1 //===- InterleavedAccessPass.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Interleaved Access pass, which identifies 10 // interleaved memory accesses and transforms them into target specific 11 // intrinsics. 12 // 13 // An interleaved load reads data from memory into several vectors, with 14 // DE-interleaving the data on a factor. An interleaved store writes several 15 // vectors to memory with RE-interleaving the data on a factor. 16 // 17 // As interleaved accesses are difficult to identified in CodeGen (mainly 18 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector 19 // IR), we identify and transform them to intrinsics in this pass so the 20 // intrinsics can be easily matched into target specific instructions later in 21 // CodeGen. 22 // 23 // E.g. An interleaved load (Factor = 2): 24 // %wide.vec = load <8 x i32>, <8 x i32>* %ptr 25 // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6> 26 // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7> 27 // 28 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2 29 // intrinsic in ARM backend. 30 // 31 // In X86, this can be further optimized into a set of target 32 // specific loads followed by an optimized sequence of shuffles. 33 // 34 // E.g. An interleaved store (Factor = 3): 35 // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, 36 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> 37 // store <12 x i32> %i.vec, <12 x i32>* %ptr 38 // 39 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3 40 // intrinsic in ARM backend. 41 // 42 // Similarly, a set of interleaved stores can be transformed into an optimized 43 // sequence of shuffles followed by a set of target specific stores for X86. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/ADT/ArrayRef.h" 48 #include "llvm/ADT/DenseMap.h" 49 #include "llvm/ADT/SetVector.h" 50 #include "llvm/ADT/SmallVector.h" 51 #include "llvm/CodeGen/TargetLowering.h" 52 #include "llvm/CodeGen/TargetPassConfig.h" 53 #include "llvm/CodeGen/TargetSubtargetInfo.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InstIterator.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/InitializePasses.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Transforms/Utils/Local.h" 71 #include <cassert> 72 #include <utility> 73 74 using namespace llvm; 75 76 #define DEBUG_TYPE "interleaved-access" 77 78 static cl::opt<bool> LowerInterleavedAccesses( 79 "lower-interleaved-accesses", 80 cl::desc("Enable lowering interleaved accesses to intrinsics"), 81 cl::init(true), cl::Hidden); 82 83 namespace { 84 85 class InterleavedAccess : public FunctionPass { 86 public: 87 static char ID; 88 89 InterleavedAccess() : FunctionPass(ID) { 90 initializeInterleavedAccessPass(*PassRegistry::getPassRegistry()); 91 } 92 93 StringRef getPassName() const override { return "Interleaved Access Pass"; } 94 95 bool runOnFunction(Function &F) override; 96 97 void getAnalysisUsage(AnalysisUsage &AU) const override { 98 AU.addRequired<DominatorTreeWrapperPass>(); 99 AU.setPreservesCFG(); 100 } 101 102 private: 103 DominatorTree *DT = nullptr; 104 const TargetLowering *TLI = nullptr; 105 106 /// The maximum supported interleave factor. 107 unsigned MaxFactor = 0u; 108 109 /// Transform an interleaved load into target specific intrinsics. 110 bool lowerInterleavedLoad(LoadInst *LI, 111 SmallVector<Instruction *, 32> &DeadInsts); 112 113 /// Transform an interleaved store into target specific intrinsics. 114 bool lowerInterleavedStore(StoreInst *SI, 115 SmallVector<Instruction *, 32> &DeadInsts); 116 117 /// Transform a load and a deinterleave intrinsic into target specific 118 /// instructions. 119 bool lowerDeinterleaveIntrinsic(IntrinsicInst *II, 120 SmallVector<Instruction *, 32> &DeadInsts); 121 122 /// Transform an interleave intrinsic and a store into target specific 123 /// instructions. 