1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The inline spiller modifies the machine function directly instead of 10 // inserting spills and restores in VirtRegMap. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SplitKit.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/LiveInterval.h" 26 #include "llvm/CodeGen/LiveIntervalCalc.h" 27 #include "llvm/CodeGen/LiveIntervals.h" 28 #include "llvm/CodeGen/LiveRangeEdit.h" 29 #include "llvm/CodeGen/LiveStacks.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineInstrBundle.h" 38 #include "llvm/CodeGen/MachineLoopInfo.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/Spiller.h" 43 #include "llvm/CodeGen/StackMaps.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetOpcodes.h" 46 #include "llvm/CodeGen/TargetRegisterInfo.h" 47 #include "llvm/CodeGen/TargetSubtargetInfo.h" 48 #include "llvm/CodeGen/VirtRegMap.h" 49 #include "llvm/Config/llvm-config.h" 50 #include "llvm/Support/BlockFrequency.h" 51 #include "llvm/Support/BranchProbability.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <cassert> 58 #include <iterator> 59 #include <tuple> 60 #include <utility> 61 #include <vector> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "regalloc" 66 67 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 68 STATISTIC(NumSnippets, "Number of spilled snippets"); 69 STATISTIC(NumSpills, "Number of spills inserted"); 70 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 71 STATISTIC(NumReloads, "Number of reloads inserted"); 72 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 73 STATISTIC(NumFolded, "Number of folded stack accesses"); 74 STATISTIC(NumFoldedLoads, "Number of folded loads"); 75 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 76 77 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, 78 cl::desc("Disable inline spill hoisting")); 79 static cl::opt<bool> 80 RestrictStatepointRemat("restrict-statepoint-remat", 81 cl::init(false), cl::Hidden, 82 cl::desc("Restrict remat for statepoint operands")); 83 84 namespace { 85 86 class HoistSpillHelper : private LiveRangeEdit::Delegate { 87 MachineFunction &MF; 88 LiveIntervals &LIS; 89 LiveStacks &LSS; 90 AliasAnalysis *AA; 91 MachineDominatorTree &MDT; 92 MachineLoopInfo &Loops; 93 VirtRegMap &VRM; 94 MachineRegisterInfo &MRI; 95 const TargetInstrInfo &TII; 96 const TargetRegisterInfo &TRI; 97 const MachineBlockFrequencyInfo &MBFI; 98 99 InsertPointAnalysis IPA; 100 101 // Map from StackSlot to the LiveInterval of the original register. 102 // Note the LiveInterval of the original register may have been deleted 103 // after it is spilled. We keep a copy here to track the range where 104 // spills can be moved. 105 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI; 106 107 // Map from pair of (StackSlot and Original VNI) to a set of spills which 108 // have the same stackslot and have equal values defined by Original VNI. 109 // These spills are mergeable and are hoist candiates. 110 using MergeableSpillsMap = 111 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>; 112 MergeableSpillsMap MergeableSpills; 113 114 /// This is the map from original register to a set containing all its 115 /// siblings. To hoist a spill to another BB, we need to find out a live 116 /// sibling there and use it as the source of the new spill. 117 DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap; 118 119 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 120 MachineBasicBlock &BB, Register &LiveReg); 121 122 void rmRedundantSpills( 123 SmallPtrSet<MachineInstr *, 16> &Spills, 124 SmallVectorImpl<MachineInstr *> &SpillsToRm, 125 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 126 127 void getVisitOrders( 128 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 129 SmallVectorImpl<MachineDomTreeNode *> &Orders, 130 SmallVectorImpl<MachineInstr *> &SpillsToRm, 131 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 132 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 133 134 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI, 135 SmallPtrSet<MachineInstr *, 16> &Spills, 136 SmallVectorImpl<MachineInstr *> &SpillsToRm, 137 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns); 138 139 public: 140 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf, 141 VirtRegMap &vrm) 142 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 143 LSS(pass.getAnalysis<LiveStacks>()), 144 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 145 MDT(pass.getAnalysis<MachineDominatorTree>()), 146 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 147 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 148 TRI(*mf.getSubtarget().getRegisterInfo()), 149 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 150 IPA(LIS, mf.getNumBlockIDs()) {} 151 152 void addToMergeableSpills(MachineInstr &Spill, int StackSlot, 153 unsigned Original); 154 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot); 155 void hoistAllSpills(); 156 void LRE_DidCloneVirtReg(Register, Register) override; 157 }; 158 159 class InlineSpiller : public Spiller { 160 MachineFunction &MF; 161 LiveIntervals &LIS; 162 LiveStacks &LSS; 163 AliasAnalysis *AA; 164 MachineDominatorTree &MDT; 165 MachineLoopInfo &Loops; 166 VirtRegMap &VRM; 167 MachineRegisterInfo &MRI; 168 const TargetInstrInfo &TII; 169 const TargetRegisterInfo &TRI; 170 const MachineBlockFrequencyInfo &MBFI; 171 172 // Variables that are valid during spill(), but used by multiple methods. 173 LiveRangeEdit *Edit; 174 LiveInterval *StackInt; 175 int StackSlot; 176 unsigned Original; 177 178 // All registers to spill to StackSlot, including the main register. 179 SmallVector<Register, 8> RegsToSpill; 180 181 // All COPY instructions to/from snippets. 182 // They are ignored since both operands refer to the same stack slot. 183 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 184 185 // Values that failed to remat at some point. 186 SmallPtrSet<VNInfo*, 8> UsedValues; 187 188 // Dead defs generated during spilling. 189 SmallVector<MachineInstr*, 8> DeadDefs; 190 191 // Object records spills information and does the hoisting. 