1 //===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // 11 // This file defines the interleaved-load-combine pass. The pass searches for 12 // ShuffleVectorInstruction that execute interleaving loads. If a matching 13 // pattern is found, it adds a combined load and further instructions in a 14 // pattern that is detectable by InterleavedAccesPass. The old instructions are 15 // left dead to be removed later. The pass is specifically designed to be 16 // executed just before InterleavedAccesPass to find any left-over instances 17 // that are not detected within former passes. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/MemorySSA.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/CodeGen/Passes.h" 27 #include "llvm/CodeGen/TargetLowering.h" 28 #include "llvm/CodeGen/TargetPassConfig.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetMachine.h" 42 43 #include <algorithm> 44 #include <cassert> 45 #include <list> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "interleaved-load-combine" 50 51 namespace { 52 53 /// Statistic counter 54 STATISTIC(NumInterleavedLoadCombine, "Number of combined loads"); 55 56 /// Option to disable the pass 57 static cl::opt<bool> DisableInterleavedLoadCombine( 58 "disable-" DEBUG_TYPE, cl::init(false), cl::Hidden, 59 cl::desc("Disable combining of interleaved loads")); 60 61 struct VectorInfo; 62 63 struct InterleavedLoadCombineImpl { 64 public: 65 InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA, 66 TargetMachine &TM) 67 : F(F), DT(DT), MSSA(MSSA), 68 TLI(*TM.getSubtargetImpl(F)->getTargetLowering()), 69 TTI(TM.getTargetTransformInfo(F)) {} 70 71 /// Scan the function for interleaved load candidates and execute the 72 /// replacement if applicable. 73 bool run(); 74 75 private: 76 /// Function this pass is working on 77 Function &F; 78 79 /// Dominator Tree Analysis 80 DominatorTree &DT; 81 82 /// Memory Alias Analyses 83 MemorySSA &MSSA; 84 85 /// Target Lowering Information 86 const TargetLowering &TLI; 87 88 /// Target Transform Information 89 const TargetTransformInfo TTI; 90 91 /// Find the instruction in sets LIs that dominates all others, return nullptr 92 /// if there is none. 93 LoadInst *findFirstLoad(const std::set<LoadInst *> &LIs); 94 95 /// Replace interleaved load candidates. It does additional 96 /// analyses if this makes sense. Returns true on success and false 97 /// of nothing has been changed. 98 bool combine(std::list<VectorInfo> &InterleavedLoad, 99 OptimizationRemarkEmitter &ORE); 100 101 /// Given a set of VectorInfo containing candidates for a given interleave 102 /// factor, find a set that represents a 'factor' interleaved load. 103 bool findPattern(std::list<VectorInfo> &Candidates, 104 std::list<VectorInfo> &InterleavedLoad, unsigned Factor, 105 const DataLayout &DL); 106 }; // InterleavedLoadCombine 107 108 /// First Order Polynomial on an n-Bit Integer Value 109 /// 110 /// Polynomial(Value) = Value * B + A + E*2^(n-e) 111 /// 112 /// A and B are the coefficients. E*2^(n-e) is an error within 'e' most 113 /// significant bits. It is introduced if an exact computation cannot be proven 114 /// (e.q. division by 2). 115 /// 116 /// As part of this optimization multiple loads will be combined. It necessary 117 /// to prove that loads are within some relative offset to each other. This 118 /// class is used to prove relative offsets of values loaded from memory. 119 /// 120 /// Representing an integer in this form is sound since addition in two's 121 /// complement is associative (trivial) and multiplication distributes over the 122 /// addition (see Proof(1) in Polynomial::mul). Further, both operations 123 /// commute. 124 // 125 // Example: 126 // declare @fn(i64 %IDX, <4 x float>* %PTR) { 127 // %Pa1 = add i64 %IDX, 2 128 // %Pa2 = lshr i64 %Pa1, 1 129 // %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2 130 // %Va = load <4 x float>, <4 x float>* %Pa3 131 // 132 // %Pb1 = add i64 %IDX, 4 133 // %Pb2 = lshr i64 %Pb1, 1 134 // %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2 135 // %Vb = load <4 x float>, <4 x float>* %Pb3 136 // ... } 137 // 138 // The goal is to prove that two loads load consecutive addresses. 139 // 140 // In this case the polynomials are constructed by the following 141 // steps. 142 // 143 // The number tag #e specifies the error bits. 144 // 145 // Pa_0 = %IDX #0 146 // Pa_1 = %IDX + 2 #0 | add 2 147 // Pa_2 = %IDX/2 + 1 #1 | lshr 1 148 // Pa_3 = %IDX/2 + 1 #1 | GEP, step signext to i64 149 // Pa_4 = (%IDX/2)*16 + 16 #0 | GEP, multiply index by sizeof(4) for floats 150 // Pa_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components 151 // 152 // Pb_0 = %IDX #0 153 // Pb_1 = %IDX + 4 #0 | add 2 154 // Pb_2 = %IDX/2 + 2 #1 | lshr 1 155 // Pb_3 = %IDX/2 + 2 #1 | GEP, step signext to i64 156 // Pb_4 = (%IDX/2)*16 + 32 #0 | GEP, multiply index by sizeof(4) for floats 157 // Pb_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components 158 // 159 // Pb_5 - Pa_5 = 16 #0 | subtract to get the offset 160 // 161 // Remark: %PTR is not maintained within this class. So in this instance the 162 // offset of 16 can only be assumed if the pointers are equal. 