &DL) const {
695     unsigned Size = DL.getTypeAllocSize(VTy->getElementType());
696     for (unsigned i = 1; i < getDimension(); i++) {
697       if (!EI[i].Ofs.isProvenEqualTo(EI[0].Ofs + i * Factor * Size)) {
698         return false;
699       }
700     }
701     return true;
702   }
703 
704   /// Recursively computes the vector information stored in V.
705   ///
706   /// This function delegates the work to specialized implementations
707   ///
708   /// \param V Value to operate on
709   /// \param Result Result of the computation
710   ///
711   /// \returns false if no sensible information can be gathered.
712   static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) {
713     ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
714     if (SVI)
715       return computeFromSVI(SVI, Result, DL);
716     LoadInst *LI = dyn_cast<LoadInst>(V);
717     if (LI)
718       return computeFromLI(LI, Result, DL);
719     BitCastInst *BCI = dyn_cast<BitCastInst>(V);
720     if (BCI)
721       return computeFromBCI(BCI, Result, DL);
722     return false;
723   }
724 
725   /// BitCastInst specialization to compute the vector information.
726   ///
727   /// \param BCI BitCastInst to operate on
728   /// \param Result Result of the computation
729   ///
730   /// \returns false if no sensible information can be gathered.
731   static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result,
732                              const DataLayout &DL) {
733     Instruction *Op = dyn_cast<Instruction>(BCI->getOperand(0));
734 
735     if (!Op)
736       return false;
737 
738     VectorType *VTy = dyn_cast<VectorType>(Op->getType());
739     if (!VTy)
740       return false;
741 
742     // We can only cast from large to smaller vectors
743     if (Result.VTy->getNumElements() % VTy->getNumElements())
744       return false;
745 
746     unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements();
747     unsigned NewSize = DL.getTypeAllocSize(Result.VTy->getElementType());
748     unsigned OldSize = DL.getTypeAllocSize(VTy->getElementType());
749 
750     if (NewSize * Factor != OldSize)
751       return false;
752 
753     VectorInfo Old(VTy);
754     if (!compute(Op, Old, DL))
755       return false;
756 
757     for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) {
758       for (unsigned j = 0; j < Factor; j++) {
759         Result.EI[i + j] =
760             ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize,
761                         j == 0 ? Old.EI[i / Factor].LI : nullptr);
762       }
763     }
764 
765     Result.BB = Old.BB;
766     Result.PV = Old.PV;
767     Result.LIs.insert(Old.LIs.begin(), Old.LIs.end());
768     Result.Is.insert(Old.Is.begin(), Old.Is.end());
769     Result.Is.insert(BCI);
770     Result.SVI = nullptr;
771 
772     return true;
773   }
774 
775   /// ShuffleVectorInst specialization to compute vector information.
776   ///
777   /// \param SVI ShuffleVectorInst to operate on
778   /// \param Result Result of the computation
779   ///
780   /// Compute the left and the right side vector information and merge them by
781   /// applying the shuffle operation. This function also ensures that the left
782   /// and right side have compatible loads. This means that all loads are with
783   /// in the same basic block and are based on the same pointer.
784   ///
785   /// \returns false if no sensible information can be gathered.
786   static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result,
787                              const DataLayout &DL) {
788     VectorType *ArgTy = dyn_cast<VectorType>(SVI->getOperand(0)->getType());
789     assert(ArgTy && "ShuffleVector Operand is not a VectorType");
790 
791     // Compute the left hand vector information.
792     VectorInfo LHS(ArgTy);
793     if (!compute(SVI->getOperand(0), LHS, DL))
794       LHS.BB = nullptr;
795 
796     // Compute the right hand vector information.
797     VectorInfo RHS(ArgTy);
798     if (!compute(SVI->getOperand(1), RHS, DL))
799       RHS.BB = nullptr;
800 
801     // Neither operand produced sensible results?
802     if (!LHS.BB && !RHS.BB)
803       return false;
804     // Only RHS produced sensible results?
805     else if (!LHS.BB) {
806       Result.BB = RHS.BB;
807       Result.PV = RHS.PV;
808     }
809     // Only LHS produced sensible results?
