1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The inline spiller modifies the machine function directly instead of 10 // inserting spills and restores in VirtRegMap. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LiveRangeCalc.h" 15 #include "Spiller.h" 16 #include "SplitKit.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/CodeGen/LiveInterval.h" 28 #include "llvm/CodeGen/LiveIntervals.h" 29 #include "llvm/CodeGen/LiveRangeEdit.h" 30 #include "llvm/CodeGen/LiveStacks.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineInstrBuilder.h" 38 #include "llvm/CodeGen/MachineInstrBundle.h" 39 #include "llvm/CodeGen/MachineLoopInfo.h" 40 #include "llvm/CodeGen/MachineOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/SlotIndexes.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetOpcodes.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/VirtRegMap.h" 48 #include "llvm/Config/llvm-config.h" 49 #include "llvm/Support/BlockFrequency.h" 50 #include "llvm/Support/BranchProbability.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include <cassert> 57 #include <iterator> 58 #include <tuple> 59 #include <utility> 60 #include <vector> 61 62 using namespace llvm; 63 64 #define DEBUG_TYPE "regalloc" 65 66 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 67 STATISTIC(NumSnippets, "Number of spilled snippets"); 68 STATISTIC(NumSpills, "Number of spills inserted"); 69 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 70 STATISTIC(NumReloads, "Number of reloads inserted"); 71 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 72 STATISTIC(NumFolded, "Number of folded stack accesses"); 73 STATISTIC(NumFoldedLoads, "Number of folded loads"); 74 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 75 76 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, 77 cl::desc("Disable inline spill hoisting")); 78 static cl::opt<bool> 79 RestrictStatepointRemat("restrict-statepoint-remat", 80 cl::init(false), cl::Hidden, 81 cl::desc("Restrict remat for statepoint operands")); 82 83 namespace { 84 85 class HoistSpillHelper : private LiveRangeEdit::Delegate { 86 MachineFunction &MF; 87 LiveIntervals &LIS; 88 LiveStacks &LSS; 89 AliasAnalysis *AA; 90 MachineDominatorTree &MDT; 91 MachineLoopInfo &Loops; 92 VirtRegMap &VRM; 93 MachineRegisterInfo &MRI; 94 const TargetInstrInfo &TII; 95 const TargetRegisterInfo &TRI; 96 const MachineBlockFrequencyInfo &MBFI; 97 98 InsertPointAnalysis IPA; 99 100 // Map from StackSlot to the LiveInterval of the original register. 101 // Note the LiveInterval of the original register may have been deleted 102 // after it is spilled. We keep a copy here to track the range where 103 // spills can be moved. 104 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI; 105 106 // Map from pair of (StackSlot and Original VNI) to a set of spills which 107 // have the same stackslot and have equal values defined by Original VNI. 108 // These spills are mergeable and are hoist candiates. 109 using MergeableSpillsMap = 110 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>; 111 MergeableSpillsMap MergeableSpills; 112 113 /// This is the map from original register to a set containing all its 114 /// siblings. To hoist a spill to another BB, we need to find out a live 115 /// sibling there and use it as the source of the new spill. 116 DenseMap<unsigned, SmallSetVector<unsigned, 16>> Virt2SiblingsMap; 117 118 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 119 MachineBasicBlock &BB, unsigned &LiveReg); 120 121 void rmRedundantSpills( 122 SmallPtrSet<MachineInstr *, 16> &Spills, 123 SmallVectorImpl<MachineInstr *> &SpillsToRm, 124 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 125 126 void getVisitOrders( 127 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 128 SmallVectorImpl<MachineDomTreeNode *> &Orders, 129 SmallVectorImpl<MachineInstr *> &SpillsToRm, 130 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 131 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 132 133 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI, 134 SmallPtrSet<MachineInstr *, 16> &Spills, 135 SmallVectorImpl<MachineInstr *> &SpillsToRm, 136 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns); 137 138 public: 139 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf, 140 VirtRegMap &vrm) 141 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 142 LSS(pass.getAnalysis<LiveStacks>()), 143 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 144 MDT(pass.getAnalysis<MachineDominatorTree>()), 145 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 146 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 147 TRI(*mf.getSubtarget().getRegisterInfo()), 148 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 149 IPA(LIS, mf.getNumBlockIDs()) {} 150 151 void addToMergeableSpills(MachineInstr &Spill, int StackSlot, 152 unsigned Original); 153 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot); 154 void hoistAllSpills(); 155 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 156 }; 157 158 class InlineSpiller : public Spiller { 159 MachineFunction &MF; 160 LiveIntervals &LIS; 161 LiveStacks &LSS; 162 AliasAnalysis *AA; 163 MachineDominatorTree &MDT; 164 MachineLoopInfo &Loops; 165 VirtRegMap &VRM; 166 MachineRegisterInfo &MRI; 167 const TargetInstrInfo &TII; 168 const TargetRegisterInfo &TRI; 169 const MachineBlockFrequencyInfo &MBFI; 170 171 // Variables that are valid during spill(), but used by multiple methods. 172 LiveRangeEdit *Edit; 173 LiveInterval *StackInt; 174 int StackSlot; 175 unsigned Original; 176 177 // All registers to spill to StackSlot, including the main register. 178 SmallVector<unsigned, 8> RegsToSpill; 179 180 // All COPY instructions to/from snippets. 181 // They are ignored since both operands refer to the same stack slot. 182 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 183 184 // Values that failed to remat at some point. 185 SmallPtrSet<VNInfo*, 8> UsedValues; 186 187 // Dead defs generated during spilling. 188 SmallVector<MachineInstr*, 8> DeadDefs; 189 190 // Object records spills information and does the hoisting. 