xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/InterleavedLoadCombinePass.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 //
11 // This file defines the interleaved-load-combine pass. The pass searches for
12 // ShuffleVectorInstruction that execute interleaving loads. If a matching
13 // pattern is found, it adds a combined load and further instructions in a
14 // pattern that is detectable by InterleavedAccesPass. The old instructions are
15 // left dead to be removed later. The pass is specifically designed to be
16 // executed just before InterleavedAccesPass to find any left-over instances
17 // that are not detected within former passes.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/MemoryLocation.h"
23 #include "llvm/Analysis/MemorySSA.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/CodeGen/TargetLowering.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/LegacyPassManager.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Target/TargetMachine.h"
44 
45 #include <algorithm>
46 #include <cassert>
47 #include <list>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "interleaved-load-combine"
52 
53 namespace {
54 
55 /// Statistic counter
56 STATISTIC(NumInterleavedLoadCombine, "Number of combined loads");
57 
58 /// Option to disable the pass
59 static cl::opt<bool> DisableInterleavedLoadCombine(
60     "disable-" DEBUG_TYPE, cl::init(false), cl::Hidden,
61     cl::desc("Disable combining of interleaved loads"));
62 
63 struct VectorInfo;
64 
65 struct InterleavedLoadCombineImpl {
66 public:
67   InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA,
68                              TargetMachine &TM)
69       : F(F), DT(DT), MSSA(MSSA),
70         TLI(*TM.getSubtargetImpl(F)->getTargetLowering()),
71         TTI(TM.getTargetTransformInfo(F)) {}
72 
73   /// Scan the function for interleaved load candidates and execute the
74   /// replacement if applicable.
75   bool run();
76 
77 private:
78   /// Function this pass is working on
79   Function &F;
80 
81   /// Dominator Tree Analysis
82   DominatorTree &DT;
83 
84   /// Memory Alias Analyses
85   MemorySSA &MSSA;
86 
87   /// Target Lowering Information
88   const TargetLowering &TLI;
89 
90   /// Target Transform Information
91   const TargetTransformInfo TTI;
92 
93   /// Find the instruction in sets LIs that dominates all others, return nullptr
94   /// if there is none.
95   LoadInst *findFirstLoad(const std::set<LoadInst *> &LIs);
96 
97   /// Replace interleaved load candidates. It does additional
98   /// analyses if this makes sense. Returns true on success and false
99   /// of nothing has been changed.
100   bool combine(std::list<VectorInfo> &InterleavedLoad,
101                OptimizationRemarkEmitter &ORE);
102 
103   /// Given a set of VectorInfo containing candidates for a given interleave
104   /// factor, find a set that represents a 'factor' interleaved load.
105   bool findPattern(std::list<VectorInfo> &Candidates,
106                    std::list<VectorInfo> &InterleavedLoad, unsigned Factor,
107                    const DataLayout &DL);
108 }; // InterleavedLoadCombine
109 
110 /// First Order Polynomial on an n-Bit Integer Value
111 ///
112 /// Polynomial(Value) = Value * B + A + E*2^(n-e)
113 ///
114 /// A and B are the coefficients. E*2^(n-e) is an error within 'e' most
115 /// significant bits. It is introduced if an exact computation cannot be proven
116 /// (e.q. division by 2).
117 ///
118 /// As part of this optimization multiple loads will be combined. It necessary
119 /// to prove that loads are within some relative offset to each other. This
120 /// class is used to prove relative offsets of values loaded from memory.
121 ///
122 /// Representing an integer in this form is sound since addition in two's
123 /// complement is associative (trivial) and multiplication distributes over the
124 /// addition (see Proof(1) in Polynomial::mul). Further, both operations
125 /// commute.
126 //
127 // Example:
128 // declare @fn(i64 %IDX, <4 x float>* %PTR) {
129 //   %Pa1 = add i64 %IDX, 2
130 //   %Pa2 = lshr i64 %Pa1, 1
131 //   %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2
132 //   %Va = load <4 x float>, <4 x float>* %Pa3
133 //
134 //   %Pb1 = add i64 %IDX, 4
135 //   %Pb2 = lshr i64 %Pb1, 1
136 //   %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2
137 //   %Vb = load <4 x float>, <4 x float>* %Pb3
138 // ... }
139 //
140 // The goal is to prove that two loads load consecutive addresses.
141 //
142 // In this case the polynomials are constructed by the following
143 // steps.
144 //
145 // The number tag #e specifies the error bits.
146 //
147 // Pa_0 = %IDX              #0
148 // Pa_1 = %IDX + 2          #0 | add 2
149 // Pa_2 = %IDX/2 + 1        #1 | lshr 1
150 // Pa_3 = %IDX/2 + 1        #1 | GEP, step signext to i64
151 // Pa_4 = (%IDX/2)*16 + 16  #0 | GEP, multiply index by sizeof(4) for floats
152 // Pa_5 = (%IDX/2)*16 + 16  #0 | GEP, add offset of leading components
153 //
154 // Pb_0 = %IDX              #0
155 // Pb_1 = %IDX + 4          #0 | add 2
156 // Pb_2 = %IDX/2 + 2        #1 | lshr 1
157 // Pb_3 = %IDX/2 + 2        #1 | GEP, step signext to i64
158 // Pb_4 = (%IDX/2)*16 + 32  #0 | GEP, multiply index by sizeof(4) for floats
159 // Pb_5 = (%IDX/2)*16 + 16  #0 | GEP, add offset of leading components
160 //
161 // Pb_5 - Pa_5 = 16         #0 | subtract to get the offset
162 //
163 // Remark: %PTR is not maintained within this class. So in this instance the
164 // offset of 16 can only be assumed if the pointers are equal.