810     else if (!RHS.BB) {
811       Result.BB = LHS.BB;
812       Result.PV = LHS.PV;
813     }
814     // Both operands produced sensible results?
815     else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) {
816       Result.BB = LHS.BB;
817       Result.PV = LHS.PV;
818     }
819     // Both operands produced sensible results but they are incompatible.
820     else {
821       return false;
822     }
823 
824     // Merge and apply the operation on the offset information.
825     if (LHS.BB) {
826       Result.LIs.insert(LHS.LIs.begin(), LHS.LIs.end());
827       Result.Is.insert(LHS.Is.begin(), LHS.Is.end());
828     }
829     if (RHS.BB) {
830       Result.LIs.insert(RHS.LIs.begin(), RHS.LIs.end());
831       Result.Is.insert(RHS.Is.begin(), RHS.Is.end());
832     }
833     Result.Is.insert(SVI);
834     Result.SVI = SVI;
835 
836     int j = 0;
837     for (int i : SVI->getShuffleMask()) {
838       assert((i < 2 * (signed)ArgTy->getNumElements()) &&
839              "Invalid ShuffleVectorInst (index out of bounds)");
840 
841       if (i < 0)
842         Result.EI[j] = ElementInfo();
843       else if (i < (signed)ArgTy->getNumElements()) {
844         if (LHS.BB)
845           Result.EI[j] = LHS.EI[i];
846         else
847           Result.EI[j] = ElementInfo();
848       } else {
849         if (RHS.BB)
850           Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()];
851         else
852           Result.EI[j] = ElementInfo();
853       }
854       j++;
855     }
856 
857     return true;
858   }
859 
860   /// LoadInst specialization to compute vector information.
861   ///
862   /// This function also acts as abort condition to the recursion.
863   ///
864   /// \param LI LoadInst to operate on
865   /// \param Result Result of the computation
866   ///
867   /// \returns false if no sensible information can be gathered.
868   static bool computeFromLI(LoadInst *LI, VectorInfo &Result,
869                             const DataLayout &DL) {
870     Value *BasePtr;
871     Polynomial Offset;
872 
873     if (LI->isVolatile())
874       return false;
875 
876     if (LI->isAtomic())
877       return false;
878 
879     // Get the base polynomial
880     computePolynomialFromPointer(*LI->getPointerOperand(), Offset, BasePtr, DL);
881 
882     Result.BB = LI->getParent();
883     Result.PV = BasePtr;
884     Result.LIs.insert(LI);
885     Result.Is.insert(LI);
886 
887     for (unsigned i = 0; i < Result.getDimension(); i++) {
888       Value *Idx[2] = {
889           ConstantInt::get(Type::getInt32Ty(LI->getContext()), 0),
890           ConstantInt::get(Type::getInt32Ty(LI->getContext()), i),
891       };
892       int64_t Ofs = DL.getIndexedOffsetInType(Result.VTy, makeArrayRef(Idx, 2));
893       Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr);
894     }
895 
896     return true;
897   }
898 
899   /// Recursively compute polynomial of a value.
900   ///
901   /// \param BO Input binary operation
902   /// \param Result Result polynomial
903   static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) {
904     Value *LHS = BO.getOperand(0);
905     Value *RHS = BO.getOperand(1);
906 
907     // Find the RHS Constant if any
908     ConstantInt *C = dyn_cast<ConstantInt>(RHS);
909     if ((!C) && BO.isCommutative()) {
910       C = dyn_cast<ConstantInt>(LHS);
911       if (C)
912         std::swap(LHS, RHS);
913     }
914 
915     switch (BO.getOpcode()) {
916     case Instruction::Add:
917       if (!C)
918         break;
919 
920       computePolynomial(*LHS, Result);
921       Result.add(C->getValue());
922       return;
923 
924     case Instruction::LShr:
925       if (!C)
926         break;
927 
928       computePolynomial(*LHS, Result);
929       Result.lshr(C->getValue());
930       return;
931 
932     default:
933       break;
934     }
935 
936     Result = Polynomial(&BO);
937   }
938 
939   /// Recursively compute polynomial of a value
940   ///
941   /// \param V input value
942   /// \param Result result polynomial
943   static void computePolynomial(Value &V, Polynomial &Result) {
944     if (auto *BO = dyn_cast<BinaryOperator>(&V))
945       computePolynomialBinOp(*BO, Result);
946     else
947       Result = Polynomial(&V);
948   }
949 
950   /// Compute the Polynomial representation of a Pointer type.
