1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The inline spiller modifies the machine function directly instead of 10 // inserting spills and restores in VirtRegMap. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SplitKit.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/LiveRangeEdit.h" 27 #include "llvm/CodeGen/LiveStacks.h" 28 #include "llvm/CodeGen/MachineBasicBlock.h" 29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 30 #include "llvm/CodeGen/MachineDominators.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineInstrBundle.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/SlotIndexes.h" 39 #include "llvm/CodeGen/Spiller.h" 40 #include "llvm/CodeGen/StackMaps.h" 41 #include "llvm/CodeGen/TargetInstrInfo.h" 42 #include "llvm/CodeGen/TargetOpcodes.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/CodeGen/VirtRegMap.h" 46 #include "llvm/Config/llvm-config.h" 47 #include "llvm/Support/BlockFrequency.h" 48 #include "llvm/Support/BranchProbability.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include <cassert> 55 #include <iterator> 56 #include <tuple> 57 #include <utility> 58 59 using namespace llvm; 60 61 #define DEBUG_TYPE "regalloc" 62 63 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 64 STATISTIC(NumSnippets, "Number of spilled snippets"); 65 STATISTIC(NumSpills, "Number of spills inserted"); 66 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 67 STATISTIC(NumReloads, "Number of reloads inserted"); 68 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 69 STATISTIC(NumFolded, "Number of folded stack accesses"); 70 STATISTIC(NumFoldedLoads, "Number of folded loads"); 71 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 72 73 static cl::opt<bool> 74 RestrictStatepointRemat("restrict-statepoint-remat", 75 cl::init(false), cl::Hidden, 76 cl::desc("Restrict remat for statepoint operands")); 77 78 namespace { 79 80 class HoistSpillHelper : private LiveRangeEdit::Delegate { 81 MachineFunction &MF; 82 LiveIntervals &LIS; 83 LiveStacks &LSS; 84 MachineDominatorTree &MDT; 85 VirtRegMap &VRM; 86 MachineRegisterInfo &MRI; 87 const TargetInstrInfo &TII; 88 const TargetRegisterInfo &TRI; 89 const MachineBlockFrequencyInfo &MBFI; 90 91 InsertPointAnalysis IPA; 92 93 // Map from StackSlot to the LiveInterval of the original register. 94 // Note the LiveInterval of the original register may have been deleted 95 // after it is spilled. We keep a copy here to track the range where 96 // spills can be moved. 97 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI; 98 99 // Map from pair of (StackSlot and Original VNI) to a set of spills which 100 // have the same stackslot and have equal values defined by Original VNI. 101 // These spills are mergeable and are hoist candidates. 102 using MergeableSpillsMap = 103 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>; 104 MergeableSpillsMap MergeableSpills; 105 106 /// This is the map from original register to a set containing all its 107 /// siblings. To hoist a spill to another BB, we need to find out a live 108 /// sibling there and use it as the source of the new spill. 109 DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap; 110 111 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 112 MachineBasicBlock &BB, Register &LiveReg); 113 114 void rmRedundantSpills( 115 SmallPtrSet<MachineInstr *, 16> &Spills, 116 SmallVectorImpl<MachineInstr *> &SpillsToRm, 117 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 118 119 void getVisitOrders( 120 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 121 SmallVectorImpl<MachineDomTreeNode *> &Orders, 122 SmallVectorImpl<MachineInstr *> &SpillsToRm, 123 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 124 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 125 126 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI, 127 SmallPtrSet<MachineInstr *, 16> &Spills, 128 SmallVectorImpl<MachineInstr *> &SpillsToRm, 129 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns); 130 131 public: 132 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf, 133 VirtRegMap &vrm) 134 : MF(mf), LIS(pass.getAnalysis<LiveIntervalsWrapperPass>().getLIS()), 135 LSS(pass.getAnalysis<LiveStacks>()), 136 MDT(pass.getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree()), 137 VRM(vrm), MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 138 TRI(*mf.getSubtarget().getRegisterInfo()), 139 MBFI( 140 pass.getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI()), 141 IPA(LIS, mf.getNumBlockIDs()) {} 142 143 void addToMergeableSpills(MachineInstr &Spill, int StackSlot, 144 unsigned Original); 145 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot); 146 void hoistAllSpills(); 147 void LRE_DidCloneVirtReg(Register, Register) override; 148 }; 149 150 class InlineSpiller : public Spiller { 151 MachineFunction &MF; 152 LiveIntervals &LIS; 153 LiveStacks &LSS; 154 MachineDominatorTree &MDT; 155 VirtRegMap &VRM; 156 MachineRegisterInfo &MRI; 157 const TargetInstrInfo &TII; 158 const TargetRegisterInfo &TRI; 159 const MachineBlockFrequencyInfo &MBFI; 160 161 // Variables that are valid during spill(), but used by multiple methods. 162 LiveRangeEdit *Edit = nullptr; 163 LiveInterval *StackInt = nullptr; 164 int StackSlot; 165 Register Original; 166 167 // All registers to spill to StackSlot, including the main register. 168 SmallVector<Register, 8> RegsToSpill; 169 170 // All COPY instructions to/from snippets. 171 // They are ignored since both operands refer to the same stack slot. 172 // For bundled copies, this will only include the first header copy. 173 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 174 175 // Values that failed to remat at some point. 176 SmallPtrSet<VNInfo*, 8> UsedValues; 177 178 // Dead defs generated during spilling. 179 SmallVector<MachineInstr*, 8> DeadDefs; 180 181 // Object records spills information and does the hoisting. 182 HoistSpillHelper HSpiller; 183 184 // Live range weight calculator. 185 VirtRegAuxInfo &VRAI; 186 187 ~InlineSpiller() override = default; 188 189 public: 190 InlineSpiller(MachineFunctionPass &Pass, MachineFunction &MF, VirtRegMap &VRM, 191 VirtRegAuxInfo &VRAI) 192 : MF(MF), LIS(Pass.getAnalysis<LiveIntervalsWrapperPass>().getLIS()), 193 LSS(Pass.getAnalysis<LiveStacks>()), 194 MDT(Pass.getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree()), 195 VRM(VRM), MRI(MF.getRegInfo()), TII(*MF.getSubtarget().getInstrInfo()), 196 TRI(*MF.getSubtarget().getRegisterInfo()), 197 MBFI( 198 Pass.getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI()), 199 HSpiller(Pass, MF, VRM), VRAI(VRAI) {} 200 201 void spill(LiveRangeEdit &) override; 202 void postOptimization() override; 203 204 private: 205 bool isSnippet(const LiveInterval &SnipLI); 206 void collectRegsToSpill(); 207 208 bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); } 209 210 bool isSibling(Register Reg); 211 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); 212 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 213 214 void markValueUsed(LiveInterval*, VNInfo*); 215 bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI); 216 bool reMaterializeFor(LiveInterval &, MachineInstr &MI); 217 void reMaterializeAll(); 218 219 bool coalesceStackAccess(MachineInstr *MI, Register Reg); 220 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>, 221 MachineInstr *LoadMI = nullptr); 222 void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI); 223 void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI); 224 225 void spillAroundUses(Register Reg); 226 void spillAll(); 227 }; 228 229 } // end anonymous namespace 230 231 Spiller::~Spiller() = default; 232 233 void Spiller::anchor() {} 234 235 Spiller *llvm::createInlineSpiller(MachineFunctionPass &Pass, 236 MachineFunction &MF, VirtRegMap &VRM, 237 VirtRegAuxInfo &VRAI) { 238 return new InlineSpiller(Pass, MF, VRM, VRAI); 239 } 240 241 //===----------------------------------------------------------------------===// 242 // Snippets 243 //===----------------------------------------------------------------------===// 244 245 // When spilling a virtual register, we also spill any snippets it is connected 246 // to. The snippets are small live ranges that only have a single real use, 247 // leftovers from live range splitting. Spilling them enables memory operand 248 // folding or tightens the live range around the single use. 249 // 250 // This minimizes register pressure and maximizes the store-to-load distance for 251 // spill slots which can be important in tight loops. 