191 HoistSpillHelper HSpiller; 192 193 ~InlineSpiller() override = default; 194 195 public: 196 InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm) 197 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 198 LSS(pass.getAnalysis<LiveStacks>()), 199 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 200 MDT(pass.getAnalysis<MachineDominatorTree>()), 201 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 202 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 203 TRI(*mf.getSubtarget().getRegisterInfo()), 204 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 205 HSpiller(pass, mf, vrm) {} 206 207 void spill(LiveRangeEdit &) override; 208 void postOptimization() override; 209 210 private: 211 bool isSnippet(const LiveInterval &SnipLI); 212 void collectRegsToSpill(); 213 214 bool isRegToSpill(unsigned Reg) { return is_contained(RegsToSpill, Reg); } 215 216 bool isSibling(unsigned Reg); 217 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); 218 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 219 220 void markValueUsed(LiveInterval*, VNInfo*); 221 bool canGuaranteeAssignmentAfterRemat(unsigned VReg, MachineInstr &MI); 222 bool reMaterializeFor(LiveInterval &, MachineInstr &MI); 223 void reMaterializeAll(); 224 225 bool coalesceStackAccess(MachineInstr *MI, unsigned Reg); 226 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>, 227 MachineInstr *LoadMI = nullptr); 228 void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI); 229 void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI); 230 231 void spillAroundUses(unsigned Reg); 232 void spillAll(); 233 }; 234 235 } // end anonymous namespace 236 237 Spiller::~Spiller() = default; 238 239 void Spiller::anchor() {} 240 241 Spiller *llvm::createInlineSpiller(MachineFunctionPass &pass, 242 MachineFunction &mf, 243 VirtRegMap &vrm) { 244 return new InlineSpiller(pass, mf, vrm); 245 } 246 247 //===----------------------------------------------------------------------===// 248 // Snippets 249 //===----------------------------------------------------------------------===// 250 251 // When spilling a virtual register, we also spill any snippets it is connected 252 // to. The snippets are small live ranges that only have a single real use, 253 // leftovers from live range splitting. Spilling them enables memory operand 254 // folding or tightens the live range around the single use. 255 // 256 // This minimizes register pressure and maximizes the store-to-load distance for 257 // spill slots which can be important in tight loops. 258 259 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 260 /// otherwise return 0. 261 static unsigned isFullCopyOf(const MachineInstr &MI, unsigned Reg) { 262 if (!MI.isFullCopy()) 263 return 0; 264 if (MI.getOperand(0).getReg() == Reg) 265 return MI.getOperand(1).getReg(); 266 if (MI.getOperand(1).getReg() == Reg) 267 return MI.getOperand(0).getReg(); 268 return 0; 269 } 270 271 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 272 /// It is assumed that SnipLI is a virtual register with the same original as 273 /// Edit->getReg(). 274 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 275 unsigned Reg = Edit->getReg(); 276 277 // A snippet is a tiny live range with only a single instruction using it 278 // besides copies to/from Reg or spills/fills. We accept: 279 // 280 // %snip = COPY %Reg / FILL fi# 281 // %snip = USE %snip 282 // %Reg = COPY %snip / SPILL %snip, fi# 283 // 284 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) 285 return false; 286 287 MachineInstr *UseMI = nullptr; 288 289 // Check that all uses satisfy our criteria. 290 for (MachineRegisterInfo::reg_instr_nodbg_iterator 291 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg), 292 E = MRI.reg_instr_nodbg_end(); RI != E; ) { 293 MachineInstr &MI = *RI++; 294 295 // Allow copies to/from Reg. 296 if (isFullCopyOf(MI, Reg)) 297 continue; 298 299 // Allow stack slot loads. 300 int FI; 301 if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 302 continue; 303 304 // Allow stack slot stores. 305 if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 306 continue; 307 308 // Allow a single additional instruction. 309 if (UseMI && &MI != UseMI) 310 return false; 311 UseMI = &MI; 312 } 313 return true; 314 } 315 316 /// collectRegsToSpill - Collect live range snippets that only have a single 317 /// real use. 318 void InlineSpiller::collectRegsToSpill() { 319 unsigned Reg = Edit->getReg(); 320 321 // Main register always spills. 322 RegsToSpill.assign(1, Reg); 323 SnippetCopies.clear(); 324 325 // Snippets all have the same original, so there can't be any for an original 326 // register. 327 if (Original == Reg) 328 return; 329 330 for (MachineRegisterInfo::reg_instr_iterator 331 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) { 332 MachineInstr &MI = *RI++; 333 unsigned SnipReg = isFullCopyOf(MI, Reg); 334 if (!isSibling(SnipReg)) 335 continue; 336 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 337 if (!isSnippet(SnipLI)) 338 continue; 339 SnippetCopies.insert(&MI); 340 if (isRegToSpill(SnipReg)) 341 continue; 342 RegsToSpill.push_back(SnipReg); 343 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 344 ++NumSnippets; 345 } 346 } 347 348 bool InlineSpiller::isSibling(unsigned Reg) { 349 return TargetRegisterInfo::isVirtualRegister(Reg) && 350 VRM.getOriginal(Reg) == Original; 351 } 352 353 /// It is beneficial to spill to earlier place in the same BB in case 354 /// as follows: 355 /// There is an alternative def earlier in the same MBB. 356 /// Hoist the spill as far as possible in SpillMBB. This can ease 357 /// register pressure: 358 /// 359 /// x = def 360 /// y = use x 361 /// s = copy x 362 /// 363 /// Hoisting the spill of s to immediately after the def removes the 364 /// interference between x and y: 365 /// 366 /// x = def 367 /// spill x 368 /// y = use killed x 369 /// 370 /// This hoist only helps when the copy kills its source. 371 /// 372 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, 373 MachineInstr &CopyMI) { 374 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 375 #ifndef NDEBUG 376 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 377 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 378 #endif 379 380 unsigned SrcReg = CopyMI.getOperand(1).getReg(); 381 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 382 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); 383 LiveQueryResult SrcQ = SrcLI.Query(Idx); 384 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def); 385 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) 386 return false; 387 388 // Conservatively extend the stack slot range to the range of the original 389 // value. We may be able to do better with stack slot coloring by being more 390 // careful here. 391 assert(StackInt && "No stack slot assigned yet."); 392 LiveInterval &OrigLI = LIS.getInterval(Original); 393 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 394 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 395 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 396 << *StackInt << '\n'); 397 398 // We are going to spill SrcVNI immediately after its def, so clear out 399 // any later spills of the same value. 400 eliminateRedundantSpills(SrcLI, SrcVNI); 401 402 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def); 403 MachineBasicBlock::iterator MII; 404 if (SrcVNI->isPHIDef()) 405 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 406 else { 407 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def); 408 assert(DefMI && "Defining instruction disappeared"); 409 MII = DefMI; 410 ++MII; 411 } 412 // Insert spill without kill flag immediately after def. 413 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot, 414 MRI.getRegClass(SrcReg), &TRI); 415 --MII; // Point to store instruction. 416 LIS.InsertMachineInstrInMaps(*MII); 417 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII); 418 419 HSpiller.addToMergeableSpills(*MII, StackSlot, Original); 420 ++NumSpills; 421 return true; 422 } 423 424 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 425 /// redundant spills of this value in SLI.reg and sibling copies. 