951   ///
952   /// \param Ptr input pointer value
953   /// \param Result result polynomial
954   /// \param BasePtr pointer the polynomial is based on
955   /// \param DL Datalayout of the target machine
956   static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result,
957                                            Value *&BasePtr,
958                                            const DataLayout &DL) {
959     // Not a pointer type? Return an undefined polynomial
960     PointerType *PtrTy = dyn_cast<PointerType>(Ptr.getType());
961     if (!PtrTy) {
962       Result = Polynomial();
963       BasePtr = nullptr;
964       return;
965     }
966     unsigned PointerBits =
967         DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace());
968 
969     /// Skip pointer casts. Return Zero polynomial otherwise
970     if (isa<CastInst>(&Ptr)) {
971       CastInst &CI = *cast<CastInst>(&Ptr);
972       switch (CI.getOpcode()) {
973       case Instruction::BitCast:
974         computePolynomialFromPointer(*CI.getOperand(0), Result, BasePtr, DL);
975         break;
976       default:
977         BasePtr = &Ptr;
978         Polynomial(PointerBits, 0);
979         break;
980       }
981     }
982     /// Resolve GetElementPtrInst.
983     else if (isa<GetElementPtrInst>(&Ptr)) {
984       GetElementPtrInst &GEP = *cast<GetElementPtrInst>(&Ptr);
985 
986       APInt BaseOffset(PointerBits, 0);
987 
988       // Check if we can compute the Offset with accumulateConstantOffset
989       if (GEP.accumulateConstantOffset(DL, BaseOffset)) {
990         Result = Polynomial(BaseOffset);
991         BasePtr = GEP.getPointerOperand();
992         return;
993       } else {
994         // Otherwise we allow that the last index operand of the GEP is
995         // non-constant.
996         unsigned idxOperand, e;
997         SmallVector<Value *, 4> Indices;
998         for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e;
999              idxOperand++) {
1000           ConstantInt *IDX = dyn_cast<ConstantInt>(GEP.getOperand(idxOperand));
1001           if (!IDX)
1002             break;
1003           Indices.push_back(IDX);
1004         }
1005 
1006         // It must also be the last operand.
1007         if (idxOperand + 1 != e) {
1008           Result = Polynomial();
1009           BasePtr = nullptr;
1010           return;
1011         }
1012 
1013         // Compute the polynomial of the index operand.
1014         computePolynomial(*GEP.getOperand(idxOperand), Result);
1015 
1016         // Compute base offset from zero based index, excluding the last
1017         // variable operand.
1018         BaseOffset =
1019             DL.getIndexedOffsetInType(GEP.getSourceElementType(), Indices);
1020 
1021         // Apply the operations of GEP to the polynomial.
1022         unsigned ResultSize = DL.getTypeAllocSize(GEP.getResultElementType());
1023         Result.sextOrTrunc(PointerBits);
1024         Result.mul(APInt(PointerBits, ResultSize));
1025         Result.add(BaseOffset);
1026         BasePtr = GEP.getPointerOperand();
1027       }
1028     }
1029     // All other instructions are handled by using the value as base pointer and
1030     // a zero polynomial.