192 HoistSpillHelper HSpiller; 193 194 ~InlineSpiller() override = default; 195 196 public: 197 InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm) 198 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 199 LSS(pass.getAnalysis<LiveStacks>()), 200 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 201 MDT(pass.getAnalysis<MachineDominatorTree>()), 202 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 203 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 204 TRI(*mf.getSubtarget().getRegisterInfo()), 205 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 206 HSpiller(pass, mf, vrm) {} 207 208 void spill(LiveRangeEdit &) override; 209 void postOptimization() override; 210 211 private: 212 bool isSnippet(const LiveInterval &SnipLI); 213 void collectRegsToSpill(); 214 215 bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); } 216 217 bool isSibling(Register Reg); 218 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); 219 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 220 221 void markValueUsed(LiveInterval*, VNInfo*); 222 bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI); 223 bool reMaterializeFor(LiveInterval &, MachineInstr &MI); 224 void reMaterializeAll(); 225 226 bool coalesceStackAccess(MachineInstr *MI, Register Reg); 227 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>, 228 MachineInstr *LoadMI = nullptr); 229 void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI); 230 void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI); 231 232 void spillAroundUses(Register Reg); 233 void spillAll(); 234 }; 235 236 } // end anonymous namespace 237 238 Spiller::~Spiller() = default; 239 240 void Spiller::anchor() {} 241 242 Spiller *llvm::createInlineSpiller(MachineFunctionPass &pass, 243 MachineFunction &mf, 244 VirtRegMap &vrm) { 245 return new InlineSpiller(pass, mf, vrm); 246 } 247 248 //===----------------------------------------------------------------------===// 249 // Snippets 250 //===----------------------------------------------------------------------===// 251 252 // When spilling a virtual register, we also spill any snippets it is connected 253 // to. The snippets are small live ranges that only have a single real use, 254 // leftovers from live range splitting. Spilling them enables memory operand 255 // folding or tightens the live range around the single use. 256 // 257 // This minimizes register pressure and maximizes the store-to-load distance for 258 // spill slots which can be important in tight loops. 259 260 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 261 /// otherwise return 0. 262 static Register isFullCopyOf(const MachineInstr &MI, Register Reg) { 263 if (!MI.isFullCopy()) 264 return Register(); 265 if (MI.getOperand(0).getReg() == Reg) 266 return MI.getOperand(1).getReg(); 267 if (MI.getOperand(1).getReg() == Reg) 268 return MI.getOperand(0).getReg(); 269 return Register(); 270 } 271 272 static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) { 273 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 274 const MachineOperand &MO = MI.getOperand(I); 275 if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg())) 276 LIS.getInterval(MO.getReg()); 277 } 278 } 279 280 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 281 /// It is assumed that SnipLI is a virtual register with the same original as 282 /// Edit->getReg(). 283 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 284 Register Reg = Edit->getReg(); 285 286 // A snippet is a tiny live range with only a single instruction using it 287 // besides copies to/from Reg or spills/fills. We accept: 288 // 289 // %snip = COPY %Reg / FILL fi# 290 // %snip = USE %snip 291 // %Reg = COPY %snip / SPILL %snip, fi# 292 // 293 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) 294 return false; 295 296 MachineInstr *UseMI = nullptr; 297 298 // Check that all uses satisfy our criteria. 299 for (MachineRegisterInfo::reg_instr_nodbg_iterator 300 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg()), 301 E = MRI.reg_instr_nodbg_end(); 302 RI != E;) { 303 MachineInstr &MI = *RI++; 304 305 // Allow copies to/from Reg. 306 if (isFullCopyOf(MI, Reg)) 307 continue; 308 309 // Allow stack slot loads. 310 int FI; 311 if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 312 continue; 313 314 // Allow stack slot stores. 315 if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 316 continue; 317 318 // Allow a single additional instruction. 319 if (UseMI && &MI != UseMI) 320 return false; 321 UseMI = &MI; 322 } 323 return true; 324 } 325 326 /// collectRegsToSpill - Collect live range snippets that only have a single 327 /// real use. 328 void InlineSpiller::collectRegsToSpill() { 329 Register Reg = Edit->getReg(); 330 331 // Main register always spills. 332 RegsToSpill.assign(1, Reg); 333 SnippetCopies.clear(); 334 335 // Snippets all have the same original, so there can't be any for an original 336 // register. 337 if (Original == Reg) 338 return; 339 340 for (MachineRegisterInfo::reg_instr_iterator 341 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) { 342 MachineInstr &MI = *RI++; 343 Register SnipReg = isFullCopyOf(MI, Reg); 344 if (!isSibling(SnipReg)) 345 continue; 346 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 347 if (!isSnippet(SnipLI)) 348 continue; 349 SnippetCopies.insert(&MI); 350 if (isRegToSpill(SnipReg)) 351 continue; 352 RegsToSpill.push_back(SnipReg); 353 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 354 ++NumSnippets; 355 } 356 } 357 358 bool InlineSpiller::isSibling(Register Reg) { 359 return Reg.isVirtual() && VRM.getOriginal(Reg) == Original; 360 } 361 362 /// It is beneficial to spill to earlier place in the same BB in case 363 /// as follows: 364 /// There is an alternative def earlier in the same MBB. 365 /// Hoist the spill as far as possible in SpillMBB. This can ease 366 /// register pressure: 367 /// 368 /// x = def 369 /// y = use x 370 /// s = copy x 371 /// 372 /// Hoisting the spill of s to immediately after the def removes the 373 /// interference between x and y: 374 /// 375 /// x = def 376 /// spill x 377 /// y = use killed x 378 /// 379 /// This hoist only helps when the copy kills its source. 