163 // 164 class Polynomial { 165 /// Operations on B 166 enum BOps { 167 LShr, 168 Mul, 169 SExt, 170 Trunc, 171 }; 172 173 /// Number of Error Bits e 174 unsigned ErrorMSBs = (unsigned)-1; 175 176 /// Value 177 Value *V = nullptr; 178 179 /// Coefficient B 180 SmallVector<std::pair<BOps, APInt>, 4> B; 181 182 /// Coefficient A 183 APInt A; 184 185 public: 186 Polynomial(Value *V) : V(V) { 187 IntegerType *Ty = dyn_cast<IntegerType>(V->getType()); 188 if (Ty) { 189 ErrorMSBs = 0; 190 this->V = V; 191 A = APInt(Ty->getBitWidth(), 0); 192 } 193 } 194 195 Polynomial(const APInt &A, unsigned ErrorMSBs = 0) 196 : ErrorMSBs(ErrorMSBs), A(A) {} 197 198 Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0) 199 : ErrorMSBs(ErrorMSBs), A(BitWidth, A) {} 200 201 Polynomial() = default; 202 203 /// Increment and clamp the number of undefined bits. 204 void incErrorMSBs(unsigned amt) { 205 if (ErrorMSBs == (unsigned)-1) 206 return; 207 208 ErrorMSBs += amt; 209 if (ErrorMSBs > A.getBitWidth()) 210 ErrorMSBs = A.getBitWidth(); 211 } 212 213 /// Decrement and clamp the number of undefined bits. 214 void decErrorMSBs(unsigned amt) { 215 if (ErrorMSBs == (unsigned)-1) 216 return; 217 218 if (ErrorMSBs > amt) 219 ErrorMSBs -= amt; 220 else 221 ErrorMSBs = 0; 222 } 223 224 /// Apply an add on the polynomial 225 Polynomial &add(const APInt &C) { 226 // Note: Addition is associative in two's complement even when in case of 227 // signed overflow. 228 // 229 // Error bits can only propagate into higher significant bits. As these are 230 // already regarded as undefined, there is no change. 231 // 232 // Theorem: Adding a constant to a polynomial does not change the error 233 // term. 234 // 235 // Proof: 236 // 237 // Since the addition is associative and commutes: 238 // 239 // (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e) 240 // [qed] 241 242 if (C.getBitWidth() != A.getBitWidth()) { 243 ErrorMSBs = (unsigned)-1; 244 return *this; 245 } 246 247 A += C; 248 return *this; 249 } 250 251 /// Apply a multiplication onto the polynomial. 252 Polynomial &mul(const APInt &C) { 253 // Note: Multiplication distributes over the addition 254 // 255 // Theorem: Multiplication distributes over the addition 256 // 257 // Proof(1): 258 // 259 // (B+A)*C =- 260 // = (B + A) + (B + A) + .. {C Times} 261 // addition is associative and commutes, hence 262 // = B + B + .. {C Times} .. + A + A + .. {C times} 263 // = B*C + A*C 264 // (see (function add) for signed values and overflows) 265 // [qed] 266 // 267 // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out 268 // to the left. 269 // 270 // Proof(2): 271 // 272 // Let B' and A' be the n-Bit inputs with some unknown errors EA, 273 // EB at e leading bits. B' and A' can be written down as: 274 // 275 // B' = B + 2^(n-e)*EB 276 // A' = A + 2^(n-e)*EA 277 // 278 // Let C' be an input with c trailing zero bits. C' can be written as 279 // 280 // C' = C*2^c 281 // 282 // Therefore we can compute the result by using distributivity and 283 // commutativity. 284 // 285 // (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' = 286 // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' = 287 // = (B'+A') * C' = 288 // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' = 289 // = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' = 290 // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' = 291 // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c = 292 // = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c = 293 // 294 // Let EC be the final error with EC = C*(EB + EA) 295 // 296 // = (B + A)*C' + EC*2^(n-e)*2^c = 297 // = (B + A)*C' + EC*2^(n-(e-c)) 298 // 299 // Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c 300 // less error bits than the input. c bits are shifted out to the left. 301 // [qed] 302 303 if (C.getBitWidth() != A.getBitWidth()) { 304 ErrorMSBs = (unsigned)-1; 305 return *this; 306 } 307 308 // Multiplying by one is a no-op. 309 if (C.isOne()) { 310 return *this; 311 } 312 313 // Multiplying by zero removes the coefficient B and defines all bits. 314 if (C.isZero()) { 315 ErrorMSBs = 0; 316 deleteB(); 317 } 318 319 // See Proof(2): Trailing zero bits indicate a left shift. This removes 320 // leading bits from the result even if they are undefined. 321 decErrorMSBs(C.countr_zero()); 322 323 A *= C; 324 pushBOperation(Mul, C); 325 return *this; 326 } 327 328 /// Apply a logical shift right on the polynomial 329 Polynomial &lshr(const APInt &C) { 330 // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e') 331 // where 332 // e' = e + 1, 333 // E is a e-bit number, 334 // E' is a e'-bit number, 335 // holds under the following precondition: 336 // pre(1): A % 2 = 0 337 // pre(2): e < n, (see Theorem(2) for the trivial case with e=n) 338 // where >> expresses a logical shift to the right, with adding zeros. 339 // 340 // We need to show that for every, E there is a E' 341 // 342 // B = b_h * 2^(n-1) + b_m * 2 + b_l 343 // A = a_h * 2^(n-1) + a_m * 2 (pre(1)) 344 // 345 // where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers 346 // 347 // Let X = (B + A + E*2^(n-e)) >> 1 348 // Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1 349 // 350 // X = [B + A + E*2^(n-e)] >> 1 = 351 // = [ b_h * 2^(n-1) + b_m * 2 + b_l + 352 // + a_h * 2^(n-1) + a_m * 2 + 353 // + E * 2^(n-e) ] >> 1 = 354 // 355 // The sum is built by putting the overflow of [a_m + b+n] into the term 356 // 2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within 357 // this bit is discarded. This is expressed by % 2. 