xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/InterleavedAccessPass.cpp (revision b4af4f93c682e445bf159f0d1ec90b636296c946)
1 //===- InterleavedAccessPass.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Interleaved Access pass, which identifies
10 // interleaved memory accesses and transforms them into target specific
11 // intrinsics.
12 //
13 // An interleaved load reads data from memory into several vectors, with
14 // DE-interleaving the data on a factor. An interleaved store writes several
15 // vectors to memory with RE-interleaving the data on a factor.
16 //
17 // As interleaved accesses are difficult to identified in CodeGen (mainly
18 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
19 // IR), we identify and transform them to intrinsics in this pass so the
20 // intrinsics can be easily matched into target specific instructions later in
21 // CodeGen.
22 //
23 // E.g. An interleaved load (Factor = 2):
24 //        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
25 //        %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
26 //        %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
27 //
28 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
29 // intrinsic in ARM backend.
30 //
31 // In X86, this can be further optimized into a set of target
32 // specific loads followed by an optimized sequence of shuffles.
33 //
34 // E.g. An interleaved store (Factor = 3):
35 //        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
36 //                                    <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
37 //        store <12 x i32> %i.vec, <12 x i32>* %ptr
38 //
39 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
40 // intrinsic in ARM backend.
41 //
42 // Similarly, a set of interleaved stores can be transformed into an optimized
43 // sequence of shuffles followed by a set of target specific stores for X86.
44 //
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/CodeGen/TargetLowering.h"
51 #include "llvm/CodeGen/TargetPassConfig.h"
52 #include "llvm/CodeGen/TargetSubtargetInfo.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstIterator.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include <cassert>
70 #include <utility>
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "interleaved-access"
75 
76 static cl::opt<bool> LowerInterleavedAccesses(
77     "lower-interleaved-accesses",
78     cl::desc("Enable lowering interleaved accesses to intrinsics"),
79     cl::init(true), cl::Hidden);
80 
81 namespace {
82 
83 class InterleavedAccess : public FunctionPass {
84 public:
85   static char ID;
86 
87   InterleavedAccess() : FunctionPass(ID) {
88     initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
89   }
90 
91   StringRef getPassName() const override { return "Interleaved Access Pass"; }
92 
93   bool runOnFunction(Function &F) override;
94 
95   void getAnalysisUsage(AnalysisUsage &AU) const override {
96     AU.addRequired<DominatorTreeWrapperPass>();
97     AU.addPreserved<DominatorTreeWrapperPass>();
98   }
99 
100 private:
101   DominatorTree *DT = nullptr;
102   const TargetLowering *TLI = nullptr;
103 
104   /// The maximum supported interleave factor.
105   unsigned MaxFactor;
106 
107   /// Transform an interleaved load into target specific intrinsics.
108   bool lowerInterleavedLoad(LoadInst *LI,
109                             SmallVector<Instruction *, 32> &DeadInsts);
110 
111   /// Transform an interleaved store into target specific intrinsics.
112   bool lowerInterleavedStore(StoreInst *SI,
113                              SmallVector<Instruction *, 32> &DeadInsts);
114 
115   /// Returns true if the uses of an interleaved load by the
116   /// extractelement instructions in \p Extracts can be replaced by uses of the
117   /// shufflevector instructions in \p Shuffles instead. If so, the necessary
118   /// replacements are also performed.
119   bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
120                           ArrayRef<ShuffleVectorInst *> Shuffles);
121 };
122 
123 } // end anonymous namespace.
124 
125 char InterleavedAccess::ID = 0;
126 
127 INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE,
128     "Lower interleaved memory accesses to target specific intrinsics", false,
129     false)
130 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
131 INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE,
132     "Lower interleaved memory accesses to target specific intrinsics", false,
133     false)
134 
135 FunctionPass *llvm::createInterleavedAccessPass() {
136   return new InterleavedAccess();
137 }
138 
139 /// Check if the mask is a DE-interleave mask of the given factor
140 /// \p Factor like:
141 ///     <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
142 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
143                                        unsigned &Index) {
144   // Check all potential start indices from 0 to (Factor - 1).
145   for (Index = 0; Index < Factor; Index++) {
146     unsigned i = 0;
147 
148     // Check that elements are in ascending order by Factor. Ignore undef
149     // elements.
150     for (; i < Mask.size(); i++)
151       if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
152         break;
153 
154     if (i == Mask.size())
155       return true;
156   }
157 
158   return false;
159 }
160 
161 /// Check if the mask is a DE-interleave mask for an interleaved load.
162 ///
163 /// E.g. DE-interleave masks (Factor = 2) could be:
164 ///     <0, 2, 4, 6>    (mask of index 0 to extract even elements)
165 ///     <1, 3, 5, 7>    (mask of index 1 to extract odd elements)
166 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
167                                unsigned &Index, unsigned MaxFactor,
168                                unsigned NumLoadElements) {
169   if (Mask.size() < 2)
170     return false;
171 
172   // Check potential Factors.
