xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/InterferenceCache.cpp (revision b1879975794772ee51f0b4865753364c7d7626c3)
1 //===- InterferenceCache.cpp - Caching per-block interference -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InterferenceCache remembers per-block interference in LiveIntervalUnions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InterferenceCache.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/CodeGen/LiveIntervals.h"
16 #include "llvm/CodeGen/MachineBasicBlock.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/TargetRegisterInfo.h"
20 #include "llvm/MC/MCRegisterInfo.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include <cassert>
23 #include <cstdint>
24 #include <tuple>
25 
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "regalloc"
29 
30 // Static member used for null interference cursors.
31 const InterferenceCache::BlockInterference
32     InterferenceCache::Cursor::NoInterference;
33 
34 // Initializes PhysRegEntries (instead of a SmallVector, PhysRegEntries is a
35 // buffer of size NumPhysRegs to speed up alloc/clear for targets with large
36 // reg files). Calloced memory is used for good form, and quites tools like
37 // Valgrind too, but zero initialized memory is not required by the algorithm:
38 // this is because PhysRegEntries works like a SparseSet and its entries are
39 // only valid when there is a corresponding CacheEntries assignment. There is
40 // also support for when pass managers are reused for targets with different
41 // numbers of PhysRegs: in this case PhysRegEntries is freed and reinitialized.
42 void InterferenceCache::reinitPhysRegEntries() {
43   if (PhysRegEntriesCount == TRI->getNumRegs()) return;
44   free(PhysRegEntries);
45   PhysRegEntriesCount = TRI->getNumRegs();
46   PhysRegEntries = static_cast<unsigned char*>(
47       safe_calloc(PhysRegEntriesCount, sizeof(unsigned char)));
48 }
49 
50 void InterferenceCache::init(MachineFunction *mf,
51                              LiveIntervalUnion *liuarray,
52                              SlotIndexes *indexes,
53                              LiveIntervals *lis,
54                              const TargetRegisterInfo *tri) {
55   MF = mf;
56   LIUArray = liuarray;
57   TRI = tri;
58   reinitPhysRegEntries();
59   for (Entry &E : Entries)
60     E.clear(mf, indexes, lis);
61 }
62 
63 InterferenceCache::Entry *InterferenceCache::get(MCRegister PhysReg) {
64   unsigned char E = PhysRegEntries[PhysReg.id()];
65   if (E < CacheEntries && Entries[E].getPhysReg() == PhysReg) {
66     if (!Entries[E].valid(LIUArray, TRI))
67       Entries[E].revalidate(LIUArray, TRI);
68     return &Entries[E];
69   }
70   // No valid entry exists, pick the next round-robin entry.
71   E = RoundRobin;
72   if (++RoundRobin == CacheEntries)
73     RoundRobin = 0;
74   for (unsigned i = 0; i != CacheEntries; ++i) {
75     // Skip entries that are in use.
76     if (Entries[E].hasRefs()) {
77       if (++E == CacheEntries)
78         E = 0;
79       continue;
80     }
81     Entries[E].reset(PhysReg, LIUArray, TRI, MF);
82     PhysRegEntries[PhysReg] = E;
83     return &Entries[E];
84   }
85   llvm_unreachable("Ran out of interference cache entries.");
86 }
87 
88 /// revalidate - LIU contents have changed, update tags.
89 void InterferenceCache::Entry::revalidate(LiveIntervalUnion *LIUArray,
90                                           const TargetRegisterInfo *TRI) {
91   // Invalidate all block entries.
92   ++Tag;
93   // Invalidate all iterators.
94   PrevPos = SlotIndex();
95   unsigned i = 0;
96   for (MCRegUnit Unit : TRI->regunits(PhysReg))
97     RegUnits[i++].VirtTag = LIUArray[Unit].getTag();
98 }
99 
100 void InterferenceCache::Entry::reset(MCRegister physReg,
101                                      LiveIntervalUnion *LIUArray,
102                                      const TargetRegisterInfo *TRI,
103                                      const MachineFunction *MF) {
104   assert(!hasRefs() && "Cannot reset cache entry with references");
105   // LIU's changed, invalidate cache.
106   ++Tag;
107   PhysReg = physReg;
108   Blocks.resize(MF->getNumBlockIDs());
109 
110   // Reset iterators.
111   PrevPos = SlotIndex();
112   RegUnits.clear();
113   for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
114     RegUnits.push_back(LIUArray[Unit]);
115     RegUnits.back().Fixed = &LIS->getRegUnit(Unit);
116   }
117 }
118 
119 bool InterferenceCache::Entry::valid(LiveIntervalUnion *LIUArray,
120                                      const TargetRegisterInfo *TRI) {
121   unsigned i = 0, e = RegUnits.size();
122   for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
123     if (i == e)
124       return false;
125     if (LIUArray[Unit].changedSince(RegUnits[i].VirtTag))
126       return false;
127     ++i;
128   }
129   return i == e;
130 }
131 
132 void InterferenceCache::Entry::update(unsigned MBBNum) {
133   SlotIndex Start, Stop;
134   std::tie(Start, Stop) = Indexes->getMBBRange(MBBNum);
135 
136   // Use advanceTo only when possible.
