xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/InlineSpiller.cpp (revision 963f5dc7a30624e95d72fb7f87b8892651164e46)
1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The inline spiller modifies the machine function directly instead of
10 // inserting spills and restores in VirtRegMap.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SplitKit.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/LiveInterval.h"
26 #include "llvm/CodeGen/LiveIntervalCalc.h"
27 #include "llvm/CodeGen/LiveIntervals.h"
28 #include "llvm/CodeGen/LiveRangeEdit.h"
29 #include "llvm/CodeGen/LiveStacks.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32 #include "llvm/CodeGen/MachineDominators.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineInstrBundle.h"
38 #include "llvm/CodeGen/MachineLoopInfo.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/Spiller.h"
43 #include "llvm/CodeGen/StackMaps.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetOpcodes.h"
46 #include "llvm/CodeGen/TargetRegisterInfo.h"
47 #include "llvm/CodeGen/TargetSubtargetInfo.h"
48 #include "llvm/CodeGen/VirtRegMap.h"
49 #include "llvm/Config/llvm-config.h"
50 #include "llvm/Support/BlockFrequency.h"
51 #include "llvm/Support/BranchProbability.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <cassert>
58 #include <iterator>
59 #include <tuple>
60 #include <utility>
61 #include <vector>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "regalloc"
66 
67 STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
68 STATISTIC(NumSnippets,        "Number of spilled snippets");
69 STATISTIC(NumSpills,          "Number of spills inserted");
70 STATISTIC(NumSpillsRemoved,   "Number of spills removed");
71 STATISTIC(NumReloads,         "Number of reloads inserted");
72 STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
73 STATISTIC(NumFolded,          "Number of folded stack accesses");
74 STATISTIC(NumFoldedLoads,     "Number of folded loads");
75 STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
76 
77 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
78                                      cl::desc("Disable inline spill hoisting"));
79 static cl::opt<bool>
80 RestrictStatepointRemat("restrict-statepoint-remat",
81                        cl::init(false), cl::Hidden,
82                        cl::desc("Restrict remat for statepoint operands"));
83 
84 namespace {
85 
86 class HoistSpillHelper : private LiveRangeEdit::Delegate {
87   MachineFunction &MF;
88   LiveIntervals &LIS;
89   LiveStacks &LSS;
90   AliasAnalysis *AA;
91   MachineDominatorTree &MDT;
92   MachineLoopInfo &Loops;
93   VirtRegMap &VRM;
94   MachineRegisterInfo &MRI;
95   const TargetInstrInfo &TII;
96   const TargetRegisterInfo &TRI;
97   const MachineBlockFrequencyInfo &MBFI;
98 
99   InsertPointAnalysis IPA;
100 
101   // Map from StackSlot to the LiveInterval of the original register.
102   // Note the LiveInterval of the original register may have been deleted
103   // after it is spilled. We keep a copy here to track the range where
104   // spills can be moved.
105   DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI;
106 
107   // Map from pair of (StackSlot and Original VNI) to a set of spills which
108   // have the same stackslot and have equal values defined by Original VNI.
109   // These spills are mergeable and are hoist candiates.
110   using MergeableSpillsMap =
111       MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>;
112   MergeableSpillsMap MergeableSpills;
113 
114   /// This is the map from original register to a set containing all its
115   /// siblings. To hoist a spill to another BB, we need to find out a live
116   /// sibling there and use it as the source of the new spill.
117   DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap;
118 
119   bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
120                      MachineBasicBlock &BB, Register &LiveReg);
121 
122   void rmRedundantSpills(
123       SmallPtrSet<MachineInstr *, 16> &Spills,
124       SmallVectorImpl<MachineInstr *> &SpillsToRm,
125       DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
126 
127   void getVisitOrders(
128       MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
129       SmallVectorImpl<MachineDomTreeNode *> &Orders,
130       SmallVectorImpl<MachineInstr *> &SpillsToRm,
131       DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
132       DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
133 
134   void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI,
135                       SmallPtrSet<MachineInstr *, 16> &Spills,
136                       SmallVectorImpl<MachineInstr *> &SpillsToRm,
137                       DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);
138 
139 public:
140   HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
141                    VirtRegMap &vrm)
142       : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
143         LSS(pass.getAnalysis<LiveStacks>()),
144         AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
145         MDT(pass.getAnalysis<MachineDominatorTree>()),
146         Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
147         MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
148         TRI(*mf.getSubtarget().getRegisterInfo()),
149         MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
150         IPA(LIS, mf.getNumBlockIDs()) {}
151 
152   void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
153                             unsigned Original);
154   bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
155   void hoistAllSpills();
156   void LRE_DidCloneVirtReg(Register, Register) override;
157 };
158 
159 class InlineSpiller : public Spiller {
160   MachineFunction &MF;
161   LiveIntervals &LIS;
162   LiveStacks &LSS;
163   AliasAnalysis *AA;
164   MachineDominatorTree &MDT;
165   MachineLoopInfo &Loops;
166   VirtRegMap &VRM;
167   MachineRegisterInfo &MRI;
168   const TargetInstrInfo &TII;
169   const TargetRegisterInfo &TRI;
170   const MachineBlockFrequencyInfo &MBFI;
171 
172   // Variables that are valid during spill(), but used by multiple methods.
173   LiveRangeEdit *Edit;
174   LiveInterval *StackInt;
175   int StackSlot;
176   Register Original;
177 
178   // All registers to spill to StackSlot, including the main register.
179   SmallVector<Register, 8> RegsToSpill;
180 
181   // All COPY instructions to/from snippets.
182   // They are ignored since both operands refer to the same stack slot.
183   SmallPtrSet<MachineInstr*, 8> SnippetCopies;
184 
185   // Values that failed to remat at some point.
186   SmallPtrSet<VNInfo*, 8> UsedValues;
187 
188   // Dead defs generated during spilling.
189   SmallVector<MachineInstr*, 8> DeadDefs;
190 
191   // Object records spills information and does the hoisting.
192   HoistSpillHelper HSpiller;
193 
194   // Live range weight calculator.
