1 //===- InterleavedAccessPass.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Interleaved Access pass, which identifies 10 // interleaved memory accesses and transforms them into target specific 11 // intrinsics. 12 // 13 // An interleaved load reads data from memory into several vectors, with 14 // DE-interleaving the data on a factor. An interleaved store writes several 15 // vectors to memory with RE-interleaving the data on a factor. 16 // 17 // As interleaved accesses are difficult to identified in CodeGen (mainly 18 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector 19 // IR), we identify and transform them to intrinsics in this pass so the 20 // intrinsics can be easily matched into target specific instructions later in 21 // CodeGen. 22 // 23 // E.g. An interleaved load (Factor = 2): 24 // %wide.vec = load <8 x i32>, <8 x i32>* %ptr 25 // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6> 26 // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7> 27 // 28 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2 29 // intrinsic in ARM backend. 30 // 31 // In X86, this can be further optimized into a set of target 32 // specific loads followed by an optimized sequence of shuffles. 33 // 34 // E.g. An interleaved store (Factor = 3): 35 // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, 36 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> 37 // store <12 x i32> %i.vec, <12 x i32>* %ptr 38 // 39 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3 40 // intrinsic in ARM backend. 41 // 42 // Similarly, a set of interleaved stores can be transformed into an optimized 43 // sequence of shuffles followed by a set of target specific stores for X86. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/ADT/ArrayRef.h" 48 #include "llvm/ADT/DenseMap.h" 49 #include "llvm/ADT/SmallVector.h" 50 #include "llvm/CodeGen/TargetLowering.h" 51 #include "llvm/CodeGen/TargetPassConfig.h" 52 #include "llvm/CodeGen/TargetSubtargetInfo.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/Dominators.h" 55 #include "llvm/IR/Function.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstIterator.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/InitializePasses.h" 62 #include "llvm/Pass.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include <cassert> 70 #include <utility> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "interleaved-access" 75 76 static cl::opt<bool> LowerInterleavedAccesses( 77 "lower-interleaved-accesses", 78 cl::desc("Enable lowering interleaved accesses to intrinsics"), 79 cl::init(true), cl::Hidden); 80 81 namespace { 82 83 class InterleavedAccess : public FunctionPass { 84 public: 85 static char ID; 86 87 InterleavedAccess() : FunctionPass(ID) { 88 initializeInterleavedAccessPass(*PassRegistry::getPassRegistry()); 89 } 90 91 StringRef getPassName() const override { return "Interleaved Access Pass"; } 92 93 bool runOnFunction(Function &F) override; 94 95 void getAnalysisUsage(AnalysisUsage &AU) const override { 96 AU.addRequired<DominatorTreeWrapperPass>(); 97 AU.addPreserved<DominatorTreeWrapperPass>(); 98 } 99 100 private: 101 DominatorTree *DT = nullptr; 102 const TargetLowering *TLI = nullptr; 103 104 /// The maximum supported interleave factor. 105 unsigned MaxFactor; 106 107 /// Transform an interleaved load into target specific intrinsics. 108 bool lowerInterleavedLoad(LoadInst *LI, 109 SmallVector<Instruction *, 32> &DeadInsts); 110 111 /// Transform an interleaved store into target specific intrinsics. 112 bool lowerInterleavedStore(StoreInst *SI, 113 SmallVector<Instruction *, 32> &DeadInsts); 114 115 /// Returns true if the uses of an interleaved load by the 116 /// extractelement instructions in \p Extracts can be replaced by uses of the 117 /// shufflevector instructions in \p Shuffles instead. If so, the necessary 118 /// replacements are also performed. 119 bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts, 120 ArrayRef<ShuffleVectorInst *> Shuffles); 121 }; 122 123 } // end anonymous namespace. 124 125 char InterleavedAccess::ID = 0; 126 127 INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE, 128 "Lower interleaved memory accesses to target specific intrinsics", false, 129 false) 130 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 131 INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE, 132 "Lower interleaved memory accesses to target specific intrinsics", false, 133 false) 134 135 FunctionPass *llvm::createInterleavedAccessPass() { 136 return new InterleavedAccess(); 137 } 138 139 /// Check if the mask is a DE-interleave mask of the given factor 140 /// \p Factor like: 141 /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor> 142 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor, 143 unsigned &Index) { 144 // Check all potential start indices from 0 to (Factor - 1). 145 for (Index = 0; Index < Factor; Index++) { 146 unsigned i = 0; 147 148 // Check that elements are in ascending order by Factor. Ignore undef 149 // elements. 