165 //
166 class Polynomial {
167   /// Operations on B
168   enum BOps {
169     LShr,
170     Mul,
171     SExt,
172     Trunc,
173   };
174 
175   /// Number of Error Bits e
176   unsigned ErrorMSBs;
177 
178   /// Value
179   Value *V;
180 
181   /// Coefficient B
182   SmallVector<std::pair<BOps, APInt>, 4> B;
183 
184   /// Coefficient A
185   APInt A;
186 
187 public:
188   Polynomial(Value *V) : ErrorMSBs((unsigned)-1), V(V), B(), A() {
189     IntegerType *Ty = dyn_cast<IntegerType>(V->getType());
190     if (Ty) {
191       ErrorMSBs = 0;
192       this->V = V;
193       A = APInt(Ty->getBitWidth(), 0);
194     }
195   }
196 
197   Polynomial(const APInt &A, unsigned ErrorMSBs = 0)
198       : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(A) {}
199 
200   Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0)
201       : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(BitWidth, A) {}
202 
203   Polynomial() : ErrorMSBs((unsigned)-1), V(NULL), B(), A() {}
204 
205   /// Increment and clamp the number of undefined bits.
206   void incErrorMSBs(unsigned amt) {
207     if (ErrorMSBs == (unsigned)-1)
208       return;
209 
210     ErrorMSBs += amt;
211     if (ErrorMSBs > A.getBitWidth())
212       ErrorMSBs = A.getBitWidth();
213   }
214 
215   /// Decrement and clamp the number of undefined bits.
216   void decErrorMSBs(unsigned amt) {
217     if (ErrorMSBs == (unsigned)-1)
218       return;
219 
220     if (ErrorMSBs > amt)
221       ErrorMSBs -= amt;
222     else
223       ErrorMSBs = 0;
224   }
225 
226   /// Apply an add on the polynomial
227   Polynomial &add(const APInt &C) {
228     // Note: Addition is associative in two's complement even when in case of
229     // signed overflow.
230     //
231     // Error bits can only propagate into higher significant bits. As these are
232     // already regarded as undefined, there is no change.
233     //
234     // Theorem: Adding a constant to a polynomial does not change the error
235     // term.
236     //
237     // Proof:
238     //
239     //   Since the addition is associative and commutes:
240     //
241     //   (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e)
242     // [qed]
243 
244     if (C.getBitWidth() != A.getBitWidth()) {
245       ErrorMSBs = (unsigned)-1;
246       return *this;
247     }
248 
249     A += C;
250     return *this;
251   }
252 
253   /// Apply a multiplication onto the polynomial.
254   Polynomial &mul(const APInt &C) {
255     // Note: Multiplication distributes over the addition
256     //
257     // Theorem: Multiplication distributes over the addition
258     //
259     // Proof(1):
260     //
261     //   (B+A)*C =-
262     //        = (B + A) + (B + A) + .. {C Times}
263     //         addition is associative and commutes, hence
264     //        = B + B + .. {C Times} .. + A + A + .. {C times}
265     //        = B*C + A*C
266     //   (see (function add) for signed values and overflows)
267     // [qed]
268     //
269     // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out
270     // to the left.
271     //
272     // Proof(2):
273     //
274     //   Let B' and A' be the n-Bit inputs with some unknown errors EA,
275     //   EB at e leading bits. B' and A' can be written down as:
276     //
277     //     B' = B + 2^(n-e)*EB
278     //     A' = A + 2^(n-e)*EA
279     //
280     //   Let C' be an input with c trailing zero bits. C' can be written as
281     //
282     //     C' = C*2^c
283     //
284     //   Therefore we can compute the result by using distributivity and
285     //   commutativity.
286     //
287     //     (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' =
288     //                     = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
289     //                     = (B'+A') * C' =
290     //                     = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
291     //                     = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' =
292     //                     = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' =
293     //                     = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c =
294     //                     = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c =
295     //
296     //   Let EC be the final error with EC = C*(EB + EA)
297     //
298     //                     = (B + A)*C' + EC*2^(n-e)*2^c =
299     //                     = (B + A)*C' + EC*2^(n-(e-c))
300     //
301     //   Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c
302     //   less error bits than the input. c bits are shifted out to the left.
303     // [qed]
304 
305     if (C.getBitWidth() != A.getBitWidth()) {
306       ErrorMSBs = (unsigned)-1;
307       return *this;
308     }
309 
310     // Multiplying by one is a no-op.
311     if (C.isOneValue()) {
312       return *this;
313     }
314 
315     // Multiplying by zero removes the coefficient B and defines all bits.
316     if (C.isNullValue()) {
317       ErrorMSBs = 0;
318       deleteB();
319     }
320 
321     // See Proof(2): Trailing zero bits indicate a left shift. This removes
322     // leading bits from the result even if they are undefined.
323     decErrorMSBs(C.countTrailingZeros());
324 
325     A *= C;
326     pushBOperation(Mul, C);
327     return *this;
328   }
329 
330   /// Apply a logical shift right on the polynomial
331   Polynomial &lshr(const APInt &C) {
332     // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e')
333     //          where
334     //             e' = e + 1,
335     //             E is a e-bit number,
336     //             E' is a e'-bit number,
337     //   holds under the following precondition:
338     //          pre(1): A % 2 = 0
339     //          pre(2): e < n, (see Theorem(2) for the trivial case with e=n)
340     //   where >> expresses a logical shift to the right, with adding zeros.
341     //
342     //  We need to show that for every, E there is a E'
343     //
344     //  B = b_h * 2^(n-1) + b_m * 2 + b_l
345     //  A = a_h * 2^(n-1) + a_m * 2         (pre(1))
346     //
347     //  where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers
348     //
349     //  Let X = (B + A + E*2^(n-e)) >> 1
350     //  Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1
351     //
352     //    X = [B + A + E*2^(n-e)] >> 1 =
353     //      = [  b_h * 2^(n-1) + b_m * 2 + b_l +
354     //         + a_h * 2^(n-1) + a_m * 2 +
355     //         + E * 2^(n-e) ] >> 1 =
356     //
357     //    The sum is built by putting the overflow of [a_m + b+n] into the term
358     //    2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within
359     //    this bit is discarded. This is expressed by % 2.