426 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 427 assert(VNI && "Missing value"); 428 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 429 WorkList.push_back(std::make_pair(&SLI, VNI)); 430 assert(StackInt && "No stack slot assigned yet."); 431 432 do { 433 LiveInterval *LI; 434 std::tie(LI, VNI) = WorkList.pop_back_val(); 435 unsigned Reg = LI->reg; 436 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@' 437 << VNI->def << " in " << *LI << '\n'); 438 439 // Regs to spill are taken care of. 440 if (isRegToSpill(Reg)) 441 continue; 442 443 // Add all of VNI's live range to StackInt. 444 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 445 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 446 447 // Find all spills and copies of VNI. 448 for (MachineRegisterInfo::use_instr_nodbg_iterator 449 UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 450 UI != E; ) { 451 MachineInstr &MI = *UI++; 452 if (!MI.isCopy() && !MI.mayStore()) 453 continue; 454 SlotIndex Idx = LIS.getInstructionIndex(MI); 455 if (LI->getVNInfoAt(Idx) != VNI) 456 continue; 457 458 // Follow sibling copies down the dominator tree. 459 if (unsigned DstReg = isFullCopyOf(MI, Reg)) { 460 if (isSibling(DstReg)) { 461 LiveInterval &DstLI = LIS.getInterval(DstReg); 462 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 463 assert(DstVNI && "Missing defined value"); 464 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 465 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 466 } 467 continue; 468 } 469 470 // Erase spills. 471 int FI; 472 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 473 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI); 474 // eliminateDeadDefs won't normally remove stores, so switch opcode. 475 MI.setDesc(TII.get(TargetOpcode::KILL)); 476 DeadDefs.push_back(&MI); 477 ++NumSpillsRemoved; 478 if (HSpiller.rmFromMergeableSpills(MI, StackSlot)) 479 --NumSpills; 480 } 481 } 482 } while (!WorkList.empty()); 483 } 484 485 //===----------------------------------------------------------------------===// 486 // Rematerialization 487 //===----------------------------------------------------------------------===// 488 489 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 490 /// instruction cannot be eliminated. See through snippet copies 491 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 492 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 493 WorkList.push_back(std::make_pair(LI, VNI)); 494 do { 495 std::tie(LI, VNI) = WorkList.pop_back_val(); 496 if (!UsedValues.insert(VNI).second) 497 continue; 498 499 if (VNI->isPHIDef()) { 500 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 501 for (MachineBasicBlock *P : MBB->predecessors()) { 502 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P)); 503 if (PVNI) 504 WorkList.push_back(std::make_pair(LI, PVNI)); 505 } 506 continue; 507 } 508 509 // Follow snippet copies. 510 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 511 if (!SnippetCopies.count(MI)) 512 continue; 513 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 514 assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy"); 515 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 516 assert(SnipVNI && "Snippet undefined before copy"); 517 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 518 } while (!WorkList.empty()); 519 } 520 521 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(unsigned VReg, 522 MachineInstr &MI) { 523 if (!RestrictStatepointRemat) 524 return true; 525 // Here's a quick explanation of the problem we're trying to handle here: 526 // * There are some pseudo instructions with more vreg uses than there are 527 // physical registers on the machine. 528 // * This is normally handled by spilling the vreg, and folding the reload 529 // into the user instruction. (Thus decreasing the number of used vregs 530 // until the remainder can be assigned to physregs.) 531 // * However, since we may try to spill vregs in any order, we can end up 532 // trying to spill each operand to the instruction, and then rematting it 533 // instead. When that happens, the new live intervals (for the remats) are 534 // expected to be trivially assignable (i.e. RS_Done). However, since we 535 // may have more remats than physregs, we're guaranteed to fail to assign 536 // one. 537 // At the moment, we only handle this for STATEPOINTs since they're the only 538 // psuedo op where we've seen this. If we start seeing other instructions 539 // with the same problem, we need to revisit this. 540 return (MI.getOpcode() != TargetOpcode::STATEPOINT); 541 } 542 543 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 544 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { 545 // Analyze instruction 546 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 547 MIBundleOperands::VirtRegInfo RI = 548 MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops); 549 550 if (!RI.Reads) 551 return false; 552 553 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 554 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 555 556 if (!ParentVNI) { 557 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: "); 558 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 559 MachineOperand &MO = MI.getOperand(i); 560 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) 561 MO.setIsUndef(); 562 } 563 LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI); 564 return true; 565 } 566 567 if (SnippetCopies.count(&MI)) 568 return false; 569 570 LiveInterval &OrigLI = LIS.getInterval(Original); 571 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 572 LiveRangeEdit::Remat RM(ParentVNI); 573 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 574 575 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) { 576 markValueUsed(&VirtReg, ParentVNI); 577 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 578 return false; 579 } 580 581 // If the instruction also writes VirtReg.reg, it had better not require the 582 // same register for uses and defs. 583 if (RI.Tied) { 584 markValueUsed(&VirtReg, ParentVNI); 585 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI); 586 return false; 587 } 588 589 // Before rematerializing into a register for a single instruction, try to 590 // fold a load into the instruction. That avoids allocating a new register. 591 if (RM.OrigMI->canFoldAsLoad() && 592 foldMemoryOperand(Ops, RM.OrigMI)) { 593 Edit->markRematerialized(RM.ParentVNI); 594 ++NumFoldedLoads; 595 return true; 596 } 597 598 // If we can't guarantee that we'll be able to actually assign the new vreg, 599 // we can't remat. 600 if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg, MI)) { 601 markValueUsed(&VirtReg, ParentVNI); 602 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 603 return false; 604 } 605 606 // Allocate a new register for the remat. 607 unsigned NewVReg = Edit->createFrom(Original); 608 609 // Finally we can rematerialize OrigMI before MI. 610 SlotIndex DefIdx = 611 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI); 612 613 // We take the DebugLoc from MI, since OrigMI may be attributed to a 614 // different source location. 