380 /// 381 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, 382 MachineInstr &CopyMI) { 383 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 384 #ifndef NDEBUG 385 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 386 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 387 #endif 388 389 Register SrcReg = CopyMI.getOperand(1).getReg(); 390 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 391 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); 392 LiveQueryResult SrcQ = SrcLI.Query(Idx); 393 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def); 394 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) 395 return false; 396 397 // Conservatively extend the stack slot range to the range of the original 398 // value. We may be able to do better with stack slot coloring by being more 399 // careful here. 400 assert(StackInt && "No stack slot assigned yet."); 401 LiveInterval &OrigLI = LIS.getInterval(Original); 402 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 403 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 404 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 405 << *StackInt << '\n'); 406 407 // We are going to spill SrcVNI immediately after its def, so clear out 408 // any later spills of the same value. 409 eliminateRedundantSpills(SrcLI, SrcVNI); 410 411 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def); 412 MachineBasicBlock::iterator MII; 413 if (SrcVNI->isPHIDef()) 414 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 415 else { 416 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def); 417 assert(DefMI && "Defining instruction disappeared"); 418 MII = DefMI; 419 ++MII; 420 } 421 MachineInstrSpan MIS(MII, MBB); 422 // Insert spill without kill flag immediately after def. 423 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot, 424 MRI.getRegClass(SrcReg), &TRI); 425 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII); 426 for (const MachineInstr &MI : make_range(MIS.begin(), MII)) 427 getVDefInterval(MI, LIS); 428 --MII; // Point to store instruction. 429 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII); 430 431 // If there is only 1 store instruction is required for spill, add it 432 // to mergeable list. In X86 AMX, 2 intructions are required to store. 433 // We disable the merge for this case. 434 if (MIS.begin() == MII) 435 HSpiller.addToMergeableSpills(*MII, StackSlot, Original); 436 ++NumSpills; 437 return true; 438 } 439 440 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 441 /// redundant spills of this value in SLI.reg and sibling copies. 442 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 443 assert(VNI && "Missing value"); 444 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 445 WorkList.push_back(std::make_pair(&SLI, VNI)); 446 assert(StackInt && "No stack slot assigned yet."); 447 448 do { 449 LiveInterval *LI; 450 std::tie(LI, VNI) = WorkList.pop_back_val(); 451 Register Reg = LI->reg(); 452 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@' 453 << VNI->def << " in " << *LI << '\n'); 454 455 // Regs to spill are taken care of. 456 if (isRegToSpill(Reg)) 457 continue; 458 459 // Add all of VNI's live range to StackInt. 460 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 461 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 462 463 // Find all spills and copies of VNI. 464 for (MachineRegisterInfo::use_instr_nodbg_iterator 465 UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 466 UI != E; ) { 467 MachineInstr &MI = *UI++; 468 if (!MI.isCopy() && !MI.mayStore()) 469 continue; 470 SlotIndex Idx = LIS.getInstructionIndex(MI); 471 if (LI->getVNInfoAt(Idx) != VNI) 472 continue; 473 474 // Follow sibling copies down the dominator tree. 475 if (Register DstReg = isFullCopyOf(MI, Reg)) { 476 if (isSibling(DstReg)) { 477 LiveInterval &DstLI = LIS.getInterval(DstReg); 478 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 479 assert(DstVNI && "Missing defined value"); 480 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 481 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 482 } 483 continue; 484 } 485 486 // Erase spills. 487 int FI; 488 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 489 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI); 490 // eliminateDeadDefs won't normally remove stores, so switch opcode. 491 MI.setDesc(TII.get(TargetOpcode::KILL)); 492 DeadDefs.push_back(&MI); 493 ++NumSpillsRemoved; 494 if (HSpiller.rmFromMergeableSpills(MI, StackSlot)) 495 --NumSpills; 496 } 497 } 498 } while (!WorkList.empty()); 499 } 500 501 //===----------------------------------------------------------------------===// 502 // Rematerialization 503 //===----------------------------------------------------------------------===// 504 505 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 506 /// instruction cannot be eliminated. See through snippet copies 507 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 508 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 509 WorkList.push_back(std::make_pair(LI, VNI)); 510 do { 511 std::tie(LI, VNI) = WorkList.pop_back_val(); 512 if (!UsedValues.insert(VNI).second) 513 continue; 514 515 if (VNI->isPHIDef()) { 516 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 517 for (MachineBasicBlock *P : MBB->predecessors()) { 518 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P)); 519 if (PVNI) 520 WorkList.push_back(std::make_pair(LI, PVNI)); 521 } 522 continue; 523 } 524 525 // Follow snippet copies. 526 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 527 if (!SnippetCopies.count(MI)) 528 continue; 529 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 530 assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy"); 531 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 532 assert(SnipVNI && "Snippet undefined before copy"); 533 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 534 } while (!WorkList.empty()); 535 } 536 537 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg, 538 MachineInstr &MI) { 539 if (!RestrictStatepointRemat) 540 return true; 541 // Here's a quick explanation of the problem we're trying to handle here: 542 // * There are some pseudo instructions with more vreg uses than there are 543 // physical registers on the machine. 