360     //
361     //    The bit in position 0 cannot overflow into the term (b_m + a_m).
362     //
363     //      = [  ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) +
364     //         + ((b_m + a_m) % 2^(n-2)) * 2 +
365     //         + b_l + E * 2^(n-e) ] >> 1 =
366     //
367     //    The shift is computed by dividing the terms by 2 and by cutting off
368     //    b_l.
369     //
370     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
371     //         + ((b_m + a_m) % 2^(n-2)) +
372     //         + E * 2^(n-(e+1)) =
373     //
374     //    by the definition in the Theorem e+1 = e'
375     //
376     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
377     //         + ((b_m + a_m) % 2^(n-2)) +
378     //         + E * 2^(n-e') =
379     //
380     //    Compute Y by applying distributivity first
381     //
382     //    Y =  (B >> 1) + (A >> 1) + E*2^(n-e') =
383     //      =    (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 +
384     //         + (a_h * 2^(n-1) + a_m * 2) >> 1 +
385     //         + E * 2^(n-e) >> 1 =
386     //
387     //    Again, the shift is computed by dividing the terms by 2 and by cutting
388     //    off b_l.
389     //
390     //      =     b_h * 2^(n-2) + b_m +
391     //         +  a_h * 2^(n-2) + a_m +
392     //         +  E * 2^(n-(e+1)) =
393     //
394     //    Again, the sum is built by putting the overflow of [a_m + b+n] into
395     //    the term 2^(n-1). But this time there is room for a second bit in the
396     //    term 2^(n-2) we add this bit to a new term and denote it o_h in a
397     //    second step.
398     //
399     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) +
400     //         + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
401     //         + ((b_m + a_m) % 2^(n-2)) +
402     //         + E * 2^(n-(e+1)) =
403     //
404     //    Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1
405     //    Further replace e+1 by e'.
406     //
407     //      =    o_h * 2^(n-1) +
408     //         + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
409     //         + ((b_m + a_m) % 2^(n-2)) +
410     //         + E * 2^(n-e') =
411     //
412     //    Move o_h into the error term and construct E'. To ensure that there is
413     //    no 2^x with negative x, this step requires pre(2) (e < n).
414     //
415     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
416     //         + ((b_m + a_m) % 2^(n-2)) +
417     //         + o_h * 2^(e'-1) * 2^(n-e') +               | pre(2), move 2^(e'-1)
418     //                                                     | out of the old exponent
419     //         + E * 2^(n-e') =
420     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
421     //         + ((b_m + a_m) % 2^(n-2)) +
422     //         + [o_h * 2^(e'-1) + E] * 2^(n-e') +         | move 2^(e'-1) out of
423     //                                                     | the old exponent
424     //
425     //    Let E' = o_h * 2^(e'-1) + E
426     //
427     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
428     //         + ((b_m + a_m) % 2^(n-2)) +
429     //         + E' * 2^(n-e')
430     //
431     //    Because X and Y are distinct only in there error terms and E' can be
432     //    constructed as shown the theorem holds.
433     // [qed]
434     //
435     // For completeness in case of the case e=n it is also required to show that
436     // distributivity can be applied.
437     //
438     // In this case Theorem(1) transforms to (the pre-condition on A can also be
439     // dropped)
440     //
441     // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E'
442     //          where
443     //             A, B, E, E' are two's complement numbers with the same bit
444     //             width
445     //
446     //   Let A + B + E = X
447     //   Let (B >> 1) + (A >> 1) = Y
448     //
449     //   Therefore we need to show that for every X and Y there is an E' which
450     //   makes the equation
451     //
452     //     X = Y + E'
453     //
454     //   hold. This is trivially the case for E' = X - Y.
455     //
456     // [qed]
457     //
458     // Remark: Distributing lshr with and arbitrary number n can be expressed as
459     //   ((((B + A) lshr 1) lshr 1) ... ) {n times}.
460     // This construction induces n additional error bits at the left.
461 
462     if (C.getBitWidth() != A.getBitWidth()) {
463       ErrorMSBs = (unsigned)-1;
464       return *this;
465     }
466 
467     if (C.isNullValue())
468       return *this;
469 
470     // Test if the result will be zero
471     unsigned shiftAmt = C.getZExtValue();
472     if (shiftAmt >= C.getBitWidth())
473       return mul(APInt(C.getBitWidth(), 0));
474 
475     // The proof that shiftAmt LSBs are zero for at least one summand is only
476     // possible for the constant number.
477     //
478     // If this can be proven add shiftAmt to the error counter
479     // `ErrorMSBs`. Otherwise set all bits as undefined.
480     if (A.countTrailingZeros() < shiftAmt)
481       ErrorMSBs = A.getBitWidth();
482     else
483       incErrorMSBs(shiftAmt);
484 
485     // Apply the operation.
486     pushBOperation(LShr, C);
487     A = A.lshr(shiftAmt);
488 
489     return *this;
490   }
491 
492   /// Apply a sign-extend or truncate operation on the polynomial.
493   Polynomial &sextOrTrunc(unsigned n) {
494     if (n < A.getBitWidth()) {
495       // Truncate: Clearly undefined Bits on the MSB side are removed
496       // if there are any.
497       decErrorMSBs(A.getBitWidth() - n);
498       A = A.trunc(n);
499       pushBOperation(Trunc, APInt(sizeof(n) * 8, n));
500     }
501     if (n > A.getBitWidth()) {
502       // Extend: Clearly extending first and adding later is different
503       // to adding first and extending later in all extended bits.
504       incErrorMSBs(n - A.getBitWidth());
505       A = A.sext(n);
506       pushBOperation(SExt, APInt(sizeof(n) * 8, n));
507     }
508 
509     return *this;
510   }
511 
512   /// Test if there is a coefficient B.
513   bool isFirstOrder() const { return V != nullptr; }
514 
515   /// Test coefficient B of two Polynomials are equal.
