1 //===- InterleavedAccessPass.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Interleaved Access pass, which identifies 10 // interleaved memory accesses and transforms them into target specific 11 // intrinsics. 12 // 13 // An interleaved load reads data from memory into several vectors, with 14 // DE-interleaving the data on a factor. An interleaved store writes several 15 // vectors to memory with RE-interleaving the data on a factor. 16 // 17 // As interleaved accesses are difficult to identified in CodeGen (mainly 18 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector 19 // IR), we identify and transform them to intrinsics in this pass so the 20 // intrinsics can be easily matched into target specific instructions later in 21 // CodeGen. 22 // 23 // E.g. An interleaved load (Factor = 2): 24 // %wide.vec = load <8 x i32>, <8 x i32>* %ptr 25 // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6> 26 // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7> 27 // 28 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2 29 // intrinsic in ARM backend. 30 // 31 // In X86, this can be further optimized into a set of target 32 // specific loads followed by an optimized sequence of shuffles. 33 // 34 // E.g. An interleaved store (Factor = 3): 35 // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, 36 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> 37 // store <12 x i32> %i.vec, <12 x i32>* %ptr 38 // 39 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3 40 // intrinsic in ARM backend. 41 // 42 // Similarly, a set of interleaved stores can be transformed into an optimized 43 // sequence of shuffles followed by a set of target specific stores for X86. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/ADT/ArrayRef.h" 48 #include "llvm/ADT/DenseMap.h" 49 #include "llvm/ADT/SmallVector.h" 50 #include "llvm/CodeGen/TargetLowering.h" 51 #include "llvm/CodeGen/TargetPassConfig.h" 52 #include "llvm/CodeGen/TargetSubtargetInfo.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/Dominators.h" 55 #include "llvm/IR/Function.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstIterator.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/Pass.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include <cassert> 69 #include <utility> 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "interleaved-access" 74 75 static cl::opt<bool> LowerInterleavedAccesses( 76 "lower-interleaved-accesses", 77 cl::desc("Enable lowering interleaved accesses to intrinsics"), 78 cl::init(true), cl::Hidden); 79 80 namespace { 81 82 class InterleavedAccess : public FunctionPass { 83 public: 84 static char ID; 85 86 InterleavedAccess() : FunctionPass(ID) { 87 initializeInterleavedAccessPass(*PassRegistry::getPassRegistry()); 88 } 89 90 StringRef getPassName() const override { return "Interleaved Access Pass"; } 91 92 bool runOnFunction(Function &F) override; 93 94 void getAnalysisUsage(AnalysisUsage &AU) const override { 95 AU.addRequired<DominatorTreeWrapperPass>(); 96 AU.addPreserved<DominatorTreeWrapperPass>(); 97 } 98 99 private: 100 DominatorTree *DT = nullptr; 101 const TargetLowering *TLI = nullptr; 102 103 /// The maximum supported interleave factor. 104 unsigned MaxFactor; 105 106 /// Transform an interleaved load into target specific intrinsics. 107 bool lowerInterleavedLoad(LoadInst *LI, 108 SmallVector<Instruction *, 32> &DeadInsts); 109 110 /// Transform an interleaved store into target specific intrinsics. 111 bool lowerInterleavedStore(StoreInst *SI, 112 SmallVector<Instruction *, 32> &DeadInsts); 113 114 /// Returns true if the uses of an interleaved load by the 115 /// extractelement instructions in \p Extracts can be replaced by uses of the 116 /// shufflevector instructions in \p Shuffles instead. If so, the necessary 117 /// replacements are also performed. 118 bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts, 119 ArrayRef<ShuffleVectorInst *> Shuffles); 120 }; 121 122 } // end anonymous namespace. 123 124 char InterleavedAccess::ID = 0; 125 126 INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE, 127 "Lower interleaved memory accesses to target specific intrinsics", false, 128 false) 129 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 130 INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE, 131 "Lower interleaved memory accesses to target specific intrinsics", false, 132 false) 133 134 FunctionPass *llvm::createInterleavedAccessPass() { 135 return new InterleavedAccess(); 136 } 137 138 /// Check if the mask is a DE-interleave mask of the given factor 139 /// \p Factor like: 140 /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor> 141 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor, 142 unsigned &Index) { 143 // Check all potential start indices from 0 to (Factor - 1). 144 for (Index = 0; Index < Factor; Index++) { 145 unsigned i = 0; 146 147 // Check that elements are in ascending order by Factor. Ignore undef 148 // elements. 149 for (; i < Mask.size(); i++) 150 if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor) 151 break; 152 153 if (i == Mask.size()) 154 return true; 155 } 156 157 return false; 158 } 159 160 /// Check if the mask is a DE-interleave mask for an interleaved load. 161 /// 162 /// E.g. DE-interleave masks (Factor = 2) could be: 163 /// <0, 2, 4, 6> (mask of index 0 to extract even elements) 164 /// <1, 3, 5, 7> (mask of index 1 to extract odd elements) 165 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, 166 unsigned &Index, unsigned MaxFactor, 167 unsigned NumLoadElements) { 168 if (Mask.size() < 2) 169 return false; 170 171 // Check potential Factors. 