xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/InterleavedAccessPass.cpp (revision 162ae9c834f6d9f9cb443bd62cceb23e0b5fef48)
1 //===- InterleavedAccessPass.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Interleaved Access pass, which identifies
10 // interleaved memory accesses and transforms them into target specific
11 // intrinsics.
12 //
13 // An interleaved load reads data from memory into several vectors, with
14 // DE-interleaving the data on a factor. An interleaved store writes several
15 // vectors to memory with RE-interleaving the data on a factor.
16 //
17 // As interleaved accesses are difficult to identified in CodeGen (mainly
18 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
19 // IR), we identify and transform them to intrinsics in this pass so the
20 // intrinsics can be easily matched into target specific instructions later in
21 // CodeGen.
22 //
23 // E.g. An interleaved load (Factor = 2):
24 //        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
25 //        %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
26 //        %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
27 //
28 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
29 // intrinsic in ARM backend.
30 //
31 // In X86, this can be further optimized into a set of target
32 // specific loads followed by an optimized sequence of shuffles.
33 //
34 // E.g. An interleaved store (Factor = 3):
35 //        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
36 //                                    <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
37 //        store <12 x i32> %i.vec, <12 x i32>* %ptr
38 //
39 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
40 // intrinsic in ARM backend.
41 //
42 // Similarly, a set of interleaved stores can be transformed into an optimized
43 // sequence of shuffles followed by a set of target specific stores for X86.
44 //
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/CodeGen/TargetLowering.h"
51 #include "llvm/CodeGen/TargetPassConfig.h"
52 #include "llvm/CodeGen/TargetSubtargetInfo.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstIterator.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include <cassert>
69 #include <utility>
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "interleaved-access"
74 
75 static cl::opt<bool> LowerInterleavedAccesses(
76     "lower-interleaved-accesses",
77     cl::desc("Enable lowering interleaved accesses to intrinsics"),
78     cl::init(true), cl::Hidden);
79 
80 namespace {
81 
82 class InterleavedAccess : public FunctionPass {
83 public:
84   static char ID;
85 
86   InterleavedAccess() : FunctionPass(ID) {
87     initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
88   }
89 
90   StringRef getPassName() const override { return "Interleaved Access Pass"; }
91 
92   bool runOnFunction(Function &F) override;
93 
94   void getAnalysisUsage(AnalysisUsage &AU) const override {
95     AU.addRequired<DominatorTreeWrapperPass>();
96     AU.addPreserved<DominatorTreeWrapperPass>();
97   }
98 
99 private:
100   DominatorTree *DT = nullptr;
101   const TargetLowering *TLI = nullptr;
102 
103   /// The maximum supported interleave factor.
104   unsigned MaxFactor;
105 
106   /// Transform an interleaved load into target specific intrinsics.
107   bool lowerInterleavedLoad(LoadInst *LI,
108                             SmallVector<Instruction *, 32> &DeadInsts);
109 
110   /// Transform an interleaved store into target specific intrinsics.
111   bool lowerInterleavedStore(StoreInst *SI,
112                              SmallVector<Instruction *, 32> &DeadInsts);
113 
114   /// Returns true if the uses of an interleaved load by the
115   /// extractelement instructions in \p Extracts can be replaced by uses of the
116   /// shufflevector instructions in \p Shuffles instead. If so, the necessary
117   /// replacements are also performed.
118   bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
119                           ArrayRef<ShuffleVectorInst *> Shuffles);
120 };
121 
122 } // end anonymous namespace.
123 
124 char InterleavedAccess::ID = 0;
125 
126 INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE,
127     "Lower interleaved memory accesses to target specific intrinsics", false,
128     false)
129 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
130 INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE,
131     "Lower interleaved memory accesses to target specific intrinsics", false,
132     false)
133 
134 FunctionPass *llvm::createInterleavedAccessPass() {
135   return new InterleavedAccess();
136 }
137 
138 /// Check if the mask is a DE-interleave mask of the given factor
139 /// \p Factor like:
140 ///     <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
141 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
142                                        unsigned &Index) {
143   // Check all potential start indices from 0 to (Factor - 1).
144   for (Index = 0; Index < Factor; Index++) {
145     unsigned i = 0;
146 
147     // Check that elements are in ascending order by Factor. Ignore undef
148     // elements.
149     for (; i < Mask.size(); i++)
150       if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
151         break;
152 
153     if (i == Mask.size())
154       return true;
155   }
156 
157   return false;
158 }
159 
160 /// Check if the mask is a DE-interleave mask for an interleaved load.
161 ///
162 /// E.g. DE-interleave masks (Factor = 2) could be:
163 ///     <0, 2, 4, 6>    (mask of index 0 to extract even elements)
164 ///     <1, 3, 5, 7>    (mask of index 1 to extract odd elements)
165 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
166                                unsigned &Index, unsigned MaxFactor,
167                                unsigned NumLoadElements) {
168   if (Mask.size() < 2)
169     return false;
170 
171   // Check potential Factors.