544 // * This is normally handled by spilling the vreg, and folding the reload 545 // into the user instruction. (Thus decreasing the number of used vregs 546 // until the remainder can be assigned to physregs.) 547 // * However, since we may try to spill vregs in any order, we can end up 548 // trying to spill each operand to the instruction, and then rematting it 549 // instead. When that happens, the new live intervals (for the remats) are 550 // expected to be trivially assignable (i.e. RS_Done). However, since we 551 // may have more remats than physregs, we're guaranteed to fail to assign 552 // one. 553 // At the moment, we only handle this for STATEPOINTs since they're the only 554 // pseudo op where we've seen this. If we start seeing other instructions 555 // with the same problem, we need to revisit this. 556 if (MI.getOpcode() != TargetOpcode::STATEPOINT) 557 return true; 558 // For STATEPOINTs we allow re-materialization for fixed arguments only hoping 559 // that number of physical registers is enough to cover all fixed arguments. 560 // If it is not true we need to revisit it. 561 for (unsigned Idx = StatepointOpers(&MI).getVarIdx(), 562 EndIdx = MI.getNumOperands(); 563 Idx < EndIdx; ++Idx) { 564 MachineOperand &MO = MI.getOperand(Idx); 565 if (MO.isReg() && MO.getReg() == VReg) 566 return false; 567 } 568 return true; 569 } 570 571 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 572 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { 573 // Analyze instruction 574 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 575 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops); 576 577 if (!RI.Reads) 578 return false; 579 580 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 581 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 582 583 if (!ParentVNI) { 584 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: "); 585 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 586 MachineOperand &MO = MI.getOperand(i); 587 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) 588 MO.setIsUndef(); 589 } 590 LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI); 591 return true; 592 } 593 594 if (SnippetCopies.count(&MI)) 595 return false; 596 597 LiveInterval &OrigLI = LIS.getInterval(Original); 598 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 599 LiveRangeEdit::Remat RM(ParentVNI); 600 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 601 602 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) { 603 markValueUsed(&VirtReg, ParentVNI); 604 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 605 return false; 606 } 607 608 // If the instruction also writes VirtReg.reg, it had better not require the 609 // same register for uses and defs. 610 if (RI.Tied) { 611 markValueUsed(&VirtReg, ParentVNI); 612 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI); 613 return false; 614 } 615 616 // Before rematerializing into a register for a single instruction, try to 617 // fold a load into the instruction. That avoids allocating a new register. 618 if (RM.OrigMI->canFoldAsLoad() && 619 foldMemoryOperand(Ops, RM.OrigMI)) { 620 Edit->markRematerialized(RM.ParentVNI); 621 ++NumFoldedLoads; 622 return true; 623 } 624 625 // If we can't guarantee that we'll be able to actually assign the new vreg, 626 // we can't remat. 627 if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) { 628 markValueUsed(&VirtReg, ParentVNI); 629 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 630 return false; 631 } 632 633 // Allocate a new register for the remat. 634 Register NewVReg = Edit->createFrom(Original); 635 636 // Finally we can rematerialize OrigMI before MI. 637 SlotIndex DefIdx = 638 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI); 639 640 // We take the DebugLoc from MI, since OrigMI may be attributed to a 641 // different source location. 642 auto *NewMI = LIS.getInstructionFromIndex(DefIdx); 643 NewMI->setDebugLoc(MI.getDebugLoc()); 644 645 (void)DefIdx; 646 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 647 << *LIS.getInstructionFromIndex(DefIdx)); 648 649 // Replace operands 650 for (const auto &OpPair : Ops) { 651 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 652 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) { 653 MO.setReg(NewVReg); 654 MO.setIsKill(); 655 } 656 } 657 LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n'); 658 659 ++NumRemats; 660 return true; 661 } 662 663 /// reMaterializeAll - Try to rematerialize as many uses as possible, 664 /// and trim the live ranges after. 665 void InlineSpiller::reMaterializeAll() { 666 if (!Edit->anyRematerializable(AA)) 667 return; 668 669 UsedValues.clear(); 670 671 // Try to remat before all uses of snippets. 672 bool anyRemat = false; 673 for (Register Reg : RegsToSpill) { 674 LiveInterval &LI = LIS.getInterval(Reg); 675 for (MachineRegisterInfo::reg_bundle_iterator 676 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 677 RegI != E; ) { 678 MachineInstr &MI = *RegI++; 679 680 // Debug values are not allowed to affect codegen. 681 if (MI.isDebugValue()) 682 continue; 683 684 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " 685 "instruction that isn't a DBG_VALUE"); 686 687 anyRemat |= reMaterializeFor(LI, MI); 688 } 689 } 690 if (!anyRemat) 691 return; 692 693 // Remove any values that were completely rematted. 694 for (Register Reg : RegsToSpill) { 695 LiveInterval &LI = LIS.getInterval(Reg); 696 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 697 I != E; ++I) { 698 VNInfo *VNI = *I; 699 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 700 continue; 701 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 702 MI->addRegisterDead(Reg, &TRI); 703 if (!MI->allDefsAreDead()) 704 continue; 705 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 706 DeadDefs.push_back(MI); 707 } 708 } 709 710 // Eliminate dead code after remat. Note that some snippet copies may be 711 // deleted here. 712 if (DeadDefs.empty()) 713 return; 714 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 715 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 716 717 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions 718 // after rematerialization. To remove a VNI for a vreg from its LiveInterval, 719 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all 720 // removed, PHI VNI are still left in the LiveInterval. 