173   for (Factor = 2; Factor <= MaxFactor; Factor++) {
174     // Make sure we don't produce a load wider than the input load.
175     if (Mask.size() * Factor > NumLoadElements)
176       return false;
177     if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
178       return true;
179   }
180 
181   return false;
182 }
183 
184 /// Check if the mask can be used in an interleaved store.
185 //
186 /// It checks for a more general pattern than the RE-interleave mask.
187 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
188 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
189 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
190 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
191 ///
192 /// The particular case of an RE-interleave mask is:
193 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
194 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
195 static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
196                                unsigned MaxFactor, unsigned OpNumElts) {
197   unsigned NumElts = Mask.size();
198   if (NumElts < 4)
199     return false;
200 
201   // Check potential Factors.
202   for (Factor = 2; Factor <= MaxFactor; Factor++) {
203     if (NumElts % Factor)
204       continue;
205 
206     unsigned LaneLen = NumElts / Factor;
207     if (!isPowerOf2_32(LaneLen))
208       continue;
209 
210     // Check whether each element matches the general interleaved rule.
211     // Ignore undef elements, as long as the defined elements match the rule.
212     // Outer loop processes all factors (x, y, z in the above example)
213     unsigned I = 0, J;
214     for (; I < Factor; I++) {
215       unsigned SavedLaneValue;
216       unsigned SavedNoUndefs = 0;
217 
218       // Inner loop processes consecutive accesses (x, x+1... in the example)
219       for (J = 0; J < LaneLen - 1; J++) {
220         // Lane computes x's position in the Mask
221         unsigned Lane = J * Factor + I;
222         unsigned NextLane = Lane + Factor;
223         int LaneValue = Mask[Lane];
224         int NextLaneValue = Mask[NextLane];
225 
226         // If both are defined, values must be sequential
227         if (LaneValue >= 0 && NextLaneValue >= 0 &&
228             LaneValue + 1 != NextLaneValue)
229           break;
230 
231         // If the next value is undef, save the current one as reference
232         if (LaneValue >= 0 && NextLaneValue < 0) {
233           SavedLaneValue = LaneValue;
234           SavedNoUndefs = 1;
235         }
236 
237         // Undefs are allowed, but defined elements must still be consecutive:
238         // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
239         // Verify this by storing the last non-undef followed by an undef
240         // Check that following non-undef masks are incremented with the
241         // corresponding distance.
242         if (SavedNoUndefs > 0 && LaneValue < 0) {
243           SavedNoUndefs++;
244           if (NextLaneValue >= 0 &&
245               SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
246             break;
247         }
248       }
249 
250       if (J < LaneLen - 1)
251         break;
252 
253       int StartMask = 0;
254       if (Mask[I] >= 0) {
255         // Check that the start of the I range (J=0) is greater than 0
256         StartMask = Mask[I];
257       } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
258         // StartMask defined by the last value in lane
259         StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
260       } else if (SavedNoUndefs > 0) {
261         // StartMask defined by some non-zero value in the j loop
262         StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
263       }
264       // else StartMask remains set to 0, i.e. all elements are undefs
265 
266       if (StartMask < 0)
267         break;
268       // We must stay within the vectors; This case can happen with undefs.
269       if (StartMask + LaneLen > OpNumElts*2)
270         break;
271     }
272 
273     // Found an interleaved mask of current factor.
274     if (I == Factor)
275       return true;
276   }
277 
278   return false;
279 }
280 
281 bool InterleavedAccess::lowerInterleavedLoad(
282     LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
283   if (!LI->isSimple())
284     return false;
285 
286   SmallVector<ShuffleVectorInst *, 4> Shuffles;
287   SmallVector<ExtractElementInst *, 4> Extracts;
288 
289   // Check if all users of this load are shufflevectors. If we encounter any
290   // users that are extractelement instructions, we save them to later check if
291   // they can be modifed to extract from one of the shufflevectors instead of
292   // the load.
293   for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) {
294     auto *Extract = dyn_cast<ExtractElementInst>(*UI);
295     if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
296       Extracts.push_back(Extract);
297       continue;
298     }
299     ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI);
300     if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
301       return false;
302 
303     Shuffles.push_back(SVI);
304   }
305 
306   if (Shuffles.empty())
307     return false;
308 
309   unsigned Factor, Index;
310 
311   unsigned NumLoadElements = LI->getType()->getVectorNumElements();
312   // Check if the first shufflevector is DE-interleave shuffle.
313   if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index,
314                           MaxFactor, NumLoadElements))
315     return false;
316 
317   // Holds the corresponding index for each DE-interleave shuffle.
318   SmallVector<unsigned, 4> Indices;
319   Indices.push_back(Index);
320 
321   Type *VecTy = Shuffles[0]->getType();
322 
323   // Check if other shufflevectors are also DE-interleaved of the same type
324   // and factor as the first shufflevector.