172 for (Factor = 2; Factor <= MaxFactor; Factor++) { 173 // Make sure we don't produce a load wider than the input load. 174 if (Mask.size() * Factor > NumLoadElements) 175 return false; 176 if (isDeInterleaveMaskOfFactor(Mask, Factor, Index)) 177 return true; 178 } 179 180 return false; 181 } 182 183 /// Check if the mask can be used in an interleaved store. 184 // 185 /// It checks for a more general pattern than the RE-interleave mask. 186 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...> 187 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35> 188 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> 189 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5> 190 /// 191 /// The particular case of an RE-interleave mask is: 192 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...> 193 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7> 194 static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, 195 unsigned MaxFactor, unsigned OpNumElts) { 196 unsigned NumElts = Mask.size(); 197 if (NumElts < 4) 198 return false; 199 200 // Check potential Factors. 201 for (Factor = 2; Factor <= MaxFactor; Factor++) { 202 if (NumElts % Factor) 203 continue; 204 205 unsigned LaneLen = NumElts / Factor; 206 if (!isPowerOf2_32(LaneLen)) 207 continue; 208 209 // Check whether each element matches the general interleaved rule. 210 // Ignore undef elements, as long as the defined elements match the rule. 211 // Outer loop processes all factors (x, y, z in the above example) 212 unsigned I = 0, J; 213 for (; I < Factor; I++) { 214 unsigned SavedLaneValue; 215 unsigned SavedNoUndefs = 0; 216 217 // Inner loop processes consecutive accesses (x, x+1... in the example) 218 for (J = 0; J < LaneLen - 1; J++) { 219 // Lane computes x's position in the Mask 220 unsigned Lane = J * Factor + I; 221 unsigned NextLane = Lane + Factor; 222 int LaneValue = Mask[Lane]; 223 int NextLaneValue = Mask[NextLane]; 224 225 // If both are defined, values must be sequential 226 if (LaneValue >= 0 && NextLaneValue >= 0 && 227 LaneValue + 1 != NextLaneValue) 228 break; 229 230 // If the next value is undef, save the current one as reference 231 if (LaneValue >= 0 && NextLaneValue < 0) { 232 SavedLaneValue = LaneValue; 233 SavedNoUndefs = 1; 234 } 235 236 // Undefs are allowed, but defined elements must still be consecutive: 237 // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, .... 238 // Verify this by storing the last non-undef followed by an undef 239 // Check that following non-undef masks are incremented with the 240 // corresponding distance. 241 if (SavedNoUndefs > 0 && LaneValue < 0) { 242 SavedNoUndefs++; 243 if (NextLaneValue >= 0 && 244 SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue) 245 break; 246 } 247 } 248 249 if (J < LaneLen - 1) 250 break; 251 252 int StartMask = 0; 253 if (Mask[I] >= 0) { 254 // Check that the start of the I range (J=0) is greater than 0 255 StartMask = Mask[I]; 256 } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) { 257 // StartMask defined by the last value in lane 258 StartMask = Mask[(LaneLen - 1) * Factor + I] - J; 259 } else if (SavedNoUndefs > 0) { 260 // StartMask defined by some non-zero value in the j loop 261 StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs); 262 } 263 // else StartMask remains set to 0, i.e. all elements are undefs 264 265 if (StartMask < 0) 266 break; 267 // We must stay within the vectors; This case can happen with undefs. 268 if (StartMask + LaneLen > OpNumElts*2) 269 break; 270 } 271 272 // Found an interleaved mask of current factor. 273 if (I == Factor) 274 return true; 275 } 276 277 return false; 278 } 279 280 bool InterleavedAccess::lowerInterleavedLoad( 281 LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) { 282 if (!LI->isSimple()) 283 return false; 284 285 SmallVector<ShuffleVectorInst *, 4> Shuffles; 286 SmallVector<ExtractElementInst *, 4> Extracts; 287 288 // Check if all users of this load are shufflevectors. If we encounter any 289 // users that are extractelement instructions, we save them to later check if 290 // they can be modifed to extract from one of the shufflevectors instead of 291 // the load. 292 for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) { 293 auto *Extract = dyn_cast<ExtractElementInst>(*UI); 294 if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) { 295 Extracts.push_back(Extract); 296 continue; 297 } 298 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI); 299 if (!SVI || !isa<UndefValue>(SVI->getOperand(1))) 300 return false; 301 302 Shuffles.push_back(SVI); 303 } 304 305 if (Shuffles.empty()) 306 return false; 307 308 unsigned Factor, Index; 309 310 unsigned NumLoadElements = LI->getType()->getVectorNumElements(); 311 // Check if the first shufflevector is DE-interleave shuffle. 312 if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index, 313 MaxFactor, NumLoadElements)) 314 return false; 315 316 // Holds the corresponding index for each DE-interleave shuffle. 