516   bool isCompatibleTo(const Polynomial &o) const {
517     // The polynomial use different bit width.
518     if (A.getBitWidth() != o.A.getBitWidth())
519       return false;
520 
521     // If neither Polynomial has the Coefficient B.
522     if (!isFirstOrder() && !o.isFirstOrder())
523       return true;
524 
525     // The index variable is different.
526     if (V != o.V)
527       return false;
528 
529     // Check the operations.
530     if (B.size() != o.B.size())
531       return false;
532 
533     auto ob = o.B.begin();
534     for (auto &b : B) {
535       if (b != *ob)
536         return false;
537       ob++;
538     }
539 
540     return true;
541   }
542 
543   /// Subtract two polynomials, return an undefined polynomial if
544   /// subtraction is not possible.
545   Polynomial operator-(const Polynomial &o) const {
546     // Return an undefined polynomial if incompatible.
547     if (!isCompatibleTo(o))
548       return Polynomial();
549 
550     // If the polynomials are compatible (meaning they have the same
551     // coefficient on B), B is eliminated. Thus a polynomial solely
552     // containing A is returned
553     return Polynomial(A - o.A, std::max(ErrorMSBs, o.ErrorMSBs));
554   }
555 
556   /// Subtract a constant from a polynomial,
557   Polynomial operator-(uint64_t C) const {
558     Polynomial Result(*this);
559     Result.A -= C;
560     return Result;
561   }
562 
563   /// Add a constant to a polynomial,
564   Polynomial operator+(uint64_t C) const {
565     Polynomial Result(*this);
566     Result.A += C;
567     return Result;
568   }
569 
570   /// Returns true if it can be proven that two Polynomials are equal.
571   bool isProvenEqualTo(const Polynomial &o) {
572     // Subtract both polynomials and test if it is fully defined and zero.
573     Polynomial r = *this - o;
574     return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isNullValue());
575   }
576 
577   /// Print the polynomial into a stream.
578   void print(raw_ostream &OS) const {
579     OS << "[{#ErrBits:" << ErrorMSBs << "} ";
580 
581     if (V) {
582       for (auto b : B)
583         OS << "(";
584       OS << "(" << *V << ") ";
585 
586       for (auto b : B) {
587         switch (b.first) {
588         case LShr:
589           OS << "LShr ";
590           break;
591         case Mul:
592           OS << "Mul ";
593           break;
594         case SExt:
595           OS << "SExt ";
596           break;
597         case Trunc:
598           OS << "Trunc ";
599           break;
600         }
601 
602         OS << b.second << ") ";
603       }
604     }
605 
606     OS << "+ " << A << "]";
607   }
608 
609 private:
610   void deleteB() {
611     V = nullptr;
612     B.clear();
613   }
614 
615   void pushBOperation(const BOps Op, const APInt &C) {
616     if (isFirstOrder()) {
617       B.push_back(std::make_pair(Op, C));
618       return;
619     }
620   }
621 };
622 
623 #ifndef NDEBUG
624 static raw_ostream &operator<<(raw_ostream &OS, const Polynomial &S) {
625   S.print(OS);
626   return OS;
627 }
628 #endif
629 
630 /// VectorInfo stores abstract the following information for each vector
631 /// element:
632 ///
633 /// 1) The the memory address loaded into the element as Polynomial
634 /// 2) a set of load instruction necessary to construct the vector,
635 /// 3) a set of all other instructions that are necessary to create the vector and
636 /// 4) a pointer value that can be used as relative base for all elements.
637 struct VectorInfo {
638 private:
639   VectorInfo(const VectorInfo &c) : VTy(c.VTy) {
640     llvm_unreachable(
641         "Copying VectorInfo is neither implemented nor necessary,");
642   }
643 
644 public:
645   /// Information of a Vector Element
646   struct ElementInfo {
647     /// Offset Polynomial.
648     Polynomial Ofs;
649 
650     /// The Load Instruction used to Load the entry. LI is null if the pointer
651     /// of the load instruction does not point on to the entry
652     LoadInst *LI;
653 
654     ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr)
655         : Ofs(Offset), LI(LI) {}
656   };
657 
658   /// Basic-block the load instructions are within
659   BasicBlock *BB;
660 
661   /// Pointer value of all participation load instructions
662   Value *PV;
663 
664   /// Participating load instructions
665   std::set<LoadInst *> LIs;
666 
667   /// Participating instructions
668   std::set<Instruction *> Is;
669 
670   /// Final shuffle-vector instruction
671   ShuffleVectorInst *SVI;
672 
673   /// Information of the offset for each vector element
674   ElementInfo *EI;
675 
676   /// Vector Type
677   FixedVectorType *const VTy;
678 
679   VectorInfo(FixedVectorType *VTy)
680       : BB(nullptr), PV(nullptr), LIs(), Is(), SVI(nullptr), VTy(VTy) {
681     EI = new ElementInfo[VTy->getNumElements()];
682   }
683 
684   virtual ~VectorInfo() { delete[] EI; }
685 
686   unsigned getDimension() const { return VTy->getNumElements(); }
687 
688   /// Test if the VectorInfo can be part of an interleaved load with the
689   /// specified factor.
690   ///
691   /// \param Factor of the interleave
692   /// \param DL Targets Datalayout
693   ///
694   /// \returns true if this is possible and false if not
695   bool isInterleaved(unsigned Factor, const DataLayout &DL) const {
696     unsigned Size = DL.getTypeAllocSize(VTy->getElementType());
697     for (unsigned i = 1; i < getDimension(); i++) {
698       if (!EI[i].Ofs.isProvenEqualTo(EI[0].Ofs + i * Factor * Size)) {
699         return false;
700       }
701     }
702     return true;
703   }
704 
705   /// Recursively computes the vector information stored in V.
706   ///
707   /// This function delegates the work to specialized implementations
708   ///
709   /// \param V Value to operate on
710   /// \param Result Result of the computation
711   ///
712   /// \returns false if no sensible information can be gathered.