615 auto *NewMI = LIS.getInstructionFromIndex(DefIdx); 616 NewMI->setDebugLoc(MI.getDebugLoc()); 617 618 (void)DefIdx; 619 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 620 << *LIS.getInstructionFromIndex(DefIdx)); 621 622 // Replace operands 623 for (const auto &OpPair : Ops) { 624 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 625 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) { 626 MO.setReg(NewVReg); 627 MO.setIsKill(); 628 } 629 } 630 LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n'); 631 632 ++NumRemats; 633 return true; 634 } 635 636 /// reMaterializeAll - Try to rematerialize as many uses as possible, 637 /// and trim the live ranges after. 638 void InlineSpiller::reMaterializeAll() { 639 if (!Edit->anyRematerializable(AA)) 640 return; 641 642 UsedValues.clear(); 643 644 // Try to remat before all uses of snippets. 645 bool anyRemat = false; 646 for (unsigned Reg : RegsToSpill) { 647 LiveInterval &LI = LIS.getInterval(Reg); 648 for (MachineRegisterInfo::reg_bundle_iterator 649 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 650 RegI != E; ) { 651 MachineInstr &MI = *RegI++; 652 653 // Debug values are not allowed to affect codegen. 654 if (MI.isDebugValue()) 655 continue; 656 657 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " 658 "instruction that isn't a DBG_VALUE"); 659 660 anyRemat |= reMaterializeFor(LI, MI); 661 } 662 } 663 if (!anyRemat) 664 return; 665 666 // Remove any values that were completely rematted. 667 for (unsigned Reg : RegsToSpill) { 668 LiveInterval &LI = LIS.getInterval(Reg); 669 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 670 I != E; ++I) { 671 VNInfo *VNI = *I; 672 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 673 continue; 674 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 675 MI->addRegisterDead(Reg, &TRI); 676 if (!MI->allDefsAreDead()) 677 continue; 678 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 679 DeadDefs.push_back(MI); 680 } 681 } 682 683 // Eliminate dead code after remat. Note that some snippet copies may be 684 // deleted here. 685 if (DeadDefs.empty()) 686 return; 687 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 688 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 689 690 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions 691 // after rematerialization. To remove a VNI for a vreg from its LiveInterval, 692 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all 693 // removed, PHI VNI are still left in the LiveInterval. 694 // So to get rid of unused reg, we need to check whether it has non-dbg 695 // reference instead of whether it has non-empty interval. 696 unsigned ResultPos = 0; 697 for (unsigned Reg : RegsToSpill) { 698 if (MRI.reg_nodbg_empty(Reg)) { 699 Edit->eraseVirtReg(Reg); 700 continue; 701 } 702 703 assert(LIS.hasInterval(Reg) && 704 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && 705 "Empty and not used live-range?!"); 706 707 RegsToSpill[ResultPos++] = Reg; 708 } 709 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 710 LLVM_DEBUG(dbgs() << RegsToSpill.size() 711 << " registers to spill after remat.\n"); 712 } 713 714 //===----------------------------------------------------------------------===// 715 // Spilling 716 //===----------------------------------------------------------------------===// 717 718 /// If MI is a load or store of StackSlot, it can be removed. 719 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) { 720 int FI = 0; 721 unsigned InstrReg = TII.isLoadFromStackSlot(*MI, FI); 722 bool IsLoad = InstrReg; 723 if (!IsLoad) 724 InstrReg = TII.isStoreToStackSlot(*MI, FI); 725 726 // We have a stack access. Is it the right register and slot? 727 if (InstrReg != Reg || FI != StackSlot) 728 return false; 729 730 if (!IsLoad) 731 HSpiller.rmFromMergeableSpills(*MI, StackSlot); 732 733 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI); 734 LIS.RemoveMachineInstrFromMaps(*MI); 735 MI->eraseFromParent(); 736 737 if (IsLoad) { 738 ++NumReloadsRemoved; 739 --NumReloads; 740 } else { 741 ++NumSpillsRemoved; 742 --NumSpills; 743 } 744 745 return true; 746 } 747 748 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 749 LLVM_DUMP_METHOD 750 // Dump the range of instructions from B to E with their slot indexes. 751 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 752 MachineBasicBlock::iterator E, 753 LiveIntervals const &LIS, 754 const char *const header, 755 unsigned VReg =0) { 756 char NextLine = '\n'; 757 char SlotIndent = '\t'; 758 759 if (std::next(B) == E) { 760 NextLine = ' '; 761 SlotIndent = ' '; 762 } 763 764 dbgs() << '\t' << header << ": " << NextLine; 765 766 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 767 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); 768 769 // If a register was passed in and this instruction has it as a 770 // destination that is marked as an early clobber, print the 771 // early-clobber slot index. 772 if (VReg) { 773 MachineOperand *MO = I->findRegisterDefOperand(VReg); 774 if (MO && MO->isEarlyClobber()) 775 Idx = Idx.getRegSlot(true); 776 } 777 778 dbgs() << SlotIndent << Idx << '\t' << *I; 779 } 780 } 781 #endif 782 783 /// foldMemoryOperand - Try folding stack slot references in Ops into their 784 /// instructions. 785 /// 786 /// @param Ops Operand indices from analyzeVirtReg(). 787 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 788 /// @return True on success. 789 bool InlineSpiller:: 790 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops, 791 MachineInstr *LoadMI) { 792 if (Ops.empty()) 793 return false; 794 // Don't attempt folding in bundles. 795 MachineInstr *MI = Ops.front().first; 796 if (Ops.back().first != MI || MI->isBundled()) 797 return false; 798 799 bool WasCopy = MI->isCopy(); 800 unsigned ImpReg = 0; 801 802 // Spill subregs if the target allows it. 803 // We always want to spill subregs for stackmap/patchpoint pseudos. 804 bool SpillSubRegs = TII.isSubregFoldable() || 805 MI->getOpcode() == TargetOpcode::STATEPOINT || 806 MI->getOpcode() == TargetOpcode::PATCHPOINT || 807 MI->getOpcode() == TargetOpcode::STACKMAP; 808 809 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 810 // operands. 811 SmallVector<unsigned, 8> FoldOps; 812 for (const auto &OpPair : Ops) { 813 unsigned Idx = OpPair.second; 814 assert(MI == OpPair.first && "Instruction conflict during operand folding"); 815 MachineOperand &MO = MI->getOperand(Idx); 816 if (MO.isImplicit()) { 817 ImpReg = MO.getReg(); 818 continue; 819 } 820 821 if (!SpillSubRegs && MO.getSubReg()) 822 return false; 823 // We cannot fold a load instruction into a def. 824 if (LoadMI && MO.isDef()) 825 return false; 826 // Tied use operands should not be passed to foldMemoryOperand. 827 if (!MI->isRegTiedToDefOperand(Idx)) 828 FoldOps.push_back(Idx); 829 } 830 831 // If we only have implicit uses, we won't be able to fold that. 832 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try! 833 if (FoldOps.empty()) 834 return false; 835 836 MachineInstrSpan MIS(MI, MI->getParent()); 837 838 MachineInstr *FoldMI = 839 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS) 840 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM); 841 if (!FoldMI) 842 return false; 843 844 // Remove LIS for any dead defs in the original MI not in FoldMI. 