xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/InlineSpiller.cpp (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The inline spiller modifies the machine function directly instead of
10 // inserting spills and restores in VirtRegMap.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SplitKit.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/LiveStacks.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
30 #include "llvm/CodeGen/MachineDominators.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineInstrBundle.h"
36 #include "llvm/CodeGen/MachineLoopInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/SlotIndexes.h"
40 #include "llvm/CodeGen/Spiller.h"
41 #include "llvm/CodeGen/StackMaps.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetOpcodes.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/VirtRegMap.h"
47 #include "llvm/Config/llvm-config.h"
48 #include "llvm/Support/BlockFrequency.h"
49 #include "llvm/Support/BranchProbability.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include <cassert>
56 #include <iterator>
57 #include <tuple>
58 #include <utility>
59 #include <vector>
60 
61 using namespace llvm;
62 
63 #define DEBUG_TYPE "regalloc"
64 
65 STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
66 STATISTIC(NumSnippets,        "Number of spilled snippets");
67 STATISTIC(NumSpills,          "Number of spills inserted");
68 STATISTIC(NumSpillsRemoved,   "Number of spills removed");
69 STATISTIC(NumReloads,         "Number of reloads inserted");
70 STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
71 STATISTIC(NumFolded,          "Number of folded stack accesses");
72 STATISTIC(NumFoldedLoads,     "Number of folded loads");
73 STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
74 
75 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
76                                      cl::desc("Disable inline spill hoisting"));
77 static cl::opt<bool>
78 RestrictStatepointRemat("restrict-statepoint-remat",
79                        cl::init(false), cl::Hidden,
80                        cl::desc("Restrict remat for statepoint operands"));
81 
82 namespace {
83 
84 class HoistSpillHelper : private LiveRangeEdit::Delegate {
85   MachineFunction &MF;
86   LiveIntervals &LIS;
87   LiveStacks &LSS;
88   MachineDominatorTree &MDT;
89   MachineLoopInfo &Loops;
90   VirtRegMap &VRM;
91   MachineRegisterInfo &MRI;
92   const TargetInstrInfo &TII;
93   const TargetRegisterInfo &TRI;
94   const MachineBlockFrequencyInfo &MBFI;
95 
96   InsertPointAnalysis IPA;
97 
98   // Map from StackSlot to the LiveInterval of the original register.
99   // Note the LiveInterval of the original register may have been deleted
100   // after it is spilled. We keep a copy here to track the range where
101   // spills can be moved.
102   DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI;
103 
104   // Map from pair of (StackSlot and Original VNI) to a set of spills which
105   // have the same stackslot and have equal values defined by Original VNI.
106   // These spills are mergeable and are hoist candidates.
107   using MergeableSpillsMap =
108       MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>;
109   MergeableSpillsMap MergeableSpills;
110 
111   /// This is the map from original register to a set containing all its
112   /// siblings. To hoist a spill to another BB, we need to find out a live
113   /// sibling there and use it as the source of the new spill.
114   DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap;
115 
116   bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
117                      MachineBasicBlock &BB, Register &LiveReg);
118 
119   void rmRedundantSpills(
120       SmallPtrSet<MachineInstr *, 16> &Spills,
121       SmallVectorImpl<MachineInstr *> &SpillsToRm,
122       DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
123 
124   void getVisitOrders(
125       MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
126       SmallVectorImpl<MachineDomTreeNode *> &Orders,
127       SmallVectorImpl<MachineInstr *> &SpillsToRm,
128       DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
129       DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
130 
131   void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI,
132                       SmallPtrSet<MachineInstr *, 16> &Spills,
133                       SmallVectorImpl<MachineInstr *> &SpillsToRm,
134                       DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);
135 
136 public:
137   HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
138                    VirtRegMap &vrm)
139       : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
140         LSS(pass.getAnalysis<LiveStacks>()),
141         MDT(pass.getAnalysis<MachineDominatorTree>()),
142         Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
143         MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
144         TRI(*mf.getSubtarget().getRegisterInfo()),
145         MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
146         IPA(LIS, mf.getNumBlockIDs()) {}
147 
148   void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
149                             unsigned Original);
150   bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
151   void hoistAllSpills();
152   void LRE_DidCloneVirtReg(Register, Register) override;
153 };
154 
155 class InlineSpiller : public Spiller {
156   MachineFunction &MF;
157   LiveIntervals &LIS;
158   LiveStacks &LSS;
159   MachineDominatorTree &MDT;
160   MachineLoopInfo &Loops;
161   VirtRegMap &VRM;
162   MachineRegisterInfo &MRI;
163   const TargetInstrInfo &TII;
164   const TargetRegisterInfo &TRI;
165   const MachineBlockFrequencyInfo &MBFI;
166 
167   // Variables that are valid during spill(), but used by multiple methods.
168   LiveRangeEdit *Edit;
169   LiveInterval *StackInt;
170   int StackSlot;
171   Register Original;
172 
173   // All registers to spill to StackSlot, including the main register.
174   SmallVector<Register, 8> RegsToSpill;
175 
176   // All COPY instructions to/from snippets.
177   // They are ignored since both operands refer to the same stack slot.
178   SmallPtrSet<MachineInstr*, 8> SnippetCopies;
179 
180   // Values that failed to remat at some point.
181   SmallPtrSet<VNInfo*, 8> UsedValues;
182 
183   // Dead defs generated during spilling.
184   SmallVector<MachineInstr*, 8> DeadDefs;
185 
186   // Object records spills information and does the hoisting.
187   HoistSpillHelper HSpiller;
188 
189   // Live range weight calculator.
190   VirtRegAuxInfo &VRAI;
191 
192   ~InlineSpiller() override = default;
193 
194 public:
195   InlineSpiller(MachineFunctionPass &Pass, MachineFunction &MF, VirtRegMap &VRM,
196                 VirtRegAuxInfo &VRAI)
197       : MF(MF), LIS(Pass.getAnalysis<LiveIntervals>()),
198         LSS(Pass.getAnalysis<LiveStacks>()),
199         MDT(Pass.getAnalysis<MachineDominatorTree>()),
200         Loops(Pass.getAnalysis<MachineLoopInfo>()), VRM(VRM),
201         MRI(MF.getRegInfo()), TII(*MF.getSubtarget().getInstrInfo()),
202         TRI(*MF.getSubtarget().getRegisterInfo()),
203         MBFI(Pass.getAnalysis<MachineBlockFrequencyInfo>()),
204         HSpiller(Pass, MF, VRM), VRAI(VRAI) {}
205 
206   void spill(LiveRangeEdit &) override;
207   void postOptimization() override;
208 
209 private:
210   bool isSnippet(const LiveInterval &SnipLI);
211   void collectRegsToSpill();
212 
213   bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); }
214 
215   bool isSibling(Register Reg);
216   bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
217   void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
218 
219   void markValueUsed(LiveInterval*, VNInfo*);
220   bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI);
221   bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
222   void reMaterializeAll();
223 
224   bool coalesceStackAccess(MachineInstr *MI, Register Reg);
225   bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>,
226                          MachineInstr *LoadMI = nullptr);
227   void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI);
228   void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI);
229 
230   void spillAroundUses(Register Reg);
231   void spillAll();
232 };
233 
234 } // end anonymous namespace
235 
236 Spiller::~Spiller() = default;
237 
238 void Spiller::anchor() {}
239 
240 Spiller *llvm::createInlineSpiller(MachineFunctionPass &Pass,
241                                    MachineFunction &MF, VirtRegMap &VRM,
242                                    VirtRegAuxInfo &VRAI) {
243   return new InlineSpiller(Pass, MF, VRM, VRAI);
244 }
245 
246 //===----------------------------------------------------------------------===//
247 //                                Snippets
248 //===----------------------------------------------------------------------===//
249 
250 // When spilling a virtual register, we also spill any snippets it is connected
251 // to. The snippets are small live ranges that only have a single real use,
252 // leftovers from live range splitting. Spilling them enables memory operand
253 // folding or tightens the live range around the single use.