358 // 359 // The bit in position 0 cannot overflow into the term (b_m + a_m). 360 // 361 // = [ ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) + 362 // + ((b_m + a_m) % 2^(n-2)) * 2 + 363 // + b_l + E * 2^(n-e) ] >> 1 = 364 // 365 // The shift is computed by dividing the terms by 2 and by cutting off 366 // b_l. 367 // 368 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 369 // + ((b_m + a_m) % 2^(n-2)) + 370 // + E * 2^(n-(e+1)) = 371 // 372 // by the definition in the Theorem e+1 = e' 373 // 374 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 375 // + ((b_m + a_m) % 2^(n-2)) + 376 // + E * 2^(n-e') = 377 // 378 // Compute Y by applying distributivity first 379 // 380 // Y = (B >> 1) + (A >> 1) + E*2^(n-e') = 381 // = (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 + 382 // + (a_h * 2^(n-1) + a_m * 2) >> 1 + 383 // + E * 2^(n-e) >> 1 = 384 // 385 // Again, the shift is computed by dividing the terms by 2 and by cutting 386 // off b_l. 387 // 388 // = b_h * 2^(n-2) + b_m + 389 // + a_h * 2^(n-2) + a_m + 390 // + E * 2^(n-(e+1)) = 391 // 392 // Again, the sum is built by putting the overflow of [a_m + b+n] into 393 // the term 2^(n-1). But this time there is room for a second bit in the 394 // term 2^(n-2) we add this bit to a new term and denote it o_h in a 395 // second step. 396 // 397 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) + 398 // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 399 // + ((b_m + a_m) % 2^(n-2)) + 400 // + E * 2^(n-(e+1)) = 401 // 402 // Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1 403 // Further replace e+1 by e'. 404 // 405 // = o_h * 2^(n-1) + 406 // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 407 // + ((b_m + a_m) % 2^(n-2)) + 408 // + E * 2^(n-e') = 409 // 410 // Move o_h into the error term and construct E'. To ensure that there is 411 // no 2^x with negative x, this step requires pre(2) (e < n). 412 // 413 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 414 // + ((b_m + a_m) % 2^(n-2)) + 415 // + o_h * 2^(e'-1) * 2^(n-e') + | pre(2), move 2^(e'-1) 416 // | out of the old exponent 417 // + E * 2^(n-e') = 418 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 419 // + ((b_m + a_m) % 2^(n-2)) + 420 // + [o_h * 2^(e'-1) + E] * 2^(n-e') + | move 2^(e'-1) out of 421 // | the old exponent 422 // 423 // Let E' = o_h * 2^(e'-1) + E 424 // 425 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 426 // + ((b_m + a_m) % 2^(n-2)) + 427 // + E' * 2^(n-e') 428 // 429 // Because X and Y are distinct only in there error terms and E' can be 430 // constructed as shown the theorem holds. 431 // [qed] 432 // 433 // For completeness in case of the case e=n it is also required to show that 434 // distributivity can be applied. 435 // 436 // In this case Theorem(1) transforms to (the pre-condition on A can also be 437 // dropped) 438 // 439 // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E' 440 // where 441 // A, B, E, E' are two's complement numbers with the same bit 442 // width 443 // 444 // Let A + B + E = X 445 // Let (B >> 1) + (A >> 1) = Y 446 // 447 // Therefore we need to show that for every X and Y there is an E' which 448 // makes the equation 449 // 450 // X = Y + E' 451 // 452 // hold. This is trivially the case for E' = X - Y. 453 // 454 // [qed] 455 // 456 // Remark: Distributing lshr with and arbitrary number n can be expressed as 457 // ((((B + A) lshr 1) lshr 1) ... ) {n times}. 458 // This construction induces n additional error bits at the left. 459 460 if (C.getBitWidth() != A.getBitWidth()) { 461 ErrorMSBs = (unsigned)-1; 462 return *this; 463 } 464 465 if (C.isZero()) 466 return *this; 467 468 // Test if the result will be zero 469 unsigned shiftAmt = C.getZExtValue(); 470 if (shiftAmt >= C.getBitWidth()) 471 return mul(APInt(C.getBitWidth(), 0)); 472 473 // The proof that shiftAmt LSBs are zero for at least one summand is only 474 // possible for the constant number. 475 // 476 // If this can be proven add shiftAmt to the error counter 477 // `ErrorMSBs`. Otherwise set all bits as undefined. 478 if (A.countr_zero() < shiftAmt) 479 ErrorMSBs = A.getBitWidth(); 480 else 481 incErrorMSBs(shiftAmt); 482 483 // Apply the operation. 484 pushBOperation(LShr, C); 485 A = A.lshr(shiftAmt); 486 487 return *this; 488 } 489 490 /// Apply a sign-extend or truncate operation on the polynomial. 491 Polynomial &sextOrTrunc(unsigned n) { 492 if (n < A.getBitWidth()) { 493 // Truncate: Clearly undefined Bits on the MSB side are removed 494 // if there are any. 495 decErrorMSBs(A.getBitWidth() - n); 496 A = A.trunc(n); 497 pushBOperation(Trunc, APInt(sizeof(n) * 8, n)); 498 } 499 if (n > A.getBitWidth()) { 500 // Extend: Clearly extending first and adding later is different 501 // to adding first and extending later in all extended bits. 502 incErrorMSBs(n - A.getBitWidth()); 503 A = A.sext(n); 504 pushBOperation(SExt, APInt(sizeof(n) * 8, n)); 505 } 506 507 return *this; 508 } 509 510 /// Test if there is a coefficient B. 511 bool isFirstOrder() const { return V != nullptr; } 512 513 /// Test coefficient B of two Polynomials are equal. 