845 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { 846 if (!MO->isReg()) 847 continue; 848 unsigned Reg = MO->getReg(); 849 if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) || 850 MRI.isReserved(Reg)) { 851 continue; 852 } 853 // Skip non-Defs, including undef uses and internal reads. 854 if (MO->isUse()) 855 continue; 856 MIBundleOperands::PhysRegInfo RI = 857 MIBundleOperands(*FoldMI).analyzePhysReg(Reg, &TRI); 858 if (RI.FullyDefined) 859 continue; 860 // FoldMI does not define this physreg. Remove the LI segment. 861 assert(MO->isDead() && "Cannot fold physreg def"); 862 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 863 LIS.removePhysRegDefAt(Reg, Idx); 864 } 865 866 int FI; 867 if (TII.isStoreToStackSlot(*MI, FI) && 868 HSpiller.rmFromMergeableSpills(*MI, FI)) 869 --NumSpills; 870 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI); 871 if (MI->isCall()) 872 MI->getMF()->updateCallSiteInfo(MI, FoldMI); 873 MI->eraseFromParent(); 874 875 // Insert any new instructions other than FoldMI into the LIS maps. 876 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 877 for (MachineInstr &MI : MIS) 878 if (&MI != FoldMI) 879 LIS.InsertMachineInstrInMaps(MI); 880 881 // TII.foldMemoryOperand may have left some implicit operands on the 882 // instruction. Strip them. 883 if (ImpReg) 884 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 885 MachineOperand &MO = FoldMI->getOperand(i - 1); 886 if (!MO.isReg() || !MO.isImplicit()) 887 break; 888 if (MO.getReg() == ImpReg) 889 FoldMI->RemoveOperand(i - 1); 890 } 891 892 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 893 "folded")); 894 895 if (!WasCopy) 896 ++NumFolded; 897 else if (Ops.front().second == 0) { 898 ++NumSpills; 899 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original); 900 } else 901 ++NumReloads; 902 return true; 903 } 904 905 void InlineSpiller::insertReload(unsigned NewVReg, 906 SlotIndex Idx, 907 MachineBasicBlock::iterator MI) { 908 MachineBasicBlock &MBB = *MI->getParent(); 909 910 MachineInstrSpan MIS(MI, &MBB); 911 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 912 MRI.getRegClass(NewVReg), &TRI); 913 914 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 915 916 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 917 NewVReg)); 918 ++NumReloads; 919 } 920 921 /// Check if \p Def fully defines a VReg with an undefined value. 922 /// If that's the case, that means the value of VReg is actually 923 /// not relevant. 924 static bool isFullUndefDef(const MachineInstr &Def) { 925 if (!Def.isImplicitDef()) 926 return false; 927 assert(Def.getNumOperands() == 1 && 928 "Implicit def with more than one definition"); 929 // We can say that the VReg defined by Def is undef, only if it is 930 // fully defined by Def. Otherwise, some of the lanes may not be 931 // undef and the value of the VReg matters. 932 return !Def.getOperand(0).getSubReg(); 933 } 934 935 /// insertSpill - Insert a spill of NewVReg after MI. 936 void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill, 937 MachineBasicBlock::iterator MI) { 938 MachineBasicBlock &MBB = *MI->getParent(); 939 940 MachineInstrSpan MIS(MI, &MBB); 941 bool IsRealSpill = true; 942 if (isFullUndefDef(*MI)) { 943 // Don't spill undef value. 944 // Anything works for undef, in particular keeping the memory 945 // uninitialized is a viable option and it saves code size and 946 // run time. 947 BuildMI(MBB, std::next(MI), MI->getDebugLoc(), TII.get(TargetOpcode::KILL)) 948 .addReg(NewVReg, getKillRegState(isKill)); 949 IsRealSpill = false; 950 } else 951 TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot, 952 MRI.getRegClass(NewVReg), &TRI); 953 954 LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end()); 955 956 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS, 957 "spill")); 958 ++NumSpills; 959 if (IsRealSpill) 960 HSpiller.addToMergeableSpills(*std::next(MI), StackSlot, Original); 961 } 962 963 /// spillAroundUses - insert spill code around each use of Reg. 964 void InlineSpiller::spillAroundUses(unsigned Reg) { 965 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n'); 966 LiveInterval &OldLI = LIS.getInterval(Reg); 967 968 // Iterate over instructions using Reg. 969 for (MachineRegisterInfo::reg_bundle_iterator 970 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 971 RegI != E; ) { 972 MachineInstr *MI = &*(RegI++); 973 974 // Debug values are not allowed to affect codegen. 975 if (MI->isDebugValue()) { 976 // Modify DBG_VALUE now that the value is in a spill slot. 977 MachineBasicBlock *MBB = MI->getParent(); 978 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI); 979 buildDbgValueForSpill(*MBB, MI, *MI, StackSlot); 980 MBB->erase(MI); 981 continue; 982 } 983 984 assert(!MI->isDebugInstr() && "Did not expect to find a use in debug " 985 "instruction that isn't a DBG_VALUE"); 986 987 // Ignore copies to/from snippets. We'll delete them. 988 if (SnippetCopies.count(MI)) 989 continue; 990 991 // Stack slot accesses may coalesce away. 992 if (coalesceStackAccess(MI, Reg)) 993 continue; 994 995 // Analyze instruction. 996 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 997 MIBundleOperands::VirtRegInfo RI = 998 MIBundleOperands(*MI).analyzeVirtReg(Reg, &Ops); 999 1000 // Find the slot index where this instruction reads and writes OldLI. 1001 // This is usually the def slot, except for tied early clobbers. 1002 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 1003 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 1004 if (SlotIndex::isSameInstr(Idx, VNI->def)) 1005 Idx = VNI->def; 1006 1007 // Check for a sibling copy. 1008 unsigned SibReg = isFullCopyOf(*MI, Reg); 1009 if (SibReg && isSibling(SibReg)) { 1010 // This may actually be a copy between snippets. 1011 if (isRegToSpill(SibReg)) { 1012 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << *MI); 1013 SnippetCopies.insert(MI); 1014 continue; 1015 } 1016 if (RI.Writes) { 1017 if (hoistSpillInsideBB(OldLI, *MI)) { 1018 // This COPY is now dead, the value is already in the stack slot. 1019 MI->getOperand(0).setIsDead(); 1020 DeadDefs.push_back(MI); 1021 continue; 1022 } 1023 } else { 1024 // This is a reload for a sib-reg copy. Drop spills downstream. 1025 LiveInterval &SibLI = LIS.getInterval(SibReg); 1026 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 1027 // The COPY will fold to a reload below. 1028 } 1029 } 1030 1031 // Attempt to fold memory ops. 1032 if (foldMemoryOperand(Ops)) 1033 continue; 1034 1035 // Create a new virtual register for spill/fill. 1036 // FIXME: Infer regclass from instruction alone. 1037 unsigned NewVReg = Edit->createFrom(Reg); 1038 1039 if (RI.Reads) 1040 insertReload(NewVReg, Idx, MI); 1041 1042 // Rewrite instruction operands. 