124 bool lowerInterleaveIntrinsic(IntrinsicInst *II, 125 SmallVector<Instruction *, 32> &DeadInsts); 126 127 /// Returns true if the uses of an interleaved load by the 128 /// extractelement instructions in \p Extracts can be replaced by uses of the 129 /// shufflevector instructions in \p Shuffles instead. If so, the necessary 130 /// replacements are also performed. 131 bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts, 132 ArrayRef<ShuffleVectorInst *> Shuffles); 133 134 /// Given a number of shuffles of the form shuffle(binop(x,y)), convert them 135 /// to binop(shuffle(x), shuffle(y)) to allow the formation of an 136 /// interleaving load. Any newly created shuffles that operate on \p LI will 137 /// be added to \p Shuffles. Returns true, if any changes to the IR have been 138 /// made. 139 bool replaceBinOpShuffles(ArrayRef<ShuffleVectorInst *> BinOpShuffles, 140 SmallVectorImpl<ShuffleVectorInst *> &Shuffles, 141 LoadInst *LI); 142 }; 143 144 } // end anonymous namespace. 145 146 char InterleavedAccess::ID = 0; 147 148 INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE, 149 "Lower interleaved memory accesses to target specific intrinsics", false, 150 false) 151 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 152 INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE, 153 "Lower interleaved memory accesses to target specific intrinsics", false, 154 false) 155 156 FunctionPass *llvm::createInterleavedAccessPass() { 157 return new InterleavedAccess(); 158 } 159 160 /// Check if the mask is a DE-interleave mask of the given factor 161 /// \p Factor like: 162 /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor> 163 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor, 164 unsigned &Index) { 165 // Check all potential start indices from 0 to (Factor - 1). 166 for (Index = 0; Index < Factor; Index++) { 167 unsigned i = 0; 168 169 // Check that elements are in ascending order by Factor. Ignore undef 170 // elements. 171 for (; i < Mask.size(); i++) 172 if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor) 173 break; 174 175 if (i == Mask.size()) 176 return true; 177 } 178 179 return false; 180 } 181 182 /// Check if the mask is a DE-interleave mask for an interleaved load. 183 /// 184 /// E.g. DE-interleave masks (Factor = 2) could be: 185 /// <0, 2, 4, 6> (mask of index 0 to extract even elements) 186 /// <1, 3, 5, 7> (mask of index 1 to extract odd elements) 187 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, 188 unsigned &Index, unsigned MaxFactor, 189 unsigned NumLoadElements) { 190 if (Mask.size() < 2) 191 return false; 192 193 // Check potential Factors. 194 for (Factor = 2; Factor <= MaxFactor; Factor++) { 195 // Make sure we don't produce a load wider than the input load. 196 if (Mask.size() * Factor > NumLoadElements) 197 return false; 198 if (isDeInterleaveMaskOfFactor(Mask, Factor, Index)) 199 return true; 200 } 201 202 return false; 203 } 204 205 /// Check if the mask can be used in an interleaved store. 206 // 207 /// It checks for a more general pattern than the RE-interleave mask. 208 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...> 209 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35> 210 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> 211 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5> 212 /// 213 /// The particular case of an RE-interleave mask is: 214 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...> 215 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7> 216 static bool isReInterleaveMask(ShuffleVectorInst *SVI, unsigned &Factor, 217 unsigned MaxFactor) { 218 unsigned NumElts = SVI->getShuffleMask().size(); 219 if (NumElts < 4) 220 return false; 221 222 // Check potential Factors. 