1031     else {
1032       BasePtr = &Ptr;
1033       Polynomial(DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()), 0);
1034     }
1035   }
1036 
1037 #ifndef NDEBUG
1038   void print(raw_ostream &OS) const {
1039     if (PV)
1040       OS << *PV;
1041     else
1042       OS << "(none)";
1043     OS << " + ";
1044     for (unsigned i = 0; i < getDimension(); i++)
1045       OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs;
1046     OS << "]";
1047   }
1048 #endif
1049 };
1050 
1051 } // anonymous namespace
1052 
1053 bool InterleavedLoadCombineImpl::findPattern(
1054     std::list<VectorInfo> &Candidates, std::list<VectorInfo> &InterleavedLoad,
1055     unsigned Factor, const DataLayout &DL) {
1056   for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) {
1057     unsigned i;
1058     // Try to find an interleaved load using the front of Worklist as first line
1059     unsigned Size = DL.getTypeAllocSize(C0->VTy->getElementType());
1060 
1061     // List containing iterators pointing to the VectorInfos of the candidates
1062     std::vector<std::list<VectorInfo>::iterator> Res(Factor, Candidates.end());
1063 
1064     for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) {
1065       if (C->VTy != C0->VTy)
1066         continue;
1067       if (C->BB != C0->BB)
1068         continue;
1069       if (C->PV != C0->PV)
1070         continue;
1071 
1072       // Check the current value matches any of factor - 1 remaining lines
1073       for (i = 1; i < Factor; i++) {
1074         if (C->EI[0].Ofs.isProvenEqualTo(C0->EI[0].Ofs + i * Size)) {
1075           Res[i] = C;
1076         }
1077       }
1078 
1079       for (i = 1; i < Factor; i++) {
1080         if (Res[i] == Candidates.end())
1081           break;
1082       }
1083       if (i == Factor) {
1084         Res[0] = C0;
1085         break;
1086       }
1087     }
1088 
1089     if (Res[0] != Candidates.end()) {
1090       // Move the result into the output
1091       for (unsigned i = 0; i < Factor; i++) {
1092         InterleavedLoad.splice(InterleavedLoad.end(), Candidates, Res[i]);
1093       }
1094 
1095       return true;
1096     }
1097   }
1098   return false;
1099 }
1100 
1101 LoadInst *
1102 InterleavedLoadCombineImpl::findFirstLoad(const std::set<LoadInst *> &LIs) {
1103   assert(!LIs.empty() && "No load instructions given.");
1104 
1105   // All LIs are within the same BB. Select the first for a reference.
1106   BasicBlock *BB = (*LIs.begin())->getParent();
1107   BasicBlock::iterator FLI =
1108       std::find_if(BB->begin(), BB->end(), [&LIs](Instruction &I) -> bool {
1109         return is_contained(LIs, &I);
1110       });
1111   assert(FLI != BB->end());
1112 
1113   return cast<LoadInst>(FLI);
1114 }
1115 
1116 bool InterleavedLoadCombineImpl::combine(std::list<VectorInfo> &InterleavedLoad,
1117                                          OptimizationRemarkEmitter &ORE) {
1118   LLVM_DEBUG(dbgs() << "Checking interleaved load\n");
1119 
1120   // The insertion point is the LoadInst which loads the first values. The
1121   // following tests are used to proof that the combined load can be inserted
1122   // just before InsertionPoint.
1123   LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI;
1124 
1125   // Test if the offset is computed
1126   if (!InsertionPoint)
1127     return false;
1128 
1129   std::set<LoadInst *> LIs;
1130   std::set<Instruction *> Is;
1131   std::set<Instruction *> SVIs;
1132 
1133   unsigned InterleavedCost;
1134   unsigned InstructionCost = 0;
1135 
1136   // Get the interleave factor
1137   unsigned Factor = InterleavedLoad.size();
1138 
1139   // Merge all input sets used in analysis
1140   for (auto &VI : InterleavedLoad) {
1141     // Generate a set of all load instructions to be combined
1142     LIs.insert(VI.LIs.begin(), VI.LIs.end());
1143 
1144     // Generate a set of all instructions taking part in load
1145     // interleaved. This list excludes the instructions necessary for the
1146     // polynomial construction.
1147     Is.insert(VI.Is.begin(), VI.Is.end());
1148 
1149     // Generate the set of the final ShuffleVectorInst.
1150     SVIs.insert(VI.SVI);
1151   }
1152 
1153   // There is nothing to combine.