1043 bool hasLiveDef = false; 1044 for (const auto &OpPair : Ops) { 1045 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 1046 MO.setReg(NewVReg); 1047 if (MO.isUse()) { 1048 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second)) 1049 MO.setIsKill(); 1050 } else { 1051 if (!MO.isDead()) 1052 hasLiveDef = true; 1053 } 1054 } 1055 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n'); 1056 1057 // FIXME: Use a second vreg if instruction has no tied ops. 1058 if (RI.Writes) 1059 if (hasLiveDef) 1060 insertSpill(NewVReg, true, MI); 1061 } 1062 } 1063 1064 /// spillAll - Spill all registers remaining after rematerialization. 1065 void InlineSpiller::spillAll() { 1066 // Update LiveStacks now that we are committed to spilling. 1067 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 1068 StackSlot = VRM.assignVirt2StackSlot(Original); 1069 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 1070 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 1071 } else 1072 StackInt = &LSS.getInterval(StackSlot); 1073 1074 if (Original != Edit->getReg()) 1075 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 1076 1077 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 1078 for (unsigned Reg : RegsToSpill) 1079 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg), 1080 StackInt->getValNumInfo(0)); 1081 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 1082 1083 // Spill around uses of all RegsToSpill. 1084 for (unsigned Reg : RegsToSpill) 1085 spillAroundUses(Reg); 1086 1087 // Hoisted spills may cause dead code. 1088 if (!DeadDefs.empty()) { 1089 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1090 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 1091 } 1092 1093 // Finally delete the SnippetCopies. 1094 for (unsigned Reg : RegsToSpill) { 1095 for (MachineRegisterInfo::reg_instr_iterator 1096 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); 1097 RI != E; ) { 1098 MachineInstr &MI = *(RI++); 1099 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy"); 1100 // FIXME: Do this with a LiveRangeEdit callback. 1101 LIS.RemoveMachineInstrFromMaps(MI); 1102 MI.eraseFromParent(); 1103 } 1104 } 1105 1106 // Delete all spilled registers. 1107 for (unsigned Reg : RegsToSpill) 1108 Edit->eraseVirtReg(Reg); 1109 } 1110 1111 void InlineSpiller::spill(LiveRangeEdit &edit) { 1112 ++NumSpilledRanges; 1113 Edit = &edit; 1114 assert(!TargetRegisterInfo::isStackSlot(edit.getReg()) 1115 && "Trying to spill a stack slot."); 1116 // Share a stack slot among all descendants of Original. 1117 Original = VRM.getOriginal(edit.getReg()); 1118 StackSlot = VRM.getStackSlot(Original); 1119 StackInt = nullptr; 1120 1121 LLVM_DEBUG(dbgs() << "Inline spilling " 1122 << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) 1123 << ':' << edit.getParent() << "\nFrom original " 1124 << printReg(Original) << '\n'); 1125 assert(edit.getParent().isSpillable() && 1126 "Attempting to spill already spilled value."); 1127 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1128 1129 collectRegsToSpill(); 1130 reMaterializeAll(); 1131 1132 // Remat may handle everything. 1133 if (!RegsToSpill.empty()) 1134 spillAll(); 1135 1136 Edit->calculateRegClassAndHint(MF, Loops, MBFI); 1137 } 1138 1139 /// Optimizations after all the reg selections and spills are done. 1140 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); } 1141 1142 /// When a spill is inserted, add the spill to MergeableSpills map. 1143 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot, 1144 unsigned Original) { 1145 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1146 LiveInterval &OrigLI = LIS.getInterval(Original); 1147 // save a copy of LiveInterval in StackSlotToOrigLI because the original 1148 // LiveInterval may be cleared after all its references are spilled. 1149 if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) { 1150 auto LI = llvm::make_unique<LiveInterval>(OrigLI.reg, OrigLI.weight); 1151 LI->assign(OrigLI, Allocator); 1152 StackSlotToOrigLI[StackSlot] = std::move(LI); 1153 } 1154 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1155 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot()); 1156 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1157 MergeableSpills[MIdx].insert(&Spill); 1158 } 1159 1160 /// When a spill is removed, remove the spill from MergeableSpills map. 1161 /// Return true if the spill is removed successfully. 1162 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill, 1163 int StackSlot) { 1164 auto It = StackSlotToOrigLI.find(StackSlot); 1165 if (It == StackSlotToOrigLI.end()) 1166 return false; 1167 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1168 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot()); 1169 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1170 return MergeableSpills[MIdx].erase(&Spill); 1171 } 1172 1173 /// Check BB to see if it is a possible target BB to place a hoisted spill, 1174 /// i.e., there should be a living sibling of OrigReg at the insert point. 1175 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 1176 MachineBasicBlock &BB, unsigned &LiveReg) { 1177 SlotIndex Idx; 1178 unsigned OrigReg = OrigLI.reg; 1179 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB); 1180 if (MI != BB.end()) 1181 Idx = LIS.getInstructionIndex(*MI); 1182 else 1183 Idx = LIS.getMBBEndIdx(&BB).getPrevSlot(); 1184 SmallSetVector<unsigned, 16> &Siblings = Virt2SiblingsMap[OrigReg]; 1185 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI"); 1186 1187 for (auto const SibReg : Siblings) { 1188 LiveInterval &LI = LIS.getInterval(SibReg); 1189 VNInfo *VNI = LI.getVNInfoAt(Idx); 1190 if (VNI) { 1191 LiveReg = SibReg; 1192 return true; 1193 } 1194 } 1195 return false; 1196 } 1197 1198 /// Remove redundant spills in the same BB. Save those redundant spills in 1199 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. 1200 void HoistSpillHelper::rmRedundantSpills( 1201 SmallPtrSet<MachineInstr *, 16> &Spills, 1202 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1203 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1204 // For each spill saw, check SpillBBToSpill[] and see if its BB already has 1205 // another spill inside. If a BB contains more than one spill, only keep the 1206 // earlier spill with smaller SlotIndex. 1207 for (const auto CurrentSpill : Spills) { 1208 MachineBasicBlock *Block = CurrentSpill->getParent(); 1209 MachineDomTreeNode *Node = MDT.getBase().getNode(Block); 1210 MachineInstr *PrevSpill = SpillBBToSpill[Node]; 1211 if (PrevSpill) { 1212 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill); 1213 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill); 1214 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; 1215 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; 1216 SpillsToRm.push_back(SpillToRm); 1217 SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep; 1218 } else { 1219 SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill; 1220 } 1221 } 1222 for (const auto SpillToRm : SpillsToRm) 1223 Spills.erase(SpillToRm); 1224 } 1225 1226 /// Starting from \p Root find a top-down traversal order of the dominator 1227 /// tree to visit all basic blocks containing the elements of \p Spills. 