721 // So to get rid of unused reg, we need to check whether it has non-dbg 722 // reference instead of whether it has non-empty interval. 723 unsigned ResultPos = 0; 724 for (Register Reg : RegsToSpill) { 725 if (MRI.reg_nodbg_empty(Reg)) { 726 Edit->eraseVirtReg(Reg); 727 continue; 728 } 729 730 assert(LIS.hasInterval(Reg) && 731 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && 732 "Empty and not used live-range?!"); 733 734 RegsToSpill[ResultPos++] = Reg; 735 } 736 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 737 LLVM_DEBUG(dbgs() << RegsToSpill.size() 738 << " registers to spill after remat.\n"); 739 } 740 741 //===----------------------------------------------------------------------===// 742 // Spilling 743 //===----------------------------------------------------------------------===// 744 745 /// If MI is a load or store of StackSlot, it can be removed. 746 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) { 747 int FI = 0; 748 Register InstrReg = TII.isLoadFromStackSlot(*MI, FI); 749 bool IsLoad = InstrReg; 750 if (!IsLoad) 751 InstrReg = TII.isStoreToStackSlot(*MI, FI); 752 753 // We have a stack access. Is it the right register and slot? 754 if (InstrReg != Reg || FI != StackSlot) 755 return false; 756 757 if (!IsLoad) 758 HSpiller.rmFromMergeableSpills(*MI, StackSlot); 759 760 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI); 761 LIS.RemoveMachineInstrFromMaps(*MI); 762 MI->eraseFromParent(); 763 764 if (IsLoad) { 765 ++NumReloadsRemoved; 766 --NumReloads; 767 } else { 768 ++NumSpillsRemoved; 769 --NumSpills; 770 } 771 772 return true; 773 } 774 775 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 776 LLVM_DUMP_METHOD 777 // Dump the range of instructions from B to E with their slot indexes. 778 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 779 MachineBasicBlock::iterator E, 780 LiveIntervals const &LIS, 781 const char *const header, 782 Register VReg = Register()) { 783 char NextLine = '\n'; 784 char SlotIndent = '\t'; 785 786 if (std::next(B) == E) { 787 NextLine = ' '; 788 SlotIndent = ' '; 789 } 790 791 dbgs() << '\t' << header << ": " << NextLine; 792 793 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 794 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); 795 796 // If a register was passed in and this instruction has it as a 797 // destination that is marked as an early clobber, print the 798 // early-clobber slot index. 799 if (VReg) { 800 MachineOperand *MO = I->findRegisterDefOperand(VReg); 801 if (MO && MO->isEarlyClobber()) 802 Idx = Idx.getRegSlot(true); 803 } 804 805 dbgs() << SlotIndent << Idx << '\t' << *I; 806 } 807 } 808 #endif 809 810 /// foldMemoryOperand - Try folding stack slot references in Ops into their 811 /// instructions. 812 /// 813 /// @param Ops Operand indices from AnalyzeVirtRegInBundle(). 814 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 815 /// @return True on success. 816 bool InlineSpiller:: 817 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops, 818 MachineInstr *LoadMI) { 819 if (Ops.empty()) 820 return false; 821 // Don't attempt folding in bundles. 822 MachineInstr *MI = Ops.front().first; 823 if (Ops.back().first != MI || MI->isBundled()) 824 return false; 825 826 bool WasCopy = MI->isCopy(); 827 Register ImpReg; 828 829 // TII::foldMemoryOperand will do what we need here for statepoint 830 // (fold load into use and remove corresponding def). We will replace 831 // uses of removed def with loads (spillAroundUses). 832 // For that to work we need to untie def and use to pass it through 833 // foldMemoryOperand and signal foldPatchpoint that it is allowed to 834 // fold them. 835 bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT; 836 837 // Spill subregs if the target allows it. 838 // We always want to spill subregs for stackmap/patchpoint pseudos. 839 bool SpillSubRegs = TII.isSubregFoldable() || 840 MI->getOpcode() == TargetOpcode::STATEPOINT || 841 MI->getOpcode() == TargetOpcode::PATCHPOINT || 842 MI->getOpcode() == TargetOpcode::STACKMAP; 843 844 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 845 // operands. 846 SmallVector<unsigned, 8> FoldOps; 847 for (const auto &OpPair : Ops) { 848 unsigned Idx = OpPair.second; 849 assert(MI == OpPair.first && "Instruction conflict during operand folding"); 850 MachineOperand &MO = MI->getOperand(Idx); 851 if (MO.isImplicit()) { 852 ImpReg = MO.getReg(); 853 continue; 854 } 855 856 if (!SpillSubRegs && MO.getSubReg()) 857 return false; 858 // We cannot fold a load instruction into a def. 859 if (LoadMI && MO.isDef()) 860 return false; 861 // Tied use operands should not be passed to foldMemoryOperand. 862 if (UntieRegs || !MI->isRegTiedToDefOperand(Idx)) 863 FoldOps.push_back(Idx); 864 } 865 866 // If we only have implicit uses, we won't be able to fold that. 867 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try! 868 if (FoldOps.empty()) 869 return false; 870 871 MachineInstrSpan MIS(MI, MI->getParent()); 872 873 SmallVector<std::pair<unsigned, unsigned> > TiedOps; 874 if (UntieRegs) 875 for (unsigned Idx : FoldOps) { 876 MachineOperand &MO = MI->getOperand(Idx); 877 if (!MO.isTied()) 878 continue; 879 unsigned Tied = MI->findTiedOperandIdx(Idx); 880 if (MO.isUse()) 881 TiedOps.emplace_back(Tied, Idx); 882 else { 883 assert(MO.isDef() && "Tied to not use and def?"); 884 TiedOps.emplace_back(Idx, Tied); 885 } 886 MI->untieRegOperand(Idx); 887 } 888 889 MachineInstr *FoldMI = 890 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS) 891 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM); 892 if (!FoldMI) { 893 // Re-tie operands. 894 for (auto Tied : TiedOps) 895 MI->tieOperands(Tied.first, Tied.second); 896 return false; 897 } 898 899 // Remove LIS for any dead defs in the original MI not in FoldMI. 