317 SmallVector<unsigned, 4> Indices; 318 Indices.push_back(Index); 319 320 Type *VecTy = Shuffles[0]->getType(); 321 322 // Check if other shufflevectors are also DE-interleaved of the same type 323 // and factor as the first shufflevector. 324 for (unsigned i = 1; i < Shuffles.size(); i++) { 325 if (Shuffles[i]->getType() != VecTy) 326 return false; 327 328 if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor, 329 Index)) 330 return false; 331 332 Indices.push_back(Index); 333 } 334 335 // Try and modify users of the load that are extractelement instructions to 336 // use the shufflevector instructions instead of the load. 337 if (!tryReplaceExtracts(Extracts, Shuffles)) 338 return false; 339 340 LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n"); 341 342 // Try to create target specific intrinsics to replace the load and shuffles. 343 if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) 344 return false; 345 346 for (auto SVI : Shuffles) 347 DeadInsts.push_back(SVI); 348 349 DeadInsts.push_back(LI); 350 return true; 351 } 352 353 bool InterleavedAccess::tryReplaceExtracts( 354 ArrayRef<ExtractElementInst *> Extracts, 355 ArrayRef<ShuffleVectorInst *> Shuffles) { 356 // If there aren't any extractelement instructions to modify, there's nothing 357 // to do. 358 if (Extracts.empty()) 359 return true; 360 361 // Maps extractelement instructions to vector-index pairs. The extractlement 362 // instructions will be modified to use the new vector and index operands. 363 DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap; 364 365 for (auto *Extract : Extracts) { 366 // The vector index that is extracted. 367 auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand()); 368 auto Index = IndexOperand->getSExtValue(); 369 370 // Look for a suitable shufflevector instruction. The goal is to modify the 371 // extractelement instruction (which uses an interleaved load) to use one 372 // of the shufflevector instructions instead of the load. 373 for (auto *Shuffle : Shuffles) { 374 // If the shufflevector instruction doesn't dominate the extract, we 375 // can't create a use of it. 376 if (!DT->dominates(Shuffle, Extract)) 377 continue; 378 379 // Inspect the indices of the shufflevector instruction. If the shuffle 380 // selects the same index that is extracted, we can modify the 381 // extractelement instruction. 382 SmallVector<int, 4> Indices; 383 Shuffle->getShuffleMask(Indices); 384 for (unsigned I = 0; I < Indices.size(); ++I) 385 if (Indices[I] == Index) { 386 assert(Extract->getOperand(0) == Shuffle->getOperand(0) && 387 "Vector operations do not match"); 388 ReplacementMap[Extract] = std::make_pair(Shuffle, I); 389 break; 390 } 391 392 // If we found a suitable shufflevector instruction, stop looking. 393 if (ReplacementMap.count(Extract)) 394 break; 395 } 396 397 // If we did not find a suitable shufflevector instruction, the 398 // extractelement instruction cannot be modified, so we must give up. 399 if (!ReplacementMap.count(Extract)) 400 return false; 401 } 402 403 // Finally, perform the replacements. 404 IRBuilder<> Builder(Extracts[0]->getContext()); 405 for (auto &Replacement : ReplacementMap) { 406 auto *Extract = Replacement.first; 407 auto *Vector = Replacement.second.first; 408 auto Index = Replacement.second.second; 409 Builder.SetInsertPoint(Extract); 410 Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index)); 411 Extract->eraseFromParent(); 412 } 413 414 return true; 415 } 416 417 bool InterleavedAccess::lowerInterleavedStore( 418 StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) { 419 if (!SI->isSimple()) 420 return false; 421 422 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand()); 423 if (!SVI || !SVI->hasOneUse()) 424 return false; 425 426 // Check if the shufflevector is RE-interleave shuffle. 427 unsigned Factor; 428 unsigned OpNumElts = SVI->getOperand(0)->getType()->getVectorNumElements(); 429 if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts)) 430 return false; 431 432 LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n"); 433 434 // Try to create target specific intrinsics to replace the store and shuffle. 435 if (!TLI->lowerInterleavedStore(SI, SVI, Factor)) 436 return false; 437 438 // Already have a new target specific interleaved store. Erase the old store. 439 DeadInsts.push_back(SI); 440 DeadInsts.push_back(SVI); 441 return true; 442 } 443 444 bool InterleavedAccess::runOnFunction(Function &F) { 445 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 446 if (!TPC || !LowerInterleavedAccesses) 447 return false; 448 449 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n"); 450 451 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 452 auto &TM = TPC->getTM<TargetMachine>(); 453 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 454 MaxFactor = TLI->getMaxSupportedInterleaveFactor(); 455 456 // Holds dead instructions that will be erased later. 457 SmallVector<Instruction *, 32> DeadInsts; 458 bool Changed = false; 459 460 for (auto &I : instructions(F)) { 461 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) 462 Changed |= lowerInterleavedLoad(LI, DeadInsts); 463 464 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 465 Changed |= lowerInterleavedStore(SI, DeadInsts); 466 } 467 468 for (auto I : DeadInsts) 469 I->eraseFromParent(); 470 471 return Changed; 472 } 473