254 //
255 // This minimizes register pressure and maximizes the store-to-load distance for
256 // spill slots which can be important in tight loops.
257 
258 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
259 /// otherwise return 0.
260 static Register isFullCopyOf(const MachineInstr &MI, Register Reg) {
261   if (!MI.isFullCopy())
262     return Register();
263   if (MI.getOperand(0).getReg() == Reg)
264     return MI.getOperand(1).getReg();
265   if (MI.getOperand(1).getReg() == Reg)
266     return MI.getOperand(0).getReg();
267   return Register();
268 }
269 
270 static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) {
271   for (const MachineOperand &MO : MI.operands())
272     if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual())
273       LIS.getInterval(MO.getReg());
274 }
275 
276 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
277 /// It is assumed that SnipLI is a virtual register with the same original as
278 /// Edit->getReg().
279 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
280   Register Reg = Edit->getReg();
281 
282   // A snippet is a tiny live range with only a single instruction using it
283   // besides copies to/from Reg or spills/fills.
284   // Exception is done for statepoint instructions which will fold fills
285   // into their operands.
286   // We accept:
287   //
288   //   %snip = COPY %Reg / FILL fi#
289   //   %snip = USE %snip
290   //   %snip = STATEPOINT %snip in var arg area
291   //   %Reg = COPY %snip / SPILL %snip, fi#
292   //
293   if (!LIS.intervalIsInOneMBB(SnipLI))
294     return false;
295 
296   // Number of defs should not exceed 2 not accounting defs coming from
297   // statepoint instructions.
298   unsigned NumValNums = SnipLI.getNumValNums();
299   for (auto *VNI : SnipLI.vnis()) {
300     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
301     if (MI->getOpcode() == TargetOpcode::STATEPOINT)
302       --NumValNums;
303   }
304   if (NumValNums > 2)
305     return false;
306 
307   MachineInstr *UseMI = nullptr;
308 
309   // Check that all uses satisfy our criteria.
310   for (MachineRegisterInfo::reg_instr_nodbg_iterator
311            RI = MRI.reg_instr_nodbg_begin(SnipLI.reg()),
312            E = MRI.reg_instr_nodbg_end();
313        RI != E;) {
314     MachineInstr &MI = *RI++;
315 
316     // Allow copies to/from Reg.
317     if (isFullCopyOf(MI, Reg))
318       continue;
319 
320     // Allow stack slot loads.
321     int FI;
322     if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
323       continue;
324 
325     // Allow stack slot stores.
326     if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
327       continue;
328 
329     if (StatepointOpers::isFoldableReg(&MI, SnipLI.reg()))
330       continue;
331 
332     // Allow a single additional instruction.
333     if (UseMI && &MI != UseMI)
334       return false;
335     UseMI = &MI;
336   }
337   return true;
338 }
339 
340 /// collectRegsToSpill - Collect live range snippets that only have a single
341 /// real use.
342 void InlineSpiller::collectRegsToSpill() {
343   Register Reg = Edit->getReg();
344 
345   // Main register always spills.
346   RegsToSpill.assign(1, Reg);
347   SnippetCopies.clear();
348 
349   // Snippets all have the same original, so there can't be any for an original
350   // register.
351   if (Original == Reg)
352     return;
353 
354   for (MachineInstr &MI :
355        llvm::make_early_inc_range(MRI.reg_instructions(Reg))) {
356     Register SnipReg = isFullCopyOf(MI, Reg);
357     if (!isSibling(SnipReg))
358       continue;
359     LiveInterval &SnipLI = LIS.getInterval(SnipReg);
360     if (!isSnippet(SnipLI))
361       continue;
362     SnippetCopies.insert(&MI);
363     if (isRegToSpill(SnipReg))
364       continue;
365     RegsToSpill.push_back(SnipReg);
366     LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
367     ++NumSnippets;
368   }
369 }
370 
371 bool InlineSpiller::isSibling(Register Reg) {
372   return Reg.isVirtual() && VRM.getOriginal(Reg) == Original;
373 }
374 
375 /// It is beneficial to spill to earlier place in the same BB in case
376 /// as follows:
377 /// There is an alternative def earlier in the same MBB.
378 /// Hoist the spill as far as possible in SpillMBB. This can ease
379 /// register pressure:
380 ///
381 ///   x = def
382 ///   y = use x
383 ///   s = copy x
384 ///
385 /// Hoisting the spill of s to immediately after the def removes the
386 /// interference between x and y:
387 ///
388 ///   x = def
389 ///   spill x
390 ///   y = use killed x
391 ///
392 /// This hoist only helps when the copy kills its source.
393 ///
394 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
395                                        MachineInstr &CopyMI) {
396   SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
397 #ifndef NDEBUG
398   VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
399   assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
400 #endif
401 
402   Register SrcReg = CopyMI.getOperand(1).getReg();
403   LiveInterval &SrcLI = LIS.getInterval(SrcReg);
404   VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
405   LiveQueryResult SrcQ = SrcLI.Query(Idx);
406   MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
407   if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
408     return false;
409 
410   // Conservatively extend the stack slot range to the range of the original
411   // value. We may be able to do better with stack slot coloring by being more
412   // careful here.
413   assert(StackInt && "No stack slot assigned yet.");
414   LiveInterval &OrigLI = LIS.getInterval(Original);
415   VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
416   StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
417   LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
418                     << *StackInt << '\n');
419 
420   // We are going to spill SrcVNI immediately after its def, so clear out
421   // any later spills of the same value.
422   eliminateRedundantSpills(SrcLI, SrcVNI);
423 
424   MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
425   MachineBasicBlock::iterator MII;
426   if (SrcVNI->isPHIDef())
427     MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
428   else {
429     MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
430     assert(DefMI && "Defining instruction disappeared");
431     MII = DefMI;
432     ++MII;
433   }
434   MachineInstrSpan MIS(MII, MBB);
435   // Insert spill without kill flag immediately after def.
436   TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
437                           MRI.getRegClass(SrcReg), &TRI, Register());
438   LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
439   for (const MachineInstr &MI : make_range(MIS.begin(), MII))
440     getVDefInterval(MI, LIS);
441   --MII; // Point to store instruction.
442   LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII);
443 
444   // If there is only 1 store instruction is required for spill, add it
445   // to mergeable list. In X86 AMX, 2 intructions are required to store.
446   // We disable the merge for this case.
447   if (MIS.begin() == MII)
448     HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
449   ++NumSpills;
450   return true;
451 }
452 
453 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
454 /// redundant spills of this value in SLI.reg and sibling copies.
455 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
456   assert(VNI && "Missing value");
457   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
458   WorkList.push_back(std::make_pair(&SLI, VNI));
459   assert(StackInt && "No stack slot assigned yet.");
460 
461   do {
462     LiveInterval *LI;
463     std::tie(LI, VNI) = WorkList.pop_back_val();
464     Register Reg = LI->reg();
465     LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@'
466                       << VNI->def << " in " << *LI << '\n');
467 
468     // Regs to spill are taken care of.