252 253 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 254 /// otherwise return 0. 255 static Register isCopyOf(const MachineInstr &MI, Register Reg, 256 const TargetInstrInfo &TII) { 257 if (!TII.isCopyInstr(MI)) 258 return Register(); 259 260 const MachineOperand &DstOp = MI.getOperand(0); 261 const MachineOperand &SrcOp = MI.getOperand(1); 262 263 // TODO: Probably only worth allowing subreg copies with undef dests. 264 if (DstOp.getSubReg() != SrcOp.getSubReg()) 265 return Register(); 266 if (DstOp.getReg() == Reg) 267 return SrcOp.getReg(); 268 if (SrcOp.getReg() == Reg) 269 return DstOp.getReg(); 270 return Register(); 271 } 272 273 /// Check for a copy bundle as formed by SplitKit. 274 static Register isCopyOfBundle(const MachineInstr &FirstMI, Register Reg, 275 const TargetInstrInfo &TII) { 276 if (!FirstMI.isBundled()) 277 return isCopyOf(FirstMI, Reg, TII); 278 279 assert(!FirstMI.isBundledWithPred() && FirstMI.isBundledWithSucc() && 280 "expected to see first instruction in bundle"); 281 282 Register SnipReg; 283 MachineBasicBlock::const_instr_iterator I = FirstMI.getIterator(); 284 while (I->isBundledWithSucc()) { 285 const MachineInstr &MI = *I; 286 auto CopyInst = TII.isCopyInstr(MI); 287 if (!CopyInst) 288 return Register(); 289 290 const MachineOperand &DstOp = *CopyInst->Destination; 291 const MachineOperand &SrcOp = *CopyInst->Source; 292 if (DstOp.getReg() == Reg) { 293 if (!SnipReg) 294 SnipReg = SrcOp.getReg(); 295 else if (SnipReg != SrcOp.getReg()) 296 return Register(); 297 } else if (SrcOp.getReg() == Reg) { 298 if (!SnipReg) 299 SnipReg = DstOp.getReg(); 300 else if (SnipReg != DstOp.getReg()) 301 return Register(); 302 } 303 304 ++I; 305 } 306 307 return Register(); 308 } 309 310 static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) { 311 for (const MachineOperand &MO : MI.all_defs()) 312 if (MO.getReg().isVirtual()) 313 LIS.getInterval(MO.getReg()); 314 } 315 316 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 317 /// It is assumed that SnipLI is a virtual register with the same original as 318 /// Edit->getReg(). 319 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 320 Register Reg = Edit->getReg(); 321 322 // A snippet is a tiny live range with only a single instruction using it 323 // besides copies to/from Reg or spills/fills. 324 // Exception is done for statepoint instructions which will fold fills 325 // into their operands. 326 // We accept: 327 // 328 // %snip = COPY %Reg / FILL fi# 329 // %snip = USE %snip 330 // %snip = STATEPOINT %snip in var arg area 331 // %Reg = COPY %snip / SPILL %snip, fi# 332 // 333 if (!LIS.intervalIsInOneMBB(SnipLI)) 334 return false; 335 336 // Number of defs should not exceed 2 not accounting defs coming from 337 // statepoint instructions. 338 unsigned NumValNums = SnipLI.getNumValNums(); 339 for (auto *VNI : SnipLI.vnis()) { 340 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 341 if (MI->getOpcode() == TargetOpcode::STATEPOINT) 342 --NumValNums; 343 } 344 if (NumValNums > 2) 345 return false; 346 347 MachineInstr *UseMI = nullptr; 348 349 // Check that all uses satisfy our criteria. 350 for (MachineRegisterInfo::reg_bundle_nodbg_iterator 351 RI = MRI.reg_bundle_nodbg_begin(SnipLI.reg()), 352 E = MRI.reg_bundle_nodbg_end(); 353 RI != E;) { 354 MachineInstr &MI = *RI++; 355 356 // Allow copies to/from Reg. 357 if (isCopyOfBundle(MI, Reg, TII)) 358 continue; 359 360 // Allow stack slot loads. 361 int FI; 362 if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 363 continue; 364 365 // Allow stack slot stores. 366 if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 367 continue; 368 369 if (StatepointOpers::isFoldableReg(&MI, SnipLI.reg())) 370 continue; 371 372 // Allow a single additional instruction. 373 if (UseMI && &MI != UseMI) 374 return false; 375 UseMI = &MI; 376 } 377 return true; 378 } 379 380 /// collectRegsToSpill - Collect live range snippets that only have a single 381 /// real use. 382 void InlineSpiller::collectRegsToSpill() { 383 Register Reg = Edit->getReg(); 384 385 // Main register always spills. 386 RegsToSpill.assign(1, Reg); 387 SnippetCopies.clear(); 388 389 // Snippets all have the same original, so there can't be any for an original 390 // register. 391 if (Original == Reg) 392 return; 393 394 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) { 395 Register SnipReg = isCopyOfBundle(MI, Reg, TII); 396 if (!isSibling(SnipReg)) 397 continue; 398 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 399 if (!isSnippet(SnipLI)) 400 continue; 401 SnippetCopies.insert(&MI); 402 if (isRegToSpill(SnipReg)) 403 continue; 404 RegsToSpill.push_back(SnipReg); 405 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 406 ++NumSnippets; 407 } 408 } 409 410 bool InlineSpiller::isSibling(Register Reg) { 411 return Reg.isVirtual() && VRM.getOriginal(Reg) == Original; 412 } 413 414 /// It is beneficial to spill to earlier place in the same BB in case 415 /// as follows: 416 /// There is an alternative def earlier in the same MBB. 417 /// Hoist the spill as far as possible in SpillMBB. This can ease 418 /// register pressure: 419 /// 420 /// x = def 421 /// y = use x 422 /// s = copy x 423 /// 424 /// Hoisting the spill of s to immediately after the def removes the 425 /// interference between x and y: 426 /// 427 /// x = def 428 /// spill x 429 /// y = use killed x 430 /// 431 /// This hoist only helps when the copy kills its source. 432 /// 433 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, 434 MachineInstr &CopyMI) { 435 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 436 #ifndef NDEBUG 437 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 438 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 439 #endif 440 441 Register SrcReg = CopyMI.getOperand(1).getReg(); 442 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 443 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); 444 LiveQueryResult SrcQ = SrcLI.Query(Idx); 445 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def); 446 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) 447 return false; 448 449 // Conservatively extend the stack slot range to the range of the original 450 // value. We may be able to do better with stack slot coloring by being more 451 // careful here. 452 assert(StackInt && "No stack slot assigned yet."); 453 LiveInterval &OrigLI = LIS.getInterval(Original); 454 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 455 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 456 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 457 << *StackInt << '\n'); 458 459 // We are going to spill SrcVNI immediately after its def, so clear out 460 // any later spills of the same value. 461 eliminateRedundantSpills(SrcLI, SrcVNI); 462 463 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def); 464 MachineBasicBlock::iterator MII; 465 if (SrcVNI->isPHIDef()) 466 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin(), SrcReg); 467 else { 468 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def); 469 assert(DefMI && "Defining instruction disappeared"); 470 MII = DefMI; 471 ++MII; 472 } 473 MachineInstrSpan MIS(MII, MBB); 474 // Insert spill without kill flag immediately after def. 475 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot, 476 MRI.getRegClass(SrcReg), &TRI, Register()); 477 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII); 478 for (const MachineInstr &MI : make_range(MIS.begin(), MII)) 479 getVDefInterval(MI, LIS); 480 --MII; // Point to store instruction. 