1228 /// Redundant spills will be found and put into \p SpillsToRm at the same 1229 /// time. \p SpillBBToSpill will be populated as part of the process and 1230 /// maps a basic block to the first store occurring in the basic block. 1231 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre 1232 void HoistSpillHelper::getVisitOrders( 1233 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 1234 SmallVectorImpl<MachineDomTreeNode *> &Orders, 1235 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1236 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 1237 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1238 // The set contains all the possible BB nodes to which we may hoist 1239 // original spills. 1240 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; 1241 // Save the BB nodes on the path from the first BB node containing 1242 // non-redundant spill to the Root node. 1243 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; 1244 // All the spills to be hoisted must originate from a single def instruction 1245 // to the OrigReg. It means the def instruction should dominate all the spills 1246 // to be hoisted. We choose the BB where the def instruction is located as 1247 // the Root. 1248 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); 1249 // For every node on the dominator tree with spill, walk up on the dominator 1250 // tree towards the Root node until it is reached. If there is other node 1251 // containing spill in the middle of the path, the previous spill saw will 1252 // be redundant and the node containing it will be removed. All the nodes on 1253 // the path starting from the first node with non-redundant spill to the Root 1254 // node will be added to the WorkSet, which will contain all the possible 1255 // locations where spills may be hoisted to after the loop below is done. 1256 for (const auto Spill : Spills) { 1257 MachineBasicBlock *Block = Spill->getParent(); 1258 MachineDomTreeNode *Node = MDT[Block]; 1259 MachineInstr *SpillToRm = nullptr; 1260 while (Node != RootIDomNode) { 1261 // If Node dominates Block, and it already contains a spill, the spill in 1262 // Block will be redundant. 1263 if (Node != MDT[Block] && SpillBBToSpill[Node]) { 1264 SpillToRm = SpillBBToSpill[MDT[Block]]; 1265 break; 1266 /// If we see the Node already in WorkSet, the path from the Node to 1267 /// the Root node must already be traversed by another spill. 1268 /// Then no need to repeat. 1269 } else if (WorkSet.count(Node)) { 1270 break; 1271 } else { 1272 NodesOnPath.insert(Node); 1273 } 1274 Node = Node->getIDom(); 1275 } 1276 if (SpillToRm) { 1277 SpillsToRm.push_back(SpillToRm); 1278 } else { 1279 // Add a BB containing the original spills to SpillsToKeep -- i.e., 1280 // set the initial status before hoisting start. The value of BBs 1281 // containing original spills is set to 0, in order to descriminate 1282 // with BBs containing hoisted spills which will be inserted to 1283 // SpillsToKeep later during hoisting. 1284 SpillsToKeep[MDT[Block]] = 0; 1285 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end()); 1286 } 1287 NodesOnPath.clear(); 1288 } 1289 1290 // Sort the nodes in WorkSet in top-down order and save the nodes 1291 // in Orders. Orders will be used for hoisting in runHoistSpills. 1292 unsigned idx = 0; 1293 Orders.push_back(MDT.getBase().getNode(Root)); 1294 do { 1295 MachineDomTreeNode *Node = Orders[idx++]; 1296 const std::vector<MachineDomTreeNode *> &Children = Node->getChildren(); 1297 unsigned NumChildren = Children.size(); 1298 for (unsigned i = 0; i != NumChildren; ++i) { 1299 MachineDomTreeNode *Child = Children[i]; 1300 if (WorkSet.count(Child)) 1301 Orders.push_back(Child); 1302 } 1303 } while (idx != Orders.size()); 1304 assert(Orders.size() == WorkSet.size() && 1305 "Orders have different size with WorkSet"); 1306 1307 #ifndef NDEBUG 1308 LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n"); 1309 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1310 for (; RIt != Orders.rend(); RIt++) 1311 LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ","); 1312 LLVM_DEBUG(dbgs() << "\n"); 1313 #endif 1314 } 1315 1316 /// Try to hoist spills according to BB hotness. The spills to removed will 1317 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in 1318 /// \p SpillsToIns. 1319 void HoistSpillHelper::runHoistSpills( 1320 LiveInterval &OrigLI, VNInfo &OrigVNI, 1321 SmallPtrSet<MachineInstr *, 16> &Spills, 1322 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1323 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) { 1324 // Visit order of dominator tree nodes. 1325 SmallVector<MachineDomTreeNode *, 32> Orders; 1326 // SpillsToKeep contains all the nodes where spills are to be inserted 1327 // during hoisting. If the spill to be inserted is an original spill 1328 // (not a hoisted one), the value of the map entry is 0. If the spill 1329 // is a hoisted spill, the value of the map entry is the VReg to be used 1330 // as the source of the spill. 1331 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep; 1332 // Map from BB to the first spill inside of it. 1333 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; 1334 1335 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); 1336 1337 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def); 1338 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, 1339 SpillBBToSpill); 1340 1341 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of 1342 // nodes set and the cost of all the spills inside those nodes. 1343 // The nodes set are the locations where spills are to be inserted 1344 // in the subtree of current node. 1345 using NodesCostPair = 1346 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>; 1347 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; 1348 1349 // Iterate Orders set in reverse order, which will be a bottom-up order 1350 // in the dominator tree. Once we visit a dom tree node, we know its 1351 // children have already been visited and the spill locations in the 1352 // subtrees of all the children have been determined. 1353 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1354 for (; RIt != Orders.rend(); RIt++) { 1355 MachineBasicBlock *Block = (*RIt)->getBlock(); 1356 1357 // If Block contains an original spill, simply continue. 1358 if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) { 1359 SpillsInSubTreeMap[*RIt].first.insert(*RIt); 1360 // SpillsInSubTreeMap[*RIt].second contains the cost of spill. 1361 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block); 1362 continue; 1363 } 1364 1365 // Collect spills in subtree of current node (*RIt) to 1366 // SpillsInSubTreeMap[*RIt].first. 1367 const std::vector<MachineDomTreeNode *> &Children = (*RIt)->getChildren(); 1368 unsigned NumChildren = Children.size(); 1369 for (unsigned i = 0; i != NumChildren; ++i) { 1370 MachineDomTreeNode *Child = Children[i]; 1371 if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end()) 1372 continue; 1373 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below 1374 // should be placed before getting the begin and end iterators of 1375 // SpillsInSubTreeMap[Child].first, or else the iterators may be 1376 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time 1377 // and the map grows and then the original buckets in the map are moved. 