469     if (isRegToSpill(Reg))
470       continue;
471 
472     // Add all of VNI's live range to StackInt.
473     StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
474     LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
475 
476     // Find all spills and copies of VNI.
477     for (MachineInstr &MI :
478          llvm::make_early_inc_range(MRI.use_nodbg_instructions(Reg))) {
479       if (!MI.isCopy() && !MI.mayStore())
480         continue;
481       SlotIndex Idx = LIS.getInstructionIndex(MI);
482       if (LI->getVNInfoAt(Idx) != VNI)
483         continue;
484 
485       // Follow sibling copies down the dominator tree.
486       if (Register DstReg = isFullCopyOf(MI, Reg)) {
487         if (isSibling(DstReg)) {
488            LiveInterval &DstLI = LIS.getInterval(DstReg);
489            VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
490            assert(DstVNI && "Missing defined value");
491            assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
492            WorkList.push_back(std::make_pair(&DstLI, DstVNI));
493         }
494         continue;
495       }
496 
497       // Erase spills.
498       int FI;
499       if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
500         LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI);
501         // eliminateDeadDefs won't normally remove stores, so switch opcode.
502         MI.setDesc(TII.get(TargetOpcode::KILL));
503         DeadDefs.push_back(&MI);
504         ++NumSpillsRemoved;
505         if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
506           --NumSpills;
507       }
508     }
509   } while (!WorkList.empty());
510 }
511 
512 //===----------------------------------------------------------------------===//
513 //                            Rematerialization
514 //===----------------------------------------------------------------------===//
515 
516 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
517 /// instruction cannot be eliminated. See through snippet copies
518 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
519   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
520   WorkList.push_back(std::make_pair(LI, VNI));
521   do {
522     std::tie(LI, VNI) = WorkList.pop_back_val();
523     if (!UsedValues.insert(VNI).second)
524       continue;
525 
526     if (VNI->isPHIDef()) {
527       MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
528       for (MachineBasicBlock *P : MBB->predecessors()) {
529         VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
530         if (PVNI)
531           WorkList.push_back(std::make_pair(LI, PVNI));
532       }
533       continue;
534     }
535 
536     // Follow snippet copies.
537     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
538     if (!SnippetCopies.count(MI))
539       continue;
540     LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
541     assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy");
542     VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
543     assert(SnipVNI && "Snippet undefined before copy");
544     WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
545   } while (!WorkList.empty());
546 }
547 
548 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg,
549                                                      MachineInstr &MI) {
550   if (!RestrictStatepointRemat)
551     return true;
552   // Here's a quick explanation of the problem we're trying to handle here:
553   // * There are some pseudo instructions with more vreg uses than there are
554   //   physical registers on the machine.
555   // * This is normally handled by spilling the vreg, and folding the reload
556   //   into the user instruction.  (Thus decreasing the number of used vregs
557   //   until the remainder can be assigned to physregs.)
558   // * However, since we may try to spill vregs in any order, we can end up
559   //   trying to spill each operand to the instruction, and then rematting it
560   //   instead.  When that happens, the new live intervals (for the remats) are
561   //   expected to be trivially assignable (i.e. RS_Done).  However, since we
562   //   may have more remats than physregs, we're guaranteed to fail to assign
563   //   one.
564   // At the moment, we only handle this for STATEPOINTs since they're the only
565   // pseudo op where we've seen this.  If we start seeing other instructions
566   // with the same problem, we need to revisit this.
567   if (MI.getOpcode() != TargetOpcode::STATEPOINT)
568     return true;
569   // For STATEPOINTs we allow re-materialization for fixed arguments only hoping
570   // that number of physical registers is enough to cover all fixed arguments.
571   // If it is not true we need to revisit it.
572   for (unsigned Idx = StatepointOpers(&MI).getVarIdx(),
573                 EndIdx = MI.getNumOperands();
574        Idx < EndIdx; ++Idx) {
575     MachineOperand &MO = MI.getOperand(Idx);
576     if (MO.isReg() && MO.getReg() == VReg)
577       return false;
578   }
579   return true;
580 }
581 
582 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
583 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
584   // Analyze instruction
585   SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
586   VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops);
587 
588   if (!RI.Reads)
589     return false;
590 
591   SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
592   VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
593 
594   if (!ParentVNI) {
595     LLVM_DEBUG(dbgs() << "\tadding <undef> flags: ");
596     for (MachineOperand &MO : MI.operands())
597       if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg())
598         MO.setIsUndef();
599     LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI);
600     return true;
601   }
602 
603   if (SnippetCopies.count(&MI))
604     return false;
605 
606   LiveInterval &OrigLI = LIS.getInterval(Original);
607   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
608   LiveRangeEdit::Remat RM(ParentVNI);
609   RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
610 
611   if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
612     markValueUsed(&VirtReg, ParentVNI);
613     LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
614     return false;
615   }
616 
617   // If the instruction also writes VirtReg.reg, it had better not require the
618   // same register for uses and defs.
619   if (RI.Tied) {
620     markValueUsed(&VirtReg, ParentVNI);
621     LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
622     return false;
623   }
624 
625   // Before rematerializing into a register for a single instruction, try to
626   // fold a load into the instruction. That avoids allocating a new register.
627   if (RM.OrigMI->canFoldAsLoad() &&
628       foldMemoryOperand(Ops, RM.OrigMI)) {
629     Edit->markRematerialized(RM.ParentVNI);
630     ++NumFoldedLoads;
631     return true;
632   }
633 
634   // If we can't guarantee that we'll be able to actually assign the new vreg,
635   // we can't remat.
636   if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) {
637     markValueUsed(&VirtReg, ParentVNI);
638     LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
639     return false;
640   }
641 
642   // Allocate a new register for the remat.
643   Register NewVReg = Edit->createFrom(Original);
644 
645   // Finally we can rematerialize OrigMI before MI.
646   SlotIndex DefIdx =
647       Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
648 
649   // We take the DebugLoc from MI, since OrigMI may be attributed to a
650   // different source location.
651   auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
652   NewMI->setDebugLoc(MI.getDebugLoc());
653 
654   (void)DefIdx;
655   LLVM_DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
656                     << *LIS.getInstructionFromIndex(DefIdx));
657 
658   // Replace operands
659   for (const auto &OpPair : Ops) {
660     MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
661     if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) {
662       MO.setReg(NewVReg);
663       MO.setIsKill();
664     }
665   }
666   LLVM_DEBUG(dbgs() << "\t        " << UseIdx << '\t' << MI << '\n');
667 
668   ++NumRemats;
669   return true;
670 }
671 
672 /// reMaterializeAll - Try to rematerialize as many uses as possible,
673 /// and trim the live ranges after.
674 void InlineSpiller::reMaterializeAll() {
675   if (!Edit->anyRematerializable())
676     return;
677 
678   UsedValues.clear();
679 
680   // Try to remat before all uses of snippets.
681   bool anyRemat = false;
682   for (Register Reg : RegsToSpill) {
683     LiveInterval &LI = LIS.getInterval(Reg);
684     for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) {
685       // Debug values are not allowed to affect codegen.
686       if (MI.isDebugValue())
687         continue;
688 
689       assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
690              "instruction that isn't a DBG_VALUE");
691 
692       anyRemat |= reMaterializeFor(LI, MI);
693     }
694   }
695   if (!anyRemat)
696     return;
697 
698   // Remove any values that were completely rematted.