150 for (; i < Mask.size(); i++) 151 if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor) 152 break; 153 154 if (i == Mask.size()) 155 return true; 156 } 157 158 return false; 159 } 160 161 /// Check if the mask is a DE-interleave mask for an interleaved load. 162 /// 163 /// E.g. DE-interleave masks (Factor = 2) could be: 164 /// <0, 2, 4, 6> (mask of index 0 to extract even elements) 165 /// <1, 3, 5, 7> (mask of index 1 to extract odd elements) 166 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, 167 unsigned &Index, unsigned MaxFactor, 168 unsigned NumLoadElements) { 169 if (Mask.size() < 2) 170 return false; 171 172 // Check potential Factors. 173 for (Factor = 2; Factor <= MaxFactor; Factor++) { 174 // Make sure we don't produce a load wider than the input load. 175 if (Mask.size() * Factor > NumLoadElements) 176 return false; 177 if (isDeInterleaveMaskOfFactor(Mask, Factor, Index)) 178 return true; 179 } 180 181 return false; 182 } 183 184 /// Check if the mask can be used in an interleaved store. 185 // 186 /// It checks for a more general pattern than the RE-interleave mask. 187 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...> 188 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35> 189 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> 190 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5> 191 /// 192 /// The particular case of an RE-interleave mask is: 193 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...> 194 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7> 195 static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, 196 unsigned MaxFactor, unsigned OpNumElts) { 197 unsigned NumElts = Mask.size(); 198 if (NumElts < 4) 199 return false; 200 201 // Check potential Factors. 202 for (Factor = 2; Factor <= MaxFactor; Factor++) { 203 if (NumElts % Factor) 204 continue; 205 206 unsigned LaneLen = NumElts / Factor; 207 if (!isPowerOf2_32(LaneLen)) 208 continue; 209 210 // Check whether each element matches the general interleaved rule. 211 // Ignore undef elements, as long as the defined elements match the rule. 212 // Outer loop processes all factors (x, y, z in the above example) 213 unsigned I = 0, J; 214 for (; I < Factor; I++) { 215 unsigned SavedLaneValue; 216 unsigned SavedNoUndefs = 0; 217 218 // Inner loop processes consecutive accesses (x, x+1... in the example) 219 for (J = 0; J < LaneLen - 1; J++) { 220 // Lane computes x's position in the Mask 221 unsigned Lane = J * Factor + I; 222 unsigned NextLane = Lane + Factor; 223 int LaneValue = Mask[Lane]; 224 int NextLaneValue = Mask[NextLane]; 225 226 // If both are defined, values must be sequential 227 if (LaneValue >= 0 && NextLaneValue >= 0 && 228 LaneValue + 1 != NextLaneValue) 229 break; 230 231 // If the next value is undef, save the current one as reference 232 if (LaneValue >= 0 && NextLaneValue < 0) { 233 SavedLaneValue = LaneValue; 234 SavedNoUndefs = 1; 235 } 236 237 // Undefs are allowed, but defined elements must still be consecutive: 238 // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, .... 239 // Verify this by storing the last non-undef followed by an undef 240 // Check that following non-undef masks are incremented with the 241 // corresponding distance. 242 if (SavedNoUndefs > 0 && LaneValue < 0) { 243 SavedNoUndefs++; 244 if (NextLaneValue >= 0 && 245 SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue) 246 break; 247 } 248 } 249 250 if (J < LaneLen - 1) 251 break; 252 253 int StartMask = 0; 254 if (Mask[I] >= 0) { 255 // Check that the start of the I range (J=0) is greater than 0 256 StartMask = Mask[I]; 257 } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) { 258 // StartMask defined by the last value in lane 259 StartMask = Mask[(LaneLen - 1) * Factor + I] - J; 260 } else if (SavedNoUndefs > 0) { 261 // StartMask defined by some non-zero value in the j loop 262 StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs); 263 } 264 // else StartMask remains set to 0, i.e. all elements are undefs 265 266 if (StartMask < 0) 267 break; 268 // We must stay within the vectors; This case can happen with undefs. 269 if (StartMask + LaneLen > OpNumElts*2) 270 break; 271 } 272 273 // Found an interleaved mask of current factor. 274 if (I == Factor) 275 return true; 276 } 277 278 return false; 279 } 280 281 bool InterleavedAccess::lowerInterleavedLoad( 282 LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) { 283 if (!LI->isSimple()) 284 return false; 285 286 SmallVector<ShuffleVectorInst *, 4> Shuffles; 287 SmallVector<ExtractElementInst *, 4> Extracts; 288 289 // Check if all users of this load are shufflevectors. If we encounter any 290 // users that are extractelement instructions, we save them to later check if 291 // they can be modifed to extract from one of the shufflevectors instead of 292 // the load. 293 for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) { 294 auto *Extract = dyn_cast<ExtractElementInst>(*UI); 295 if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) { 296 Extracts.push_back(Extract); 297 continue; 298 } 299 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI); 300 if (!SVI || !isa<UndefValue>(SVI->getOperand(1))) 301 return false; 302 303 Shuffles.push_back(SVI); 304 } 305 306 if (Shuffles.empty()) 307 return false; 308 309 unsigned Factor, Index; 310 311 unsigned NumLoadElements = LI->getType()->getVectorNumElements(); 312 // Check if the first shufflevector is DE-interleave shuffle. 313 if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index, 314 MaxFactor, NumLoadElements)) 315 return false; 316 317 // Holds the corresponding index for each DE-interleave shuffle. 