195   VirtRegAuxInfo &VRAI;
196 
197   ~InlineSpiller() override = default;
198 
199 public:
200   InlineSpiller(MachineFunctionPass &Pass, MachineFunction &MF, VirtRegMap &VRM,
201                 VirtRegAuxInfo &VRAI)
202       : MF(MF), LIS(Pass.getAnalysis<LiveIntervals>()),
203         LSS(Pass.getAnalysis<LiveStacks>()),
204         AA(&Pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
205         MDT(Pass.getAnalysis<MachineDominatorTree>()),
206         Loops(Pass.getAnalysis<MachineLoopInfo>()), VRM(VRM),
207         MRI(MF.getRegInfo()), TII(*MF.getSubtarget().getInstrInfo()),
208         TRI(*MF.getSubtarget().getRegisterInfo()),
209         MBFI(Pass.getAnalysis<MachineBlockFrequencyInfo>()),
210         HSpiller(Pass, MF, VRM), VRAI(VRAI) {}
211 
212   void spill(LiveRangeEdit &) override;
213   void postOptimization() override;
214 
215 private:
216   bool isSnippet(const LiveInterval &SnipLI);
217   void collectRegsToSpill();
218 
219   bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); }
220 
221   bool isSibling(Register Reg);
222   bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
223   void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
224 
225   void markValueUsed(LiveInterval*, VNInfo*);
226   bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI);
227   bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
228   void reMaterializeAll();
229 
230   bool coalesceStackAccess(MachineInstr *MI, Register Reg);
231   bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>,
232                          MachineInstr *LoadMI = nullptr);
233   void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI);
234   void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI);
235 
236   void spillAroundUses(Register Reg);
237   void spillAll();
238 };
239 
240 } // end anonymous namespace
241 
242 Spiller::~Spiller() = default;
243 
244 void Spiller::anchor() {}
245 
246 Spiller *llvm::createInlineSpiller(MachineFunctionPass &Pass,
247                                    MachineFunction &MF, VirtRegMap &VRM,
248                                    VirtRegAuxInfo &VRAI) {
249   return new InlineSpiller(Pass, MF, VRM, VRAI);
250 }
251 
252 //===----------------------------------------------------------------------===//
253 //                                Snippets
254 //===----------------------------------------------------------------------===//
255 
256 // When spilling a virtual register, we also spill any snippets it is connected
257 // to. The snippets are small live ranges that only have a single real use,
258 // leftovers from live range splitting. Spilling them enables memory operand
259 // folding or tightens the live range around the single use.
260 //
261 // This minimizes register pressure and maximizes the store-to-load distance for
262 // spill slots which can be important in tight loops.
263 
264 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
265 /// otherwise return 0.
266 static Register isFullCopyOf(const MachineInstr &MI, Register Reg) {
267   if (!MI.isFullCopy())
268     return Register();
269   if (MI.getOperand(0).getReg() == Reg)
270     return MI.getOperand(1).getReg();
271   if (MI.getOperand(1).getReg() == Reg)
272     return MI.getOperand(0).getReg();
273   return Register();
274 }
275 
276 static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) {
277   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
278     const MachineOperand &MO = MI.getOperand(I);
279     if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
280       LIS.getInterval(MO.getReg());
281   }
282 }
283 
284 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
285 /// It is assumed that SnipLI is a virtual register with the same original as
286 /// Edit->getReg().
287 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
288   Register Reg = Edit->getReg();
289 
290   // A snippet is a tiny live range with only a single instruction using it
291   // besides copies to/from Reg or spills/fills. We accept:
292   //
293   //   %snip = COPY %Reg / FILL fi#
294   //   %snip = USE %snip
295   //   %Reg = COPY %snip / SPILL %snip, fi#
296   //
297   if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
298     return false;
299 
300   MachineInstr *UseMI = nullptr;
301 
302   // Check that all uses satisfy our criteria.
303   for (MachineRegisterInfo::reg_instr_nodbg_iterator
304            RI = MRI.reg_instr_nodbg_begin(SnipLI.reg()),
305            E = MRI.reg_instr_nodbg_end();
306        RI != E;) {
307     MachineInstr &MI = *RI++;
308 
309     // Allow copies to/from Reg.
310     if (isFullCopyOf(MI, Reg))
311       continue;
312 
313     // Allow stack slot loads.
314     int FI;
315     if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
316       continue;
317 
318     // Allow stack slot stores.
319     if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
320       continue;
321 
322     // Allow a single additional instruction.
323     if (UseMI && &MI != UseMI)
324       return false;
325     UseMI = &MI;
326   }
327   return true;
328 }
329 
330 /// collectRegsToSpill - Collect live range snippets that only have a single
331 /// real use.
332 void InlineSpiller::collectRegsToSpill() {
333   Register Reg = Edit->getReg();
334 
335   // Main register always spills.
336   RegsToSpill.assign(1, Reg);
337   SnippetCopies.clear();
338 
339   // Snippets all have the same original, so there can't be any for an original
340   // register.
341   if (Original == Reg)
342     return;
343 
344   for (MachineRegisterInfo::reg_instr_iterator
345        RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) {
346     MachineInstr &MI = *RI++;
347     Register SnipReg = isFullCopyOf(MI, Reg);
348     if (!isSibling(SnipReg))
349       continue;
350     LiveInterval &SnipLI = LIS.getInterval(SnipReg);
351     if (!isSnippet(SnipLI))
352       continue;
353     SnippetCopies.insert(&MI);
354     if (isRegToSpill(SnipReg))
355       continue;
356     RegsToSpill.push_back(SnipReg);
357     LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
358     ++NumSnippets;
359   }
360 }
361 
362 bool InlineSpiller::isSibling(Register Reg) {
363   return Reg.isVirtual() && VRM.getOriginal(Reg) == Original;
364 }
365 
366 /// It is beneficial to spill to earlier place in the same BB in case
367 /// as follows:
368 /// There is an alternative def earlier in the same MBB.
369 /// Hoist the spill as far as possible in SpillMBB. This can ease
370 /// register pressure:
371 ///
372 ///   x = def
373 ///   y = use x
374 ///   s = copy x
375 ///
376 /// Hoisting the spill of s to immediately after the def removes the
377 /// interference between x and y:
378 ///
379 ///   x = def
380 ///   spill x
381 ///   y = use killed x
382 ///
383 /// This hoist only helps when the copy kills its source.
384 ///
385 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
386                                        MachineInstr &CopyMI) {
387   SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
388 #ifndef NDEBUG
389   VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
390   assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
391 #endif
392 
393   Register SrcReg = CopyMI.getOperand(1).getReg();
394   LiveInterval &SrcLI = LIS.getInterval(SrcReg);
395   VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
396   LiveQueryResult SrcQ = SrcLI.Query(Idx);
397   MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
398   if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
399     return false;
400 
401   // Conservatively extend the stack slot range to the range of the original
402   // value. We may be able to do better with stack slot coloring by being more
403   // careful here.
404   assert(StackInt && "No stack slot assigned yet.");
405   LiveInterval &OrigLI = LIS.getInterval(Original);
406   VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
407   StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
408   LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
409                     << *StackInt << '\n');
410 
411   // We are going to spill SrcVNI immediately after its def, so clear out
412   // any later spills of the same value.
413   eliminateRedundantSpills(SrcLI, SrcVNI);
414 
415   MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
416   MachineBasicBlock::iterator MII;
417   if (SrcVNI->isPHIDef())
418     MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
419   else {
420     MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
421     assert(DefMI && "Defining instruction disappeared");
422     MII = DefMI;
423     ++MII;
424   }
425   MachineInstrSpan MIS(MII, MBB);
426   // Insert spill without kill flag immediately after def.
427   TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
428                           MRI.getRegClass(SrcReg), &TRI);
429   LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
430   for (const MachineInstr &MI : make_range(MIS.begin(), MII))
431     getVDefInterval(MI, LIS);
432   --MII; // Point to store instruction.
433   LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII);
434 
435   // If there is only 1 store instruction is required for spill, add it
436   // to mergeable list. In X86 AMX, 2 intructions are required to store.
437   // We disable the merge for this case.
438   if (MIS.begin() == MII)
439     HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
440   ++NumSpills;
441   return true;
442 }
443 
444 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
445 /// redundant spills of this value in SLI.reg and sibling copies.