1154   if (LIs.size() < 2)
1155     return false;
1156 
1157   // Test if all participating instruction will be dead after the
1158   // transformation. If intermediate results are used, no performance gain can
1159   // be expected. Also sum the cost of the Instructions beeing left dead.
1160   for (auto &I : Is) {
1161     // Compute the old cost
1162     InstructionCost +=
1163         TTI.getInstructionCost(I, TargetTransformInfo::TCK_Latency);
1164 
1165     // The final SVIs are allowed not to be dead, all uses will be replaced
1166     if (SVIs.find(I) != SVIs.end())
1167       continue;
1168 
1169     // If there are users outside the set to be eliminated, we abort the
1170     // transformation. No gain can be expected.
1171     for (auto *U : I->users()) {
1172       if (Is.find(dyn_cast<Instruction>(U)) == Is.end())
1173         return false;
1174     }
1175   }
1176 
1177   // We know that all LoadInst are within the same BB. This guarantees that
1178   // either everything or nothing is loaded.
1179   LoadInst *First = findFirstLoad(LIs);
1180 
1181   // To be safe that the loads can be combined, iterate over all loads and test
1182   // that the corresponding defining access dominates first LI. This guarantees
1183   // that there are no aliasing stores in between the loads.
1184   auto FMA = MSSA.getMemoryAccess(First);
1185   for (auto LI : LIs) {
1186     auto MADef = MSSA.getMemoryAccess(LI)->getDefiningAccess();
1187     if (!MSSA.dominates(MADef, FMA))
1188       return false;
1189   }
1190   assert(!LIs.empty() && "There are no LoadInst to combine");
1191 
1192   // It is necessary that insertion point dominates all final ShuffleVectorInst.
1193   for (auto &VI : InterleavedLoad) {
1194     if (!DT.dominates(InsertionPoint, VI.SVI))
1195       return false;
1196   }
1197 
1198   // All checks are done. Add instructions detectable by InterleavedAccessPass
1199   // The old instruction will are left dead.
1200   IRBuilder<> Builder(InsertionPoint);
1201   Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType();
1202   unsigned ElementsPerSVI =
1203       InterleavedLoad.front().SVI->getType()->getNumElements();
1204   VectorType *ILTy = VectorType::get(ETy, Factor * ElementsPerSVI);
1205 
1206   SmallVector<unsigned, 4> Indices;
1207   for (unsigned i = 0; i < Factor; i++)
1208     Indices.push_back(i);
1209   InterleavedCost = TTI.getInterleavedMemoryOpCost(
1210       Instruction::Load, ILTy, Factor, Indices, InsertionPoint->getAlignment(),
1211       InsertionPoint->getPointerAddressSpace());
1212 
1213   if (InterleavedCost >= InstructionCost) {
1214     return false;
1215   }
1216 
1217   // Create a pointer cast for the wide load.
1218   auto CI = Builder.CreatePointerCast(InsertionPoint->getOperand(0),
1219                                       ILTy->getPointerTo(),
1220                                       "interleaved.wide.ptrcast");
1221 
1222   // Create the wide load and update the MemorySSA.
1223   auto LI = Builder.CreateAlignedLoad(ILTy, CI, InsertionPoint->getAlignment(),
1224                                       "interleaved.wide.load");
1225   auto MSSAU = MemorySSAUpdater(&MSSA);
1226   MemoryUse *MSSALoad = cast<MemoryUse>(MSSAU.createMemoryAccessBefore(
1227       LI, nullptr, MSSA.getMemoryAccess(InsertionPoint)));
1228   MSSAU.insertUse(MSSALoad);
1229 
1230   // Create the final SVIs and replace all uses.