699   for (Register Reg : RegsToSpill) {
700     LiveInterval &LI = LIS.getInterval(Reg);
701     for (VNInfo *VNI : LI.vnis()) {
702       if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
703         continue;
704       MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
705       MI->addRegisterDead(Reg, &TRI);
706       if (!MI->allDefsAreDead())
707         continue;
708       LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
709       DeadDefs.push_back(MI);
710     }
711   }
712 
713   // Eliminate dead code after remat. Note that some snippet copies may be
714   // deleted here.
715   if (DeadDefs.empty())
716     return;
717   LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
718   Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
719 
720   // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
721   // after rematerialization.  To remove a VNI for a vreg from its LiveInterval,
722   // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
723   // removed, PHI VNI are still left in the LiveInterval.
724   // So to get rid of unused reg, we need to check whether it has non-dbg
725   // reference instead of whether it has non-empty interval.
726   unsigned ResultPos = 0;
727   for (Register Reg : RegsToSpill) {
728     if (MRI.reg_nodbg_empty(Reg)) {
729       Edit->eraseVirtReg(Reg);
730       continue;
731     }
732 
733     assert(LIS.hasInterval(Reg) &&
734            (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
735            "Empty and not used live-range?!");
736 
737     RegsToSpill[ResultPos++] = Reg;
738   }
739   RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
740   LLVM_DEBUG(dbgs() << RegsToSpill.size()
741                     << " registers to spill after remat.\n");
742 }
743 
744 //===----------------------------------------------------------------------===//
745 //                                 Spilling
746 //===----------------------------------------------------------------------===//
747 
748 /// If MI is a load or store of StackSlot, it can be removed.
749 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) {
750   int FI = 0;
751   Register InstrReg = TII.isLoadFromStackSlot(*MI, FI);
752   bool IsLoad = InstrReg;
753   if (!IsLoad)
754     InstrReg = TII.isStoreToStackSlot(*MI, FI);
755 
756   // We have a stack access. Is it the right register and slot?
757   if (InstrReg != Reg || FI != StackSlot)
758     return false;
759 
760   if (!IsLoad)
761     HSpiller.rmFromMergeableSpills(*MI, StackSlot);
762 
763   LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI);
764   LIS.RemoveMachineInstrFromMaps(*MI);
765   MI->eraseFromParent();
766 
767   if (IsLoad) {
768     ++NumReloadsRemoved;
769     --NumReloads;
770   } else {
771     ++NumSpillsRemoved;
772     --NumSpills;
773   }
774 
775   return true;
776 }
777 
778 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
779 LLVM_DUMP_METHOD
780 // Dump the range of instructions from B to E with their slot indexes.
781 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
782                                                MachineBasicBlock::iterator E,
783                                                LiveIntervals const &LIS,
784                                                const char *const header,
785                                                Register VReg = Register()) {
786   char NextLine = '\n';
787   char SlotIndent = '\t';
788 
789   if (std::next(B) == E) {
790     NextLine = ' ';
791     SlotIndent = ' ';
792   }
793 
794   dbgs() << '\t' << header << ": " << NextLine;
795 
796   for (MachineBasicBlock::iterator I = B; I != E; ++I) {
797     SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();
798 
799     // If a register was passed in and this instruction has it as a
800     // destination that is marked as an early clobber, print the
801     // early-clobber slot index.
802     if (VReg) {
803       MachineOperand *MO = I->findRegisterDefOperand(VReg);
804       if (MO && MO->isEarlyClobber())
805         Idx = Idx.getRegSlot(true);
806     }
807 
808     dbgs() << SlotIndent << Idx << '\t' << *I;
809   }
810 }
811 #endif
812 
813 /// foldMemoryOperand - Try folding stack slot references in Ops into their
814 /// instructions.
815 ///
816 /// @param Ops    Operand indices from AnalyzeVirtRegInBundle().
817 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
818 /// @return       True on success.
819 bool InlineSpiller::
820 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops,
821                   MachineInstr *LoadMI) {
822   if (Ops.empty())
823     return false;
824   // Don't attempt folding in bundles.
825   MachineInstr *MI = Ops.front().first;
826   if (Ops.back().first != MI || MI->isBundled())
827     return false;
828 
829   bool WasCopy = MI->isCopy();
830   Register ImpReg;
831 
832   // TII::foldMemoryOperand will do what we need here for statepoint
833   // (fold load into use and remove corresponding def). We will replace
834   // uses of removed def with loads (spillAroundUses).
835   // For that to work we need to untie def and use to pass it through
836   // foldMemoryOperand and signal foldPatchpoint that it is allowed to
837   // fold them.
838   bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT;
839 
840   // Spill subregs if the target allows it.
841   // We always want to spill subregs for stackmap/patchpoint pseudos.
842   bool SpillSubRegs = TII.isSubregFoldable() ||
843                       MI->getOpcode() == TargetOpcode::STATEPOINT ||
844                       MI->getOpcode() == TargetOpcode::PATCHPOINT ||
845                       MI->getOpcode() == TargetOpcode::STACKMAP;
846 
847   // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
848   // operands.
849   SmallVector<unsigned, 8> FoldOps;
850   for (const auto &OpPair : Ops) {
851     unsigned Idx = OpPair.second;
852     assert(MI == OpPair.first && "Instruction conflict during operand folding");
853     MachineOperand &MO = MI->getOperand(Idx);
854 
855     // No point restoring an undef read, and we'll produce an invalid live
856     // interval.
857     // TODO: Is this really the correct way to handle undef tied uses?
858     if (MO.isUse() && !MO.readsReg() && !MO.isTied())
859       continue;
860 
861     if (MO.isImplicit()) {
862       ImpReg = MO.getReg();
863       continue;
864     }
865 
866     if (!SpillSubRegs && MO.getSubReg())
867       return false;
868     // We cannot fold a load instruction into a def.
869     if (LoadMI && MO.isDef())
870       return false;
871     // Tied use operands should not be passed to foldMemoryOperand.
872     if (UntieRegs || !MI->isRegTiedToDefOperand(Idx))
873       FoldOps.push_back(Idx);
874   }
875 
876   // If we only have implicit uses, we won't be able to fold that.
877   // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
878   if (FoldOps.empty())
879     return false;
880 
881   MachineInstrSpan MIS(MI, MI->getParent());
882 
883   SmallVector<std::pair<unsigned, unsigned> > TiedOps;
884   if (UntieRegs)
885     for (unsigned Idx : FoldOps) {
886       MachineOperand &MO = MI->getOperand(Idx);
887       if (!MO.isTied())
888         continue;
889       unsigned Tied = MI->findTiedOperandIdx(Idx);
890       if (MO.isUse())
891         TiedOps.emplace_back(Tied, Idx);
892       else {
893         assert(MO.isDef() && "Tied to not use and def?");
894         TiedOps.emplace_back(Idx, Tied);
895       }
896       MI->untieRegOperand(Idx);
897     }
898 
899   MachineInstr *FoldMI =
900       LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
901              : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM);
902   if (!FoldMI) {
903     // Re-tie operands.
904     for (auto Tied : TiedOps)
905       MI->tieOperands(Tied.first, Tied.second);
906     return false;
907   }
908 
909   // Remove LIS for any dead defs in the original MI not in FoldMI.
