xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/InterferenceCache.cpp (revision d30a1689f5b37e78ea189232a8b94a7011dc0dc8)
1 //===- InterferenceCache.cpp - Caching per-block interference -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InterferenceCache remembers per-block interference in LiveIntervalUnions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InterferenceCache.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/CodeGen/LiveIntervals.h"
16 #include "llvm/CodeGen/MachineBasicBlock.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/TargetRegisterInfo.h"
20 #include "llvm/MC/MCRegisterInfo.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include <cassert>
23 #include <cstdint>
24 #include <tuple>
25 
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "regalloc"
29 
30 // Static member used for null interference cursors.
31 const InterferenceCache::BlockInterference
32     InterferenceCache::Cursor::NoInterference;
33 
34 // Initializes PhysRegEntries (instead of a SmallVector, PhysRegEntries is a
35 // buffer of size NumPhysRegs to speed up alloc/clear for targets with large
36 // reg files). Calloced memory is used for good form, and quites tools like
37 // Valgrind too, but zero initialized memory is not required by the algorithm:
38 // this is because PhysRegEntries works like a SparseSet and its entries are
39 // only valid when there is a corresponding CacheEntries assignment. There is
40 // also support for when pass managers are reused for targets with different
41 // numbers of PhysRegs: in this case PhysRegEntries is freed and reinitialized.
42 void InterferenceCache::reinitPhysRegEntries() {
43   if (PhysRegEntriesCount == TRI->getNumRegs()) return;
44   free(PhysRegEntries);
45   PhysRegEntriesCount = TRI->getNumRegs();
46   PhysRegEntries = static_cast<unsigned char*>(
47       safe_calloc(PhysRegEntriesCount, sizeof(unsigned char)));
48 }
49 
50 void InterferenceCache::init(MachineFunction *mf,
51                              LiveIntervalUnion *liuarray,
52                              SlotIndexes *indexes,
53                              LiveIntervals *lis,
54                              const TargetRegisterInfo *tri) {
55   MF = mf;
56   LIUArray = liuarray;
57   TRI = tri;
58   reinitPhysRegEntries();
59   for (Entry &E : Entries)
60     E.clear(mf, indexes, lis);
61 }
62 
63 InterferenceCache::Entry *InterferenceCache::get(MCRegister PhysReg) {
64   unsigned char E = PhysRegEntries[PhysReg.id()];
65   if (E < CacheEntries && Entries[E].getPhysReg() == PhysReg) {
66     if (!Entries[E].valid(LIUArray, TRI))
67       Entries[E].revalidate(LIUArray, TRI);
68     return &Entries[E];
69   }
70   // No valid entry exists, pick the next round-robin entry.
71   E = RoundRobin;
72   if (++RoundRobin == CacheEntries)
73     RoundRobin = 0;
74   for (unsigned i = 0; i != CacheEntries; ++i) {
75     // Skip entries that are in use.
76     if (Entries[E].hasRefs()) {
77       if (++E == CacheEntries)
78         E = 0;
79       continue;
80     }
81     Entries[E].reset(PhysReg, LIUArray, TRI, MF);
82     PhysRegEntries[PhysReg] = E;
83     return &Entries[E];
84   }
85   llvm_unreachable("Ran out of interference cache entries.");
86 }
87 
88 /// revalidate - LIU contents have changed, update tags.
89 void InterferenceCache::Entry::revalidate(LiveIntervalUnion *LIUArray,
90                                           const TargetRegisterInfo *TRI) {
91   // Invalidate all block entries.
92   ++Tag;
93   // Invalidate all iterators.
94   PrevPos = SlotIndex();
95   unsigned i = 0;
96   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units, ++i)
97     RegUnits[i].VirtTag = LIUArray[*Units].getTag();
98 }
99 
100 void InterferenceCache::Entry::reset(MCRegister physReg,
101                                      LiveIntervalUnion *LIUArray,
102                                      const TargetRegisterInfo *TRI,
103                                      const MachineFunction *MF) {
104   assert(!hasRefs() && "Cannot reset cache entry with references");
105   // LIU's changed, invalidate cache.
106   ++Tag;
107   PhysReg = physReg;
108   Blocks.resize(MF->getNumBlockIDs());
109 
110   // Reset iterators.
111   PrevPos = SlotIndex();
112   RegUnits.clear();
113   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
114     RegUnits.push_back(LIUArray[*Units]);
115     RegUnits.back().Fixed = &LIS->getRegUnit(*Units);
116   }
117 }
118 
119 bool InterferenceCache::Entry::valid(LiveIntervalUnion *LIUArray,
120                                      const TargetRegisterInfo *TRI) {
121   unsigned i = 0, e = RegUnits.size();
122   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units, ++i) {
123     if (i == e)
124       return false;
125     if (LIUArray[*Units].changedSince(RegUnits[i].VirtTag))
126       return false;
127   }
128   return i == e;
129 }
130 
131 void InterferenceCache::Entry::update(unsigned MBBNum) {
132   SlotIndex Start, Stop;
133   std::tie(Start, Stop) = Indexes->getMBBRange(MBBNum);
134 
135   // Use advanceTo only when possible.