223 for (Factor = 2; Factor <= MaxFactor; Factor++) { 224 if (SVI->isInterleave(Factor)) 225 return true; 226 } 227 228 return false; 229 } 230 231 bool InterleavedAccess::lowerInterleavedLoad( 232 LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) { 233 if (!LI->isSimple() || isa<ScalableVectorType>(LI->getType())) 234 return false; 235 236 // Check if all users of this load are shufflevectors. If we encounter any 237 // users that are extractelement instructions or binary operators, we save 238 // them to later check if they can be modified to extract from one of the 239 // shufflevectors instead of the load. 240 241 SmallVector<ShuffleVectorInst *, 4> Shuffles; 242 SmallVector<ExtractElementInst *, 4> Extracts; 243 // BinOpShuffles need to be handled a single time in case both operands of the 244 // binop are the same load. 245 SmallSetVector<ShuffleVectorInst *, 4> BinOpShuffles; 246 247 for (auto *User : LI->users()) { 248 auto *Extract = dyn_cast<ExtractElementInst>(User); 249 if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) { 250 Extracts.push_back(Extract); 251 continue; 252 } 253 if (auto *BI = dyn_cast<BinaryOperator>(User)) { 254 if (all_of(BI->users(), [](auto *U) { 255 auto *SVI = dyn_cast<ShuffleVectorInst>(U); 256 return SVI && isa<UndefValue>(SVI->getOperand(1)); 257 })) { 258 for (auto *SVI : BI->users()) 259 BinOpShuffles.insert(cast<ShuffleVectorInst>(SVI)); 260 continue; 261 } 262 } 263 auto *SVI = dyn_cast<ShuffleVectorInst>(User); 264 if (!SVI || !isa<UndefValue>(SVI->getOperand(1))) 265 return false; 266 267 Shuffles.push_back(SVI); 268 } 269 270 if (Shuffles.empty() && BinOpShuffles.empty()) 271 return false; 272 273 unsigned Factor, Index; 274 275 unsigned NumLoadElements = 276 cast<FixedVectorType>(LI->getType())->getNumElements(); 277 auto *FirstSVI = Shuffles.size() > 0 ? Shuffles[0] : BinOpShuffles[0]; 278 // Check if the first shufflevector is DE-interleave shuffle. 279 if (!isDeInterleaveMask(FirstSVI->getShuffleMask(), Factor, Index, MaxFactor, 280 NumLoadElements)) 281 return false; 282 283 // Holds the corresponding index for each DE-interleave shuffle. 284 SmallVector<unsigned, 4> Indices; 285 286 Type *VecTy = FirstSVI->getType(); 287 288 // Check if other shufflevectors are also DE-interleaved of the same type 289 // and factor as the first shufflevector. 290 for (auto *Shuffle : Shuffles) { 291 if (Shuffle->getType() != VecTy) 292 return false; 293 if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor, 294 Index)) 295 return false; 296 297 assert(Shuffle->getShuffleMask().size() <= NumLoadElements); 298 Indices.push_back(Index); 299 } 300 for (auto *Shuffle : BinOpShuffles) { 301 if (Shuffle->getType() != VecTy) 302 return false; 303 if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor, 304 Index)) 305 return false; 306 307 assert(Shuffle->getShuffleMask().size() <= NumLoadElements); 308 309 if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(0) == LI) 310 Indices.push_back(Index); 311 if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(1) == LI) 312 Indices.push_back(Index); 313 } 314 315 // Try and modify users of the load that are extractelement instructions to 316 // use the shufflevector instructions instead of the load. 317 if (!tryReplaceExtracts(Extracts, Shuffles)) 318 return false; 319 320 bool BinOpShuffleChanged = 321 replaceBinOpShuffles(BinOpShuffles.getArrayRef(), Shuffles, LI); 322 323 LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n"); 324 325 // Try to create target specific intrinsics to replace the load and shuffles. 326 if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) { 327 // If Extracts is not empty, tryReplaceExtracts made changes earlier. 