446 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
447   assert(VNI && "Missing value");
448   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
449   WorkList.push_back(std::make_pair(&SLI, VNI));
450   assert(StackInt && "No stack slot assigned yet.");
451 
452   do {
453     LiveInterval *LI;
454     std::tie(LI, VNI) = WorkList.pop_back_val();
455     Register Reg = LI->reg();
456     LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@'
457                       << VNI->def << " in " << *LI << '\n');
458 
459     // Regs to spill are taken care of.
460     if (isRegToSpill(Reg))
461       continue;
462 
463     // Add all of VNI's live range to StackInt.
464     StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
465     LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
466 
467     // Find all spills and copies of VNI.
468     for (MachineRegisterInfo::use_instr_nodbg_iterator
469          UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
470          UI != E; ) {
471       MachineInstr &MI = *UI++;
472       if (!MI.isCopy() && !MI.mayStore())
473         continue;
474       SlotIndex Idx = LIS.getInstructionIndex(MI);
475       if (LI->getVNInfoAt(Idx) != VNI)
476         continue;
477 
478       // Follow sibling copies down the dominator tree.
479       if (Register DstReg = isFullCopyOf(MI, Reg)) {
480         if (isSibling(DstReg)) {
481            LiveInterval &DstLI = LIS.getInterval(DstReg);
482            VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
483            assert(DstVNI && "Missing defined value");
484            assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
485            WorkList.push_back(std::make_pair(&DstLI, DstVNI));
486         }
487         continue;
488       }
489 
490       // Erase spills.
491       int FI;
492       if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
493         LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI);
494         // eliminateDeadDefs won't normally remove stores, so switch opcode.
495         MI.setDesc(TII.get(TargetOpcode::KILL));
496         DeadDefs.push_back(&MI);
497         ++NumSpillsRemoved;
498         if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
499           --NumSpills;
500       }
501     }
502   } while (!WorkList.empty());
503 }
504 
505 //===----------------------------------------------------------------------===//
506 //                            Rematerialization
507 //===----------------------------------------------------------------------===//
508 
509 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
510 /// instruction cannot be eliminated. See through snippet copies
511 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
512   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
513   WorkList.push_back(std::make_pair(LI, VNI));
514   do {
515     std::tie(LI, VNI) = WorkList.pop_back_val();
516     if (!UsedValues.insert(VNI).second)
517       continue;
518 
519     if (VNI->isPHIDef()) {
520       MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
521       for (MachineBasicBlock *P : MBB->predecessors()) {
522         VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
523         if (PVNI)
524           WorkList.push_back(std::make_pair(LI, PVNI));
525       }
526       continue;
527     }
528 
529     // Follow snippet copies.
530     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
531     if (!SnippetCopies.count(MI))
532       continue;
533     LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
534     assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy");
535     VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
536     assert(SnipVNI && "Snippet undefined before copy");
537     WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
538   } while (!WorkList.empty());
539 }
540 
541 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg,
542                                                      MachineInstr &MI) {
543   if (!RestrictStatepointRemat)
544     return true;
545   // Here's a quick explanation of the problem we're trying to handle here:
546   // * There are some pseudo instructions with more vreg uses than there are
547   //   physical registers on the machine.
548   // * This is normally handled by spilling the vreg, and folding the reload
549   //   into the user instruction.  (Thus decreasing the number of used vregs
550   //   until the remainder can be assigned to physregs.)
551   // * However, since we may try to spill vregs in any order, we can end up
552   //   trying to spill each operand to the instruction, and then rematting it
553   //   instead.  When that happens, the new live intervals (for the remats) are
554   //   expected to be trivially assignable (i.e. RS_Done).  However, since we
555   //   may have more remats than physregs, we're guaranteed to fail to assign
556   //   one.
557   // At the moment, we only handle this for STATEPOINTs since they're the only
558   // pseudo op where we've seen this.  If we start seeing other instructions
559   // with the same problem, we need to revisit this.
560   if (MI.getOpcode() != TargetOpcode::STATEPOINT)
561     return true;
562   // For STATEPOINTs we allow re-materialization for fixed arguments only hoping
563   // that number of physical registers is enough to cover all fixed arguments.
564   // If it is not true we need to revisit it.
565   for (unsigned Idx = StatepointOpers(&MI).getVarIdx(),
566                 EndIdx = MI.getNumOperands();
567        Idx < EndIdx; ++Idx) {
568     MachineOperand &MO = MI.getOperand(Idx);
569     if (MO.isReg() && MO.getReg() == VReg)
570       return false;
571   }
572   return true;
573 }
574 
575 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
576 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
577   // Analyze instruction
578   SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
579   VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops);
580 
581   if (!RI.Reads)
582     return false;
583 
584   SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
585   VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
586 
587   if (!ParentVNI) {
588     LLVM_DEBUG(dbgs() << "\tadding <undef> flags: ");
589     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
590       MachineOperand &MO = MI.getOperand(i);
591       if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg())
592         MO.setIsUndef();
593     }
594     LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI);
595     return true;
596   }
597 
598   if (SnippetCopies.count(&MI))
599     return false;
600 
601   LiveInterval &OrigLI = LIS.getInterval(Original);
602   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
603   LiveRangeEdit::Remat RM(ParentVNI);
604   RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
605 
606   if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
607     markValueUsed(&VirtReg, ParentVNI);
608     LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
609     return false;
610   }
611 
612   // If the instruction also writes VirtReg.reg, it had better not require the
613   // same register for uses and defs.
614   if (RI.Tied) {
615     markValueUsed(&VirtReg, ParentVNI);
616     LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
617     return false;
618   }
619 
620   // Before rematerializing into a register for a single instruction, try to
621   // fold a load into the instruction. That avoids allocating a new register.
622   if (RM.OrigMI->canFoldAsLoad() &&
623       foldMemoryOperand(Ops, RM.OrigMI)) {
624     Edit->markRematerialized(RM.ParentVNI);
625     ++NumFoldedLoads;
626     return true;
627   }
628 
629   // If we can't guarantee that we'll be able to actually assign the new vreg,
630   // we can't remat.
631   if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) {
632     markValueUsed(&VirtReg, ParentVNI);
633     LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
634     return false;
635   }
636 
637   // Allocate a new register for the remat.
638   Register NewVReg = Edit->createFrom(Original);
639 
640   // Finally we can rematerialize OrigMI before MI.
641   SlotIndex DefIdx =
642       Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
643 
644   // We take the DebugLoc from MI, since OrigMI may be attributed to a
645   // different source location.
646   auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
647   NewMI->setDebugLoc(MI.getDebugLoc());
648 
649   (void)DefIdx;
650   LLVM_DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
651                     << *LIS.getInstructionFromIndex(DefIdx));
652 
653   // Replace operands
654   for (const auto &OpPair : Ops) {
655     MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
656     if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) {
657       MO.setReg(NewVReg);
658       MO.setIsKill();
659     }
660   }
661   LLVM_DEBUG(dbgs() << "\t        " << UseIdx << '\t' << MI << '\n');
662 
663   ++NumRemats;
664   return true;
665 }
666 
667 /// reMaterializeAll - Try to rematerialize as many uses as possible,
668 /// and trim the live ranges after.
669 void InlineSpiller::reMaterializeAll() {
670   if (!Edit->anyRematerializable(AA))
671     return;
672 
673   UsedValues.clear();
674 
675   // Try to remat before all uses of snippets.