481 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII); 482 483 // If there is only 1 store instruction is required for spill, add it 484 // to mergeable list. In X86 AMX, 2 intructions are required to store. 485 // We disable the merge for this case. 486 if (MIS.begin() == MII) 487 HSpiller.addToMergeableSpills(*MII, StackSlot, Original); 488 ++NumSpills; 489 return true; 490 } 491 492 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 493 /// redundant spills of this value in SLI.reg and sibling copies. 494 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 495 assert(VNI && "Missing value"); 496 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 497 WorkList.push_back(std::make_pair(&SLI, VNI)); 498 assert(StackInt && "No stack slot assigned yet."); 499 500 do { 501 LiveInterval *LI; 502 std::tie(LI, VNI) = WorkList.pop_back_val(); 503 Register Reg = LI->reg(); 504 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@' 505 << VNI->def << " in " << *LI << '\n'); 506 507 // Regs to spill are taken care of. 508 if (isRegToSpill(Reg)) 509 continue; 510 511 // Add all of VNI's live range to StackInt. 512 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 513 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 514 515 // Find all spills and copies of VNI. 516 for (MachineInstr &MI : 517 llvm::make_early_inc_range(MRI.use_nodbg_bundles(Reg))) { 518 if (!MI.mayStore() && !TII.isCopyInstr(MI)) 519 continue; 520 SlotIndex Idx = LIS.getInstructionIndex(MI); 521 if (LI->getVNInfoAt(Idx) != VNI) 522 continue; 523 524 // Follow sibling copies down the dominator tree. 525 if (Register DstReg = isCopyOfBundle(MI, Reg, TII)) { 526 if (isSibling(DstReg)) { 527 LiveInterval &DstLI = LIS.getInterval(DstReg); 528 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 529 assert(DstVNI && "Missing defined value"); 530 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 531 532 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 533 } 534 continue; 535 } 536 537 // Erase spills. 538 int FI; 539 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 540 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI); 541 // eliminateDeadDefs won't normally remove stores, so switch opcode. 542 MI.setDesc(TII.get(TargetOpcode::KILL)); 543 DeadDefs.push_back(&MI); 544 ++NumSpillsRemoved; 545 if (HSpiller.rmFromMergeableSpills(MI, StackSlot)) 546 --NumSpills; 547 } 548 } 549 } while (!WorkList.empty()); 550 } 551 552 //===----------------------------------------------------------------------===// 553 // Rematerialization 554 //===----------------------------------------------------------------------===// 555 556 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 557 /// instruction cannot be eliminated. See through snippet copies 558 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 559 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 560 WorkList.push_back(std::make_pair(LI, VNI)); 561 do { 562 std::tie(LI, VNI) = WorkList.pop_back_val(); 563 if (!UsedValues.insert(VNI).second) 564 continue; 565 566 if (VNI->isPHIDef()) { 567 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 568 for (MachineBasicBlock *P : MBB->predecessors()) { 569 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P)); 570 if (PVNI) 571 WorkList.push_back(std::make_pair(LI, PVNI)); 572 } 573 continue; 574 } 575 576 // Follow snippet copies. 577 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 578 if (!SnippetCopies.count(MI)) 579 continue; 580 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 581 assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy"); 582 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 583 assert(SnipVNI && "Snippet undefined before copy"); 584 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 585 } while (!WorkList.empty()); 586 } 587 588 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg, 589 MachineInstr &MI) { 590 if (!RestrictStatepointRemat) 591 return true; 592 // Here's a quick explanation of the problem we're trying to handle here: 593 // * There are some pseudo instructions with more vreg uses than there are 594 // physical registers on the machine. 595 // * This is normally handled by spilling the vreg, and folding the reload 596 // into the user instruction. (Thus decreasing the number of used vregs 597 // until the remainder can be assigned to physregs.) 598 // * However, since we may try to spill vregs in any order, we can end up 599 // trying to spill each operand to the instruction, and then rematting it 600 // instead. When that happens, the new live intervals (for the remats) are 601 // expected to be trivially assignable (i.e. RS_Done). However, since we 602 // may have more remats than physregs, we're guaranteed to fail to assign 603 // one. 604 // At the moment, we only handle this for STATEPOINTs since they're the only 605 // pseudo op where we've seen this. If we start seeing other instructions 606 // with the same problem, we need to revisit this. 607 if (MI.getOpcode() != TargetOpcode::STATEPOINT) 608 return true; 609 // For STATEPOINTs we allow re-materialization for fixed arguments only hoping 610 // that number of physical registers is enough to cover all fixed arguments. 611 // If it is not true we need to revisit it. 612 for (unsigned Idx = StatepointOpers(&MI).getVarIdx(), 613 EndIdx = MI.getNumOperands(); 614 Idx < EndIdx; ++Idx) { 615 MachineOperand &MO = MI.getOperand(Idx); 616 if (MO.isReg() && MO.getReg() == VReg) 617 return false; 618 } 619 return true; 620 } 621 622 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 623 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { 624 // Analyze instruction 625 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 626 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops); 627 628 if (!RI.Reads) 629 return false; 630 631 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 632 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 633 634 if (!ParentVNI) { 635 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: "); 636 for (MachineOperand &MO : MI.all_uses()) 637 if (MO.getReg() == VirtReg.reg()) 638 MO.setIsUndef(); 639 LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI); 640 return true; 641 } 642 643 if (SnippetCopies.count(&MI)) 644 return false; 645 646 LiveInterval &OrigLI = LIS.getInterval(Original); 647 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 648 LiveRangeEdit::Remat RM(ParentVNI); 649 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 650 651 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) { 652 markValueUsed(&VirtReg, ParentVNI); 653 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 654 return false; 655 } 656 657 // If the instruction also writes VirtReg.reg, it had better not require the 658 // same register for uses and defs. 659 if (RI.Tied) { 660 markValueUsed(&VirtReg, ParentVNI); 661 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI); 662 return false; 663 } 664 665 // Before rematerializing into a register for a single instruction, try to 666 // fold a load into the instruction. That avoids allocating a new register. 667 if (RM.OrigMI->canFoldAsLoad() && 668 foldMemoryOperand(Ops, RM.OrigMI)) { 669 Edit->markRematerialized(RM.ParentVNI); 670 ++NumFoldedLoads; 671 return true; 672 } 673 674 // If we can't guarantee that we'll be able to actually assign the new vreg, 675 // we can't remat. 676 if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) { 677 markValueUsed(&VirtReg, ParentVNI); 678 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 679 return false; 680 } 681 682 // Allocate a new register for the remat. 683 Register NewVReg = Edit->createFrom(Original); 684 685 // Finally we can rematerialize OrigMI before MI. 686 SlotIndex DefIdx = 687 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI); 688 689 // We take the DebugLoc from MI, since OrigMI may be attributed to a 690 // different source location. 