713   static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) {
714     ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
715     if (SVI)
716       return computeFromSVI(SVI, Result, DL);
717     LoadInst *LI = dyn_cast<LoadInst>(V);
718     if (LI)
719       return computeFromLI(LI, Result, DL);
720     BitCastInst *BCI = dyn_cast<BitCastInst>(V);
721     if (BCI)
722       return computeFromBCI(BCI, Result, DL);
723     return false;
724   }
725 
726   /// BitCastInst specialization to compute the vector information.
727   ///
728   /// \param BCI BitCastInst to operate on
729   /// \param Result Result of the computation
730   ///
731   /// \returns false if no sensible information can be gathered.
732   static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result,
733                              const DataLayout &DL) {
734     Instruction *Op = dyn_cast<Instruction>(BCI->getOperand(0));
735 
736     if (!Op)
737       return false;
738 
739     FixedVectorType *VTy = dyn_cast<FixedVectorType>(Op->getType());
740     if (!VTy)
741       return false;
742 
743     // We can only cast from large to smaller vectors
744     if (Result.VTy->getNumElements() % VTy->getNumElements())
745       return false;
746 
747     unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements();
748     unsigned NewSize = DL.getTypeAllocSize(Result.VTy->getElementType());
749     unsigned OldSize = DL.getTypeAllocSize(VTy->getElementType());
750 
751     if (NewSize * Factor != OldSize)
752       return false;
753 
754     VectorInfo Old(VTy);
755     if (!compute(Op, Old, DL))
756       return false;
757 
758     for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) {
759       for (unsigned j = 0; j < Factor; j++) {
760         Result.EI[i + j] =
761             ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize,
762                         j == 0 ? Old.EI[i / Factor].LI : nullptr);
763       }
764     }
765 
766     Result.BB = Old.BB;
767     Result.PV = Old.PV;
768     Result.LIs.insert(Old.LIs.begin(), Old.LIs.end());
769     Result.Is.insert(Old.Is.begin(), Old.Is.end());
770     Result.Is.insert(BCI);
771     Result.SVI = nullptr;
772 
773     return true;
774   }
775 
776   /// ShuffleVectorInst specialization to compute vector information.
777   ///
778   /// \param SVI ShuffleVectorInst to operate on
779   /// \param Result Result of the computation
780   ///
781   /// Compute the left and the right side vector information and merge them by
782   /// applying the shuffle operation. This function also ensures that the left
783   /// and right side have compatible loads. This means that all loads are with
784   /// in the same basic block and are based on the same pointer.
785   ///
786   /// \returns false if no sensible information can be gathered.
787   static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result,
788                              const DataLayout &DL) {
789     FixedVectorType *ArgTy =
790         cast<FixedVectorType>(SVI->getOperand(0)->getType());
791 
792     // Compute the left hand vector information.
793     VectorInfo LHS(ArgTy);
794     if (!compute(SVI->getOperand(0), LHS, DL))
795       LHS.BB = nullptr;
796 
797     // Compute the right hand vector information.
798     VectorInfo RHS(ArgTy);
799     if (!compute(SVI->getOperand(1), RHS, DL))
800       RHS.BB = nullptr;
801 
802     // Neither operand produced sensible results?
803     if (!LHS.BB && !RHS.BB)
804       return false;
805     // Only RHS produced sensible results?
806     else if (!LHS.BB) {
807       Result.BB = RHS.BB;
808       Result.PV = RHS.PV;
809     }
810     // Only LHS produced sensible results?
811     else if (!RHS.BB) {
812       Result.BB = LHS.BB;
813       Result.PV = LHS.PV;
814     }
815     // Both operands produced sensible results?
816     else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) {
817       Result.BB = LHS.BB;
818       Result.PV = LHS.PV;
819     }
820     // Both operands produced sensible results but they are incompatible.
821     else {
822       return false;
823     }
824 
825     // Merge and apply the operation on the offset information.
826     if (LHS.BB) {
827       Result.LIs.insert(LHS.LIs.begin(), LHS.LIs.end());
828       Result.Is.insert(LHS.Is.begin(), LHS.Is.end());
829     }
830     if (RHS.BB) {
831       Result.LIs.insert(RHS.LIs.begin(), RHS.LIs.end());
832       Result.Is.insert(RHS.Is.begin(), RHS.Is.end());
833     }
834     Result.Is.insert(SVI);
835     Result.SVI = SVI;
836 
837     int j = 0;
838     for (int i : SVI->getShuffleMask()) {
839       assert((i < 2 * (signed)ArgTy->getNumElements()) &&
840              "Invalid ShuffleVectorInst (index out of bounds)");
841 
842       if (i < 0)
843         Result.EI[j] = ElementInfo();
844       else if (i < (signed)ArgTy->getNumElements()) {
845         if (LHS.BB)
846           Result.EI[j] = LHS.EI[i];
847         else
848           Result.EI[j] = ElementInfo();
849       } else {
850         if (RHS.BB)
851           Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()];
852         else
853           Result.EI[j] = ElementInfo();
854       }
855       j++;
856     }
857 
858     return true;
859   }
860 
861   /// LoadInst specialization to compute vector information.
862   ///
863   /// This function also acts as abort condition to the recursion.
864   ///
865   /// \param LI LoadInst to operate on
866   /// \param Result Result of the computation
867   ///
868   /// \returns false if no sensible information can be gathered.
869   static bool computeFromLI(LoadInst *LI, VectorInfo &Result,
870                             const DataLayout &DL) {
871     Value *BasePtr;
872     Polynomial Offset;
873 
874     if (LI->isVolatile())
875       return false;
876 
877     if (LI->isAtomic())
878       return false;
879 
880     // Get the base polynomial
881     computePolynomialFromPointer(*LI->getPointerOperand(), Offset, BasePtr, DL);
882 
883     Result.BB = LI->getParent();
884     Result.PV = BasePtr;
885     Result.LIs.insert(LI);
886     Result.Is.insert(LI);
887 
888     for (unsigned i = 0; i < Result.getDimension(); i++) {
889       Value *Idx[2] = {
890           ConstantInt::get(Type::getInt32Ty(LI->getContext()), 0),
891           ConstantInt::get(Type::getInt32Ty(LI->getContext()), i),
892       };
893       int64_t Ofs = DL.getIndexedOffsetInType(Result.VTy, makeArrayRef(Idx, 2));
894       Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr);
895     }
896 
897     return true;
898   }
899 
900   /// Recursively compute polynomial of a value.