900 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { 901 if (!MO->isReg()) 902 continue; 903 Register Reg = MO->getReg(); 904 if (!Reg || Register::isVirtualRegister(Reg) || MRI.isReserved(Reg)) { 905 continue; 906 } 907 // Skip non-Defs, including undef uses and internal reads. 908 if (MO->isUse()) 909 continue; 910 PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI); 911 if (RI.FullyDefined) 912 continue; 913 // FoldMI does not define this physreg. Remove the LI segment. 914 assert(MO->isDead() && "Cannot fold physreg def"); 915 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 916 LIS.removePhysRegDefAt(Reg.asMCReg(), Idx); 917 } 918 919 int FI; 920 if (TII.isStoreToStackSlot(*MI, FI) && 921 HSpiller.rmFromMergeableSpills(*MI, FI)) 922 --NumSpills; 923 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI); 924 // Update the call site info. 925 if (MI->isCandidateForCallSiteEntry()) 926 MI->getMF()->moveCallSiteInfo(MI, FoldMI); 927 MI->eraseFromParent(); 928 929 // Insert any new instructions other than FoldMI into the LIS maps. 930 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 931 for (MachineInstr &MI : MIS) 932 if (&MI != FoldMI) 933 LIS.InsertMachineInstrInMaps(MI); 934 935 // TII.foldMemoryOperand may have left some implicit operands on the 936 // instruction. Strip them. 937 if (ImpReg) 938 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 939 MachineOperand &MO = FoldMI->getOperand(i - 1); 940 if (!MO.isReg() || !MO.isImplicit()) 941 break; 942 if (MO.getReg() == ImpReg) 943 FoldMI->RemoveOperand(i - 1); 944 } 945 946 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 947 "folded")); 948 949 if (!WasCopy) 950 ++NumFolded; 951 else if (Ops.front().second == 0) { 952 ++NumSpills; 953 // If there is only 1 store instruction is required for spill, add it 954 // to mergeable list. In X86 AMX, 2 intructions are required to store. 955 // We disable the merge for this case. 956 if (std::distance(MIS.begin(), MIS.end()) <= 1) 957 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original); 958 } else 959 ++NumReloads; 960 return true; 961 } 962 963 void InlineSpiller::insertReload(Register NewVReg, 964 SlotIndex Idx, 965 MachineBasicBlock::iterator MI) { 966 MachineBasicBlock &MBB = *MI->getParent(); 967 968 MachineInstrSpan MIS(MI, &MBB); 969 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 970 MRI.getRegClass(NewVReg), &TRI); 971 972 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 973 974 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 975 NewVReg)); 976 ++NumReloads; 977 } 978 979 /// Check if \p Def fully defines a VReg with an undefined value. 980 /// If that's the case, that means the value of VReg is actually 981 /// not relevant. 982 static bool isRealSpill(const MachineInstr &Def) { 983 if (!Def.isImplicitDef()) 984 return true; 985 assert(Def.getNumOperands() == 1 && 986 "Implicit def with more than one definition"); 987 // We can say that the VReg defined by Def is undef, only if it is 988 // fully defined by Def. Otherwise, some of the lanes may not be 989 // undef and the value of the VReg matters. 990 return Def.getOperand(0).getSubReg(); 991 } 992 993 /// insertSpill - Insert a spill of NewVReg after MI. 994 void InlineSpiller::insertSpill(Register NewVReg, bool isKill, 995 MachineBasicBlock::iterator MI) { 996 // Spill are not terminators, so inserting spills after terminators will 997 // violate invariants in MachineVerifier. 998 assert(!MI->isTerminator() && "Inserting a spill after a terminator"); 999 MachineBasicBlock &MBB = *MI->getParent(); 1000 1001 MachineInstrSpan MIS(MI, &MBB); 1002 MachineBasicBlock::iterator SpillBefore = std::next(MI); 1003 bool IsRealSpill = isRealSpill(*MI); 1004 1005 if (IsRealSpill) 1006 TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot, 1007 MRI.getRegClass(NewVReg), &TRI); 1008 else 1009 // Don't spill undef value. 1010 // Anything works for undef, in particular keeping the memory 1011 // uninitialized is a viable option and it saves code size and 1012 // run time. 1013 BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL)) 1014 .addReg(NewVReg, getKillRegState(isKill)); 1015 1016 MachineBasicBlock::iterator Spill = std::next(MI); 1017 LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end()); 1018 for (const MachineInstr &MI : make_range(Spill, MIS.end())) 1019 getVDefInterval(MI, LIS); 1020 1021 LLVM_DEBUG( 1022 dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill")); 1023 ++NumSpills; 1024 // If there is only 1 store instruction is required for spill, add it 1025 // to mergeable list. In X86 AMX, 2 intructions are required to store. 1026 // We disable the merge for this case. 1027 if (IsRealSpill && std::distance(Spill, MIS.end()) <= 1) 1028 HSpiller.addToMergeableSpills(*Spill, StackSlot, Original); 1029 } 1030 1031 /// spillAroundUses - insert spill code around each use of Reg. 1032 void InlineSpiller::spillAroundUses(Register Reg) { 1033 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n'); 1034 LiveInterval &OldLI = LIS.getInterval(Reg); 1035 1036 // Iterate over instructions using Reg. 1037 for (MachineRegisterInfo::reg_bundle_iterator 1038 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 1039 RegI != E; ) { 1040 MachineInstr *MI = &*(RegI++); 1041 1042 // Debug values are not allowed to affect codegen. 1043 if (MI->isDebugValue()) { 1044 // Modify DBG_VALUE now that the value is in a spill slot. 1045 MachineBasicBlock *MBB = MI->getParent(); 1046 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI); 1047 buildDbgValueForSpill(*MBB, MI, *MI, StackSlot); 1048 MBB->erase(MI); 1049 continue; 1050 } 1051 1052 assert(!MI->isDebugInstr() && "Did not expect to find a use in debug " 1053 "instruction that isn't a DBG_VALUE"); 1054 1055 // Ignore copies to/from snippets. We'll delete them. 1056 if (SnippetCopies.count(MI)) 1057 continue; 1058 1059 // Stack slot accesses may coalesce away. 1060 if (coalesceStackAccess(MI, Reg)) 1061 continue; 1062 1063 // Analyze instruction. 1064 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 1065 VirtRegInfo RI = AnalyzeVirtRegInBundle(*MI, Reg, &Ops); 1066 1067 // Find the slot index where this instruction reads and writes OldLI. 