325   for (unsigned i = 1; i < Shuffles.size(); i++) {
326     if (Shuffles[i]->getType() != VecTy)
327       return false;
328 
329     if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor,
330                                     Index))
331       return false;
332 
333     Indices.push_back(Index);
334   }
335 
336   // Try and modify users of the load that are extractelement instructions to
337   // use the shufflevector instructions instead of the load.
338   if (!tryReplaceExtracts(Extracts, Shuffles))
339     return false;
340 
341   LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
342 
343   // Try to create target specific intrinsics to replace the load and shuffles.
344   if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor))
345     return false;
346 
347   for (auto SVI : Shuffles)
348     DeadInsts.push_back(SVI);
349 
350   DeadInsts.push_back(LI);
351   return true;
352 }
353 
354 bool InterleavedAccess::tryReplaceExtracts(
355     ArrayRef<ExtractElementInst *> Extracts,
356     ArrayRef<ShuffleVectorInst *> Shuffles) {
357   // If there aren't any extractelement instructions to modify, there's nothing
358   // to do.
359   if (Extracts.empty())
360     return true;
361 
362   // Maps extractelement instructions to vector-index pairs. The extractlement
363   // instructions will be modified to use the new vector and index operands.
364   DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap;
365 
366   for (auto *Extract : Extracts) {
367     // The vector index that is extracted.
368     auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
369     auto Index = IndexOperand->getSExtValue();
370 
371     // Look for a suitable shufflevector instruction. The goal is to modify the
372     // extractelement instruction (which uses an interleaved load) to use one
373     // of the shufflevector instructions instead of the load.
374     for (auto *Shuffle : Shuffles) {
375       // If the shufflevector instruction doesn't dominate the extract, we
376       // can't create a use of it.
377       if (!DT->dominates(Shuffle, Extract))
378         continue;
379 
380       // Inspect the indices of the shufflevector instruction. If the shuffle
381       // selects the same index that is extracted, we can modify the
382       // extractelement instruction.
383       SmallVector<int, 4> Indices;
384       Shuffle->getShuffleMask(Indices);
385       for (unsigned I = 0; I < Indices.size(); ++I)
386         if (Indices[I] == Index) {
387           assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
388                  "Vector operations do not match");
389           ReplacementMap[Extract] = std::make_pair(Shuffle, I);
390           break;
391         }
392 
393       // If we found a suitable shufflevector instruction, stop looking.
394       if (ReplacementMap.count(Extract))
395         break;
396     }
397 
398     // If we did not find a suitable shufflevector instruction, the
399     // extractelement instruction cannot be modified, so we must give up.
400     if (!ReplacementMap.count(Extract))
401       return false;
402   }
403 
404   // Finally, perform the replacements.
405   IRBuilder<> Builder(Extracts[0]->getContext());
406   for (auto &Replacement : ReplacementMap) {
407     auto *Extract = Replacement.first;
408     auto *Vector = Replacement.second.first;
409     auto Index = Replacement.second.second;
410     Builder.SetInsertPoint(Extract);
411     Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
412     Extract->eraseFromParent();
413   }
414 
415   return true;
416 }
417 
418 bool InterleavedAccess::lowerInterleavedStore(
419     StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
420   if (!SI->isSimple())
421     return false;
422 
423   ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
424   if (!SVI || !SVI->hasOneUse())
425     return false;
426 
427   // Check if the shufflevector is RE-interleave shuffle.
428   unsigned Factor;
429   unsigned OpNumElts = SVI->getOperand(0)->getType()->getVectorNumElements();
430   if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts))
431     return false;
432 
433   LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
434 
435   // Try to create target specific intrinsics to replace the store and shuffle.
436   if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
437     return false;
438 
439   // Already have a new target specific interleaved store. Erase the old store.
440   DeadInsts.push_back(SI);
441   DeadInsts.push_back(SVI);
442   return true;
443 }
444 
445 bool InterleavedAccess::runOnFunction(Function &F) {
446   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
447   if (!TPC || !LowerInterleavedAccesses)
448     return false;
449 
450   LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
451 
452   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
453   auto &TM = TPC->getTM<TargetMachine>();
454   TLI = TM.getSubtargetImpl(F)->getTargetLowering();
455   MaxFactor = TLI->getMaxSupportedInterleaveFactor();
456 
457   // Holds dead instructions that will be erased later.
458   SmallVector<Instruction *, 32> DeadInsts;
459   bool Changed = false;
460 
461   for (auto &I : instructions(F)) {
462     if (LoadInst *LI = dyn_cast<LoadInst>(&I))
463       Changed |= lowerInterleavedLoad(LI, DeadInsts);
464 
465     if (StoreInst *SI = dyn_cast<StoreInst>(&I))
466       Changed |= lowerInterleavedStore(SI, DeadInsts);
467   }
468 
469   for (auto I : DeadInsts)
470     I->eraseFromParent();
471 
472   return Changed;
473 }
474