514 bool isCompatibleTo(const Polynomial &o) const { 515 // The polynomial use different bit width. 516 if (A.getBitWidth() != o.A.getBitWidth()) 517 return false; 518 519 // If neither Polynomial has the Coefficient B. 520 if (!isFirstOrder() && !o.isFirstOrder()) 521 return true; 522 523 // The index variable is different. 524 if (V != o.V) 525 return false; 526 527 // Check the operations. 528 if (B.size() != o.B.size()) 529 return false; 530 531 auto *ob = o.B.begin(); 532 for (const auto &b : B) { 533 if (b != *ob) 534 return false; 535 ob++; 536 } 537 538 return true; 539 } 540 541 /// Subtract two polynomials, return an undefined polynomial if 542 /// subtraction is not possible. 543 Polynomial operator-(const Polynomial &o) const { 544 // Return an undefined polynomial if incompatible. 545 if (!isCompatibleTo(o)) 546 return Polynomial(); 547 548 // If the polynomials are compatible (meaning they have the same 549 // coefficient on B), B is eliminated. Thus a polynomial solely 550 // containing A is returned 551 return Polynomial(A - o.A, std::max(ErrorMSBs, o.ErrorMSBs)); 552 } 553 554 /// Subtract a constant from a polynomial, 555 Polynomial operator-(uint64_t C) const { 556 Polynomial Result(*this); 557 Result.A -= C; 558 return Result; 559 } 560 561 /// Add a constant to a polynomial, 562 Polynomial operator+(uint64_t C) const { 563 Polynomial Result(*this); 564 Result.A += C; 565 return Result; 566 } 567 568 /// Returns true if it can be proven that two Polynomials are equal. 569 bool isProvenEqualTo(const Polynomial &o) { 570 // Subtract both polynomials and test if it is fully defined and zero. 571 Polynomial r = *this - o; 572 return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isZero()); 573 } 574 575 /// Print the polynomial into a stream. 576 void print(raw_ostream &OS) const { 577 OS << "[{#ErrBits:" << ErrorMSBs << "} "; 578 579 if (V) { 580 for (auto b : B) 581 OS << "("; 582 OS << "(" << *V << ") "; 583 584 for (auto b : B) { 585 switch (b.first) { 586 case LShr: 587 OS << "LShr "; 588 break; 589 case Mul: 590 OS << "Mul "; 591 break; 592 case SExt: 593 OS << "SExt "; 594 break; 595 case Trunc: 596 OS << "Trunc "; 597 break; 598 } 599 600 OS << b.second << ") "; 601 } 602 } 603 604 OS << "+ " << A << "]"; 605 } 606 607 private: 608 void deleteB() { 609 V = nullptr; 610 B.clear(); 611 } 612 613 void pushBOperation(const BOps Op, const APInt &C) { 614 if (isFirstOrder()) { 615 B.push_back(std::make_pair(Op, C)); 616 return; 617 } 618 } 619 }; 620 621 #ifndef NDEBUG 622 static raw_ostream &operator<<(raw_ostream &OS, const Polynomial &S) { 623 S.print(OS); 624 return OS; 625 } 626 #endif 627 628 /// VectorInfo stores abstract the following information for each vector 629 /// element: 630 /// 631 /// 1) The the memory address loaded into the element as Polynomial 632 /// 2) a set of load instruction necessary to construct the vector, 633 /// 3) a set of all other instructions that are necessary to create the vector and 634 /// 4) a pointer value that can be used as relative base for all elements. 635 struct VectorInfo { 636 private: 637 VectorInfo(const VectorInfo &c) : VTy(c.VTy) { 638 llvm_unreachable( 639 "Copying VectorInfo is neither implemented nor necessary,"); 640 } 641 642 public: 643 /// Information of a Vector Element 644 struct ElementInfo { 645 /// Offset Polynomial. 646 Polynomial Ofs; 647 648 /// The Load Instruction used to Load the entry. LI is null if the pointer 649 /// of the load instruction does not point on to the entry 650 LoadInst *LI; 651 652 ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr) 653 : Ofs(Offset), LI(LI) {} 654 }; 655 656 /// Basic-block the load instructions are within 657 BasicBlock *BB = nullptr; 658 659 /// Pointer value of all participation load instructions 660 Value *PV = nullptr; 661 662 /// Participating load instructions 663 std::set<LoadInst *> LIs; 664 665 /// Participating instructions 666 std::set<Instruction *> Is; 667 668 /// Final shuffle-vector instruction 669 ShuffleVectorInst *SVI = nullptr; 670 671 /// Information of the offset for each vector element 672 ElementInfo *EI; 673 674 /// Vector Type 675 FixedVectorType *const VTy; 676 677 VectorInfo(FixedVectorType *VTy) : VTy(VTy) { 678 EI = new ElementInfo[VTy->getNumElements()]; 679 } 680 681 VectorInfo &operator=(const VectorInfo &other) = delete; 682 683 virtual ~VectorInfo() { delete[] EI; } 684 685 unsigned getDimension() const { return VTy->getNumElements(); } 686 687 /// Test if the VectorInfo can be part of an interleaved load with the 688 /// specified factor. 689 /// 690 /// \param Factor of the interleave 691 /// \param DL Targets Datalayout 692 /// 693 /// \returns true if this is possible and false if not 694 bool isInterleaved(unsigned Factor, const DataLayout &DL) const { 695 unsigned Size = DL.getTypeAllocSize(VTy->getElementType()); 696 for (unsigned i = 1; i < getDimension(); i++) { 697 if (!EI[i].Ofs.isProvenEqualTo(EI[0].Ofs + i * Factor * Size)) { 698 return false; 699 } 700 } 701 return true; 702 } 703 704 /// Recursively computes the vector information stored in V. 705 /// 706 /// This function delegates the work to specialized implementations 707 /// 708 /// \param V Value to operate on 709 /// \param Result Result of the computation 710 /// 711 /// \returns false if no sensible information can be gathered. 