137   if (PrevPos != Start) {
138     if (!PrevPos.isValid() || Start < PrevPos) {
139       for (RegUnitInfo &RUI : RegUnits) {
140         RUI.VirtI.find(Start);
141         RUI.FixedI = RUI.Fixed->find(Start);
142       }
143     } else {
144       for (RegUnitInfo &RUI : RegUnits) {
145         RUI.VirtI.advanceTo(Start);
146         if (RUI.FixedI != RUI.Fixed->end())
147           RUI.FixedI = RUI.Fixed->advanceTo(RUI.FixedI, Start);
148       }
149     }
150     PrevPos = Start;
151   }
152 
153   MachineFunction::const_iterator MFI =
154       MF->getBlockNumbered(MBBNum)->getIterator();
155   BlockInterference *BI = &Blocks[MBBNum];
156   ArrayRef<SlotIndex> RegMaskSlots;
157   ArrayRef<const uint32_t*> RegMaskBits;
158   while (true) {
159     BI->Tag = Tag;
160     BI->First = BI->Last = SlotIndex();
161 
162     // Check for first interference from virtregs.
163     for (RegUnitInfo &RUI : RegUnits) {
164       LiveIntervalUnion::SegmentIter &I = RUI.VirtI;
165       if (!I.valid())
166         continue;
167       SlotIndex StartI = I.start();
168       if (StartI >= Stop)
169         continue;
170       if (!BI->First.isValid() || StartI < BI->First)
171         BI->First = StartI;
172     }
173 
174     // Same thing for fixed interference.
175     for (RegUnitInfo &RUI : RegUnits) {
176       LiveInterval::const_iterator I = RUI.FixedI;
177       LiveInterval::const_iterator E = RUI.Fixed->end();
178       if (I == E)
179         continue;
180       SlotIndex StartI = I->start;
181       if (StartI >= Stop)
182         continue;
183       if (!BI->First.isValid() || StartI < BI->First)
184         BI->First = StartI;
185     }
186 
187     // Also check for register mask interference.
188     RegMaskSlots = LIS->getRegMaskSlotsInBlock(MBBNum);
189     RegMaskBits = LIS->getRegMaskBitsInBlock(MBBNum);
190     SlotIndex Limit = BI->First.isValid() ? BI->First : Stop;
191     for (unsigned i = 0, e = RegMaskSlots.size();
192          i != e && RegMaskSlots[i] < Limit; ++i)
193       if (MachineOperand::clobbersPhysReg(RegMaskBits[i], PhysReg)) {
194         // Register mask i clobbers PhysReg before the LIU interference.
195         BI->First = RegMaskSlots[i];
196         break;
197       }
198 
199     PrevPos = Stop;
200     if (BI->First.isValid())
201       break;
202 
203     // No interference in this block? Go ahead and precompute the next block.
204     if (++MFI == MF->end())
205       return;
206     MBBNum = MFI->getNumber();
207     BI = &Blocks[MBBNum];
208     if (BI->Tag == Tag)
209       return;
210     std::tie(Start, Stop) = Indexes->getMBBRange(MBBNum);
211   }
212 
213   // Check for last interference in block.
214   for (RegUnitInfo &RUI : RegUnits) {
215     LiveIntervalUnion::SegmentIter &I = RUI.VirtI;
216     if (!I.valid() || I.start() >= Stop)
217       continue;
218     I.advanceTo(Stop);
219     bool Backup = !I.valid() || I.start() >= Stop;
220     if (Backup)
221       --I;
222     SlotIndex StopI = I.stop();
223     if (!BI->Last.isValid() || StopI > BI->Last)
224       BI->Last = StopI;
225     if (Backup)
226       ++I;
227   }
228 
229   // Fixed interference.
230   for (RegUnitInfo &RUI : RegUnits) {
231     LiveInterval::iterator &I = RUI.FixedI;
232     LiveRange *LR = RUI.Fixed;
233     if (I == LR->end() || I->start >= Stop)
234       continue;
235     I = LR->advanceTo(I, Stop);
236     bool Backup = I == LR->end() || I->start >= Stop;
237     if (Backup)
238       --I;
239     SlotIndex StopI = I->end;
240     if (!BI->Last.isValid() || StopI > BI->Last)
241       BI->Last = StopI;
242     if (Backup)
243       ++I;
244   }
245 
246   // Also check for register mask interference.
247   SlotIndex Limit = BI->Last.isValid() ? BI->Last : Start;
248   for (unsigned i = RegMaskSlots.size();
249        i && RegMaskSlots[i-1].getDeadSlot() > Limit; --i)
250     if (MachineOperand::clobbersPhysReg(RegMaskBits[i-1], PhysReg)) {
251       // Register mask i-1 clobbers PhysReg after the LIU interference.
252       // Model the regmask clobber as a dead def.
253       BI->Last = RegMaskSlots[i-1].getDeadSlot();
254       break;
255     }
256 }
257