901   ///
902   /// \param BO Input binary operation
903   /// \param Result Result polynomial
904   static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) {
905     Value *LHS = BO.getOperand(0);
906     Value *RHS = BO.getOperand(1);
907 
908     // Find the RHS Constant if any
909     ConstantInt *C = dyn_cast<ConstantInt>(RHS);
910     if ((!C) && BO.isCommutative()) {
911       C = dyn_cast<ConstantInt>(LHS);
912       if (C)
913         std::swap(LHS, RHS);
914     }
915 
916     switch (BO.getOpcode()) {
917     case Instruction::Add:
918       if (!C)
919         break;
920 
921       computePolynomial(*LHS, Result);
922       Result.add(C->getValue());
923       return;
924 
925     case Instruction::LShr:
926       if (!C)
927         break;
928 
929       computePolynomial(*LHS, Result);
930       Result.lshr(C->getValue());
931       return;
932 
933     default:
934       break;
935     }
936 
937     Result = Polynomial(&BO);
938   }
939 
940   /// Recursively compute polynomial of a value
941   ///
942   /// \param V input value
943   /// \param Result result polynomial
944   static void computePolynomial(Value &V, Polynomial &Result) {
945     if (auto *BO = dyn_cast<BinaryOperator>(&V))
946       computePolynomialBinOp(*BO, Result);
947     else
948       Result = Polynomial(&V);
949   }
950 
951   /// Compute the Polynomial representation of a Pointer type.
952   ///
953   /// \param Ptr input pointer value
954   /// \param Result result polynomial
955   /// \param BasePtr pointer the polynomial is based on
956   /// \param DL Datalayout of the target machine
957   static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result,
958                                            Value *&BasePtr,
959                                            const DataLayout &DL) {
960     // Not a pointer type? Return an undefined polynomial
961     PointerType *PtrTy = dyn_cast<PointerType>(Ptr.getType());
962     if (!PtrTy) {
963       Result = Polynomial();
964       BasePtr = nullptr;
965       return;
966     }
967     unsigned PointerBits =
968         DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace());
969 
970     /// Skip pointer casts. Return Zero polynomial otherwise
971     if (isa<CastInst>(&Ptr)) {
972       CastInst &CI = *cast<CastInst>(&Ptr);
973       switch (CI.getOpcode()) {
974       case Instruction::BitCast:
975         computePolynomialFromPointer(*CI.getOperand(0), Result, BasePtr, DL);
976         break;
977       default:
978         BasePtr = &Ptr;
979         Polynomial(PointerBits, 0);
980         break;
981       }
982     }
983     /// Resolve GetElementPtrInst.
984     else if (isa<GetElementPtrInst>(&Ptr)) {
985       GetElementPtrInst &GEP = *cast<GetElementPtrInst>(&Ptr);
986 
987       APInt BaseOffset(PointerBits, 0);
988 
989       // Check if we can compute the Offset with accumulateConstantOffset
990       if (GEP.accumulateConstantOffset(DL, BaseOffset)) {
991         Result = Polynomial(BaseOffset);
992         BasePtr = GEP.getPointerOperand();
993         return;
994       } else {
995         // Otherwise we allow that the last index operand of the GEP is
996         // non-constant.
997         unsigned idxOperand, e;
998         SmallVector<Value *, 4> Indices;
999         for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e;
1000              idxOperand++) {
1001           ConstantInt *IDX = dyn_cast<ConstantInt>(GEP.getOperand(idxOperand));
1002           if (!IDX)
1003             break;
1004           Indices.push_back(IDX);
1005         }
1006 
1007         // It must also be the last operand.
1008         if (idxOperand + 1 != e) {
1009           Result = Polynomial();
1010           BasePtr = nullptr;
1011           return;
1012         }
1013 
1014         // Compute the polynomial of the index operand.
1015         computePolynomial(*GEP.getOperand(idxOperand), Result);
1016 
1017         // Compute base offset from zero based index, excluding the last
1018         // variable operand.
1019         BaseOffset =
1020             DL.getIndexedOffsetInType(GEP.getSourceElementType(), Indices);
1021 
1022         // Apply the operations of GEP to the polynomial.
1023         unsigned ResultSize = DL.getTypeAllocSize(GEP.getResultElementType());
1024         Result.sextOrTrunc(PointerBits);
1025         Result.mul(APInt(PointerBits, ResultSize));
1026         Result.add(BaseOffset);
1027         BasePtr = GEP.getPointerOperand();
1028       }
1029     }
1030     // All other instructions are handled by using the value as base pointer and
1031     // a zero polynomial.