676   bool anyRemat = false;
677   for (Register Reg : RegsToSpill) {
678     LiveInterval &LI = LIS.getInterval(Reg);
679     for (MachineRegisterInfo::reg_bundle_iterator
680            RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
681          RegI != E; ) {
682       MachineInstr &MI = *RegI++;
683 
684       // Debug values are not allowed to affect codegen.
685       if (MI.isDebugValue())
686         continue;
687 
688       assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
689              "instruction that isn't a DBG_VALUE");
690 
691       anyRemat |= reMaterializeFor(LI, MI);
692     }
693   }
694   if (!anyRemat)
695     return;
696 
697   // Remove any values that were completely rematted.
698   for (Register Reg : RegsToSpill) {
699     LiveInterval &LI = LIS.getInterval(Reg);
700     for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
701          I != E; ++I) {
702       VNInfo *VNI = *I;
703       if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
704         continue;
705       MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
706       MI->addRegisterDead(Reg, &TRI);
707       if (!MI->allDefsAreDead())
708         continue;
709       LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
710       DeadDefs.push_back(MI);
711     }
712   }
713 
714   // Eliminate dead code after remat. Note that some snippet copies may be
715   // deleted here.
716   if (DeadDefs.empty())
717     return;
718   LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
719   Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
720 
721   // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
722   // after rematerialization.  To remove a VNI for a vreg from its LiveInterval,
723   // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
724   // removed, PHI VNI are still left in the LiveInterval.
725   // So to get rid of unused reg, we need to check whether it has non-dbg
726   // reference instead of whether it has non-empty interval.
727   unsigned ResultPos = 0;
728   for (Register Reg : RegsToSpill) {
729     if (MRI.reg_nodbg_empty(Reg)) {
730       Edit->eraseVirtReg(Reg);
731       continue;
732     }
733 
734     assert(LIS.hasInterval(Reg) &&
735            (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
736            "Empty and not used live-range?!");
737 
738     RegsToSpill[ResultPos++] = Reg;
739   }
740   RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
741   LLVM_DEBUG(dbgs() << RegsToSpill.size()
742                     << " registers to spill after remat.\n");
743 }
744 
745 //===----------------------------------------------------------------------===//
746 //                                 Spilling
747 //===----------------------------------------------------------------------===//
748 
749 /// If MI is a load or store of StackSlot, it can be removed.
750 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) {
751   int FI = 0;
752   Register InstrReg = TII.isLoadFromStackSlot(*MI, FI);
753   bool IsLoad = InstrReg;
754   if (!IsLoad)
755     InstrReg = TII.isStoreToStackSlot(*MI, FI);
756 
757   // We have a stack access. Is it the right register and slot?
758   if (InstrReg != Reg || FI != StackSlot)
759     return false;
760 
761   if (!IsLoad)
762     HSpiller.rmFromMergeableSpills(*MI, StackSlot);
763 
764   LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI);
765   LIS.RemoveMachineInstrFromMaps(*MI);
766   MI->eraseFromParent();
767 
768   if (IsLoad) {
769     ++NumReloadsRemoved;
770     --NumReloads;
771   } else {
772     ++NumSpillsRemoved;
773     --NumSpills;
774   }
775 
776   return true;
777 }
778 
779 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
780 LLVM_DUMP_METHOD
781 // Dump the range of instructions from B to E with their slot indexes.
782 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
783                                                MachineBasicBlock::iterator E,
784                                                LiveIntervals const &LIS,
785                                                const char *const header,
786                                                Register VReg = Register()) {
787   char NextLine = '\n';
788   char SlotIndent = '\t';
789 
790   if (std::next(B) == E) {
791     NextLine = ' ';
792     SlotIndent = ' ';
793   }
794 
795   dbgs() << '\t' << header << ": " << NextLine;
796 
797   for (MachineBasicBlock::iterator I = B; I != E; ++I) {
798     SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();
799 
800     // If a register was passed in and this instruction has it as a
801     // destination that is marked as an early clobber, print the
802     // early-clobber slot index.
803     if (VReg) {
804       MachineOperand *MO = I->findRegisterDefOperand(VReg);
805       if (MO && MO->isEarlyClobber())
806         Idx = Idx.getRegSlot(true);
807     }
808 
809     dbgs() << SlotIndent << Idx << '\t' << *I;
810   }
811 }
812 #endif
813 
814 /// foldMemoryOperand - Try folding stack slot references in Ops into their
815 /// instructions.
816 ///
817 /// @param Ops    Operand indices from AnalyzeVirtRegInBundle().
818 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
819 /// @return       True on success.
820 bool InlineSpiller::
821 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops,
822                   MachineInstr *LoadMI) {
823   if (Ops.empty())
824     return false;
825   // Don't attempt folding in bundles.
826   MachineInstr *MI = Ops.front().first;
827   if (Ops.back().first != MI || MI->isBundled())
828     return false;
829 
830   bool WasCopy = MI->isCopy();
831   Register ImpReg;
832 
833   // TII::foldMemoryOperand will do what we need here for statepoint
834   // (fold load into use and remove corresponding def). We will replace
835   // uses of removed def with loads (spillAroundUses).
836   // For that to work we need to untie def and use to pass it through
837   // foldMemoryOperand and signal foldPatchpoint that it is allowed to
838   // fold them.
839   bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT;
840 
841   // Spill subregs if the target allows it.
842   // We always want to spill subregs for stackmap/patchpoint pseudos.
843   bool SpillSubRegs = TII.isSubregFoldable() ||
844                       MI->getOpcode() == TargetOpcode::STATEPOINT ||
845                       MI->getOpcode() == TargetOpcode::PATCHPOINT ||
846                       MI->getOpcode() == TargetOpcode::STACKMAP;
847 
848   // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
849   // operands.
850   SmallVector<unsigned, 8> FoldOps;
851   for (const auto &OpPair : Ops) {
852     unsigned Idx = OpPair.second;
853     assert(MI == OpPair.first && "Instruction conflict during operand folding");
854     MachineOperand &MO = MI->getOperand(Idx);
855     if (MO.isImplicit()) {
856       ImpReg = MO.getReg();
857       continue;
858     }
859 
860     if (!SpillSubRegs && MO.getSubReg())
861       return false;
862     // We cannot fold a load instruction into a def.
863     if (LoadMI && MO.isDef())
864       return false;
865     // Tied use operands should not be passed to foldMemoryOperand.
866     if (UntieRegs || !MI->isRegTiedToDefOperand(Idx))
867       FoldOps.push_back(Idx);
868   }
869 
870   // If we only have implicit uses, we won't be able to fold that.
871   // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
872   if (FoldOps.empty())
873     return false;
874 
875   MachineInstrSpan MIS(MI, MI->getParent());
876 
877   SmallVector<std::pair<unsigned, unsigned> > TiedOps;
878   if (UntieRegs)
879     for (unsigned Idx : FoldOps) {
880       MachineOperand &MO = MI->getOperand(Idx);
881       if (!MO.isTied())
882         continue;
883       unsigned Tied = MI->findTiedOperandIdx(Idx);
884       if (MO.isUse())
885         TiedOps.emplace_back(Tied, Idx);
886       else {
887         assert(MO.isDef() && "Tied to not use and def?");
888         TiedOps.emplace_back(Idx, Tied);
889       }
890       MI->untieRegOperand(Idx);
891     }
892 
893   MachineInstr *FoldMI =
894       LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
895              : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM);
896   if (!FoldMI) {
897     // Re-tie operands.