1231   int i = 0;
1232   for (auto &VI : InterleavedLoad) {
1233     SmallVector<uint32_t, 4> Mask;
1234     for (unsigned j = 0; j < ElementsPerSVI; j++)
1235       Mask.push_back(i + j * Factor);
1236 
1237     Builder.SetInsertPoint(VI.SVI);
1238     auto SVI = Builder.CreateShuffleVector(LI, UndefValue::get(LI->getType()),
1239                                            Mask, "interleaved.shuffle");
1240     VI.SVI->replaceAllUsesWith(SVI);
1241     i++;
1242   }
1243 
1244   NumInterleavedLoadCombine++;
1245   ORE.emit([&]() {
1246     return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI)
1247            << "Load interleaved combined with factor "
1248            << ore::NV("Factor", Factor);
1249   });
1250 
1251   return true;
1252 }
1253 
1254 bool InterleavedLoadCombineImpl::run() {
1255   OptimizationRemarkEmitter ORE(&F);
1256   bool changed = false;
1257   unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor();
1258 
1259   auto &DL = F.getParent()->getDataLayout();
1260 
1261   // Start with the highest factor to avoid combining and recombining.
1262   for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) {
1263     std::list<VectorInfo> Candidates;
1264 
1265     for (BasicBlock &BB : F) {
1266       for (Instruction &I : BB) {
1267         if (auto SVI = dyn_cast<ShuffleVectorInst>(&I)) {
1268 
1269           Candidates.emplace_back(SVI->getType());
1270 
1271           if (!VectorInfo::computeFromSVI(SVI, Candidates.back(), DL)) {
1272             Candidates.pop_back();
1273             continue;
1274           }
1275 
1276           if (!Candidates.back().isInterleaved(Factor, DL)) {
1277             Candidates.pop_back();
1278           }
1279         }
1280       }
1281     }
1282 
1283     std::list<VectorInfo> InterleavedLoad;
1284     while (findPattern(Candidates, InterleavedLoad, Factor, DL)) {
1285       if (combine(InterleavedLoad, ORE)) {
1286         changed = true;
1287       } else {
1288         // Remove the first element of the Interleaved Load but put the others
1289         // back on the list and continue searching
1290         Candidates.splice(Candidates.begin(), InterleavedLoad,
1291                           std::next(InterleavedLoad.begin()),
1292                           InterleavedLoad.end());
1293       }
1294       InterleavedLoad.clear();
1295     }
1296   }
1297 
1298   return changed;
1299 }
1300 
1301 namespace {
1302 /// This pass combines interleaved loads into a pattern detectable by
1303 /// InterleavedAccessPass.
1304 struct InterleavedLoadCombine : public FunctionPass {
1305   static char ID;
1306 
1307   InterleavedLoadCombine() : FunctionPass(ID) {
1308     initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry());
1309   }
1310 
1311   StringRef getPassName() const override {
1312     return "Interleaved Load Combine Pass";
1313   }
1314 
1315   bool runOnFunction(Function &F) override {
1316     if (DisableInterleavedLoadCombine)
1317       return false;
1318 
1319     auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1320     if (!TPC)
1321       return false;
1322 
1323     LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName()
1324                       << "\n");
1325 
1326     return InterleavedLoadCombineImpl(
1327                F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
1328                getAnalysis<MemorySSAWrapperPass>().getMSSA(),
1329                TPC->getTM<TargetMachine>())
1330         .run();
1331   }
1332 
1333   void getAnalysisUsage(AnalysisUsage &AU) const override {
1334     AU.addRequired<MemorySSAWrapperPass>();
1335     AU.addRequired<DominatorTreeWrapperPass>();
1336     FunctionPass::getAnalysisUsage(AU);
1337   }
1338 
1339 private:
1340 };
1341 } // anonymous namespace
1342 
1343 char InterleavedLoadCombine::ID = 0;
1344 
1345 INITIALIZE_PASS_BEGIN(
1346     InterleavedLoadCombine, DEBUG_TYPE,
1347     "Combine interleaved loads into wide loads and shufflevector instructions",
1348     false, false)
1349 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1350 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1351 INITIALIZE_PASS_END(
1352     InterleavedLoadCombine, DEBUG_TYPE,
1353     "Combine interleaved loads into wide loads and shufflevector instructions",
1354     false, false)
1355 
1356 FunctionPass *
1357 llvm::createInterleavedLoadCombinePass() {
1358   auto P = new InterleavedLoadCombine();
1359   return P;
1360 }
1361