172   for (Factor = 2; Factor <= MaxFactor; Factor++) {
173     // Make sure we don't produce a load wider than the input load.
174     if (Mask.size() * Factor > NumLoadElements)
175       return false;
176     if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
177       return true;
178   }
179 
180   return false;
181 }
182 
183 /// Check if the mask can be used in an interleaved store.
184 //
185 /// It checks for a more general pattern than the RE-interleave mask.
186 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
187 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
188 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
189 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
190 ///
191 /// The particular case of an RE-interleave mask is:
192 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
193 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
194 static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
195                                unsigned MaxFactor, unsigned OpNumElts) {
196   unsigned NumElts = Mask.size();
197   if (NumElts < 4)
198     return false;
199 
200   // Check potential Factors.
201   for (Factor = 2; Factor <= MaxFactor; Factor++) {
202     if (NumElts % Factor)
203       continue;
204 
205     unsigned LaneLen = NumElts / Factor;
206     if (!isPowerOf2_32(LaneLen))
207       continue;
208 
209     // Check whether each element matches the general interleaved rule.
210     // Ignore undef elements, as long as the defined elements match the rule.
211     // Outer loop processes all factors (x, y, z in the above example)
212     unsigned I = 0, J;
213     for (; I < Factor; I++) {
214       unsigned SavedLaneValue;
215       unsigned SavedNoUndefs = 0;
216 
217       // Inner loop processes consecutive accesses (x, x+1... in the example)
218       for (J = 0; J < LaneLen - 1; J++) {
219         // Lane computes x's position in the Mask
220         unsigned Lane = J * Factor + I;
221         unsigned NextLane = Lane + Factor;
222         int LaneValue = Mask[Lane];
223         int NextLaneValue = Mask[NextLane];
224 
225         // If both are defined, values must be sequential
226         if (LaneValue >= 0 && NextLaneValue >= 0 &&
227             LaneValue + 1 != NextLaneValue)
228           break;
229 
230         // If the next value is undef, save the current one as reference
231         if (LaneValue >= 0 && NextLaneValue < 0) {
232           SavedLaneValue = LaneValue;
233           SavedNoUndefs = 1;
234         }
235 
236         // Undefs are allowed, but defined elements must still be consecutive:
237         // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
238         // Verify this by storing the last non-undef followed by an undef
239         // Check that following non-undef masks are incremented with the
240         // corresponding distance.
241         if (SavedNoUndefs > 0 && LaneValue < 0) {
242           SavedNoUndefs++;
243           if (NextLaneValue >= 0 &&
244               SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
245             break;
246         }
247       }
248 
249       if (J < LaneLen - 1)
250         break;
251 
252       int StartMask = 0;
253       if (Mask[I] >= 0) {
254         // Check that the start of the I range (J=0) is greater than 0
255         StartMask = Mask[I];
256       } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
257         // StartMask defined by the last value in lane
258         StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
259       } else if (SavedNoUndefs > 0) {
260         // StartMask defined by some non-zero value in the j loop
261         StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
262       }
263       // else StartMask remains set to 0, i.e. all elements are undefs
264 
265       if (StartMask < 0)
266         break;
267       // We must stay within the vectors; This case can happen with undefs.
268       if (StartMask + LaneLen > OpNumElts*2)
269         break;
270     }
271 
272     // Found an interleaved mask of current factor.
273     if (I == Factor)
274       return true;
275   }
276 
277   return false;
278 }
279 
280 bool InterleavedAccess::lowerInterleavedLoad(
281     LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
282   if (!LI->isSimple())
283     return false;
284 
285   SmallVector<ShuffleVectorInst *, 4> Shuffles;
286   SmallVector<ExtractElementInst *, 4> Extracts;
287 
288   // Check if all users of this load are shufflevectors. If we encounter any
289   // users that are extractelement instructions, we save them to later check if
290   // they can be modifed to extract from one of the shufflevectors instead of
291   // the load.
292   for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) {
293     auto *Extract = dyn_cast<ExtractElementInst>(*UI);
294     if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
295       Extracts.push_back(Extract);
296       continue;
297     }
298     ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI);
299     if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
300       return false;
301 
302     Shuffles.push_back(SVI);
303   }
304 
305   if (Shuffles.empty())
306     return false;
307 
308   unsigned Factor, Index;
309 
310   unsigned NumLoadElements = LI->getType()->getVectorNumElements();
311   // Check if the first shufflevector is DE-interleave shuffle.
312   if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index,
313                           MaxFactor, NumLoadElements))
314     return false;
315 
316   // Holds the corresponding index for each DE-interleave shuffle.
317   SmallVector<unsigned, 4> Indices;
318   Indices.push_back(Index);
319 
320   Type *VecTy = Shuffles[0]->getType();
321 
322   // Check if other shufflevectors are also DE-interleaved of the same type
323   // and factor as the first shufflevector.