318 SmallVector<unsigned, 4> Indices; 319 Indices.push_back(Index); 320 321 Type *VecTy = Shuffles[0]->getType(); 322 323 // Check if other shufflevectors are also DE-interleaved of the same type 324 // and factor as the first shufflevector. 325 for (unsigned i = 1; i < Shuffles.size(); i++) { 326 if (Shuffles[i]->getType() != VecTy) 327 return false; 328 329 if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor, 330 Index)) 331 return false; 332 333 Indices.push_back(Index); 334 } 335 336 // Try and modify users of the load that are extractelement instructions to 337 // use the shufflevector instructions instead of the load. 338 if (!tryReplaceExtracts(Extracts, Shuffles)) 339 return false; 340 341 LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n"); 342 343 // Try to create target specific intrinsics to replace the load and shuffles. 344 if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) 345 return false; 346 347 for (auto SVI : Shuffles) 348 DeadInsts.push_back(SVI); 349 350 DeadInsts.push_back(LI); 351 return true; 352 } 353 354 bool InterleavedAccess::tryReplaceExtracts( 355 ArrayRef<ExtractElementInst *> Extracts, 356 ArrayRef<ShuffleVectorInst *> Shuffles) { 357 // If there aren't any extractelement instructions to modify, there's nothing 358 // to do. 359 if (Extracts.empty()) 360 return true; 361 362 // Maps extractelement instructions to vector-index pairs. The extractlement 363 // instructions will be modified to use the new vector and index operands. 364 DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap; 365 366 for (auto *Extract : Extracts) { 367 // The vector index that is extracted. 368 auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand()); 369 auto Index = IndexOperand->getSExtValue(); 370 371 // Look for a suitable shufflevector instruction. The goal is to modify the 372 // extractelement instruction (which uses an interleaved load) to use one 373 // of the shufflevector instructions instead of the load. 374 for (auto *Shuffle : Shuffles) { 375 // If the shufflevector instruction doesn't dominate the extract, we 376 // can't create a use of it. 377 if (!DT->dominates(Shuffle, Extract)) 378 continue; 379 380 // Inspect the indices of the shufflevector instruction. If the shuffle 381 // selects the same index that is extracted, we can modify the 382 // extractelement instruction. 383 SmallVector<int, 4> Indices; 384 Shuffle->getShuffleMask(Indices); 385 for (unsigned I = 0; I < Indices.size(); ++I) 386 if (Indices[I] == Index) { 387 assert(Extract->getOperand(0) == Shuffle->getOperand(0) && 388 "Vector operations do not match"); 389 ReplacementMap[Extract] = std::make_pair(Shuffle, I); 390 break; 391 } 392 393 // If we found a suitable shufflevector instruction, stop looking. 394 if (ReplacementMap.count(Extract)) 395 break; 396 } 397 398 // If we did not find a suitable shufflevector instruction, the 399 // extractelement instruction cannot be modified, so we must give up. 400 if (!ReplacementMap.count(Extract)) 401 return false; 402 } 403 404 // Finally, perform the replacements. 405 IRBuilder<> Builder(Extracts[0]->getContext()); 406 for (auto &Replacement : ReplacementMap) { 407 auto *Extract = Replacement.first; 408 auto *Vector = Replacement.second.first; 409 auto Index = Replacement.second.second; 410 Builder.SetInsertPoint(Extract); 411 Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index)); 412 Extract->eraseFromParent(); 413 } 414 415 return true; 416 } 417 418 bool InterleavedAccess::lowerInterleavedStore( 419 StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) { 420 if (!SI->isSimple()) 421 return false; 422 423 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand()); 424 if (!SVI || !SVI->hasOneUse()) 425 return false; 426 427 // Check if the shufflevector is RE-interleave shuffle. 428 unsigned Factor; 429 unsigned OpNumElts = SVI->getOperand(0)->getType()->getVectorNumElements(); 430 if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts)) 431 return false; 432 433 LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n"); 434 435 // Try to create target specific intrinsics to replace the store and shuffle. 436 if (!TLI->lowerInterleavedStore(SI, SVI, Factor)) 437 return false; 438 439 // Already have a new target specific interleaved store. Erase the old store. 440 DeadInsts.push_back(SI); 441 DeadInsts.push_back(SVI); 442 return true; 443 } 444 445 bool InterleavedAccess::runOnFunction(Function &F) { 446 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 447 if (!TPC || !LowerInterleavedAccesses) 448 return false; 449 450 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n"); 451 452 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 453 auto &TM = TPC->getTM<TargetMachine>(); 454 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 455 MaxFactor = TLI->getMaxSupportedInterleaveFactor(); 456 457 // Holds dead instructions that will be erased later. 458 SmallVector<Instruction *, 32> DeadInsts; 459 bool Changed = false; 460 461 for (auto &I : instructions(F)) { 462 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) 463 Changed |= lowerInterleavedLoad(LI, DeadInsts); 464 465 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 466 Changed |= lowerInterleavedStore(SI, DeadInsts); 467 } 468 469 for (auto I : DeadInsts) 470 I->eraseFromParent(); 471 472 return Changed; 473 } 474