1032     else {
1033       BasePtr = &Ptr;
1034       Polynomial(DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()), 0);
1035     }
1036   }
1037 
1038 #ifndef NDEBUG
1039   void print(raw_ostream &OS) const {
1040     if (PV)
1041       OS << *PV;
1042     else
1043       OS << "(none)";
1044     OS << " + ";
1045     for (unsigned i = 0; i < getDimension(); i++)
1046       OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs;
1047     OS << "]";
1048   }
1049 #endif
1050 };
1051 
1052 } // anonymous namespace
1053 
1054 bool InterleavedLoadCombineImpl::findPattern(
1055     std::list<VectorInfo> &Candidates, std::list<VectorInfo> &InterleavedLoad,
1056     unsigned Factor, const DataLayout &DL) {
1057   for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) {
1058     unsigned i;
1059     // Try to find an interleaved load using the front of Worklist as first line
1060     unsigned Size = DL.getTypeAllocSize(C0->VTy->getElementType());
1061 
1062     // List containing iterators pointing to the VectorInfos of the candidates
1063     std::vector<std::list<VectorInfo>::iterator> Res(Factor, Candidates.end());
1064 
1065     for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) {
1066       if (C->VTy != C0->VTy)
1067         continue;
1068       if (C->BB != C0->BB)
1069         continue;
1070       if (C->PV != C0->PV)
1071         continue;
1072 
1073       // Check the current value matches any of factor - 1 remaining lines
1074       for (i = 1; i < Factor; i++) {
1075         if (C->EI[0].Ofs.isProvenEqualTo(C0->EI[0].Ofs + i * Size)) {
1076           Res[i] = C;
1077         }
1078       }
1079 
1080       for (i = 1; i < Factor; i++) {
1081         if (Res[i] == Candidates.end())
1082           break;
1083       }
1084       if (i == Factor) {
1085         Res[0] = C0;
1086         break;
1087       }
1088     }
1089 
1090     if (Res[0] != Candidates.end()) {
1091       // Move the result into the output
1092       for (unsigned i = 0; i < Factor; i++) {
1093         InterleavedLoad.splice(InterleavedLoad.end(), Candidates, Res[i]);
1094       }
1095 
1096       return true;
1097     }
1098   }
1099   return false;
1100 }
1101 
1102 LoadInst *
1103 InterleavedLoadCombineImpl::findFirstLoad(const std::set<LoadInst *> &LIs) {
1104   assert(!LIs.empty() && "No load instructions given.");
1105 
1106   // All LIs are within the same BB. Select the first for a reference.
1107   BasicBlock *BB = (*LIs.begin())->getParent();
1108   BasicBlock::iterator FLI = llvm::find_if(
1109       *BB, [&LIs](Instruction &I) -> bool { return is_contained(LIs, &I); });
1110   assert(FLI != BB->end());
1111 
1112   return cast<LoadInst>(FLI);
1113 }
1114 
1115 bool InterleavedLoadCombineImpl::combine(std::list<VectorInfo> &InterleavedLoad,
1116                                          OptimizationRemarkEmitter &ORE) {
1117   LLVM_DEBUG(dbgs() << "Checking interleaved load\n");
1118 
1119   // The insertion point is the LoadInst which loads the first values. The
1120   // following tests are used to proof that the combined load can be inserted
1121   // just before InsertionPoint.
1122   LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI;
1123 
1124   // Test if the offset is computed
1125   if (!InsertionPoint)
1126     return false;
1127 
1128   std::set<LoadInst *> LIs;
1129   std::set<Instruction *> Is;
1130   std::set<Instruction *> SVIs;
1131 
1132   InstructionCost InterleavedCost;
1133   InstructionCost InstructionCost = 0;
1134 
1135   // Get the interleave factor
1136   unsigned Factor = InterleavedLoad.size();
1137 
1138   // Merge all input sets used in analysis
1139   for (auto &VI : InterleavedLoad) {
1140     // Generate a set of all load instructions to be combined
1141     LIs.insert(VI.LIs.begin(), VI.LIs.end());
1142 
1143     // Generate a set of all instructions taking part in load
1144     // interleaved. This list excludes the instructions necessary for the
1145     // polynomial construction.
1146     Is.insert(VI.Is.begin(), VI.Is.end());
1147 
1148     // Generate the set of the final ShuffleVectorInst.
1149     SVIs.insert(VI.SVI);
1150   }
1151 
1152   // There is nothing to combine.
1153   if (LIs.size() < 2)
1154     return false;
1155 
1156   // Test if all participating instruction will be dead after the
1157   // transformation. If intermediate results are used, no performance gain can
1158   // be expected. Also sum the cost of the Instructions beeing left dead.
1159   for (auto &I : Is) {
1160     // Compute the old cost
1161     InstructionCost +=
1162         TTI.getInstructionCost(I, TargetTransformInfo::TCK_Latency);
1163 
1164     // The final SVIs are allowed not to be dead, all uses will be replaced
1165     if (SVIs.find(I) != SVIs.end())
1166       continue;
1167 
1168     // If there are users outside the set to be eliminated, we abort the
1169     // transformation. No gain can be expected.
1170     for (auto *U : I->users()) {
1171       if (Is.find(dyn_cast<Instruction>(U)) == Is.end())
1172         return false;
1173     }
1174   }
1175 
1176   // We need to have a valid cost in order to proceed.
1177   if (!InstructionCost.isValid())
1178     return false;
1179 
1180   // We know that all LoadInst are within the same BB. This guarantees that
1181   // either everything or nothing is loaded.
1182   LoadInst *First = findFirstLoad(LIs);
1183 
1184   // To be safe that the loads can be combined, iterate over all loads and test
1185   // that the corresponding defining access dominates first LI. This guarantees
1186   // that there are no aliasing stores in between the loads.
1187   auto FMA = MSSA.getMemoryAccess(First);
1188   for (auto LI : LIs) {
1189     auto MADef = MSSA.getMemoryAccess(LI)->getDefiningAccess();
1190     if (!MSSA.dominates(MADef, FMA))
1191       return false;
1192   }
1193   assert(!LIs.empty() && "There are no LoadInst to combine");
1194 
1195   // It is necessary that insertion point dominates all final ShuffleVectorInst.
1196   for (auto &VI : InterleavedLoad) {
1197     if (!DT.dominates(InsertionPoint, VI.SVI))
1198       return false;
1199   }
1200 
1201   // All checks are done. Add instructions detectable by InterleavedAccessPass
1202   // The old instruction will are left dead.