691 auto *NewMI = LIS.getInstructionFromIndex(DefIdx); 692 NewMI->setDebugLoc(MI.getDebugLoc()); 693 694 (void)DefIdx; 695 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 696 << *LIS.getInstructionFromIndex(DefIdx)); 697 698 // Replace operands 699 for (const auto &OpPair : Ops) { 700 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 701 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) { 702 MO.setReg(NewVReg); 703 MO.setIsKill(); 704 } 705 } 706 LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n'); 707 708 ++NumRemats; 709 return true; 710 } 711 712 /// reMaterializeAll - Try to rematerialize as many uses as possible, 713 /// and trim the live ranges after. 714 void InlineSpiller::reMaterializeAll() { 715 if (!Edit->anyRematerializable()) 716 return; 717 718 UsedValues.clear(); 719 720 // Try to remat before all uses of snippets. 721 bool anyRemat = false; 722 for (Register Reg : RegsToSpill) { 723 LiveInterval &LI = LIS.getInterval(Reg); 724 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) { 725 // Debug values are not allowed to affect codegen. 726 if (MI.isDebugValue()) 727 continue; 728 729 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " 730 "instruction that isn't a DBG_VALUE"); 731 732 anyRemat |= reMaterializeFor(LI, MI); 733 } 734 } 735 if (!anyRemat) 736 return; 737 738 // Remove any values that were completely rematted. 739 for (Register Reg : RegsToSpill) { 740 LiveInterval &LI = LIS.getInterval(Reg); 741 for (VNInfo *VNI : LI.vnis()) { 742 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 743 continue; 744 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 745 MI->addRegisterDead(Reg, &TRI); 746 if (!MI->allDefsAreDead()) 747 continue; 748 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 749 DeadDefs.push_back(MI); 750 // If MI is a bundle header, also try removing copies inside the bundle, 751 // otherwise the verifier would complain "live range continues after dead 752 // def flag". 753 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) { 754 MachineBasicBlock::instr_iterator BeginIt = MI->getIterator(), 755 EndIt = MI->getParent()->instr_end(); 756 ++BeginIt; // Skip MI that was already handled. 757 758 bool OnlyDeadCopies = true; 759 for (MachineBasicBlock::instr_iterator It = BeginIt; 760 It != EndIt && It->isBundledWithPred(); ++It) { 761 762 auto DestSrc = TII.isCopyInstr(*It); 763 bool IsCopyToDeadReg = 764 DestSrc && DestSrc->Destination->getReg() == Reg; 765 if (!IsCopyToDeadReg) { 766 OnlyDeadCopies = false; 767 break; 768 } 769 } 770 if (OnlyDeadCopies) { 771 for (MachineBasicBlock::instr_iterator It = BeginIt; 772 It != EndIt && It->isBundledWithPred(); ++It) { 773 It->addRegisterDead(Reg, &TRI); 774 LLVM_DEBUG(dbgs() << "All defs dead: " << *It); 775 DeadDefs.push_back(&*It); 776 } 777 } 778 } 779 } 780 } 781 782 // Eliminate dead code after remat. Note that some snippet copies may be 783 // deleted here. 784 if (DeadDefs.empty()) 785 return; 786 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 787 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill); 788 789 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions 790 // after rematerialization. To remove a VNI for a vreg from its LiveInterval, 791 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all 792 // removed, PHI VNI are still left in the LiveInterval. 793 // So to get rid of unused reg, we need to check whether it has non-dbg 794 // reference instead of whether it has non-empty interval. 795 unsigned ResultPos = 0; 796 for (Register Reg : RegsToSpill) { 797 if (MRI.reg_nodbg_empty(Reg)) { 798 Edit->eraseVirtReg(Reg); 799 continue; 800 } 801 802 assert(LIS.hasInterval(Reg) && 803 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && 804 "Empty and not used live-range?!"); 805 806 RegsToSpill[ResultPos++] = Reg; 807 } 808 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 809 LLVM_DEBUG(dbgs() << RegsToSpill.size() 810 << " registers to spill after remat.\n"); 811 } 812 813 //===----------------------------------------------------------------------===// 814 // Spilling 815 //===----------------------------------------------------------------------===// 816 817 /// If MI is a load or store of StackSlot, it can be removed. 818 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) { 819 int FI = 0; 820 Register InstrReg = TII.isLoadFromStackSlot(*MI, FI); 821 bool IsLoad = InstrReg; 822 if (!IsLoad) 823 InstrReg = TII.isStoreToStackSlot(*MI, FI); 824 825 // We have a stack access. Is it the right register and slot? 826 if (InstrReg != Reg || FI != StackSlot) 827 return false; 828 829 if (!IsLoad) 830 HSpiller.rmFromMergeableSpills(*MI, StackSlot); 831 832 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI); 833 LIS.RemoveMachineInstrFromMaps(*MI); 834 MI->eraseFromParent(); 835 836 if (IsLoad) { 837 ++NumReloadsRemoved; 838 --NumReloads; 839 } else { 840 ++NumSpillsRemoved; 841 --NumSpills; 842 } 843 844 return true; 845 } 846 847 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 848 LLVM_DUMP_METHOD 849 // Dump the range of instructions from B to E with their slot indexes. 850 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 851 MachineBasicBlock::iterator E, 852 LiveIntervals const &LIS, 853 const char *const header, 854 Register VReg = Register()) { 855 char NextLine = '\n'; 856 char SlotIndent = '\t'; 857 858 if (std::next(B) == E) { 859 NextLine = ' '; 860 SlotIndent = ' '; 861 } 862 863 dbgs() << '\t' << header << ": " << NextLine; 864 865 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 866 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); 867 868 // If a register was passed in and this instruction has it as a 869 // destination that is marked as an early clobber, print the 870 // early-clobber slot index. 871 if (VReg) { 872 MachineOperand *MO = I->findRegisterDefOperand(VReg, /*TRI=*/nullptr); 873 if (MO && MO->isEarlyClobber()) 874 Idx = Idx.getRegSlot(true); 875 } 876 877 dbgs() << SlotIndent << Idx << '\t' << *I; 878 } 879 } 880 #endif 881 882 /// foldMemoryOperand - Try folding stack slot references in Ops into their 883 /// instructions. 884 /// 885 /// @param Ops Operand indices from AnalyzeVirtRegInBundle(). 886 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 887 /// @return True on success. 888 bool InlineSpiller:: 889 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops, 890 MachineInstr *LoadMI) { 891 if (Ops.empty()) 892 return false; 893 // Don't attempt folding in bundles. 894 MachineInstr *MI = Ops.front().first; 895 if (Ops.back().first != MI || MI->isBundled()) 896 return false; 897 898 bool WasCopy = TII.isCopyInstr(*MI).has_value(); 899 Register ImpReg; 900 901 // TII::foldMemoryOperand will do what we need here for statepoint 902 // (fold load into use and remove corresponding def). We will replace 903 // uses of removed def with loads (spillAroundUses). 904 // For that to work we need to untie def and use to pass it through 905 // foldMemoryOperand and signal foldPatchpoint that it is allowed to 906 // fold them. 907 bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT; 908 909 // Spill subregs if the target allows it. 910 // We always want to spill subregs for stackmap/patchpoint pseudos. 911 bool SpillSubRegs = TII.isSubregFoldable() || 912 MI->getOpcode() == TargetOpcode::STATEPOINT || 913 MI->getOpcode() == TargetOpcode::PATCHPOINT || 914 MI->getOpcode() == TargetOpcode::STACKMAP; 915 916 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 917 // operands. 918 SmallVector<unsigned, 8> FoldOps; 919 for (const auto &OpPair : Ops) { 920 unsigned Idx = OpPair.second; 921 assert(MI == OpPair.first && "Instruction conflict during operand folding"); 922 MachineOperand &MO = MI->getOperand(Idx); 923 924 // No point restoring an undef read, and we'll produce an invalid live 925 // interval. 