1068 // This is usually the def slot, except for tied early clobbers. 1069 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 1070 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 1071 if (SlotIndex::isSameInstr(Idx, VNI->def)) 1072 Idx = VNI->def; 1073 1074 // Check for a sibling copy. 1075 Register SibReg = isFullCopyOf(*MI, Reg); 1076 if (SibReg && isSibling(SibReg)) { 1077 // This may actually be a copy between snippets. 1078 if (isRegToSpill(SibReg)) { 1079 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << *MI); 1080 SnippetCopies.insert(MI); 1081 continue; 1082 } 1083 if (RI.Writes) { 1084 if (hoistSpillInsideBB(OldLI, *MI)) { 1085 // This COPY is now dead, the value is already in the stack slot. 1086 MI->getOperand(0).setIsDead(); 1087 DeadDefs.push_back(MI); 1088 continue; 1089 } 1090 } else { 1091 // This is a reload for a sib-reg copy. Drop spills downstream. 1092 LiveInterval &SibLI = LIS.getInterval(SibReg); 1093 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 1094 // The COPY will fold to a reload below. 1095 } 1096 } 1097 1098 // Attempt to fold memory ops. 1099 if (foldMemoryOperand(Ops)) 1100 continue; 1101 1102 // Create a new virtual register for spill/fill. 1103 // FIXME: Infer regclass from instruction alone. 1104 Register NewVReg = Edit->createFrom(Reg); 1105 1106 if (RI.Reads) 1107 insertReload(NewVReg, Idx, MI); 1108 1109 // Rewrite instruction operands. 1110 bool hasLiveDef = false; 1111 for (const auto &OpPair : Ops) { 1112 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 1113 MO.setReg(NewVReg); 1114 if (MO.isUse()) { 1115 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second)) 1116 MO.setIsKill(); 1117 } else { 1118 if (!MO.isDead()) 1119 hasLiveDef = true; 1120 } 1121 } 1122 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n'); 1123 1124 // FIXME: Use a second vreg if instruction has no tied ops. 1125 if (RI.Writes) 1126 if (hasLiveDef) 1127 insertSpill(NewVReg, true, MI); 1128 } 1129 } 1130 1131 /// spillAll - Spill all registers remaining after rematerialization. 1132 void InlineSpiller::spillAll() { 1133 // Update LiveStacks now that we are committed to spilling. 1134 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 1135 StackSlot = VRM.assignVirt2StackSlot(Original); 1136 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 1137 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 1138 } else 1139 StackInt = &LSS.getInterval(StackSlot); 1140 1141 if (Original != Edit->getReg()) 1142 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 1143 1144 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 1145 for (Register Reg : RegsToSpill) 1146 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg), 1147 StackInt->getValNumInfo(0)); 1148 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 1149 1150 // Spill around uses of all RegsToSpill. 1151 for (Register Reg : RegsToSpill) 1152 spillAroundUses(Reg); 1153 1154 // Hoisted spills may cause dead code. 1155 if (!DeadDefs.empty()) { 1156 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1157 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 1158 } 1159 1160 // Finally delete the SnippetCopies. 1161 for (Register Reg : RegsToSpill) { 1162 for (MachineRegisterInfo::reg_instr_iterator 1163 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); 1164 RI != E; ) { 1165 MachineInstr &MI = *(RI++); 1166 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy"); 1167 // FIXME: Do this with a LiveRangeEdit callback. 1168 LIS.RemoveMachineInstrFromMaps(MI); 1169 MI.eraseFromParent(); 1170 } 1171 } 1172 1173 // Delete all spilled registers. 1174 for (Register Reg : RegsToSpill) 1175 Edit->eraseVirtReg(Reg); 1176 } 1177 1178 void InlineSpiller::spill(LiveRangeEdit &edit) { 1179 ++NumSpilledRanges; 1180 Edit = &edit; 1181 assert(!Register::isStackSlot(edit.getReg()) && 1182 "Trying to spill a stack slot."); 1183 // Share a stack slot among all descendants of Original. 1184 Original = VRM.getOriginal(edit.getReg()); 1185 StackSlot = VRM.getStackSlot(Original); 1186 StackInt = nullptr; 1187 1188 LLVM_DEBUG(dbgs() << "Inline spilling " 1189 << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) 1190 << ':' << edit.getParent() << "\nFrom original " 1191 << printReg(Original) << '\n'); 1192 assert(edit.getParent().isSpillable() && 1193 "Attempting to spill already spilled value."); 1194 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1195 1196 collectRegsToSpill(); 1197 reMaterializeAll(); 1198 1199 // Remat may handle everything. 1200 if (!RegsToSpill.empty()) 1201 spillAll(); 1202 1203 Edit->calculateRegClassAndHint(MF, Loops, MBFI); 1204 } 1205 1206 /// Optimizations after all the reg selections and spills are done. 1207 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); } 1208 1209 /// When a spill is inserted, add the spill to MergeableSpills map. 1210 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot, 1211 unsigned Original) { 1212 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1213 LiveInterval &OrigLI = LIS.getInterval(Original); 1214 // save a copy of LiveInterval in StackSlotToOrigLI because the original 1215 // LiveInterval may be cleared after all its references are spilled. 1216 if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) { 1217 auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight()); 1218 LI->assign(OrigLI, Allocator); 1219 StackSlotToOrigLI[StackSlot] = std::move(LI); 1220 } 1221 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1222 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot()); 1223 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1224 MergeableSpills[MIdx].insert(&Spill); 1225 } 1226 1227 /// When a spill is removed, remove the spill from MergeableSpills map. 1228 /// Return true if the spill is removed successfully. 1229 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill, 1230 int StackSlot) { 1231 auto It = StackSlotToOrigLI.find(StackSlot); 1232 if (It == StackSlotToOrigLI.end()) 1233 return false; 1234 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1235 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot()); 1236 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1237 return MergeableSpills[MIdx].erase(&Spill); 1238 } 1239 1240 /// Check BB to see if it is a possible target BB to place a hoisted spill, 1241 /// i.e., there should be a living sibling of OrigReg at the insert point. 