328 return !Extracts.empty() || BinOpShuffleChanged; 329 } 330 331 append_range(DeadInsts, Shuffles); 332 333 DeadInsts.push_back(LI); 334 return true; 335 } 336 337 bool InterleavedAccess::replaceBinOpShuffles( 338 ArrayRef<ShuffleVectorInst *> BinOpShuffles, 339 SmallVectorImpl<ShuffleVectorInst *> &Shuffles, LoadInst *LI) { 340 for (auto *SVI : BinOpShuffles) { 341 BinaryOperator *BI = cast<BinaryOperator>(SVI->getOperand(0)); 342 Type *BIOp0Ty = BI->getOperand(0)->getType(); 343 ArrayRef<int> Mask = SVI->getShuffleMask(); 344 assert(all_of(Mask, [&](int Idx) { 345 return Idx < (int)cast<FixedVectorType>(BIOp0Ty)->getNumElements(); 346 })); 347 348 auto *NewSVI1 = 349 new ShuffleVectorInst(BI->getOperand(0), PoisonValue::get(BIOp0Ty), 350 Mask, SVI->getName(), SVI); 351 auto *NewSVI2 = new ShuffleVectorInst( 352 BI->getOperand(1), PoisonValue::get(BI->getOperand(1)->getType()), Mask, 353 SVI->getName(), SVI); 354 BinaryOperator *NewBI = BinaryOperator::CreateWithCopiedFlags( 355 BI->getOpcode(), NewSVI1, NewSVI2, BI, BI->getName(), SVI); 356 SVI->replaceAllUsesWith(NewBI); 357 LLVM_DEBUG(dbgs() << " Replaced: " << *BI << "\n And : " << *SVI 358 << "\n With : " << *NewSVI1 << "\n And : " 359 << *NewSVI2 << "\n And : " << *NewBI << "\n"); 360 RecursivelyDeleteTriviallyDeadInstructions(SVI); 361 if (NewSVI1->getOperand(0) == LI) 362 Shuffles.push_back(NewSVI1); 363 if (NewSVI2->getOperand(0) == LI) 364 Shuffles.push_back(NewSVI2); 365 } 366 367 return !BinOpShuffles.empty(); 368 } 369 370 bool InterleavedAccess::tryReplaceExtracts( 371 ArrayRef<ExtractElementInst *> Extracts, 372 ArrayRef<ShuffleVectorInst *> Shuffles) { 373 // If there aren't any extractelement instructions to modify, there's nothing 374 // to do. 375 if (Extracts.empty()) 376 return true; 377 378 // Maps extractelement instructions to vector-index pairs. The extractlement 379 // instructions will be modified to use the new vector and index operands. 380 DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap; 381 382 for (auto *Extract : Extracts) { 383 // The vector index that is extracted. 384 auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand()); 385 auto Index = IndexOperand->getSExtValue(); 386 387 // Look for a suitable shufflevector instruction. The goal is to modify the 388 // extractelement instruction (which uses an interleaved load) to use one 389 // of the shufflevector instructions instead of the load. 390 for (auto *Shuffle : Shuffles) { 391 // If the shufflevector instruction doesn't dominate the extract, we 392 // can't create a use of it. 393 if (!DT->dominates(Shuffle, Extract)) 394 continue; 395 396 // Inspect the indices of the shufflevector instruction. If the shuffle 397 // selects the same index that is extracted, we can modify the 398 // extractelement instruction. 399 SmallVector<int, 4> Indices; 400 Shuffle->getShuffleMask(Indices); 401 for (unsigned I = 0; I < Indices.size(); ++I) 402 if (Indices[I] == Index) { 403 assert(Extract->getOperand(0) == Shuffle->getOperand(0) && 404 "Vector operations do not match"); 405 ReplacementMap[Extract] = std::make_pair(Shuffle, I); 406 break; 407 } 408 409 // If we found a suitable shufflevector instruction, stop looking. 410 if (ReplacementMap.count(Extract)) 411 break; 412 } 413 414 // If we did not find a suitable shufflevector instruction, the 415 // extractelement instruction cannot be modified, so we must give up. 416 if (!ReplacementMap.count(Extract)) 417 return false; 418 } 419 420 // Finally, perform the replacements. 