712 static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) { 713 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V); 714 if (SVI) 715 return computeFromSVI(SVI, Result, DL); 716 LoadInst *LI = dyn_cast<LoadInst>(V); 717 if (LI) 718 return computeFromLI(LI, Result, DL); 719 BitCastInst *BCI = dyn_cast<BitCastInst>(V); 720 if (BCI) 721 return computeFromBCI(BCI, Result, DL); 722 return false; 723 } 724 725 /// BitCastInst specialization to compute the vector information. 726 /// 727 /// \param BCI BitCastInst to operate on 728 /// \param Result Result of the computation 729 /// 730 /// \returns false if no sensible information can be gathered. 731 static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result, 732 const DataLayout &DL) { 733 Instruction *Op = dyn_cast<Instruction>(BCI->getOperand(0)); 734 735 if (!Op) 736 return false; 737 738 FixedVectorType *VTy = dyn_cast<FixedVectorType>(Op->getType()); 739 if (!VTy) 740 return false; 741 742 // We can only cast from large to smaller vectors 743 if (Result.VTy->getNumElements() % VTy->getNumElements()) 744 return false; 745 746 unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements(); 747 unsigned NewSize = DL.getTypeAllocSize(Result.VTy->getElementType()); 748 unsigned OldSize = DL.getTypeAllocSize(VTy->getElementType()); 749 750 if (NewSize * Factor != OldSize) 751 return false; 752 753 VectorInfo Old(VTy); 754 if (!compute(Op, Old, DL)) 755 return false; 756 757 for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) { 758 for (unsigned j = 0; j < Factor; j++) { 759 Result.EI[i + j] = 760 ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize, 761 j == 0 ? Old.EI[i / Factor].LI : nullptr); 762 } 763 } 764 765 Result.BB = Old.BB; 766 Result.PV = Old.PV; 767 Result.LIs.insert(Old.LIs.begin(), Old.LIs.end()); 768 Result.Is.insert(Old.Is.begin(), Old.Is.end()); 769 Result.Is.insert(BCI); 770 Result.SVI = nullptr; 771 772 return true; 773 } 774 775 /// ShuffleVectorInst specialization to compute vector information. 776 /// 777 /// \param SVI ShuffleVectorInst to operate on 778 /// \param Result Result of the computation 779 /// 780 /// Compute the left and the right side vector information and merge them by 781 /// applying the shuffle operation. This function also ensures that the left 782 /// and right side have compatible loads. This means that all loads are with 783 /// in the same basic block and are based on the same pointer. 784 /// 785 /// \returns false if no sensible information can be gathered. 786 static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result, 787 const DataLayout &DL) { 788 FixedVectorType *ArgTy = 789 cast<FixedVectorType>(SVI->getOperand(0)->getType()); 790 791 // Compute the left hand vector information. 792 VectorInfo LHS(ArgTy); 793 if (!compute(SVI->getOperand(0), LHS, DL)) 794 LHS.BB = nullptr; 795 796 // Compute the right hand vector information. 797 VectorInfo RHS(ArgTy); 798 if (!compute(SVI->getOperand(1), RHS, DL)) 799 RHS.BB = nullptr; 800 801 // Neither operand produced sensible results? 802 if (!LHS.BB && !RHS.BB) 803 return false; 804 // Only RHS produced sensible results? 805 else if (!LHS.BB) { 806 Result.BB = RHS.BB; 807 Result.PV = RHS.PV; 808 } 809 // Only LHS produced sensible results? 810 else if (!RHS.BB) { 811 Result.BB = LHS.BB; 812 Result.PV = LHS.PV; 813 } 814 // Both operands produced sensible results? 815 else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) { 816 Result.BB = LHS.BB; 817 Result.PV = LHS.PV; 818 } 819 // Both operands produced sensible results but they are incompatible. 820 else { 821 return false; 822 } 823 824 // Merge and apply the operation on the offset information. 825 if (LHS.BB) { 826 Result.LIs.insert(LHS.LIs.begin(), LHS.LIs.end()); 827 Result.Is.insert(LHS.Is.begin(), LHS.Is.end()); 828 } 829 if (RHS.BB) { 830 Result.LIs.insert(RHS.LIs.begin(), RHS.LIs.end()); 831 Result.Is.insert(RHS.Is.begin(), RHS.Is.end()); 832 } 833 Result.Is.insert(SVI); 834 Result.SVI = SVI; 835 836 int j = 0; 837 for (int i : SVI->getShuffleMask()) { 838 assert((i < 2 * (signed)ArgTy->getNumElements()) && 839 "Invalid ShuffleVectorInst (index out of bounds)"); 840 841 if (i < 0) 842 Result.EI[j] = ElementInfo(); 843 else if (i < (signed)ArgTy->getNumElements()) { 844 if (LHS.BB) 845 Result.EI[j] = LHS.EI[i]; 846 else 847 Result.EI[j] = ElementInfo(); 848 } else { 849 if (RHS.BB) 850 Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()]; 851 else 852 Result.EI[j] = ElementInfo(); 853 } 854 j++; 855 } 856 857 return true; 858 } 859 860 /// LoadInst specialization to compute vector information. 861 /// 862 /// This function also acts as abort condition to the recursion. 863 /// 864 /// \param LI LoadInst to operate on 865 /// \param Result Result of the computation 866 /// 867 /// \returns false if no sensible information can be gathered. 