926 // TODO: Is this really the correct way to handle undef tied uses? 927 if (MO.isUse() && !MO.readsReg() && !MO.isTied()) 928 continue; 929 930 if (MO.isImplicit()) { 931 ImpReg = MO.getReg(); 932 continue; 933 } 934 935 if (!SpillSubRegs && MO.getSubReg()) 936 return false; 937 // We cannot fold a load instruction into a def. 938 if (LoadMI && MO.isDef()) 939 return false; 940 // Tied use operands should not be passed to foldMemoryOperand. 941 if (UntieRegs || !MI->isRegTiedToDefOperand(Idx)) 942 FoldOps.push_back(Idx); 943 } 944 945 // If we only have implicit uses, we won't be able to fold that. 946 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try! 947 if (FoldOps.empty()) 948 return false; 949 950 MachineInstrSpan MIS(MI, MI->getParent()); 951 952 SmallVector<std::pair<unsigned, unsigned> > TiedOps; 953 if (UntieRegs) 954 for (unsigned Idx : FoldOps) { 955 MachineOperand &MO = MI->getOperand(Idx); 956 if (!MO.isTied()) 957 continue; 958 unsigned Tied = MI->findTiedOperandIdx(Idx); 959 if (MO.isUse()) 960 TiedOps.emplace_back(Tied, Idx); 961 else { 962 assert(MO.isDef() && "Tied to not use and def?"); 963 TiedOps.emplace_back(Idx, Tied); 964 } 965 MI->untieRegOperand(Idx); 966 } 967 968 MachineInstr *FoldMI = 969 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS) 970 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM); 971 if (!FoldMI) { 972 // Re-tie operands. 973 for (auto Tied : TiedOps) 974 MI->tieOperands(Tied.first, Tied.second); 975 return false; 976 } 977 978 // Remove LIS for any dead defs in the original MI not in FoldMI. 979 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { 980 if (!MO->isReg()) 981 continue; 982 Register Reg = MO->getReg(); 983 if (!Reg || Reg.isVirtual() || MRI.isReserved(Reg)) { 984 continue; 985 } 986 // Skip non-Defs, including undef uses and internal reads. 987 if (MO->isUse()) 988 continue; 989 PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI); 990 if (RI.FullyDefined) 991 continue; 992 // FoldMI does not define this physreg. Remove the LI segment. 993 assert(MO->isDead() && "Cannot fold physreg def"); 994 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 995 LIS.removePhysRegDefAt(Reg.asMCReg(), Idx); 996 } 997 998 int FI; 999 if (TII.isStoreToStackSlot(*MI, FI) && 1000 HSpiller.rmFromMergeableSpills(*MI, FI)) 1001 --NumSpills; 1002 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI); 1003 // Update the call site info. 1004 if (MI->isCandidateForCallSiteEntry()) 1005 MI->getMF()->moveCallSiteInfo(MI, FoldMI); 1006 1007 // If we've folded a store into an instruction labelled with debug-info, 1008 // record a substitution from the old operand to the memory operand. Handle 1009 // the simple common case where operand 0 is the one being folded, plus when 1010 // the destination operand is also a tied def. More values could be 1011 // substituted / preserved with more analysis. 1012 if (MI->peekDebugInstrNum() && Ops[0].second == 0) { 1013 // Helper lambda. 1014 auto MakeSubstitution = [this,FoldMI,MI,&Ops]() { 1015 // Substitute old operand zero to the new instructions memory operand. 1016 unsigned OldOperandNum = Ops[0].second; 1017 unsigned NewNum = FoldMI->getDebugInstrNum(); 1018 unsigned OldNum = MI->getDebugInstrNum(); 1019 MF.makeDebugValueSubstitution({OldNum, OldOperandNum}, 1020 {NewNum, MachineFunction::DebugOperandMemNumber}); 1021 }; 1022 1023 const MachineOperand &Op0 = MI->getOperand(Ops[0].second); 1024 if (Ops.size() == 1 && Op0.isDef()) { 1025 MakeSubstitution(); 1026 } else if (Ops.size() == 2 && Op0.isDef() && MI->getOperand(1).isTied() && 1027 Op0.getReg() == MI->getOperand(1).getReg()) { 1028 MakeSubstitution(); 1029 } 1030 } else if (MI->peekDebugInstrNum()) { 1031 // This is a debug-labelled instruction, but the operand being folded isn't 1032 // at operand zero. Most likely this means it's a load being folded in. 1033 // Substitute any register defs from operand zero up to the one being 1034 // folded -- past that point, we don't know what the new operand indexes 1035 // will be. 1036 MF.substituteDebugValuesForInst(*MI, *FoldMI, Ops[0].second); 1037 } 1038 1039 MI->eraseFromParent(); 1040 1041 // Insert any new instructions other than FoldMI into the LIS maps. 1042 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 1043 for (MachineInstr &MI : MIS) 1044 if (&MI != FoldMI) 1045 LIS.InsertMachineInstrInMaps(MI); 1046 1047 // TII.foldMemoryOperand may have left some implicit operands on the 1048 // instruction. Strip them. 1049 if (ImpReg) 1050 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 1051 MachineOperand &MO = FoldMI->getOperand(i - 1); 1052 if (!MO.isReg() || !MO.isImplicit()) 1053 break; 1054 if (MO.getReg() == ImpReg) 1055 FoldMI->removeOperand(i - 1); 1056 } 1057 1058 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 1059 "folded")); 1060 1061 if (!WasCopy) 1062 ++NumFolded; 1063 else if (Ops.front().second == 0) { 1064 ++NumSpills; 1065 // If there is only 1 store instruction is required for spill, add it 1066 // to mergeable list. In X86 AMX, 2 intructions are required to store. 1067 // We disable the merge for this case. 1068 if (std::distance(MIS.begin(), MIS.end()) <= 1) 1069 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original); 1070 } else 1071 ++NumReloads; 1072 return true; 1073 } 1074 1075 void InlineSpiller::insertReload(Register NewVReg, 1076 SlotIndex Idx, 1077 MachineBasicBlock::iterator MI) { 1078 MachineBasicBlock &MBB = *MI->getParent(); 1079 1080 MachineInstrSpan MIS(MI, &MBB); 1081 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 1082 MRI.getRegClass(NewVReg), &TRI, Register()); 1083 1084 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 1085 1086 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 1087 NewVReg)); 1088 ++NumReloads; 1089 } 1090 1091 /// Check if \p Def fully defines a VReg with an undefined value. 1092 /// If that's the case, that means the value of VReg is actually 1093 /// not relevant. 1094 static bool isRealSpill(const MachineInstr &Def) { 1095 if (!Def.isImplicitDef()) 1096 return true; 1097 1098 // We can say that the VReg defined by Def is undef, only if it is 1099 // fully defined by Def. Otherwise, some of the lanes may not be 1100 // undef and the value of the VReg matters. 1101 return Def.getOperand(0).getSubReg(); 1102 } 1103 1104 /// insertSpill - Insert a spill of NewVReg after MI. 1105 void InlineSpiller::insertSpill(Register NewVReg, bool isKill, 1106 MachineBasicBlock::iterator MI) { 1107 // Spill are not terminators, so inserting spills after terminators will 1108 // violate invariants in MachineVerifier. 1109 assert(!MI->isTerminator() && "Inserting a spill after a terminator"); 1110 MachineBasicBlock &MBB = *MI->getParent(); 1111 1112 MachineInstrSpan MIS(MI, &MBB); 1113 MachineBasicBlock::iterator SpillBefore = std::next(MI); 1114 bool IsRealSpill = isRealSpill(*MI); 1115 1116 if (IsRealSpill) 1117 TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot, 1118 MRI.getRegClass(NewVReg), &TRI, Register()); 1119 else 1120 // Don't spill undef value. 1121 // Anything works for undef, in particular keeping the memory 1122 // uninitialized is a viable option and it saves code size and 1123 // run time. 1124 BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL)) 1125 .addReg(NewVReg, getKillRegState(isKill)); 1126 1127 MachineBasicBlock::iterator Spill = std::next(MI); 1128 LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end()); 1129 for (const MachineInstr &MI : make_range(Spill, MIS.end())) 1130 getVDefInterval(MI, LIS); 1131 1132 LLVM_DEBUG( 1133 dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill")); 1134 ++NumSpills; 1135 // If there is only 1 store instruction is required for spill, add it 1136 // to mergeable list. In X86 AMX, 2 intructions are required to store. 1137 // We disable the merge for this case. 1138 if (IsRealSpill && std::distance(Spill, MIS.end()) <= 1) 1139 HSpiller.addToMergeableSpills(*Spill, StackSlot, Original); 1140 } 1141 1142 /// spillAroundUses - insert spill code around each use of Reg. 1143 void InlineSpiller::spillAroundUses(Register Reg) { 1144 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n'); 1145 LiveInterval &OldLI = LIS.getInterval(Reg); 1146 1147 // Iterate over instructions using Reg. 1148 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) { 1149 // Debug values are not allowed to affect codegen. 