910   for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
911     if (!MO->isReg())
912       continue;
913     Register Reg = MO->getReg();
914     if (!Reg || Reg.isVirtual() || MRI.isReserved(Reg)) {
915       continue;
916     }
917     // Skip non-Defs, including undef uses and internal reads.
918     if (MO->isUse())
919       continue;
920     PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI);
921     if (RI.FullyDefined)
922       continue;
923     // FoldMI does not define this physreg. Remove the LI segment.
924     assert(MO->isDead() && "Cannot fold physreg def");
925     SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
926     LIS.removePhysRegDefAt(Reg.asMCReg(), Idx);
927   }
928 
929   int FI;
930   if (TII.isStoreToStackSlot(*MI, FI) &&
931       HSpiller.rmFromMergeableSpills(*MI, FI))
932     --NumSpills;
933   LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
934   // Update the call site info.
935   if (MI->isCandidateForCallSiteEntry())
936     MI->getMF()->moveCallSiteInfo(MI, FoldMI);
937 
938   // If we've folded a store into an instruction labelled with debug-info,
939   // record a substitution from the old operand to the memory operand. Handle
940   // the simple common case where operand 0 is the one being folded, plus when
941   // the destination operand is also a tied def. More values could be
942   // substituted / preserved with more analysis.
943   if (MI->peekDebugInstrNum() && Ops[0].second == 0) {
944     // Helper lambda.
945     auto MakeSubstitution = [this,FoldMI,MI,&Ops]() {
946       // Substitute old operand zero to the new instructions memory operand.
947       unsigned OldOperandNum = Ops[0].second;
948       unsigned NewNum = FoldMI->getDebugInstrNum();
949       unsigned OldNum = MI->getDebugInstrNum();
950       MF.makeDebugValueSubstitution({OldNum, OldOperandNum},
951                          {NewNum, MachineFunction::DebugOperandMemNumber});
952     };
953 
954     const MachineOperand &Op0 = MI->getOperand(Ops[0].second);
955     if (Ops.size() == 1 && Op0.isDef()) {
956       MakeSubstitution();
957     } else if (Ops.size() == 2 && Op0.isDef() && MI->getOperand(1).isTied() &&
958                Op0.getReg() == MI->getOperand(1).getReg()) {
959       MakeSubstitution();
960     }
961   } else if (MI->peekDebugInstrNum()) {
962     // This is a debug-labelled instruction, but the operand being folded isn't
963     // at operand zero. Most likely this means it's a load being folded in.
964     // Substitute any register defs from operand zero up to the one being
965     // folded -- past that point, we don't know what the new operand indexes
966     // will be.
967     MF.substituteDebugValuesForInst(*MI, *FoldMI, Ops[0].second);
968   }
969 
970   MI->eraseFromParent();
971 
972   // Insert any new instructions other than FoldMI into the LIS maps.
973   assert(!MIS.empty() && "Unexpected empty span of instructions!");
974   for (MachineInstr &MI : MIS)
975     if (&MI != FoldMI)
976       LIS.InsertMachineInstrInMaps(MI);
977 
978   // TII.foldMemoryOperand may have left some implicit operands on the
979   // instruction.  Strip them.
980   if (ImpReg)
981     for (unsigned i = FoldMI->getNumOperands(); i; --i) {
982       MachineOperand &MO = FoldMI->getOperand(i - 1);
983       if (!MO.isReg() || !MO.isImplicit())
984         break;
985       if (MO.getReg() == ImpReg)
986         FoldMI->removeOperand(i - 1);
987     }
988 
989   LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
990                                                 "folded"));
991 
992   if (!WasCopy)
993     ++NumFolded;
994   else if (Ops.front().second == 0) {
995     ++NumSpills;
996     // If there is only 1 store instruction is required for spill, add it
997     // to mergeable list. In X86 AMX, 2 intructions are required to store.
998     // We disable the merge for this case.
999     if (std::distance(MIS.begin(), MIS.end()) <= 1)
1000       HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
1001   } else
1002     ++NumReloads;
1003   return true;
1004 }
1005 
1006 void InlineSpiller::insertReload(Register NewVReg,
1007                                  SlotIndex Idx,
1008                                  MachineBasicBlock::iterator MI) {
1009   MachineBasicBlock &MBB = *MI->getParent();
1010 
1011   MachineInstrSpan MIS(MI, &MBB);
1012   TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
1013                            MRI.getRegClass(NewVReg), &TRI, Register());
1014 
1015   LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
1016 
1017   LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
1018                                                 NewVReg));
1019   ++NumReloads;
1020 }
1021 
1022 /// Check if \p Def fully defines a VReg with an undefined value.
1023 /// If that's the case, that means the value of VReg is actually
1024 /// not relevant.
1025 static bool isRealSpill(const MachineInstr &Def) {
1026   if (!Def.isImplicitDef())
1027     return true;
1028   assert(Def.getNumOperands() == 1 &&
1029          "Implicit def with more than one definition");
1030   // We can say that the VReg defined by Def is undef, only if it is
1031   // fully defined by Def. Otherwise, some of the lanes may not be
1032   // undef and the value of the VReg matters.
1033   return Def.getOperand(0).getSubReg();
1034 }
1035 
1036 /// insertSpill - Insert a spill of NewVReg after MI.
1037 void InlineSpiller::insertSpill(Register NewVReg, bool isKill,
1038                                  MachineBasicBlock::iterator MI) {
1039   // Spill are not terminators, so inserting spills after terminators will
1040   // violate invariants in MachineVerifier.
1041   assert(!MI->isTerminator() && "Inserting a spill after a terminator");
1042   MachineBasicBlock &MBB = *MI->getParent();
1043 
1044   MachineInstrSpan MIS(MI, &MBB);
1045   MachineBasicBlock::iterator SpillBefore = std::next(MI);
1046   bool IsRealSpill = isRealSpill(*MI);
1047 
1048   if (IsRealSpill)
1049     TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot,
1050                             MRI.getRegClass(NewVReg), &TRI, Register());
1051   else
1052     // Don't spill undef value.
1053     // Anything works for undef, in particular keeping the memory
1054     // uninitialized is a viable option and it saves code size and
1055     // run time.
1056     BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL))
1057         .addReg(NewVReg, getKillRegState(isKill));
1058 
1059   MachineBasicBlock::iterator Spill = std::next(MI);
1060   LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end());
1061   for (const MachineInstr &MI : make_range(Spill, MIS.end()))
1062     getVDefInterval(MI, LIS);
1063 
1064   LLVM_DEBUG(
1065       dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill"));
1066   ++NumSpills;
1067   // If there is only 1 store instruction is required for spill, add it
1068   // to mergeable list. In X86 AMX, 2 intructions are required to store.
1069   // We disable the merge for this case.
1070   if (IsRealSpill && std::distance(Spill, MIS.end()) <= 1)
1071     HSpiller.addToMergeableSpills(*Spill, StackSlot, Original);
1072 }
1073 
1074 /// spillAroundUses - insert spill code around each use of Reg.
1075 void InlineSpiller::spillAroundUses(Register Reg) {
1076   LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n');
1077   LiveInterval &OldLI = LIS.getInterval(Reg);
1078 
1079   // Iterate over instructions using Reg.
1080   for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) {
1081     // Debug values are not allowed to affect codegen.
1082     if (MI.isDebugValue()) {
1083       // Modify DBG_VALUE now that the value is in a spill slot.