898     for (auto Tied : TiedOps)
899       MI->tieOperands(Tied.first, Tied.second);
900     return false;
901   }
902 
903   // Remove LIS for any dead defs in the original MI not in FoldMI.
904   for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
905     if (!MO->isReg())
906       continue;
907     Register Reg = MO->getReg();
908     if (!Reg || Register::isVirtualRegister(Reg) || MRI.isReserved(Reg)) {
909       continue;
910     }
911     // Skip non-Defs, including undef uses and internal reads.
912     if (MO->isUse())
913       continue;
914     PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI);
915     if (RI.FullyDefined)
916       continue;
917     // FoldMI does not define this physreg. Remove the LI segment.
918     assert(MO->isDead() && "Cannot fold physreg def");
919     SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
920     LIS.removePhysRegDefAt(Reg.asMCReg(), Idx);
921   }
922 
923   int FI;
924   if (TII.isStoreToStackSlot(*MI, FI) &&
925       HSpiller.rmFromMergeableSpills(*MI, FI))
926     --NumSpills;
927   LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
928   // Update the call site info.
929   if (MI->isCandidateForCallSiteEntry())
930     MI->getMF()->moveCallSiteInfo(MI, FoldMI);
931   MI->eraseFromParent();
932 
933   // Insert any new instructions other than FoldMI into the LIS maps.
934   assert(!MIS.empty() && "Unexpected empty span of instructions!");
935   for (MachineInstr &MI : MIS)
936     if (&MI != FoldMI)
937       LIS.InsertMachineInstrInMaps(MI);
938 
939   // TII.foldMemoryOperand may have left some implicit operands on the
940   // instruction.  Strip them.
941   if (ImpReg)
942     for (unsigned i = FoldMI->getNumOperands(); i; --i) {
943       MachineOperand &MO = FoldMI->getOperand(i - 1);
944       if (!MO.isReg() || !MO.isImplicit())
945         break;
946       if (MO.getReg() == ImpReg)
947         FoldMI->RemoveOperand(i - 1);
948     }
949 
950   LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
951                                                 "folded"));
952 
953   if (!WasCopy)
954     ++NumFolded;
955   else if (Ops.front().second == 0) {
956     ++NumSpills;
957     // If there is only 1 store instruction is required for spill, add it
958     // to mergeable list. In X86 AMX, 2 intructions are required to store.
959     // We disable the merge for this case.
960     if (std::distance(MIS.begin(), MIS.end()) <= 1)
961       HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
962   } else
963     ++NumReloads;
964   return true;
965 }
966 
967 void InlineSpiller::insertReload(Register NewVReg,
968                                  SlotIndex Idx,
969                                  MachineBasicBlock::iterator MI) {
970   MachineBasicBlock &MBB = *MI->getParent();
971 
972   MachineInstrSpan MIS(MI, &MBB);
973   TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
974                            MRI.getRegClass(NewVReg), &TRI);
975 
976   LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
977 
978   LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
979                                                 NewVReg));
980   ++NumReloads;
981 }
982 
983 /// Check if \p Def fully defines a VReg with an undefined value.
984 /// If that's the case, that means the value of VReg is actually
985 /// not relevant.
986 static bool isRealSpill(const MachineInstr &Def) {
987   if (!Def.isImplicitDef())
988     return true;
989   assert(Def.getNumOperands() == 1 &&
990          "Implicit def with more than one definition");
991   // We can say that the VReg defined by Def is undef, only if it is
992   // fully defined by Def. Otherwise, some of the lanes may not be
993   // undef and the value of the VReg matters.
994   return Def.getOperand(0).getSubReg();
995 }
996 
997 /// insertSpill - Insert a spill of NewVReg after MI.
998 void InlineSpiller::insertSpill(Register NewVReg, bool isKill,
999                                  MachineBasicBlock::iterator MI) {
1000   // Spill are not terminators, so inserting spills after terminators will
1001   // violate invariants in MachineVerifier.
1002   assert(!MI->isTerminator() && "Inserting a spill after a terminator");
1003   MachineBasicBlock &MBB = *MI->getParent();
1004 
1005   MachineInstrSpan MIS(MI, &MBB);
1006   MachineBasicBlock::iterator SpillBefore = std::next(MI);
1007   bool IsRealSpill = isRealSpill(*MI);
1008 
1009   if (IsRealSpill)
1010     TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot,
1011                             MRI.getRegClass(NewVReg), &TRI);
1012   else
1013     // Don't spill undef value.
1014     // Anything works for undef, in particular keeping the memory
1015     // uninitialized is a viable option and it saves code size and
1016     // run time.
1017     BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL))
1018         .addReg(NewVReg, getKillRegState(isKill));
1019 
1020   MachineBasicBlock::iterator Spill = std::next(MI);
1021   LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end());
1022   for (const MachineInstr &MI : make_range(Spill, MIS.end()))
1023     getVDefInterval(MI, LIS);
1024 
1025   LLVM_DEBUG(
1026       dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill"));
1027   ++NumSpills;
1028   // If there is only 1 store instruction is required for spill, add it
1029   // to mergeable list. In X86 AMX, 2 intructions are required to store.
1030   // We disable the merge for this case.
1031   if (IsRealSpill && std::distance(Spill, MIS.end()) <= 1)
1032     HSpiller.addToMergeableSpills(*Spill, StackSlot, Original);
1033 }
1034 
1035 /// spillAroundUses - insert spill code around each use of Reg.
1036 void InlineSpiller::spillAroundUses(Register Reg) {
1037   LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n');
1038   LiveInterval &OldLI = LIS.getInterval(Reg);
1039 
1040   // Iterate over instructions using Reg.
1041   for (MachineRegisterInfo::reg_bundle_iterator
1042        RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
1043        RegI != E; ) {
1044     MachineInstr *MI = &*(RegI++);
1045 
1046     // Debug values are not allowed to affect codegen.
1047     if (MI->isDebugValue()) {
1048       // Modify DBG_VALUE now that the value is in a spill slot.
1049       MachineBasicBlock *MBB = MI->getParent();
1050       LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI);
1051       buildDbgValueForSpill(*MBB, MI, *MI, StackSlot, Reg);
1052       MBB->erase(MI);
1053       continue;
1054     }
1055 
1056     assert(!MI->isDebugInstr() && "Did not expect to find a use in debug "
1057            "instruction that isn't a DBG_VALUE");
1058 
1059     // Ignore copies to/from snippets. We'll delete them.
1060     if (SnippetCopies.count(MI))
1061       continue;
1062 
1063     // Stack slot accesses may coalesce away.
1064     if (coalesceStackAccess(MI, Reg))
1065       continue;
1066 
1067     // Analyze instruction.
1068     SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
1069     VirtRegInfo RI = AnalyzeVirtRegInBundle(*MI, Reg, &Ops);
1070 
1071     // Find the slot index where this instruction reads and writes OldLI.