1378 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1379 SpillsInSubTreeMap[*RIt].first; 1380 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1381 SubTreeCost += SpillsInSubTreeMap[Child].second; 1382 auto BI = SpillsInSubTreeMap[Child].first.begin(); 1383 auto EI = SpillsInSubTreeMap[Child].first.end(); 1384 SpillsInSubTree.insert(BI, EI); 1385 SpillsInSubTreeMap.erase(Child); 1386 } 1387 1388 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1389 SpillsInSubTreeMap[*RIt].first; 1390 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1391 // No spills in subtree, simply continue. 1392 if (SpillsInSubTree.empty()) 1393 continue; 1394 1395 // Check whether Block is a possible candidate to insert spill. 1396 unsigned LiveReg = 0; 1397 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg)) 1398 continue; 1399 1400 // If there are multiple spills that could be merged, bias a little 1401 // to hoist the spill. 1402 BranchProbability MarginProb = (SpillsInSubTree.size() > 1) 1403 ? BranchProbability(9, 10) 1404 : BranchProbability(1, 1); 1405 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) { 1406 // Hoist: Move spills to current Block. 1407 for (const auto SpillBB : SpillsInSubTree) { 1408 // When SpillBB is a BB contains original spill, insert the spill 1409 // to SpillsToRm. 1410 if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() && 1411 !SpillsToKeep[SpillBB]) { 1412 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; 1413 SpillsToRm.push_back(SpillToRm); 1414 } 1415 // SpillBB will not contain spill anymore, remove it from SpillsToKeep. 1416 SpillsToKeep.erase(SpillBB); 1417 } 1418 // Current Block is the BB containing the new hoisted spill. Add it to 1419 // SpillsToKeep. LiveReg is the source of the new spill. 1420 SpillsToKeep[*RIt] = LiveReg; 1421 LLVM_DEBUG({ 1422 dbgs() << "spills in BB: "; 1423 for (const auto Rspill : SpillsInSubTree) 1424 dbgs() << Rspill->getBlock()->getNumber() << " "; 1425 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber() 1426 << "\n"; 1427 }); 1428 SpillsInSubTree.clear(); 1429 SpillsInSubTree.insert(*RIt); 1430 SubTreeCost = MBFI.getBlockFreq(Block); 1431 } 1432 } 1433 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), 1434 // save them to SpillsToIns. 1435 for (const auto Ent : SpillsToKeep) { 1436 if (Ent.second) 1437 SpillsToIns[Ent.first->getBlock()] = Ent.second; 1438 } 1439 } 1440 1441 /// For spills with equal values, remove redundant spills and hoist those left 1442 /// to less hot spots. 1443 /// 1444 /// Spills with equal values will be collected into the same set in 1445 /// MergeableSpills when spill is inserted. These equal spills are originated 1446 /// from the same defining instruction and are dominated by the instruction. 1447 /// Before hoisting all the equal spills, redundant spills inside in the same 1448 /// BB are first marked to be deleted. Then starting from the spills left, walk 1449 /// up on the dominator tree towards the Root node where the define instruction 1450 /// is located, mark the dominated spills to be deleted along the way and 1451 /// collect the BB nodes on the path from non-dominated spills to the define 1452 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places 1453 /// where we are considering to hoist the spills. We iterate the WorkSet in 1454 /// bottom-up order, and for each node, we will decide whether to hoist spills 1455 /// inside its subtree to that node. In this way, we can get benefit locally 1456 /// even if hoisting all the equal spills to one cold place is impossible. 1457 void HoistSpillHelper::hoistAllSpills() { 1458 SmallVector<unsigned, 4> NewVRegs; 1459 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this); 1460 1461 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { 1462 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1463 unsigned Original = VRM.getPreSplitReg(Reg); 1464 if (!MRI.def_empty(Reg)) 1465 Virt2SiblingsMap[Original].insert(Reg); 1466 } 1467 1468 // Each entry in MergeableSpills contains a spill set with equal values. 1469 for (auto &Ent : MergeableSpills) { 1470 int Slot = Ent.first.first; 1471 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot]; 1472 VNInfo *OrigVNI = Ent.first.second; 1473 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; 1474 if (Ent.second.empty()) 1475 continue; 1476 1477 LLVM_DEBUG({ 1478 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n" 1479 << "Equal spills in BB: "; 1480 for (const auto spill : EqValSpills) 1481 dbgs() << spill->getParent()->getNumber() << " "; 1482 dbgs() << "\n"; 1483 }); 1484 1485 // SpillsToRm is the spill set to be removed from EqValSpills. 1486 SmallVector<MachineInstr *, 16> SpillsToRm; 1487 // SpillsToIns is the spill set to be newly inserted after hoisting. 1488 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns; 1489 1490 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns); 1491 1492 LLVM_DEBUG({ 1493 dbgs() << "Finally inserted spills in BB: "; 1494 for (const auto Ispill : SpillsToIns) 1495 dbgs() << Ispill.first->getNumber() << " "; 1496 dbgs() << "\nFinally removed spills in BB: "; 1497 for (const auto Rspill : SpillsToRm) 1498 dbgs() << Rspill->getParent()->getNumber() << " "; 1499 dbgs() << "\n"; 1500 }); 1501 1502 // Stack live range update. 1503 LiveInterval &StackIntvl = LSS.getInterval(Slot); 1504 if (!SpillsToIns.empty() || !SpillsToRm.empty()) 1505 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI, 1506 StackIntvl.getValNumInfo(0)); 1507 1508 // Insert hoisted spills. 1509 for (auto const Insert : SpillsToIns) { 1510 MachineBasicBlock *BB = Insert.first; 1511 unsigned LiveReg = Insert.second; 1512 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, *BB); 1513 TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot, 1514 MRI.getRegClass(LiveReg), &TRI); 1515 LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI); 1516 ++NumSpills; 1517 } 1518 1519 // Remove redundant spills or change them to dead instructions. 1520 NumSpills -= SpillsToRm.size(); 1521 for (auto const RMEnt : SpillsToRm) { 1522 RMEnt->setDesc(TII.get(TargetOpcode::KILL)); 1523 for (unsigned i = RMEnt->getNumOperands(); i; --i) { 1524 MachineOperand &MO = RMEnt->getOperand(i - 1); 1525 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) 1526 RMEnt->RemoveOperand(i - 1); 1527 } 1528 } 1529 Edit.eliminateDeadDefs(SpillsToRm, None, AA); 1530 } 1531 } 1532 1533 /// For VirtReg clone, the \p New register should have the same physreg or 1534 /// stackslot as the \p old register. 1535 void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 1536 if (VRM.hasPhys(Old)) 1537 VRM.assignVirt2Phys(New, VRM.getPhys(Old)); 1538 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT) 1539 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old)); 1540 else 1541 llvm_unreachable("VReg should be assigned either physreg or stackslot"); 1542 } 1543