868 static bool computeFromLI(LoadInst *LI, VectorInfo &Result, 869 const DataLayout &DL) { 870 Value *BasePtr; 871 Polynomial Offset; 872 873 if (LI->isVolatile()) 874 return false; 875 876 if (LI->isAtomic()) 877 return false; 878 879 // Get the base polynomial 880 computePolynomialFromPointer(*LI->getPointerOperand(), Offset, BasePtr, DL); 881 882 Result.BB = LI->getParent(); 883 Result.PV = BasePtr; 884 Result.LIs.insert(LI); 885 Result.Is.insert(LI); 886 887 for (unsigned i = 0; i < Result.getDimension(); i++) { 888 Value *Idx[2] = { 889 ConstantInt::get(Type::getInt32Ty(LI->getContext()), 0), 890 ConstantInt::get(Type::getInt32Ty(LI->getContext()), i), 891 }; 892 int64_t Ofs = DL.getIndexedOffsetInType(Result.VTy, ArrayRef(Idx, 2)); 893 Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr); 894 } 895 896 return true; 897 } 898 899 /// Recursively compute polynomial of a value. 900 /// 901 /// \param BO Input binary operation 902 /// \param Result Result polynomial 903 static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) { 904 Value *LHS = BO.getOperand(0); 905 Value *RHS = BO.getOperand(1); 906 907 // Find the RHS Constant if any 908 ConstantInt *C = dyn_cast<ConstantInt>(RHS); 909 if ((!C) && BO.isCommutative()) { 910 C = dyn_cast<ConstantInt>(LHS); 911 if (C) 912 std::swap(LHS, RHS); 913 } 914 915 switch (BO.getOpcode()) { 916 case Instruction::Add: 917 if (!C) 918 break; 919 920 computePolynomial(*LHS, Result); 921 Result.add(C->getValue()); 922 return; 923 924 case Instruction::LShr: 925 if (!C) 926 break; 927 928 computePolynomial(*LHS, Result); 929 Result.lshr(C->getValue()); 930 return; 931 932 default: 933 break; 934 } 935 936 Result = Polynomial(&BO); 937 } 938 939 /// Recursively compute polynomial of a value 940 /// 941 /// \param V input value 942 /// \param Result result polynomial 943 static void computePolynomial(Value &V, Polynomial &Result) { 944 if (auto *BO = dyn_cast<BinaryOperator>(&V)) 945 computePolynomialBinOp(*BO, Result); 946 else 947 Result = Polynomial(&V); 948 } 949 950 /// Compute the Polynomial representation of a Pointer type. 951 /// 952 /// \param Ptr input pointer value 953 /// \param Result result polynomial 954 /// \param BasePtr pointer the polynomial is based on 955 /// \param DL Datalayout of the target machine 956 static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result, 957 Value *&BasePtr, 958 const DataLayout &DL) { 959 // Not a pointer type? Return an undefined polynomial 960 PointerType *PtrTy = dyn_cast<PointerType>(Ptr.getType()); 961 if (!PtrTy) { 962 Result = Polynomial(); 963 BasePtr = nullptr; 964 return; 965 } 966 unsigned PointerBits = 967 DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()); 968 969 /// Skip pointer casts. Return Zero polynomial otherwise 970 if (isa<CastInst>(&Ptr)) { 971 CastInst &CI = *cast<CastInst>(&Ptr); 972 switch (CI.getOpcode()) { 973 case Instruction::BitCast: 974 computePolynomialFromPointer(*CI.getOperand(0), Result, BasePtr, DL); 975 break; 976 default: 977 BasePtr = &Ptr; 978 Polynomial(PointerBits, 0); 979 break; 980 } 981 } 982 /// Resolve GetElementPtrInst. 983 else if (isa<GetElementPtrInst>(&Ptr)) { 984 GetElementPtrInst &GEP = *cast<GetElementPtrInst>(&Ptr); 985 986 APInt BaseOffset(PointerBits, 0); 987 988 // Check if we can compute the Offset with accumulateConstantOffset 989 if (GEP.accumulateConstantOffset(DL, BaseOffset)) { 990 Result = Polynomial(BaseOffset); 991 BasePtr = GEP.getPointerOperand(); 992 return; 993 } else { 994 // Otherwise we allow that the last index operand of the GEP is 995 // non-constant. 996 unsigned idxOperand, e; 997 SmallVector<Value *, 4> Indices; 998 for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e; 999 idxOperand++) { 1000 ConstantInt *IDX = dyn_cast<ConstantInt>(GEP.getOperand(idxOperand)); 1001 if (!IDX) 1002 break; 1003 Indices.push_back(IDX); 1004 } 1005 1006 // It must also be the last operand. 1007 if (idxOperand + 1 != e) { 1008 Result = Polynomial(); 1009 BasePtr = nullptr; 1010 return; 1011 } 1012 1013 // Compute the polynomial of the index operand. 1014 computePolynomial(*GEP.getOperand(idxOperand), Result); 1015 1016 // Compute base offset from zero based index, excluding the last 1017 // variable operand. 1018 BaseOffset = 1019 DL.getIndexedOffsetInType(GEP.getSourceElementType(), Indices); 1020 1021 // Apply the operations of GEP to the polynomial. 1022 unsigned ResultSize = DL.getTypeAllocSize(GEP.getResultElementType()); 1023 Result.sextOrTrunc(PointerBits); 1024 Result.mul(APInt(PointerBits, ResultSize)); 1025 Result.add(BaseOffset); 1026 BasePtr = GEP.getPointerOperand(); 1027 } 1028 } 1029 // All other instructions are handled by using the value as base pointer and 1030 // a zero polynomial. 