1072     // This is usually the def slot, except for tied early clobbers.
1073     SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
1074     if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
1075       if (SlotIndex::isSameInstr(Idx, VNI->def))
1076         Idx = VNI->def;
1077 
1078     // Check for a sibling copy.
1079     Register SibReg = isFullCopyOf(*MI, Reg);
1080     if (SibReg && isSibling(SibReg)) {
1081       // This may actually be a copy between snippets.
1082       if (isRegToSpill(SibReg)) {
1083         LLVM_DEBUG(dbgs() << "Found new snippet copy: " << *MI);
1084         SnippetCopies.insert(MI);
1085         continue;
1086       }
1087       if (RI.Writes) {
1088         if (hoistSpillInsideBB(OldLI, *MI)) {
1089           // This COPY is now dead, the value is already in the stack slot.
1090           MI->getOperand(0).setIsDead();
1091           DeadDefs.push_back(MI);
1092           continue;
1093         }
1094       } else {
1095         // This is a reload for a sib-reg copy. Drop spills downstream.
1096         LiveInterval &SibLI = LIS.getInterval(SibReg);
1097         eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
1098         // The COPY will fold to a reload below.
1099       }
1100     }
1101 
1102     // Attempt to fold memory ops.
1103     if (foldMemoryOperand(Ops))
1104       continue;
1105 
1106     // Create a new virtual register for spill/fill.
1107     // FIXME: Infer regclass from instruction alone.
1108     Register NewVReg = Edit->createFrom(Reg);
1109 
1110     if (RI.Reads)
1111       insertReload(NewVReg, Idx, MI);
1112 
1113     // Rewrite instruction operands.
1114     bool hasLiveDef = false;
1115     for (const auto &OpPair : Ops) {
1116       MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
1117       MO.setReg(NewVReg);
1118       if (MO.isUse()) {
1119         if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
1120           MO.setIsKill();
1121       } else {
1122         if (!MO.isDead())
1123           hasLiveDef = true;
1124       }
1125     }
1126     LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n');
1127 
1128     // FIXME: Use a second vreg if instruction has no tied ops.
1129     if (RI.Writes)
1130       if (hasLiveDef)
1131         insertSpill(NewVReg, true, MI);
1132   }
1133 }
1134 
1135 /// spillAll - Spill all registers remaining after rematerialization.
1136 void InlineSpiller::spillAll() {
1137   // Update LiveStacks now that we are committed to spilling.
1138   if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1139     StackSlot = VRM.assignVirt2StackSlot(Original);
1140     StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1141     StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1142   } else
1143     StackInt = &LSS.getInterval(StackSlot);
1144 
1145   if (Original != Edit->getReg())
1146     VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1147 
1148   assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1149   for (Register Reg : RegsToSpill)
1150     StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
1151                                      StackInt->getValNumInfo(0));
1152   LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1153 
1154   // Spill around uses of all RegsToSpill.
1155   for (Register Reg : RegsToSpill)
1156     spillAroundUses(Reg);
1157 
1158   // Hoisted spills may cause dead code.
1159   if (!DeadDefs.empty()) {
1160     LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1161     Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
1162   }
1163 
1164   // Finally delete the SnippetCopies.
1165   for (Register Reg : RegsToSpill) {
1166     for (MachineRegisterInfo::reg_instr_iterator
1167          RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end();
1168          RI != E; ) {
1169       MachineInstr &MI = *(RI++);
1170       assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
1171       // FIXME: Do this with a LiveRangeEdit callback.
1172       LIS.RemoveMachineInstrFromMaps(MI);
1173       MI.eraseFromParent();
1174     }
1175   }
1176 
1177   // Delete all spilled registers.
1178   for (Register Reg : RegsToSpill)
1179     Edit->eraseVirtReg(Reg);
1180 }
1181 
1182 void InlineSpiller::spill(LiveRangeEdit &edit) {
1183   ++NumSpilledRanges;
1184   Edit = &edit;
1185   assert(!Register::isStackSlot(edit.getReg()) &&
1186          "Trying to spill a stack slot.");
1187   // Share a stack slot among all descendants of Original.
1188   Original = VRM.getOriginal(edit.getReg());
1189   StackSlot = VRM.getStackSlot(Original);
1190   StackInt = nullptr;
1191 
1192   LLVM_DEBUG(dbgs() << "Inline spilling "
1193                     << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
1194                     << ':' << edit.getParent() << "\nFrom original "
1195                     << printReg(Original) << '\n');
1196   assert(edit.getParent().isSpillable() &&
1197          "Attempting to spill already spilled value.");
1198   assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1199 
1200   collectRegsToSpill();
1201   reMaterializeAll();
1202 
1203   // Remat may handle everything.
1204   if (!RegsToSpill.empty())
1205     spillAll();
1206 
1207   Edit->calculateRegClassAndHint(MF, VRAI);
1208 }
1209 
1210 /// Optimizations after all the reg selections and spills are done.
1211 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }
1212 
1213 /// When a spill is inserted, add the spill to MergeableSpills map.
1214 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
1215                                             unsigned Original) {
1216   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1217   LiveInterval &OrigLI = LIS.getInterval(Original);
1218   // save a copy of LiveInterval in StackSlotToOrigLI because the original
1219   // LiveInterval may be cleared after all its references are spilled.
1220   if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) {
1221     auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight());
1222     LI->assign(OrigLI, Allocator);
1223     StackSlotToOrigLI[StackSlot] = std::move(LI);
1224   }
1225   SlotIndex Idx = LIS.getInstructionIndex(Spill);
1226   VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot());
1227   std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1228   MergeableSpills[MIdx].insert(&Spill);
1229 }
1230 
1231 /// When a spill is removed, remove the spill from MergeableSpills map.
1232 /// Return true if the spill is removed successfully.
1233 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
1234                                              int StackSlot) {
1235   auto It = StackSlotToOrigLI.find(StackSlot);
1236   if (It == StackSlotToOrigLI.end())
1237     return false;
1238   SlotIndex Idx = LIS.getInstructionIndex(Spill);
1239   VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot());
1240   std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1241   return MergeableSpills[MIdx].erase(&Spill);
1242 }
1243 
1244 /// Check BB to see if it is a possible target BB to place a hoisted spill,
1245 /// i.e., there should be a living sibling of OrigReg at the insert point.
1246 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
1247                                      MachineBasicBlock &BB, Register &LiveReg) {
1248   SlotIndex Idx = IPA.getLastInsertPoint(OrigLI, BB);
1249   // The original def could be after the last insert point in the root block,
1250   // we can't hoist to here.
1251   if (Idx < OrigVNI.def) {
1252     // TODO: We could be better here. If LI is not alive in landing pad
1253     // we could hoist spill after LIP.