1203   IRBuilder<> Builder(InsertionPoint);
1204   Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType();
1205   unsigned ElementsPerSVI =
1206       cast<FixedVectorType>(InterleavedLoad.front().SVI->getType())
1207           ->getNumElements();
1208   FixedVectorType *ILTy = FixedVectorType::get(ETy, Factor * ElementsPerSVI);
1209 
1210   SmallVector<unsigned, 4> Indices;
1211   for (unsigned i = 0; i < Factor; i++)
1212     Indices.push_back(i);
1213   InterleavedCost = TTI.getInterleavedMemoryOpCost(
1214       Instruction::Load, ILTy, Factor, Indices, InsertionPoint->getAlign(),
1215       InsertionPoint->getPointerAddressSpace());
1216 
1217   if (InterleavedCost >= InstructionCost) {
1218     return false;
1219   }
1220 
1221   // Create a pointer cast for the wide load.
1222   auto CI = Builder.CreatePointerCast(InsertionPoint->getOperand(0),
1223                                       ILTy->getPointerTo(),
1224                                       "interleaved.wide.ptrcast");
1225 
1226   // Create the wide load and update the MemorySSA.
1227   auto LI = Builder.CreateAlignedLoad(ILTy, CI, InsertionPoint->getAlign(),
1228                                       "interleaved.wide.load");
1229   auto MSSAU = MemorySSAUpdater(&MSSA);
1230   MemoryUse *MSSALoad = cast<MemoryUse>(MSSAU.createMemoryAccessBefore(
1231       LI, nullptr, MSSA.getMemoryAccess(InsertionPoint)));
1232   MSSAU.insertUse(MSSALoad);
1233 
1234   // Create the final SVIs and replace all uses.
1235   int i = 0;
1236   for (auto &VI : InterleavedLoad) {
1237     SmallVector<int, 4> Mask;
1238     for (unsigned j = 0; j < ElementsPerSVI; j++)
1239       Mask.push_back(i + j * Factor);
1240 
1241     Builder.SetInsertPoint(VI.SVI);
1242     auto SVI = Builder.CreateShuffleVector(LI, Mask, "interleaved.shuffle");
1243     VI.SVI->replaceAllUsesWith(SVI);
1244     i++;
1245   }
1246 
1247   NumInterleavedLoadCombine++;
1248   ORE.emit([&]() {
1249     return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI)
1250            << "Load interleaved combined with factor "
1251            << ore::NV("Factor", Factor);
1252   });
1253 
1254   return true;
1255 }
1256 
1257 bool InterleavedLoadCombineImpl::run() {
1258   OptimizationRemarkEmitter ORE(&F);
1259   bool changed = false;
1260   unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor();
1261 
1262   auto &DL = F.getParent()->getDataLayout();
1263 
1264   // Start with the highest factor to avoid combining and recombining.
1265   for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) {
1266     std::list<VectorInfo> Candidates;
1267 
1268     for (BasicBlock &BB : F) {
1269       for (Instruction &I : BB) {
1270         if (auto SVI = dyn_cast<ShuffleVectorInst>(&I)) {
1271           // We don't support scalable vectors in this pass.
1272           if (isa<ScalableVectorType>(SVI->getType()))
1273             continue;
1274 
1275           Candidates.emplace_back(cast<FixedVectorType>(SVI->getType()));
1276 
1277           if (!VectorInfo::computeFromSVI(SVI, Candidates.back(), DL)) {
1278             Candidates.pop_back();
1279             continue;
1280           }
1281 
1282           if (!Candidates.back().isInterleaved(Factor, DL)) {
1283             Candidates.pop_back();
1284           }
1285         }
1286       }
1287     }
1288 
1289     std::list<VectorInfo> InterleavedLoad;
1290     while (findPattern(Candidates, InterleavedLoad, Factor, DL)) {
1291       if (combine(InterleavedLoad, ORE)) {
1292         changed = true;
1293       } else {
1294         // Remove the first element of the Interleaved Load but put the others
1295         // back on the list and continue searching
1296         Candidates.splice(Candidates.begin(), InterleavedLoad,
1297                           std::next(InterleavedLoad.begin()),
1298                           InterleavedLoad.end());
1299       }
1300       InterleavedLoad.clear();
1301     }
1302   }
1303 
1304   return changed;
1305 }
1306 
1307 namespace {
1308 /// This pass combines interleaved loads into a pattern detectable by
1309 /// InterleavedAccessPass.
1310 struct InterleavedLoadCombine : public FunctionPass {
1311   static char ID;
1312 
1313   InterleavedLoadCombine() : FunctionPass(ID) {
1314     initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry());
1315   }
1316 
1317   StringRef getPassName() const override {
1318     return "Interleaved Load Combine Pass";
1319   }
1320 
1321   bool runOnFunction(Function &F) override {
1322     if (DisableInterleavedLoadCombine)
1323       return false;
1324 
1325     auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1326     if (!TPC)
1327       return false;
1328 
1329     LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName()
1330                       << "\n");
1331 
1332     return InterleavedLoadCombineImpl(
1333                F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
1334                getAnalysis<MemorySSAWrapperPass>().getMSSA(),
1335                TPC->getTM<TargetMachine>())
1336         .run();
1337   }
1338 
1339   void getAnalysisUsage(AnalysisUsage &AU) const override {
1340     AU.addRequired<MemorySSAWrapperPass>();
1341     AU.addRequired<DominatorTreeWrapperPass>();
1342     FunctionPass::getAnalysisUsage(AU);
1343   }
1344 
1345 private:
1346 };
1347 } // anonymous namespace
1348 
1349 char InterleavedLoadCombine::ID = 0;
1350 
1351 INITIALIZE_PASS_BEGIN(
1352     InterleavedLoadCombine, DEBUG_TYPE,
1353     "Combine interleaved loads into wide loads and shufflevector instructions",
1354     false, false)
1355 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1356 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1357 INITIALIZE_PASS_END(
1358     InterleavedLoadCombine, DEBUG_TYPE,
1359     "Combine interleaved loads into wide loads and shufflevector instructions",
1360     false, false)
1361 
1362 FunctionPass *
1363 llvm::createInterleavedLoadCombinePass() {
1364   auto P = new InterleavedLoadCombine();
1365   return P;
1366 }
1367