136   if (PrevPos != Start) {
137     if (!PrevPos.isValid() || Start < PrevPos) {
138       for (unsigned i = 0, e = RegUnits.size(); i != e; ++i) {
139         RegUnitInfo &RUI = RegUnits[i];
140         RUI.VirtI.find(Start);
141         RUI.FixedI = RUI.Fixed->find(Start);
142       }
143     } else {
144       for (unsigned i = 0, e = RegUnits.size(); i != e; ++i) {
145         RegUnitInfo &RUI = RegUnits[i];
146         RUI.VirtI.advanceTo(Start);
147         if (RUI.FixedI != RUI.Fixed->end())
148           RUI.FixedI = RUI.Fixed->advanceTo(RUI.FixedI, Start);
149       }
150     }
151     PrevPos = Start;
152   }
153 
154   MachineFunction::const_iterator MFI =
155       MF->getBlockNumbered(MBBNum)->getIterator();
156   BlockInterference *BI = &Blocks[MBBNum];
157   ArrayRef<SlotIndex> RegMaskSlots;
158   ArrayRef<const uint32_t*> RegMaskBits;
159   while (true) {
160     BI->Tag = Tag;
161     BI->First = BI->Last = SlotIndex();
162 
163     // Check for first interference from virtregs.
164     for (unsigned i = 0, e = RegUnits.size(); i != e; ++i) {
165       LiveIntervalUnion::SegmentIter &I = RegUnits[i].VirtI;
166       if (!I.valid())
167         continue;
168       SlotIndex StartI = I.start();
169       if (StartI >= Stop)
170         continue;
171       if (!BI->First.isValid() || StartI < BI->First)
172         BI->First = StartI;
173     }
174 
175     // Same thing for fixed interference.
176     for (unsigned i = 0, e = RegUnits.size(); i != e; ++i) {
177       LiveInterval::const_iterator I = RegUnits[i].FixedI;
178       LiveInterval::const_iterator E = RegUnits[i].Fixed->end();
179       if (I == E)
180         continue;
181       SlotIndex StartI = I->start;
182       if (StartI >= Stop)
183         continue;
184       if (!BI->First.isValid() || StartI < BI->First)
185         BI->First = StartI;
186     }
187 
188     // Also check for register mask interference.
189     RegMaskSlots = LIS->getRegMaskSlotsInBlock(MBBNum);
190     RegMaskBits = LIS->getRegMaskBitsInBlock(MBBNum);
191     SlotIndex Limit = BI->First.isValid() ? BI->First : Stop;
192     for (unsigned i = 0, e = RegMaskSlots.size();
193          i != e && RegMaskSlots[i] < Limit; ++i)
194       if (MachineOperand::clobbersPhysReg(RegMaskBits[i], PhysReg)) {
195         // Register mask i clobbers PhysReg before the LIU interference.
196         BI->First = RegMaskSlots[i];
197         break;
198       }
199 
200     PrevPos = Stop;
201     if (BI->First.isValid())
202       break;
203 
204     // No interference in this block? Go ahead and precompute the next block.
205     if (++MFI == MF->end())
206       return;
207     MBBNum = MFI->getNumber();
208     BI = &Blocks[MBBNum];
209     if (BI->Tag == Tag)
210       return;
211     std::tie(Start, Stop) = Indexes->getMBBRange(MBBNum);
212   }
213 
214   // Check for last interference in block.
215   for (unsigned i = 0, e = RegUnits.size(); i != e; ++i) {
216     LiveIntervalUnion::SegmentIter &I = RegUnits[i].VirtI;
217     if (!I.valid() || I.start() >= Stop)
218       continue;
219     I.advanceTo(Stop);
220     bool Backup = !I.valid() || I.start() >= Stop;
221     if (Backup)
222       --I;
223     SlotIndex StopI = I.stop();
224     if (!BI->Last.isValid() || StopI > BI->Last)
225       BI->Last = StopI;
226     if (Backup)
227       ++I;
228   }
229 
230   // Fixed interference.
231   for (unsigned i = 0, e = RegUnits.size(); i != e; ++i) {
232     LiveInterval::iterator &I = RegUnits[i].FixedI;
233     LiveRange *LR = RegUnits[i].Fixed;
234     if (I == LR->end() || I->start >= Stop)
235       continue;
236     I = LR->advanceTo(I, Stop);
237     bool Backup = I == LR->end() || I->start >= Stop;
238     if (Backup)
239       --I;
240     SlotIndex StopI = I->end;
241     if (!BI->Last.isValid() || StopI > BI->Last)
242       BI->Last = StopI;
243     if (Backup)
244       ++I;
245   }
246 
247   // Also check for register mask interference.
248   SlotIndex Limit = BI->Last.isValid() ? BI->Last : Start;
249   for (unsigned i = RegMaskSlots.size();
250        i && RegMaskSlots[i-1].getDeadSlot() > Limit; --i)
251     if (MachineOperand::clobbersPhysReg(RegMaskBits[i-1], PhysReg)) {
252       // Register mask i-1 clobbers PhysReg after the LIU interference.
253       // Model the regmask clobber as a dead def.
254       BI->Last = RegMaskSlots[i-1].getDeadSlot();
255       break;
256     }
257 }
258