1254     LLVM_DEBUG(dbgs() << "can't spill in root block - def after LIP\n");
1255     return false;
1256   }
1257   Register OrigReg = OrigLI.reg();
1258   SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg];
1259   assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI");
1260 
1261   for (const Register &SibReg : Siblings) {
1262     LiveInterval &LI = LIS.getInterval(SibReg);
1263     VNInfo *VNI = LI.getVNInfoAt(Idx);
1264     if (VNI) {
1265       LiveReg = SibReg;
1266       return true;
1267     }
1268   }
1269   return false;
1270 }
1271 
1272 /// Remove redundant spills in the same BB. Save those redundant spills in
1273 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
1274 void HoistSpillHelper::rmRedundantSpills(
1275     SmallPtrSet<MachineInstr *, 16> &Spills,
1276     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1277     DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1278   // For each spill saw, check SpillBBToSpill[] and see if its BB already has
1279   // another spill inside. If a BB contains more than one spill, only keep the
1280   // earlier spill with smaller SlotIndex.
1281   for (const auto CurrentSpill : Spills) {
1282     MachineBasicBlock *Block = CurrentSpill->getParent();
1283     MachineDomTreeNode *Node = MDT.getBase().getNode(Block);
1284     MachineInstr *PrevSpill = SpillBBToSpill[Node];
1285     if (PrevSpill) {
1286       SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
1287       SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
1288       MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
1289       MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
1290       SpillsToRm.push_back(SpillToRm);
1291       SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep;
1292     } else {
1293       SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill;
1294     }
1295   }
1296   for (const auto SpillToRm : SpillsToRm)
1297     Spills.erase(SpillToRm);
1298 }
1299 
1300 /// Starting from \p Root find a top-down traversal order of the dominator
1301 /// tree to visit all basic blocks containing the elements of \p Spills.
1302 /// Redundant spills will be found and put into \p SpillsToRm at the same
1303 /// time. \p SpillBBToSpill will be populated as part of the process and
1304 /// maps a basic block to the first store occurring in the basic block.
1305 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre
1306 void HoistSpillHelper::getVisitOrders(
1307     MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
1308     SmallVectorImpl<MachineDomTreeNode *> &Orders,
1309     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1310     DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
1311     DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1312   // The set contains all the possible BB nodes to which we may hoist
1313   // original spills.
1314   SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
1315   // Save the BB nodes on the path from the first BB node containing
1316   // non-redundant spill to the Root node.
1317   SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
1318   // All the spills to be hoisted must originate from a single def instruction
1319   // to the OrigReg. It means the def instruction should dominate all the spills
1320   // to be hoisted. We choose the BB where the def instruction is located as
1321   // the Root.
1322   MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
1323   // For every node on the dominator tree with spill, walk up on the dominator
1324   // tree towards the Root node until it is reached. If there is other node
1325   // containing spill in the middle of the path, the previous spill saw will
1326   // be redundant and the node containing it will be removed. All the nodes on
1327   // the path starting from the first node with non-redundant spill to the Root
1328   // node will be added to the WorkSet, which will contain all the possible
1329   // locations where spills may be hoisted to after the loop below is done.
1330   for (const auto Spill : Spills) {
1331     MachineBasicBlock *Block = Spill->getParent();
1332     MachineDomTreeNode *Node = MDT[Block];
1333     MachineInstr *SpillToRm = nullptr;
1334     while (Node != RootIDomNode) {
1335       // If Node dominates Block, and it already contains a spill, the spill in
1336       // Block will be redundant.
1337       if (Node != MDT[Block] && SpillBBToSpill[Node]) {
1338         SpillToRm = SpillBBToSpill[MDT[Block]];
1339         break;
1340         /// If we see the Node already in WorkSet, the path from the Node to
1341         /// the Root node must already be traversed by another spill.
1342         /// Then no need to repeat.
1343       } else if (WorkSet.count(Node)) {
1344         break;
1345       } else {
1346         NodesOnPath.insert(Node);
1347       }
1348       Node = Node->getIDom();
1349     }
1350     if (SpillToRm) {
1351       SpillsToRm.push_back(SpillToRm);
1352     } else {
1353       // Add a BB containing the original spills to SpillsToKeep -- i.e.,
1354       // set the initial status before hoisting start. The value of BBs
1355       // containing original spills is set to 0, in order to descriminate
1356       // with BBs containing hoisted spills which will be inserted to
1357       // SpillsToKeep later during hoisting.
1358       SpillsToKeep[MDT[Block]] = 0;
1359       WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
1360     }
1361     NodesOnPath.clear();
1362   }
1363 
1364   // Sort the nodes in WorkSet in top-down order and save the nodes
1365   // in Orders. Orders will be used for hoisting in runHoistSpills.
1366   unsigned idx = 0;
1367   Orders.push_back(MDT.getBase().getNode(Root));
1368   do {
1369     MachineDomTreeNode *Node = Orders[idx++];
1370     for (MachineDomTreeNode *Child : Node->children()) {
1371       if (WorkSet.count(Child))
1372         Orders.push_back(Child);
1373     }
1374   } while (idx != Orders.size());
1375   assert(Orders.size() == WorkSet.size() &&
1376          "Orders have different size with WorkSet");
1377 
1378 #ifndef NDEBUG
1379   LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n");
1380   SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1381   for (; RIt != Orders.rend(); RIt++)
1382     LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",");
1383   LLVM_DEBUG(dbgs() << "\n");
1384 #endif
1385 }
1386 
1387 /// Try to hoist spills according to BB hotness. The spills to removed will
1388 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in
1389 /// \p SpillsToIns.
1390 void HoistSpillHelper::runHoistSpills(
1391     LiveInterval &OrigLI, VNInfo &OrigVNI,
1392     SmallPtrSet<MachineInstr *, 16> &Spills,
1393     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1394     DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
1395   // Visit order of dominator tree nodes.
1396   SmallVector<MachineDomTreeNode *, 32> Orders;
1397   // SpillsToKeep contains all the nodes where spills are to be inserted
1398   // during hoisting. If the spill to be inserted is an original spill
1399   // (not a hoisted one), the value of the map entry is 0. If the spill
1400   // is a hoisted spill, the value of the map entry is the VReg to be used
1401   // as the source of the spill.
1402   DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
1403   // Map from BB to the first spill inside of it.
1404   DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;
1405 
1406   rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);
1407 
1408   MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
1409   getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
1410                  SpillBBToSpill);
1411 
1412   // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
1413   // nodes set and the cost of all the spills inside those nodes.
1414   // The nodes set are the locations where spills are to be inserted
1415   // in the subtree of current node.
1416   using NodesCostPair =
1417       std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>;
1418   DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;
1419 
1420   // Iterate Orders set in reverse order, which will be a bottom-up order
1421   // in the dominator tree. Once we visit a dom tree node, we know its
1422   // children have already been visited and the spill locations in the
1423   // subtrees of all the children have been determined.
1424   SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1425   for (; RIt != Orders.rend(); RIt++) {
1426     MachineBasicBlock *Block = (*RIt)->getBlock();
1427 
1428     // If Block contains an original spill, simply continue.
1429     if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) {
1430       SpillsInSubTreeMap[*RIt].first.insert(*RIt);
1431       // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
1432       SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
1433       continue;
1434     }
1435 
1436     // Collect spills in subtree of current node (*RIt) to
1437     // SpillsInSubTreeMap[*RIt].first.
1438     for (MachineDomTreeNode *Child : (*RIt)->children()) {
1439       if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end())
1440         continue;
1441       // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
1442       // should be placed before getting the begin and end iterators of
1443       // SpillsInSubTreeMap[Child].first, or else the iterators may be
1444       // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
1445       // and the map grows and then the original buckets in the map are moved.