1031 else { 1032 BasePtr = &Ptr; 1033 Polynomial(DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()), 0); 1034 } 1035 } 1036 1037 #ifndef NDEBUG 1038 void print(raw_ostream &OS) const { 1039 if (PV) 1040 OS << *PV; 1041 else 1042 OS << "(none)"; 1043 OS << " + "; 1044 for (unsigned i = 0; i < getDimension(); i++) 1045 OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs; 1046 OS << "]"; 1047 } 1048 #endif 1049 }; 1050 1051 } // anonymous namespace 1052 1053 bool InterleavedLoadCombineImpl::findPattern( 1054 std::list<VectorInfo> &Candidates, std::list<VectorInfo> &InterleavedLoad, 1055 unsigned Factor, const DataLayout &DL) { 1056 for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) { 1057 unsigned i; 1058 // Try to find an interleaved load using the front of Worklist as first line 1059 unsigned Size = DL.getTypeAllocSize(C0->VTy->getElementType()); 1060 1061 // List containing iterators pointing to the VectorInfos of the candidates 1062 std::vector<std::list<VectorInfo>::iterator> Res(Factor, Candidates.end()); 1063 1064 for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) { 1065 if (C->VTy != C0->VTy) 1066 continue; 1067 if (C->BB != C0->BB) 1068 continue; 1069 if (C->PV != C0->PV) 1070 continue; 1071 1072 // Check the current value matches any of factor - 1 remaining lines 1073 for (i = 1; i < Factor; i++) { 1074 if (C->EI[0].Ofs.isProvenEqualTo(C0->EI[0].Ofs + i * Size)) { 1075 Res[i] = C; 1076 } 1077 } 1078 1079 for (i = 1; i < Factor; i++) { 1080 if (Res[i] == Candidates.end()) 1081 break; 1082 } 1083 if (i == Factor) { 1084 Res[0] = C0; 1085 break; 1086 } 1087 } 1088 1089 if (Res[0] != Candidates.end()) { 1090 // Move the result into the output 1091 for (unsigned i = 0; i < Factor; i++) { 1092 InterleavedLoad.splice(InterleavedLoad.end(), Candidates, Res[i]); 1093 } 1094 1095 return true; 1096 } 1097 } 1098 return false; 1099 } 1100 1101 LoadInst * 1102 InterleavedLoadCombineImpl::findFirstLoad(const std::set<LoadInst *> &LIs) { 1103 assert(!LIs.empty() && "No load instructions given."); 1104 1105 // All LIs are within the same BB. Select the first for a reference. 1106 BasicBlock *BB = (*LIs.begin())->getParent(); 1107 BasicBlock::iterator FLI = llvm::find_if( 1108 *BB, [&LIs](Instruction &I) -> bool { return is_contained(LIs, &I); }); 1109 assert(FLI != BB->end()); 1110 1111 return cast<LoadInst>(FLI); 1112 } 1113 1114 bool InterleavedLoadCombineImpl::combine(std::list<VectorInfo> &InterleavedLoad, 1115 OptimizationRemarkEmitter &ORE) { 1116 LLVM_DEBUG(dbgs() << "Checking interleaved load\n"); 1117 1118 // The insertion point is the LoadInst which loads the first values. The 1119 // following tests are used to proof that the combined load can be inserted 1120 // just before InsertionPoint. 1121 LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI; 1122 1123 // Test if the offset is computed 1124 if (!InsertionPoint) 1125 return false; 1126 1127 std::set<LoadInst *> LIs; 1128 std::set<Instruction *> Is; 1129 std::set<Instruction *> SVIs; 1130 1131 InstructionCost InterleavedCost; 1132 InstructionCost InstructionCost = 0; 1133 const TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency; 1134 1135 // Get the interleave factor 1136 unsigned Factor = InterleavedLoad.size(); 1137 1138 // Merge all input sets used in analysis 1139 for (auto &VI : InterleavedLoad) { 1140 // Generate a set of all load instructions to be combined 1141 LIs.insert(VI.LIs.begin(), VI.LIs.end()); 1142 1143 // Generate a set of all instructions taking part in load 1144 // interleaved. This list excludes the instructions necessary for the 1145 // polynomial construction. 1146 Is.insert(VI.Is.begin(), VI.Is.end()); 1147 1148 // Generate the set of the final ShuffleVectorInst. 1149 SVIs.insert(VI.SVI); 1150 } 1151 1152 // There is nothing to combine. 1153 if (LIs.size() < 2) 1154 return false; 1155 1156 // Test if all participating instruction will be dead after the 1157 // transformation. If intermediate results are used, no performance gain can 1158 // be expected. Also sum the cost of the Instructions beeing left dead. 1159 for (const auto &I : Is) { 1160 // Compute the old cost 1161 InstructionCost += TTI.getInstructionCost(I, CostKind); 1162 1163 // The final SVIs are allowed not to be dead, all uses will be replaced 1164 if (SVIs.find(I) != SVIs.end()) 1165 continue; 1166 1167 // If there are users outside the set to be eliminated, we abort the 1168 // transformation. No gain can be expected. 1169 for (auto *U : I->users()) { 1170 if (Is.find(dyn_cast<Instruction>(U)) == Is.end()) 1171 return false; 1172 } 1173 } 1174 1175 // We need to have a valid cost in order to proceed. 1176 if (!InstructionCost.isValid()) 1177 return false; 1178 1179 // We know that all LoadInst are within the same BB. This guarantees that 1180 // either everything or nothing is loaded. 1181 LoadInst *First = findFirstLoad(LIs); 1182 1183 // To be safe that the loads can be combined, iterate over all loads and test 1184 // that the corresponding defining access dominates first LI. This guarantees 1185 // that there are no aliasing stores in between the loads. 1186 auto FMA = MSSA.getMemoryAccess(First); 1187 for (auto *LI : LIs) { 1188 auto MADef = MSSA.getMemoryAccess(LI)->getDefiningAccess(); 1189 if (!MSSA.dominates(MADef, FMA)) 1190 return false; 1191 } 1192 assert(!LIs.empty() && "There are no LoadInst to combine"); 1193 1194 // It is necessary that insertion point dominates all final ShuffleVectorInst. 