1084       MachineBasicBlock *MBB = MI.getParent();
1085       LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << MI);
1086       buildDbgValueForSpill(*MBB, &MI, MI, StackSlot, Reg);
1087       MBB->erase(MI);
1088       continue;
1089     }
1090 
1091     assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
1092            "instruction that isn't a DBG_VALUE");
1093 
1094     // Ignore copies to/from snippets. We'll delete them.
1095     if (SnippetCopies.count(&MI))
1096       continue;
1097 
1098     // Stack slot accesses may coalesce away.
1099     if (coalesceStackAccess(&MI, Reg))
1100       continue;
1101 
1102     // Analyze instruction.
1103     SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
1104     VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, Reg, &Ops);
1105 
1106     // Find the slot index where this instruction reads and writes OldLI.
1107     // This is usually the def slot, except for tied early clobbers.
1108     SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
1109     if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
1110       if (SlotIndex::isSameInstr(Idx, VNI->def))
1111         Idx = VNI->def;
1112 
1113     // Check for a sibling copy.
1114     Register SibReg = isFullCopyOf(MI, Reg);
1115     if (SibReg && isSibling(SibReg)) {
1116       // This may actually be a copy between snippets.
1117       if (isRegToSpill(SibReg)) {
1118         LLVM_DEBUG(dbgs() << "Found new snippet copy: " << MI);
1119         SnippetCopies.insert(&MI);
1120         continue;
1121       }
1122       if (RI.Writes) {
1123         if (hoistSpillInsideBB(OldLI, MI)) {
1124           // This COPY is now dead, the value is already in the stack slot.
1125           MI.getOperand(0).setIsDead();
1126           DeadDefs.push_back(&MI);
1127           continue;
1128         }
1129       } else {
1130         // This is a reload for a sib-reg copy. Drop spills downstream.
1131         LiveInterval &SibLI = LIS.getInterval(SibReg);
1132         eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
1133         // The COPY will fold to a reload below.
1134       }
1135     }
1136 
1137     // Attempt to fold memory ops.
1138     if (foldMemoryOperand(Ops))
1139       continue;
1140 
1141     // Create a new virtual register for spill/fill.
1142     // FIXME: Infer regclass from instruction alone.
1143     Register NewVReg = Edit->createFrom(Reg);
1144 
1145     if (RI.Reads)
1146       insertReload(NewVReg, Idx, &MI);
1147 
1148     // Rewrite instruction operands.
1149     bool hasLiveDef = false;
1150     for (const auto &OpPair : Ops) {
1151       MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
1152       MO.setReg(NewVReg);
1153       if (MO.isUse()) {
1154         if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
1155           MO.setIsKill();
1156       } else {
1157         if (!MO.isDead())
1158           hasLiveDef = true;
1159       }
1160     }
1161     LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << MI << '\n');
1162 
1163     // FIXME: Use a second vreg if instruction has no tied ops.
1164     if (RI.Writes)
1165       if (hasLiveDef)
1166         insertSpill(NewVReg, true, &MI);
1167   }
1168 }
1169 
1170 /// spillAll - Spill all registers remaining after rematerialization.
1171 void InlineSpiller::spillAll() {
1172   // Update LiveStacks now that we are committed to spilling.
1173   if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1174     StackSlot = VRM.assignVirt2StackSlot(Original);
1175     StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1176     StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1177   } else
1178     StackInt = &LSS.getInterval(StackSlot);
1179 
1180   if (Original != Edit->getReg())
1181     VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1182 
1183   assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1184   for (Register Reg : RegsToSpill)
1185     StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
1186                                      StackInt->getValNumInfo(0));
1187   LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1188 
1189   // Spill around uses of all RegsToSpill.
1190   for (Register Reg : RegsToSpill)
1191     spillAroundUses(Reg);
1192 
1193   // Hoisted spills may cause dead code.
1194   if (!DeadDefs.empty()) {
1195     LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1196     Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
1197   }
1198 
1199   // Finally delete the SnippetCopies.
1200   for (Register Reg : RegsToSpill) {
1201     for (MachineInstr &MI :
1202          llvm::make_early_inc_range(MRI.reg_instructions(Reg))) {
1203       assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
1204       // FIXME: Do this with a LiveRangeEdit callback.
1205       LIS.RemoveMachineInstrFromMaps(MI);
1206       MI.eraseFromParent();
1207     }
1208   }
1209 
1210   // Delete all spilled registers.
1211   for (Register Reg : RegsToSpill)
1212     Edit->eraseVirtReg(Reg);
1213 }
1214 
1215 void InlineSpiller::spill(LiveRangeEdit &edit) {
1216   ++NumSpilledRanges;
1217   Edit = &edit;
1218   assert(!Register::isStackSlot(edit.getReg()) &&
1219          "Trying to spill a stack slot.");
1220   // Share a stack slot among all descendants of Original.
1221   Original = VRM.getOriginal(edit.getReg());
1222   StackSlot = VRM.getStackSlot(Original);
1223   StackInt = nullptr;
1224 
1225   LLVM_DEBUG(dbgs() << "Inline spilling "
1226                     << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
1227                     << ':' << edit.getParent() << "\nFrom original "
1228                     << printReg(Original) << '\n');
1229   assert(edit.getParent().isSpillable() &&
1230          "Attempting to spill already spilled value.");
1231   assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1232 
1233   collectRegsToSpill();
1234   reMaterializeAll();
1235 
1236   // Remat may handle everything.
1237   if (!RegsToSpill.empty())
1238     spillAll();
1239 
1240   Edit->calculateRegClassAndHint(MF, VRAI);
1241 }
1242 
1243 /// Optimizations after all the reg selections and spills are done.
1244 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }
1245 
1246 /// When a spill is inserted, add the spill to MergeableSpills map.
1247 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
1248                                             unsigned Original) {
1249   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1250   LiveInterval &OrigLI = LIS.getInterval(Original);
1251   // save a copy of LiveInterval in StackSlotToOrigLI because the original
1252   // LiveInterval may be cleared after all its references are spilled.
1253   if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) {
1254     auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight());
1255     LI->assign(OrigLI, Allocator);
1256     StackSlotToOrigLI[StackSlot] = std::move(LI);
1257   }
1258   SlotIndex Idx = LIS.getInstructionIndex(Spill);
1259   VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot());
1260   std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1261   MergeableSpills[MIdx].insert(&Spill);
1262 }
1263 
1264 /// When a spill is removed, remove the spill from MergeableSpills map.
1265 /// Return true if the spill is removed successfully.
1266 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
1267                                              int StackSlot) {
1268   auto It = StackSlotToOrigLI.find(StackSlot);
1269   if (It == StackSlotToOrigLI.end())
1270     return false;
1271   SlotIndex Idx = LIS.getInstructionIndex(Spill);
1272   VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot());
1273   std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1274   return MergeableSpills[MIdx].erase(&Spill);
1275 }
1276 
1277 /// Check BB to see if it is a possible target BB to place a hoisted spill,
1278 /// i.e., there should be a living sibling of OrigReg at the insert point.
1279 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
1280                                      MachineBasicBlock &BB, Register &LiveReg) {
1281   SlotIndex Idx = IPA.getLastInsertPoint(OrigLI, BB);
1282   // The original def could be after the last insert point in the root block,
1283   // we can't hoist to here.
1284   if (Idx < OrigVNI.def) {
1285     // TODO: We could be better here. If LI is not alive in landing pad
1286     // we could hoist spill after LIP.