1446       SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1447           SpillsInSubTreeMap[*RIt].first;
1448       BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1449       SubTreeCost += SpillsInSubTreeMap[Child].second;
1450       auto BI = SpillsInSubTreeMap[Child].first.begin();
1451       auto EI = SpillsInSubTreeMap[Child].first.end();
1452       SpillsInSubTree.insert(BI, EI);
1453       SpillsInSubTreeMap.erase(Child);
1454     }
1455 
1456     SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1457           SpillsInSubTreeMap[*RIt].first;
1458     BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1459     // No spills in subtree, simply continue.
1460     if (SpillsInSubTree.empty())
1461       continue;
1462 
1463     // Check whether Block is a possible candidate to insert spill.
1464     Register LiveReg;
1465     if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg))
1466       continue;
1467 
1468     // If there are multiple spills that could be merged, bias a little
1469     // to hoist the spill.
1470     BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
1471                                        ? BranchProbability(9, 10)
1472                                        : BranchProbability(1, 1);
1473     if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
1474       // Hoist: Move spills to current Block.
1475       for (const auto SpillBB : SpillsInSubTree) {
1476         // When SpillBB is a BB contains original spill, insert the spill
1477         // to SpillsToRm.
1478         if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() &&
1479             !SpillsToKeep[SpillBB]) {
1480           MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
1481           SpillsToRm.push_back(SpillToRm);
1482         }
1483         // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
1484         SpillsToKeep.erase(SpillBB);
1485       }
1486       // Current Block is the BB containing the new hoisted spill. Add it to
1487       // SpillsToKeep. LiveReg is the source of the new spill.
1488       SpillsToKeep[*RIt] = LiveReg;
1489       LLVM_DEBUG({
1490         dbgs() << "spills in BB: ";
1491         for (const auto Rspill : SpillsInSubTree)
1492           dbgs() << Rspill->getBlock()->getNumber() << " ";
1493         dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()
1494                << "\n";
1495       });
1496       SpillsInSubTree.clear();
1497       SpillsInSubTree.insert(*RIt);
1498       SubTreeCost = MBFI.getBlockFreq(Block);
1499     }
1500   }
1501   // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
1502   // save them to SpillsToIns.
1503   for (const auto &Ent : SpillsToKeep) {
1504     if (Ent.second)
1505       SpillsToIns[Ent.first->getBlock()] = Ent.second;
1506   }
1507 }
1508 
1509 /// For spills with equal values, remove redundant spills and hoist those left
1510 /// to less hot spots.
1511 ///
1512 /// Spills with equal values will be collected into the same set in
1513 /// MergeableSpills when spill is inserted. These equal spills are originated
1514 /// from the same defining instruction and are dominated by the instruction.
1515 /// Before hoisting all the equal spills, redundant spills inside in the same
1516 /// BB are first marked to be deleted. Then starting from the spills left, walk
1517 /// up on the dominator tree towards the Root node where the define instruction
1518 /// is located, mark the dominated spills to be deleted along the way and
1519 /// collect the BB nodes on the path from non-dominated spills to the define
1520 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places
1521 /// where we are considering to hoist the spills. We iterate the WorkSet in
1522 /// bottom-up order, and for each node, we will decide whether to hoist spills
1523 /// inside its subtree to that node. In this way, we can get benefit locally
1524 /// even if hoisting all the equal spills to one cold place is impossible.
1525 void HoistSpillHelper::hoistAllSpills() {
1526   SmallVector<Register, 4> NewVRegs;
1527   LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);
1528 
1529   for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
1530     Register Reg = Register::index2VirtReg(i);
1531     Register Original = VRM.getPreSplitReg(Reg);
1532     if (!MRI.def_empty(Reg))
1533       Virt2SiblingsMap[Original].insert(Reg);
1534   }
1535 
1536   // Each entry in MergeableSpills contains a spill set with equal values.
1537   for (auto &Ent : MergeableSpills) {
1538     int Slot = Ent.first.first;
1539     LiveInterval &OrigLI = *StackSlotToOrigLI[Slot];
1540     VNInfo *OrigVNI = Ent.first.second;
1541     SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
1542     if (Ent.second.empty())
1543       continue;
1544 
1545     LLVM_DEBUG({
1546       dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"
1547              << "Equal spills in BB: ";
1548       for (const auto spill : EqValSpills)
1549         dbgs() << spill->getParent()->getNumber() << " ";
1550       dbgs() << "\n";
1551     });
1552 
1553     // SpillsToRm is the spill set to be removed from EqValSpills.
1554     SmallVector<MachineInstr *, 16> SpillsToRm;
1555     // SpillsToIns is the spill set to be newly inserted after hoisting.
1556     DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;
1557 
1558     runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);
1559 
1560     LLVM_DEBUG({
1561       dbgs() << "Finally inserted spills in BB: ";
1562       for (const auto &Ispill : SpillsToIns)
1563         dbgs() << Ispill.first->getNumber() << " ";
1564       dbgs() << "\nFinally removed spills in BB: ";
1565       for (const auto Rspill : SpillsToRm)
1566         dbgs() << Rspill->getParent()->getNumber() << " ";
1567       dbgs() << "\n";
1568     });
1569 
1570     // Stack live range update.
1571     LiveInterval &StackIntvl = LSS.getInterval(Slot);
1572     if (!SpillsToIns.empty() || !SpillsToRm.empty())
1573       StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
1574                                      StackIntvl.getValNumInfo(0));
1575 
1576     // Insert hoisted spills.
1577     for (auto const &Insert : SpillsToIns) {
1578       MachineBasicBlock *BB = Insert.first;
1579       Register LiveReg = Insert.second;
1580       MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(OrigLI, *BB);
1581       MachineInstrSpan MIS(MII, BB);
1582       TII.storeRegToStackSlot(*BB, MII, LiveReg, false, Slot,
1583                               MRI.getRegClass(LiveReg), &TRI);
1584       LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
1585       for (const MachineInstr &MI : make_range(MIS.begin(), MII))
1586         getVDefInterval(MI, LIS);
1587       ++NumSpills;
1588     }
1589 
1590     // Remove redundant spills or change them to dead instructions.
1591     NumSpills -= SpillsToRm.size();
1592     for (auto const RMEnt : SpillsToRm) {
1593       RMEnt->setDesc(TII.get(TargetOpcode::KILL));
1594       for (unsigned i = RMEnt->getNumOperands(); i; --i) {
1595         MachineOperand &MO = RMEnt->getOperand(i - 1);
1596         if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
1597           RMEnt->RemoveOperand(i - 1);
1598       }
1599     }
1600     Edit.eliminateDeadDefs(SpillsToRm, None, AA);
1601   }
1602 }
1603 
1604 /// For VirtReg clone, the \p New register should have the same physreg or
1605 /// stackslot as the \p old register.
1606 void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) {
1607   if (VRM.hasPhys(Old))
1608     VRM.assignVirt2Phys(New, VRM.getPhys(Old));
1609   else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
1610     VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
1611   else
1612     llvm_unreachable("VReg should be assigned either physreg or stackslot");
1613   if (VRM.hasShape(Old))
1614     VRM.assignVirt2Shape(New, VRM.getShape(Old));
1615 }
1616