1150 if (MI.isDebugValue()) { 1151 // Modify DBG_VALUE now that the value is in a spill slot. 1152 MachineBasicBlock *MBB = MI.getParent(); 1153 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << MI); 1154 buildDbgValueForSpill(*MBB, &MI, MI, StackSlot, Reg); 1155 MBB->erase(MI); 1156 continue; 1157 } 1158 1159 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " 1160 "instruction that isn't a DBG_VALUE"); 1161 1162 // Ignore copies to/from snippets. We'll delete them. 1163 if (SnippetCopies.count(&MI)) 1164 continue; 1165 1166 // Stack slot accesses may coalesce away. 1167 if (coalesceStackAccess(&MI, Reg)) 1168 continue; 1169 1170 // Analyze instruction. 1171 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 1172 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, Reg, &Ops); 1173 1174 // Find the slot index where this instruction reads and writes OldLI. 1175 // This is usually the def slot, except for tied early clobbers. 1176 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 1177 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 1178 if (SlotIndex::isSameInstr(Idx, VNI->def)) 1179 Idx = VNI->def; 1180 1181 // Check for a sibling copy. 1182 Register SibReg = isCopyOfBundle(MI, Reg, TII); 1183 if (SibReg && isSibling(SibReg)) { 1184 // This may actually be a copy between snippets. 1185 if (isRegToSpill(SibReg)) { 1186 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << MI); 1187 SnippetCopies.insert(&MI); 1188 continue; 1189 } 1190 if (RI.Writes) { 1191 if (hoistSpillInsideBB(OldLI, MI)) { 1192 // This COPY is now dead, the value is already in the stack slot. 1193 MI.getOperand(0).setIsDead(); 1194 DeadDefs.push_back(&MI); 1195 continue; 1196 } 1197 } else { 1198 // This is a reload for a sib-reg copy. Drop spills downstream. 1199 LiveInterval &SibLI = LIS.getInterval(SibReg); 1200 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 1201 // The COPY will fold to a reload below. 1202 } 1203 } 1204 1205 // Attempt to fold memory ops. 1206 if (foldMemoryOperand(Ops)) 1207 continue; 1208 1209 // Create a new virtual register for spill/fill. 1210 // FIXME: Infer regclass from instruction alone. 1211 Register NewVReg = Edit->createFrom(Reg); 1212 1213 if (RI.Reads) 1214 insertReload(NewVReg, Idx, &MI); 1215 1216 // Rewrite instruction operands. 1217 bool hasLiveDef = false; 1218 for (const auto &OpPair : Ops) { 1219 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 1220 MO.setReg(NewVReg); 1221 if (MO.isUse()) { 1222 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second)) 1223 MO.setIsKill(); 1224 } else { 1225 if (!MO.isDead()) 1226 hasLiveDef = true; 1227 } 1228 } 1229 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << MI << '\n'); 1230 1231 // FIXME: Use a second vreg if instruction has no tied ops. 1232 if (RI.Writes) 1233 if (hasLiveDef) 1234 insertSpill(NewVReg, true, &MI); 1235 } 1236 } 1237 1238 /// spillAll - Spill all registers remaining after rematerialization. 1239 void InlineSpiller::spillAll() { 1240 // Update LiveStacks now that we are committed to spilling. 1241 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 1242 StackSlot = VRM.assignVirt2StackSlot(Original); 1243 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 1244 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 1245 } else 1246 StackInt = &LSS.getInterval(StackSlot); 1247 1248 if (Original != Edit->getReg()) 1249 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 1250 1251 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 1252 for (Register Reg : RegsToSpill) 1253 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg), 1254 StackInt->getValNumInfo(0)); 1255 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 1256 1257 // Spill around uses of all RegsToSpill. 1258 for (Register Reg : RegsToSpill) 1259 spillAroundUses(Reg); 1260 1261 // Hoisted spills may cause dead code. 1262 if (!DeadDefs.empty()) { 1263 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1264 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill); 1265 } 1266 1267 // Finally delete the SnippetCopies. 1268 for (Register Reg : RegsToSpill) { 1269 for (MachineInstr &MI : 1270 llvm::make_early_inc_range(MRI.reg_instructions(Reg))) { 1271 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy"); 1272 // FIXME: Do this with a LiveRangeEdit callback. 1273 LIS.getSlotIndexes()->removeSingleMachineInstrFromMaps(MI); 1274 MI.eraseFromBundle(); 1275 } 1276 } 1277 1278 // Delete all spilled registers. 1279 for (Register Reg : RegsToSpill) 1280 Edit->eraseVirtReg(Reg); 1281 } 1282 1283 void InlineSpiller::spill(LiveRangeEdit &edit) { 1284 ++NumSpilledRanges; 1285 Edit = &edit; 1286 assert(!Register::isStackSlot(edit.getReg()) && 1287 "Trying to spill a stack slot."); 1288 // Share a stack slot among all descendants of Original. 1289 Original = VRM.getOriginal(edit.getReg()); 1290 StackSlot = VRM.getStackSlot(Original); 1291 StackInt = nullptr; 1292 1293 LLVM_DEBUG(dbgs() << "Inline spilling " 1294 << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) 1295 << ':' << edit.getParent() << "\nFrom original " 1296 << printReg(Original) << '\n'); 1297 assert(edit.getParent().isSpillable() && 1298 "Attempting to spill already spilled value."); 1299 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1300 1301 collectRegsToSpill(); 1302 reMaterializeAll(); 1303 1304 // Remat may handle everything. 1305 if (!RegsToSpill.empty()) 1306 spillAll(); 1307 1308 Edit->calculateRegClassAndHint(MF, VRAI); 1309 } 1310 1311 /// Optimizations after all the reg selections and spills are done. 1312 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); } 1313 1314 /// When a spill is inserted, add the spill to MergeableSpills map. 1315 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot, 1316 unsigned Original) { 1317 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1318 LiveInterval &OrigLI = LIS.getInterval(Original); 1319 // save a copy of LiveInterval in StackSlotToOrigLI because the original 1320 // LiveInterval may be cleared after all its references are spilled. 1321 if (!StackSlotToOrigLI.contains(StackSlot)) { 1322 auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight()); 1323 LI->assign(OrigLI, Allocator); 1324 StackSlotToOrigLI[StackSlot] = std::move(LI); 1325 } 1326 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1327 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot()); 1328 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1329 MergeableSpills[MIdx].insert(&Spill); 1330 } 1331 1332 /// When a spill is removed, remove the spill from MergeableSpills map. 1333 /// Return true if the spill is removed successfully. 1334 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill, 1335 int StackSlot) { 1336 auto It = StackSlotToOrigLI.find(StackSlot); 1337 if (It == StackSlotToOrigLI.end()) 1338 return false; 1339 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1340 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot()); 1341 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1342 return MergeableSpills[MIdx].erase(&Spill); 1343 } 1344 1345 /// Check BB to see if it is a possible target BB to place a hoisted spill, 1346 /// i.e., there should be a living sibling of OrigReg at the insert point. 