1195 for (auto &VI : InterleavedLoad) { 1196 if (!DT.dominates(InsertionPoint, VI.SVI)) 1197 return false; 1198 } 1199 1200 // All checks are done. Add instructions detectable by InterleavedAccessPass 1201 // The old instruction will are left dead. 1202 IRBuilder<> Builder(InsertionPoint); 1203 Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType(); 1204 unsigned ElementsPerSVI = 1205 cast<FixedVectorType>(InterleavedLoad.front().SVI->getType()) 1206 ->getNumElements(); 1207 FixedVectorType *ILTy = FixedVectorType::get(ETy, Factor * ElementsPerSVI); 1208 1209 auto Indices = llvm::to_vector<4>(llvm::seq<unsigned>(0, Factor)); 1210 InterleavedCost = TTI.getInterleavedMemoryOpCost( 1211 Instruction::Load, ILTy, Factor, Indices, InsertionPoint->getAlign(), 1212 InsertionPoint->getPointerAddressSpace(), CostKind); 1213 1214 if (InterleavedCost >= InstructionCost) { 1215 return false; 1216 } 1217 1218 // Create a pointer cast for the wide load. 1219 auto CI = Builder.CreatePointerCast(InsertionPoint->getOperand(0), 1220 ILTy->getPointerTo(), 1221 "interleaved.wide.ptrcast"); 1222 1223 // Create the wide load and update the MemorySSA. 1224 auto LI = Builder.CreateAlignedLoad(ILTy, CI, InsertionPoint->getAlign(), 1225 "interleaved.wide.load"); 1226 auto MSSAU = MemorySSAUpdater(&MSSA); 1227 MemoryUse *MSSALoad = cast<MemoryUse>(MSSAU.createMemoryAccessBefore( 1228 LI, nullptr, MSSA.getMemoryAccess(InsertionPoint))); 1229 MSSAU.insertUse(MSSALoad, /*RenameUses=*/ true); 1230 1231 // Create the final SVIs and replace all uses. 1232 int i = 0; 1233 for (auto &VI : InterleavedLoad) { 1234 SmallVector<int, 4> Mask; 1235 for (unsigned j = 0; j < ElementsPerSVI; j++) 1236 Mask.push_back(i + j * Factor); 1237 1238 Builder.SetInsertPoint(VI.SVI); 1239 auto SVI = Builder.CreateShuffleVector(LI, Mask, "interleaved.shuffle"); 1240 VI.SVI->replaceAllUsesWith(SVI); 1241 i++; 1242 } 1243 1244 NumInterleavedLoadCombine++; 1245 ORE.emit([&]() { 1246 return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI) 1247 << "Load interleaved combined with factor " 1248 << ore::NV("Factor", Factor); 1249 }); 1250 1251 return true; 1252 } 1253 1254 bool InterleavedLoadCombineImpl::run() { 1255 OptimizationRemarkEmitter ORE(&F); 1256 bool changed = false; 1257 unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor(); 1258 1259 auto &DL = F.getParent()->getDataLayout(); 1260 1261 // Start with the highest factor to avoid combining and recombining. 1262 for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) { 1263 std::list<VectorInfo> Candidates; 1264 1265 for (BasicBlock &BB : F) { 1266 for (Instruction &I : BB) { 1267 if (auto SVI = dyn_cast<ShuffleVectorInst>(&I)) { 1268 // We don't support scalable vectors in this pass. 1269 if (isa<ScalableVectorType>(SVI->getType())) 1270 continue; 1271 1272 Candidates.emplace_back(cast<FixedVectorType>(SVI->getType())); 1273 1274 if (!VectorInfo::computeFromSVI(SVI, Candidates.back(), DL)) { 1275 Candidates.pop_back(); 1276 continue; 1277 } 1278 1279 if (!Candidates.back().isInterleaved(Factor, DL)) { 1280 Candidates.pop_back(); 1281 } 1282 } 1283 } 1284 } 1285 1286 std::list<VectorInfo> InterleavedLoad; 1287 while (findPattern(Candidates, InterleavedLoad, Factor, DL)) { 1288 if (combine(InterleavedLoad, ORE)) { 1289 changed = true; 1290 } else { 1291 // Remove the first element of the Interleaved Load but put the others 1292 // back on the list and continue searching 1293 Candidates.splice(Candidates.begin(), InterleavedLoad, 1294 std::next(InterleavedLoad.begin()), 1295 InterleavedLoad.end()); 1296 } 1297 InterleavedLoad.clear(); 1298 } 1299 } 1300 1301 return changed; 1302 } 1303 1304 namespace { 1305 /// This pass combines interleaved loads into a pattern detectable by 1306 /// InterleavedAccessPass. 1307 struct InterleavedLoadCombine : public FunctionPass { 1308 static char ID; 1309 1310 InterleavedLoadCombine() : FunctionPass(ID) { 1311 initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry()); 1312 } 1313 1314 StringRef getPassName() const override { 1315 return "Interleaved Load Combine Pass"; 1316 } 1317 1318 bool runOnFunction(Function &F) override { 1319 if (DisableInterleavedLoadCombine) 1320 return false; 1321 1322 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 1323 if (!TPC) 1324 return false; 1325 1326 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() 1327 << "\n"); 1328 1329 return InterleavedLoadCombineImpl( 1330 F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 1331 getAnalysis<MemorySSAWrapperPass>().getMSSA(), 1332 TPC->getTM<TargetMachine>()) 1333 .run(); 1334 } 1335 1336 void getAnalysisUsage(AnalysisUsage &AU) const override { 1337 AU.addRequired<MemorySSAWrapperPass>(); 1338 AU.addRequired<DominatorTreeWrapperPass>(); 1339 FunctionPass::getAnalysisUsage(AU); 1340 } 1341 1342 private: 1343 }; 1344 } // anonymous namespace 1345 1346 char InterleavedLoadCombine::ID = 0; 1347 1348 INITIALIZE_PASS_BEGIN( 1349 InterleavedLoadCombine, DEBUG_TYPE, 1350 "Combine interleaved loads into wide loads and shufflevector instructions", 1351 false, false) 1352 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1353 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1354 INITIALIZE_PASS_END( 1355 InterleavedLoadCombine, DEBUG_TYPE, 1356 "Combine interleaved loads into wide loads and shufflevector instructions", 1357 false, false) 1358 1359 FunctionPass * 1360 llvm::createInterleavedLoadCombinePass() { 1361 auto P = new InterleavedLoadCombine(); 1362 return P; 1363 } 1364