1287     LLVM_DEBUG(dbgs() << "can't spill in root block - def after LIP\n");
1288     return false;
1289   }
1290   Register OrigReg = OrigLI.reg();
1291   SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg];
1292   assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI");
1293 
1294   for (const Register &SibReg : Siblings) {
1295     LiveInterval &LI = LIS.getInterval(SibReg);
1296     VNInfo *VNI = LI.getVNInfoAt(Idx);
1297     if (VNI) {
1298       LiveReg = SibReg;
1299       return true;
1300     }
1301   }
1302   return false;
1303 }
1304 
1305 /// Remove redundant spills in the same BB. Save those redundant spills in
1306 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
1307 void HoistSpillHelper::rmRedundantSpills(
1308     SmallPtrSet<MachineInstr *, 16> &Spills,
1309     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1310     DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1311   // For each spill saw, check SpillBBToSpill[] and see if its BB already has
1312   // another spill inside. If a BB contains more than one spill, only keep the
1313   // earlier spill with smaller SlotIndex.
1314   for (auto *const CurrentSpill : Spills) {
1315     MachineBasicBlock *Block = CurrentSpill->getParent();
1316     MachineDomTreeNode *Node = MDT.getBase().getNode(Block);
1317     MachineInstr *PrevSpill = SpillBBToSpill[Node];
1318     if (PrevSpill) {
1319       SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
1320       SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
1321       MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
1322       MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
1323       SpillsToRm.push_back(SpillToRm);
1324       SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep;
1325     } else {
1326       SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill;
1327     }
1328   }
1329   for (auto *const SpillToRm : SpillsToRm)
1330     Spills.erase(SpillToRm);
1331 }
1332 
1333 /// Starting from \p Root find a top-down traversal order of the dominator
1334 /// tree to visit all basic blocks containing the elements of \p Spills.
1335 /// Redundant spills will be found and put into \p SpillsToRm at the same
1336 /// time. \p SpillBBToSpill will be populated as part of the process and
1337 /// maps a basic block to the first store occurring in the basic block.
1338 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre
1339 void HoistSpillHelper::getVisitOrders(
1340     MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
1341     SmallVectorImpl<MachineDomTreeNode *> &Orders,
1342     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1343     DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
1344     DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1345   // The set contains all the possible BB nodes to which we may hoist
1346   // original spills.
1347   SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
1348   // Save the BB nodes on the path from the first BB node containing
1349   // non-redundant spill to the Root node.
1350   SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
1351   // All the spills to be hoisted must originate from a single def instruction
1352   // to the OrigReg. It means the def instruction should dominate all the spills
1353   // to be hoisted. We choose the BB where the def instruction is located as
1354   // the Root.
1355   MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
1356   // For every node on the dominator tree with spill, walk up on the dominator
1357   // tree towards the Root node until it is reached. If there is other node
1358   // containing spill in the middle of the path, the previous spill saw will
1359   // be redundant and the node containing it will be removed. All the nodes on
1360   // the path starting from the first node with non-redundant spill to the Root
1361   // node will be added to the WorkSet, which will contain all the possible
1362   // locations where spills may be hoisted to after the loop below is done.
1363   for (auto *const Spill : Spills) {
1364     MachineBasicBlock *Block = Spill->getParent();
1365     MachineDomTreeNode *Node = MDT[Block];
1366     MachineInstr *SpillToRm = nullptr;
1367     while (Node != RootIDomNode) {
1368       // If Node dominates Block, and it already contains a spill, the spill in
1369       // Block will be redundant.
1370       if (Node != MDT[Block] && SpillBBToSpill[Node]) {
1371         SpillToRm = SpillBBToSpill[MDT[Block]];
1372         break;
1373         /// If we see the Node already in WorkSet, the path from the Node to
1374         /// the Root node must already be traversed by another spill.
1375         /// Then no need to repeat.
1376       } else if (WorkSet.count(Node)) {
1377         break;
1378       } else {
1379         NodesOnPath.insert(Node);
1380       }
1381       Node = Node->getIDom();
1382     }
1383     if (SpillToRm) {
1384       SpillsToRm.push_back(SpillToRm);
1385     } else {
1386       // Add a BB containing the original spills to SpillsToKeep -- i.e.,
1387       // set the initial status before hoisting start. The value of BBs
1388       // containing original spills is set to 0, in order to descriminate
1389       // with BBs containing hoisted spills which will be inserted to
1390       // SpillsToKeep later during hoisting.
1391       SpillsToKeep[MDT[Block]] = 0;
1392       WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
1393     }
1394     NodesOnPath.clear();
1395   }
1396 
1397   // Sort the nodes in WorkSet in top-down order and save the nodes
1398   // in Orders. Orders will be used for hoisting in runHoistSpills.
1399   unsigned idx = 0;
1400   Orders.push_back(MDT.getBase().getNode(Root));
1401   do {
1402     MachineDomTreeNode *Node = Orders[idx++];
1403     for (MachineDomTreeNode *Child : Node->children()) {
1404       if (WorkSet.count(Child))
1405         Orders.push_back(Child);
1406     }
1407   } while (idx != Orders.size());
1408   assert(Orders.size() == WorkSet.size() &&
1409          "Orders have different size with WorkSet");
1410 
1411 #ifndef NDEBUG
1412   LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n");
1413   SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1414   for (; RIt != Orders.rend(); RIt++)
1415     LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",");
1416   LLVM_DEBUG(dbgs() << "\n");
1417 #endif
1418 }
1419 
1420 /// Try to hoist spills according to BB hotness. The spills to removed will
1421 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in
1422 /// \p SpillsToIns.
1423 void HoistSpillHelper::runHoistSpills(
1424     LiveInterval &OrigLI, VNInfo &OrigVNI,
1425     SmallPtrSet<MachineInstr *, 16> &Spills,
1426     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1427     DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
1428   // Visit order of dominator tree nodes.
1429   SmallVector<MachineDomTreeNode *, 32> Orders;
1430   // SpillsToKeep contains all the nodes where spills are to be inserted
1431   // during hoisting. If the spill to be inserted is an original spill
1432   // (not a hoisted one), the value of the map entry is 0. If the spill
1433   // is a hoisted spill, the value of the map entry is the VReg to be used
1434   // as the source of the spill.
1435   DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
1436   // Map from BB to the first spill inside of it.
1437   DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;
1438 
1439   rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);
1440 
1441   MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
1442   getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
1443                  SpillBBToSpill);
1444 
1445   // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
1446   // nodes set and the cost of all the spills inside those nodes.
1447   // The nodes set are the locations where spills are to be inserted
1448   // in the subtree of current node.
1449   using NodesCostPair =
1450       std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>;
1451   DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;
1452 
1453   // Iterate Orders set in reverse order, which will be a bottom-up order
1454   // in the dominator tree. Once we visit a dom tree node, we know its
1455   // children have already been visited and the spill locations in the
1456   // subtrees of all the children have been determined.
1457   SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1458   for (; RIt != Orders.rend(); RIt++) {
1459     MachineBasicBlock *Block = (*RIt)->getBlock();
1460 
1461     // If Block contains an original spill, simply continue.
1462     if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) {
1463       SpillsInSubTreeMap[*RIt].first.insert(*RIt);
1464       // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
1465       SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
1466       continue;
1467     }
1468 
1469     // Collect spills in subtree of current node (*RIt) to
1470     // SpillsInSubTreeMap[*RIt].first.