1347 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 1348 MachineBasicBlock &BB, Register &LiveReg) { 1349 SlotIndex Idx = IPA.getLastInsertPoint(OrigLI, BB); 1350 // The original def could be after the last insert point in the root block, 1351 // we can't hoist to here. 1352 if (Idx < OrigVNI.def) { 1353 // TODO: We could be better here. If LI is not alive in landing pad 1354 // we could hoist spill after LIP. 1355 LLVM_DEBUG(dbgs() << "can't spill in root block - def after LIP\n"); 1356 return false; 1357 } 1358 Register OrigReg = OrigLI.reg(); 1359 SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg]; 1360 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI"); 1361 1362 for (const Register &SibReg : Siblings) { 1363 LiveInterval &LI = LIS.getInterval(SibReg); 1364 VNInfo *VNI = LI.getVNInfoAt(Idx); 1365 if (VNI) { 1366 LiveReg = SibReg; 1367 return true; 1368 } 1369 } 1370 return false; 1371 } 1372 1373 /// Remove redundant spills in the same BB. Save those redundant spills in 1374 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. 1375 void HoistSpillHelper::rmRedundantSpills( 1376 SmallPtrSet<MachineInstr *, 16> &Spills, 1377 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1378 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1379 // For each spill saw, check SpillBBToSpill[] and see if its BB already has 1380 // another spill inside. If a BB contains more than one spill, only keep the 1381 // earlier spill with smaller SlotIndex. 1382 for (auto *const CurrentSpill : Spills) { 1383 MachineBasicBlock *Block = CurrentSpill->getParent(); 1384 MachineDomTreeNode *Node = MDT.getNode(Block); 1385 MachineInstr *PrevSpill = SpillBBToSpill[Node]; 1386 if (PrevSpill) { 1387 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill); 1388 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill); 1389 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; 1390 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; 1391 SpillsToRm.push_back(SpillToRm); 1392 SpillBBToSpill[MDT.getNode(Block)] = SpillToKeep; 1393 } else { 1394 SpillBBToSpill[MDT.getNode(Block)] = CurrentSpill; 1395 } 1396 } 1397 for (auto *const SpillToRm : SpillsToRm) 1398 Spills.erase(SpillToRm); 1399 } 1400 1401 /// Starting from \p Root find a top-down traversal order of the dominator 1402 /// tree to visit all basic blocks containing the elements of \p Spills. 1403 /// Redundant spills will be found and put into \p SpillsToRm at the same 1404 /// time. \p SpillBBToSpill will be populated as part of the process and 1405 /// maps a basic block to the first store occurring in the basic block. 1406 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre 1407 void HoistSpillHelper::getVisitOrders( 1408 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 1409 SmallVectorImpl<MachineDomTreeNode *> &Orders, 1410 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1411 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 1412 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1413 // The set contains all the possible BB nodes to which we may hoist 1414 // original spills. 1415 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; 1416 // Save the BB nodes on the path from the first BB node containing 1417 // non-redundant spill to the Root node. 1418 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; 1419 // All the spills to be hoisted must originate from a single def instruction 1420 // to the OrigReg. It means the def instruction should dominate all the spills 1421 // to be hoisted. We choose the BB where the def instruction is located as 1422 // the Root. 1423 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); 1424 // For every node on the dominator tree with spill, walk up on the dominator 1425 // tree towards the Root node until it is reached. If there is other node 1426 // containing spill in the middle of the path, the previous spill saw will 1427 // be redundant and the node containing it will be removed. All the nodes on 1428 // the path starting from the first node with non-redundant spill to the Root 1429 // node will be added to the WorkSet, which will contain all the possible 1430 // locations where spills may be hoisted to after the loop below is done. 1431 for (auto *const Spill : Spills) { 1432 MachineBasicBlock *Block = Spill->getParent(); 1433 MachineDomTreeNode *Node = MDT[Block]; 1434 MachineInstr *SpillToRm = nullptr; 1435 while (Node != RootIDomNode) { 1436 // If Node dominates Block, and it already contains a spill, the spill in 1437 // Block will be redundant. 1438 if (Node != MDT[Block] && SpillBBToSpill[Node]) { 1439 SpillToRm = SpillBBToSpill[MDT[Block]]; 1440 break; 1441 /// If we see the Node already in WorkSet, the path from the Node to 1442 /// the Root node must already be traversed by another spill. 1443 /// Then no need to repeat. 1444 } else if (WorkSet.count(Node)) { 1445 break; 1446 } else { 1447 NodesOnPath.insert(Node); 1448 } 1449 Node = Node->getIDom(); 1450 } 1451 if (SpillToRm) { 1452 SpillsToRm.push_back(SpillToRm); 1453 } else { 1454 // Add a BB containing the original spills to SpillsToKeep -- i.e., 1455 // set the initial status before hoisting start. The value of BBs 1456 // containing original spills is set to 0, in order to descriminate 1457 // with BBs containing hoisted spills which will be inserted to 1458 // SpillsToKeep later during hoisting. 1459 SpillsToKeep[MDT[Block]] = 0; 1460 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end()); 1461 } 1462 NodesOnPath.clear(); 1463 } 1464 1465 // Sort the nodes in WorkSet in top-down order and save the nodes 1466 // in Orders. Orders will be used for hoisting in runHoistSpills. 1467 unsigned idx = 0; 1468 Orders.push_back(MDT.getNode(Root)); 1469 do { 1470 MachineDomTreeNode *Node = Orders[idx++]; 1471 for (MachineDomTreeNode *Child : Node->children()) { 1472 if (WorkSet.count(Child)) 1473 Orders.push_back(Child); 1474 } 1475 } while (idx != Orders.size()); 1476 assert(Orders.size() == WorkSet.size() && 1477 "Orders have different size with WorkSet"); 1478 1479 #ifndef NDEBUG 1480 LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n"); 1481 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1482 for (; RIt != Orders.rend(); RIt++) 1483 LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ","); 1484 LLVM_DEBUG(dbgs() << "\n"); 1485 #endif 1486 } 1487 1488 /// Try to hoist spills according to BB hotness. The spills to removed will 1489 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in 1490 /// \p SpillsToIns. 1491 void HoistSpillHelper::runHoistSpills( 1492 LiveInterval &OrigLI, VNInfo &OrigVNI, 1493 SmallPtrSet<MachineInstr *, 16> &Spills, 1494 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1495 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) { 1496 // Visit order of dominator tree nodes. 1497 SmallVector<MachineDomTreeNode *, 32> Orders; 1498 // SpillsToKeep contains all the nodes where spills are to be inserted 1499 // during hoisting. If the spill to be inserted is an original spill 1500 // (not a hoisted one), the value of the map entry is 0. If the spill 1501 // is a hoisted spill, the value of the map entry is the VReg to be used 1502 // as the source of the spill. 1503 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep; 1504 // Map from BB to the first spill inside of it. 1505 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; 1506 1507 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); 1508 1509 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def); 1510 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, 1511 SpillBBToSpill); 1512 1513 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of 1514 // nodes set and the cost of all the spills inside those nodes. 1515 // The nodes set are the locations where spills are to be inserted 1516 // in the subtree of current node. 1517 using NodesCostPair = 1518 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>; 1519 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; 1520 1521 // Iterate Orders set in reverse order, which will be a bottom-up order 1522 // in the dominator tree. Once we visit a dom tree node, we know its 1523 // children have already been visited and the spill locations in the 1524 // subtrees of all the children have been determined. 1525 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1526 for (; RIt != Orders.rend(); RIt++) { 1527 MachineBasicBlock *Block = (*RIt)->getBlock(); 1528 1529 // If Block contains an original spill, simply continue. 