421 IRBuilder<> Builder(Extracts[0]->getContext()); 422 for (auto &Replacement : ReplacementMap) { 423 auto *Extract = Replacement.first; 424 auto *Vector = Replacement.second.first; 425 auto Index = Replacement.second.second; 426 Builder.SetInsertPoint(Extract); 427 Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index)); 428 Extract->eraseFromParent(); 429 } 430 431 return true; 432 } 433 434 bool InterleavedAccess::lowerInterleavedStore( 435 StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) { 436 if (!SI->isSimple()) 437 return false; 438 439 auto *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand()); 440 if (!SVI || !SVI->hasOneUse() || isa<ScalableVectorType>(SVI->getType())) 441 return false; 442 443 // Check if the shufflevector is RE-interleave shuffle. 444 unsigned Factor; 445 if (!isReInterleaveMask(SVI, Factor, MaxFactor)) 446 return false; 447 448 LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n"); 449 450 // Try to create target specific intrinsics to replace the store and shuffle. 451 if (!TLI->lowerInterleavedStore(SI, SVI, Factor)) 452 return false; 453 454 // Already have a new target specific interleaved store. Erase the old store. 455 DeadInsts.push_back(SI); 456 DeadInsts.push_back(SVI); 457 return true; 458 } 459 460 bool InterleavedAccess::lowerDeinterleaveIntrinsic( 461 IntrinsicInst *DI, SmallVector<Instruction *, 32> &DeadInsts) { 462 LoadInst *LI = dyn_cast<LoadInst>(DI->getOperand(0)); 463 464 if (!LI || !LI->hasOneUse() || !LI->isSimple()) 465 return false; 466 467 LLVM_DEBUG(dbgs() << "IA: Found a deinterleave intrinsic: " << *DI << "\n"); 468 469 // Try and match this with target specific intrinsics. 470 if (!TLI->lowerDeinterleaveIntrinsicToLoad(DI, LI)) 471 return false; 472 473 // We now have a target-specific load, so delete the old one. 474 DeadInsts.push_back(DI); 475 DeadInsts.push_back(LI); 476 return true; 477 } 478 479 bool InterleavedAccess::lowerInterleaveIntrinsic( 480 IntrinsicInst *II, SmallVector<Instruction *, 32> &DeadInsts) { 481 if (!II->hasOneUse()) 482 return false; 483 484 StoreInst *SI = dyn_cast<StoreInst>(*(II->users().begin())); 485 486 if (!SI || !SI->isSimple()) 487 return false; 488 489 LLVM_DEBUG(dbgs() << "IA: Found an interleave intrinsic: " << *II << "\n"); 490 491 // Try and match this with target specific intrinsics. 492 if (!TLI->lowerInterleaveIntrinsicToStore(II, SI)) 493 return false; 494 495 // We now have a target-specific store, so delete the old one. 496 DeadInsts.push_back(SI); 497 DeadInsts.push_back(II); 498 return true; 499 } 500 501 bool InterleavedAccess::runOnFunction(Function &F) { 502 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 503 if (!TPC || !LowerInterleavedAccesses) 504 return false; 505 506 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n"); 507 508 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 509 auto &TM = TPC->getTM<TargetMachine>(); 510 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 511 MaxFactor = TLI->getMaxSupportedInterleaveFactor(); 512 513 // Holds dead instructions that will be erased later. 514 SmallVector<Instruction *, 32> DeadInsts; 515 bool Changed = false; 516 517 for (auto &I : instructions(F)) { 518 if (auto *LI = dyn_cast<LoadInst>(&I)) 519 Changed |= lowerInterleavedLoad(LI, DeadInsts); 520 521 if (auto *SI = dyn_cast<StoreInst>(&I)) 522 Changed |= lowerInterleavedStore(SI, DeadInsts); 523 524 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 525 // At present, we only have intrinsics to represent (de)interleaving 526 // with a factor of 2. 527 if (II->getIntrinsicID() == Intrinsic::experimental_vector_deinterleave2) 528 Changed |= lowerDeinterleaveIntrinsic(II, DeadInsts); 529 if (II->getIntrinsicID() == Intrinsic::experimental_vector_interleave2) 530 Changed |= lowerInterleaveIntrinsic(II, DeadInsts); 531 } 532 } 533 534 for (auto *I : DeadInsts) 535 I->eraseFromParent(); 536 537 return Changed; 538 } 539