324   for (unsigned i = 1; i < Shuffles.size(); i++) {
325     if (Shuffles[i]->getType() != VecTy)
326       return false;
327 
328     if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor,
329                                     Index))
330       return false;
331 
332     Indices.push_back(Index);
333   }
334 
335   // Try and modify users of the load that are extractelement instructions to
336   // use the shufflevector instructions instead of the load.
337   if (!tryReplaceExtracts(Extracts, Shuffles))
338     return false;
339 
340   LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
341 
342   // Try to create target specific intrinsics to replace the load and shuffles.
343   if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor))
344     return false;
345 
346   for (auto SVI : Shuffles)
347     DeadInsts.push_back(SVI);
348 
349   DeadInsts.push_back(LI);
350   return true;
351 }
352 
353 bool InterleavedAccess::tryReplaceExtracts(
354     ArrayRef<ExtractElementInst *> Extracts,
355     ArrayRef<ShuffleVectorInst *> Shuffles) {
356   // If there aren't any extractelement instructions to modify, there's nothing
357   // to do.
358   if (Extracts.empty())
359     return true;
360 
361   // Maps extractelement instructions to vector-index pairs. The extractlement
362   // instructions will be modified to use the new vector and index operands.
363   DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap;
364 
365   for (auto *Extract : Extracts) {
366     // The vector index that is extracted.
367     auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
368     auto Index = IndexOperand->getSExtValue();
369 
370     // Look for a suitable shufflevector instruction. The goal is to modify the
371     // extractelement instruction (which uses an interleaved load) to use one
372     // of the shufflevector instructions instead of the load.
373     for (auto *Shuffle : Shuffles) {
374       // If the shufflevector instruction doesn't dominate the extract, we
375       // can't create a use of it.
376       if (!DT->dominates(Shuffle, Extract))
377         continue;
378 
379       // Inspect the indices of the shufflevector instruction. If the shuffle
380       // selects the same index that is extracted, we can modify the
381       // extractelement instruction.
382       SmallVector<int, 4> Indices;
383       Shuffle->getShuffleMask(Indices);
384       for (unsigned I = 0; I < Indices.size(); ++I)
385         if (Indices[I] == Index) {
386           assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
387                  "Vector operations do not match");
388           ReplacementMap[Extract] = std::make_pair(Shuffle, I);
389           break;
390         }
391 
392       // If we found a suitable shufflevector instruction, stop looking.
393       if (ReplacementMap.count(Extract))
394         break;
395     }
396 
397     // If we did not find a suitable shufflevector instruction, the
398     // extractelement instruction cannot be modified, so we must give up.
399     if (!ReplacementMap.count(Extract))
400       return false;
401   }
402 
403   // Finally, perform the replacements.
404   IRBuilder<> Builder(Extracts[0]->getContext());
405   for (auto &Replacement : ReplacementMap) {
406     auto *Extract = Replacement.first;
407     auto *Vector = Replacement.second.first;
408     auto Index = Replacement.second.second;
409     Builder.SetInsertPoint(Extract);
410     Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
411     Extract->eraseFromParent();
412   }
413 
414   return true;
415 }
416 
417 bool InterleavedAccess::lowerInterleavedStore(
418     StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
419   if (!SI->isSimple())
420     return false;
421 
422   ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
423   if (!SVI || !SVI->hasOneUse())
424     return false;
425 
426   // Check if the shufflevector is RE-interleave shuffle.
427   unsigned Factor;
428   unsigned OpNumElts = SVI->getOperand(0)->getType()->getVectorNumElements();
429   if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts))
430     return false;
431 
432   LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
433 
434   // Try to create target specific intrinsics to replace the store and shuffle.
435   if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
436     return false;
437 
438   // Already have a new target specific interleaved store. Erase the old store.
439   DeadInsts.push_back(SI);
440   DeadInsts.push_back(SVI);
441   return true;
442 }
443 
444 bool InterleavedAccess::runOnFunction(Function &F) {
445   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
446   if (!TPC || !LowerInterleavedAccesses)
447     return false;
448 
449   LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
450 
451   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
452   auto &TM = TPC->getTM<TargetMachine>();
453   TLI = TM.getSubtargetImpl(F)->getTargetLowering();
454   MaxFactor = TLI->getMaxSupportedInterleaveFactor();
455 
456   // Holds dead instructions that will be erased later.
457   SmallVector<Instruction *, 32> DeadInsts;
458   bool Changed = false;
459 
460   for (auto &I : instructions(F)) {
461     if (LoadInst *LI = dyn_cast<LoadInst>(&I))
462       Changed |= lowerInterleavedLoad(LI, DeadInsts);
463 
464     if (StoreInst *SI = dyn_cast<StoreInst>(&I))
465       Changed |= lowerInterleavedStore(SI, DeadInsts);
466   }
467 
468   for (auto I : DeadInsts)
469     I->eraseFromParent();
470 
471   return Changed;
472 }
473