1530 if (SpillsToKeep.contains(*RIt) && !SpillsToKeep[*RIt]) { 1531 SpillsInSubTreeMap[*RIt].first.insert(*RIt); 1532 // SpillsInSubTreeMap[*RIt].second contains the cost of spill. 1533 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block); 1534 continue; 1535 } 1536 1537 // Collect spills in subtree of current node (*RIt) to 1538 // SpillsInSubTreeMap[*RIt].first. 1539 for (MachineDomTreeNode *Child : (*RIt)->children()) { 1540 if (!SpillsInSubTreeMap.contains(Child)) 1541 continue; 1542 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below 1543 // should be placed before getting the begin and end iterators of 1544 // SpillsInSubTreeMap[Child].first, or else the iterators may be 1545 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time 1546 // and the map grows and then the original buckets in the map are moved. 1547 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1548 SpillsInSubTreeMap[*RIt].first; 1549 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1550 SubTreeCost += SpillsInSubTreeMap[Child].second; 1551 auto BI = SpillsInSubTreeMap[Child].first.begin(); 1552 auto EI = SpillsInSubTreeMap[Child].first.end(); 1553 SpillsInSubTree.insert(BI, EI); 1554 SpillsInSubTreeMap.erase(Child); 1555 } 1556 1557 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1558 SpillsInSubTreeMap[*RIt].first; 1559 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1560 // No spills in subtree, simply continue. 1561 if (SpillsInSubTree.empty()) 1562 continue; 1563 1564 // Check whether Block is a possible candidate to insert spill. 1565 Register LiveReg; 1566 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg)) 1567 continue; 1568 1569 // If there are multiple spills that could be merged, bias a little 1570 // to hoist the spill. 1571 BranchProbability MarginProb = (SpillsInSubTree.size() > 1) 1572 ? BranchProbability(9, 10) 1573 : BranchProbability(1, 1); 1574 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) { 1575 // Hoist: Move spills to current Block. 1576 for (auto *const SpillBB : SpillsInSubTree) { 1577 // When SpillBB is a BB contains original spill, insert the spill 1578 // to SpillsToRm. 1579 if (SpillsToKeep.contains(SpillBB) && !SpillsToKeep[SpillBB]) { 1580 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; 1581 SpillsToRm.push_back(SpillToRm); 1582 } 1583 // SpillBB will not contain spill anymore, remove it from SpillsToKeep. 1584 SpillsToKeep.erase(SpillBB); 1585 } 1586 // Current Block is the BB containing the new hoisted spill. Add it to 1587 // SpillsToKeep. LiveReg is the source of the new spill. 1588 SpillsToKeep[*RIt] = LiveReg; 1589 LLVM_DEBUG({ 1590 dbgs() << "spills in BB: "; 1591 for (const auto Rspill : SpillsInSubTree) 1592 dbgs() << Rspill->getBlock()->getNumber() << " "; 1593 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber() 1594 << "\n"; 1595 }); 1596 SpillsInSubTree.clear(); 1597 SpillsInSubTree.insert(*RIt); 1598 SubTreeCost = MBFI.getBlockFreq(Block); 1599 } 1600 } 1601 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), 1602 // save them to SpillsToIns. 1603 for (const auto &Ent : SpillsToKeep) { 1604 if (Ent.second) 1605 SpillsToIns[Ent.first->getBlock()] = Ent.second; 1606 } 1607 } 1608 1609 /// For spills with equal values, remove redundant spills and hoist those left 1610 /// to less hot spots. 1611 /// 1612 /// Spills with equal values will be collected into the same set in 1613 /// MergeableSpills when spill is inserted. These equal spills are originated 1614 /// from the same defining instruction and are dominated by the instruction. 1615 /// Before hoisting all the equal spills, redundant spills inside in the same 1616 /// BB are first marked to be deleted. Then starting from the spills left, walk 1617 /// up on the dominator tree towards the Root node where the define instruction 1618 /// is located, mark the dominated spills to be deleted along the way and 1619 /// collect the BB nodes on the path from non-dominated spills to the define 1620 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places 1621 /// where we are considering to hoist the spills. We iterate the WorkSet in 1622 /// bottom-up order, and for each node, we will decide whether to hoist spills 1623 /// inside its subtree to that node. In this way, we can get benefit locally 1624 /// even if hoisting all the equal spills to one cold place is impossible. 1625 void HoistSpillHelper::hoistAllSpills() { 1626 SmallVector<Register, 4> NewVRegs; 1627 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this); 1628 1629 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { 1630 Register Reg = Register::index2VirtReg(i); 1631 Register Original = VRM.getPreSplitReg(Reg); 1632 if (!MRI.def_empty(Reg)) 1633 Virt2SiblingsMap[Original].insert(Reg); 1634 } 1635 1636 // Each entry in MergeableSpills contains a spill set with equal values. 1637 for (auto &Ent : MergeableSpills) { 1638 int Slot = Ent.first.first; 1639 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot]; 1640 VNInfo *OrigVNI = Ent.first.second; 1641 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; 1642 if (Ent.second.empty()) 1643 continue; 1644 1645 LLVM_DEBUG({ 1646 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n" 1647 << "Equal spills in BB: "; 1648 for (const auto spill : EqValSpills) 1649 dbgs() << spill->getParent()->getNumber() << " "; 1650 dbgs() << "\n"; 1651 }); 1652 1653 // SpillsToRm is the spill set to be removed from EqValSpills. 1654 SmallVector<MachineInstr *, 16> SpillsToRm; 1655 // SpillsToIns is the spill set to be newly inserted after hoisting. 1656 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns; 1657 1658 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns); 1659 1660 LLVM_DEBUG({ 1661 dbgs() << "Finally inserted spills in BB: "; 1662 for (const auto &Ispill : SpillsToIns) 1663 dbgs() << Ispill.first->getNumber() << " "; 1664 dbgs() << "\nFinally removed spills in BB: "; 1665 for (const auto Rspill : SpillsToRm) 1666 dbgs() << Rspill->getParent()->getNumber() << " "; 1667 dbgs() << "\n"; 1668 }); 1669 1670 // Stack live range update. 1671 LiveInterval &StackIntvl = LSS.getInterval(Slot); 1672 if (!SpillsToIns.empty() || !SpillsToRm.empty()) 1673 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI, 1674 StackIntvl.getValNumInfo(0)); 1675 1676 // Insert hoisted spills. 1677 for (auto const &Insert : SpillsToIns) { 1678 MachineBasicBlock *BB = Insert.first; 1679 Register LiveReg = Insert.second; 1680 MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(OrigLI, *BB); 1681 MachineInstrSpan MIS(MII, BB); 1682 TII.storeRegToStackSlot(*BB, MII, LiveReg, false, Slot, 1683 MRI.getRegClass(LiveReg), &TRI, Register()); 1684 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII); 1685 for (const MachineInstr &MI : make_range(MIS.begin(), MII)) 1686 getVDefInterval(MI, LIS); 1687 ++NumSpills; 1688 } 1689 1690 // Remove redundant spills or change them to dead instructions. 1691 NumSpills -= SpillsToRm.size(); 1692 for (auto *const RMEnt : SpillsToRm) { 1693 RMEnt->setDesc(TII.get(TargetOpcode::KILL)); 1694 for (unsigned i = RMEnt->getNumOperands(); i; --i) { 1695 MachineOperand &MO = RMEnt->getOperand(i - 1); 1696 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) 1697 RMEnt->removeOperand(i - 1); 1698 } 1699 } 1700 Edit.eliminateDeadDefs(SpillsToRm, std::nullopt); 1701 } 1702 } 1703 1704 /// For VirtReg clone, the \p New register should have the same physreg or 1705 /// stackslot as the \p old register. 1706 void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) { 1707 if (VRM.hasPhys(Old)) 1708 VRM.assignVirt2Phys(New, VRM.getPhys(Old)); 1709 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT) 1710 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old)); 1711 else 1712 llvm_unreachable("VReg should be assigned either physreg or stackslot"); 1713 if (VRM.hasShape(Old)) 1714 VRM.assignVirt2Shape(New, VRM.getShape(Old)); 1715 } 1716