1471     for (MachineDomTreeNode *Child : (*RIt)->children()) {
1472       if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end())
1473         continue;
1474       // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
1475       // should be placed before getting the begin and end iterators of
1476       // SpillsInSubTreeMap[Child].first, or else the iterators may be
1477       // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
1478       // and the map grows and then the original buckets in the map are moved.
1479       SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1480           SpillsInSubTreeMap[*RIt].first;
1481       BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1482       SubTreeCost += SpillsInSubTreeMap[Child].second;
1483       auto BI = SpillsInSubTreeMap[Child].first.begin();
1484       auto EI = SpillsInSubTreeMap[Child].first.end();
1485       SpillsInSubTree.insert(BI, EI);
1486       SpillsInSubTreeMap.erase(Child);
1487     }
1488 
1489     SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1490           SpillsInSubTreeMap[*RIt].first;
1491     BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1492     // No spills in subtree, simply continue.
1493     if (SpillsInSubTree.empty())
1494       continue;
1495 
1496     // Check whether Block is a possible candidate to insert spill.
1497     Register LiveReg;
1498     if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg))
1499       continue;
1500 
1501     // If there are multiple spills that could be merged, bias a little
1502     // to hoist the spill.
1503     BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
1504                                        ? BranchProbability(9, 10)
1505                                        : BranchProbability(1, 1);
1506     if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
1507       // Hoist: Move spills to current Block.
1508       for (auto *const SpillBB : SpillsInSubTree) {
1509         // When SpillBB is a BB contains original spill, insert the spill
1510         // to SpillsToRm.
1511         if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() &&
1512             !SpillsToKeep[SpillBB]) {
1513           MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
1514           SpillsToRm.push_back(SpillToRm);
1515         }
1516         // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
1517         SpillsToKeep.erase(SpillBB);
1518       }
1519       // Current Block is the BB containing the new hoisted spill. Add it to
1520       // SpillsToKeep. LiveReg is the source of the new spill.
1521       SpillsToKeep[*RIt] = LiveReg;
1522       LLVM_DEBUG({
1523         dbgs() << "spills in BB: ";
1524         for (const auto Rspill : SpillsInSubTree)
1525           dbgs() << Rspill->getBlock()->getNumber() << " ";
1526         dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()
1527                << "\n";
1528       });
1529       SpillsInSubTree.clear();
1530       SpillsInSubTree.insert(*RIt);
1531       SubTreeCost = MBFI.getBlockFreq(Block);
1532     }
1533   }
1534   // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
1535   // save them to SpillsToIns.
1536   for (const auto &Ent : SpillsToKeep) {
1537     if (Ent.second)
1538       SpillsToIns[Ent.first->getBlock()] = Ent.second;
1539   }
1540 }
1541 
1542 /// For spills with equal values, remove redundant spills and hoist those left
1543 /// to less hot spots.
1544 ///
1545 /// Spills with equal values will be collected into the same set in
1546 /// MergeableSpills when spill is inserted. These equal spills are originated
1547 /// from the same defining instruction and are dominated by the instruction.
1548 /// Before hoisting all the equal spills, redundant spills inside in the same
1549 /// BB are first marked to be deleted. Then starting from the spills left, walk
1550 /// up on the dominator tree towards the Root node where the define instruction
1551 /// is located, mark the dominated spills to be deleted along the way and
1552 /// collect the BB nodes on the path from non-dominated spills to the define
1553 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places
1554 /// where we are considering to hoist the spills. We iterate the WorkSet in
1555 /// bottom-up order, and for each node, we will decide whether to hoist spills
1556 /// inside its subtree to that node. In this way, we can get benefit locally
1557 /// even if hoisting all the equal spills to one cold place is impossible.
1558 void HoistSpillHelper::hoistAllSpills() {
1559   SmallVector<Register, 4> NewVRegs;
1560   LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);
1561 
1562   for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
1563     Register Reg = Register::index2VirtReg(i);
1564     Register Original = VRM.getPreSplitReg(Reg);
1565     if (!MRI.def_empty(Reg))
1566       Virt2SiblingsMap[Original].insert(Reg);
1567   }
1568 
1569   // Each entry in MergeableSpills contains a spill set with equal values.
1570   for (auto &Ent : MergeableSpills) {
1571     int Slot = Ent.first.first;
1572     LiveInterval &OrigLI = *StackSlotToOrigLI[Slot];
1573     VNInfo *OrigVNI = Ent.first.second;
1574     SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
1575     if (Ent.second.empty())
1576       continue;
1577 
1578     LLVM_DEBUG({
1579       dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"
1580              << "Equal spills in BB: ";
1581       for (const auto spill : EqValSpills)
1582         dbgs() << spill->getParent()->getNumber() << " ";
1583       dbgs() << "\n";
1584     });
1585 
1586     // SpillsToRm is the spill set to be removed from EqValSpills.
1587     SmallVector<MachineInstr *, 16> SpillsToRm;
1588     // SpillsToIns is the spill set to be newly inserted after hoisting.
1589     DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;
1590 
1591     runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);
1592 
1593     LLVM_DEBUG({
1594       dbgs() << "Finally inserted spills in BB: ";
1595       for (const auto &Ispill : SpillsToIns)
1596         dbgs() << Ispill.first->getNumber() << " ";
1597       dbgs() << "\nFinally removed spills in BB: ";
1598       for (const auto Rspill : SpillsToRm)
1599         dbgs() << Rspill->getParent()->getNumber() << " ";
1600       dbgs() << "\n";
1601     });
1602 
1603     // Stack live range update.
1604     LiveInterval &StackIntvl = LSS.getInterval(Slot);
1605     if (!SpillsToIns.empty() || !SpillsToRm.empty())
1606       StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
1607                                      StackIntvl.getValNumInfo(0));
1608 
1609     // Insert hoisted spills.
1610     for (auto const &Insert : SpillsToIns) {
1611       MachineBasicBlock *BB = Insert.first;
1612       Register LiveReg = Insert.second;
1613       MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(OrigLI, *BB);
1614       MachineInstrSpan MIS(MII, BB);
1615       TII.storeRegToStackSlot(*BB, MII, LiveReg, false, Slot,
1616                               MRI.getRegClass(LiveReg), &TRI, Register());
1617       LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
1618       for (const MachineInstr &MI : make_range(MIS.begin(), MII))
1619         getVDefInterval(MI, LIS);
1620       ++NumSpills;
1621     }
1622 
1623     // Remove redundant spills or change them to dead instructions.
1624     NumSpills -= SpillsToRm.size();
1625     for (auto *const RMEnt : SpillsToRm) {
1626       RMEnt->setDesc(TII.get(TargetOpcode::KILL));
1627       for (unsigned i = RMEnt->getNumOperands(); i; --i) {
1628         MachineOperand &MO = RMEnt->getOperand(i - 1);
1629         if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
1630           RMEnt->removeOperand(i - 1);
1631       }
1632     }
1633     Edit.eliminateDeadDefs(SpillsToRm, std::nullopt);
1634   }
1635 }
1636 
1637 /// For VirtReg clone, the \p New register should have the same physreg or
1638 /// stackslot as the \p old register.
1639 void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) {
1640   if (VRM.hasPhys(Old))
1641     VRM.assignVirt2Phys(New, VRM.getPhys(Old));
1642   else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
1643     VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
1644   else
1645     llvm_unreachable("VReg should be assigned either physreg or stackslot");
1646   if (VRM.hasShape(Old))
1647     VRM.assignVirt2Shape(New, VRM.getShape(Old));
1648 }
1649