1242 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 1243 MachineBasicBlock &BB, Register &LiveReg) { 1244 SlotIndex Idx; 1245 Register OrigReg = OrigLI.reg(); 1246 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB); 1247 if (MI != BB.end()) 1248 Idx = LIS.getInstructionIndex(*MI); 1249 else 1250 Idx = LIS.getMBBEndIdx(&BB).getPrevSlot(); 1251 SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg]; 1252 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI"); 1253 1254 for (const Register &SibReg : Siblings) { 1255 LiveInterval &LI = LIS.getInterval(SibReg); 1256 VNInfo *VNI = LI.getVNInfoAt(Idx); 1257 if (VNI) { 1258 LiveReg = SibReg; 1259 return true; 1260 } 1261 } 1262 return false; 1263 } 1264 1265 /// Remove redundant spills in the same BB. Save those redundant spills in 1266 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. 1267 void HoistSpillHelper::rmRedundantSpills( 1268 SmallPtrSet<MachineInstr *, 16> &Spills, 1269 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1270 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1271 // For each spill saw, check SpillBBToSpill[] and see if its BB already has 1272 // another spill inside. If a BB contains more than one spill, only keep the 1273 // earlier spill with smaller SlotIndex. 1274 for (const auto CurrentSpill : Spills) { 1275 MachineBasicBlock *Block = CurrentSpill->getParent(); 1276 MachineDomTreeNode *Node = MDT.getBase().getNode(Block); 1277 MachineInstr *PrevSpill = SpillBBToSpill[Node]; 1278 if (PrevSpill) { 1279 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill); 1280 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill); 1281 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; 1282 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; 1283 SpillsToRm.push_back(SpillToRm); 1284 SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep; 1285 } else { 1286 SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill; 1287 } 1288 } 1289 for (const auto SpillToRm : SpillsToRm) 1290 Spills.erase(SpillToRm); 1291 } 1292 1293 /// Starting from \p Root find a top-down traversal order of the dominator 1294 /// tree to visit all basic blocks containing the elements of \p Spills. 1295 /// Redundant spills will be found and put into \p SpillsToRm at the same 1296 /// time. \p SpillBBToSpill will be populated as part of the process and 1297 /// maps a basic block to the first store occurring in the basic block. 1298 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre 1299 void HoistSpillHelper::getVisitOrders( 1300 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 1301 SmallVectorImpl<MachineDomTreeNode *> &Orders, 1302 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1303 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 1304 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1305 // The set contains all the possible BB nodes to which we may hoist 1306 // original spills. 1307 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; 1308 // Save the BB nodes on the path from the first BB node containing 1309 // non-redundant spill to the Root node. 1310 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; 1311 // All the spills to be hoisted must originate from a single def instruction 1312 // to the OrigReg. It means the def instruction should dominate all the spills 1313 // to be hoisted. We choose the BB where the def instruction is located as 1314 // the Root. 1315 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); 1316 // For every node on the dominator tree with spill, walk up on the dominator 1317 // tree towards the Root node until it is reached. If there is other node 1318 // containing spill in the middle of the path, the previous spill saw will 1319 // be redundant and the node containing it will be removed. All the nodes on 1320 // the path starting from the first node with non-redundant spill to the Root 1321 // node will be added to the WorkSet, which will contain all the possible 1322 // locations where spills may be hoisted to after the loop below is done. 1323 for (const auto Spill : Spills) { 1324 MachineBasicBlock *Block = Spill->getParent(); 1325 MachineDomTreeNode *Node = MDT[Block]; 1326 MachineInstr *SpillToRm = nullptr; 1327 while (Node != RootIDomNode) { 1328 // If Node dominates Block, and it already contains a spill, the spill in 1329 // Block will be redundant. 1330 if (Node != MDT[Block] && SpillBBToSpill[Node]) { 1331 SpillToRm = SpillBBToSpill[MDT[Block]]; 1332 break; 1333 /// If we see the Node already in WorkSet, the path from the Node to 1334 /// the Root node must already be traversed by another spill. 1335 /// Then no need to repeat. 1336 } else if (WorkSet.count(Node)) { 1337 break; 1338 } else { 1339 NodesOnPath.insert(Node); 1340 } 1341 Node = Node->getIDom(); 1342 } 1343 if (SpillToRm) { 1344 SpillsToRm.push_back(SpillToRm); 1345 } else { 1346 // Add a BB containing the original spills to SpillsToKeep -- i.e., 1347 // set the initial status before hoisting start. The value of BBs 1348 // containing original spills is set to 0, in order to descriminate 1349 // with BBs containing hoisted spills which will be inserted to 1350 // SpillsToKeep later during hoisting. 1351 SpillsToKeep[MDT[Block]] = 0; 1352 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end()); 1353 } 1354 NodesOnPath.clear(); 1355 } 1356 1357 // Sort the nodes in WorkSet in top-down order and save the nodes 1358 // in Orders. Orders will be used for hoisting in runHoistSpills. 1359 unsigned idx = 0; 1360 Orders.push_back(MDT.getBase().getNode(Root)); 1361 do { 1362 MachineDomTreeNode *Node = Orders[idx++]; 1363 for (MachineDomTreeNode *Child : Node->children()) { 1364 if (WorkSet.count(Child)) 1365 Orders.push_back(Child); 1366 } 1367 } while (idx != Orders.size()); 1368 assert(Orders.size() == WorkSet.size() && 1369 "Orders have different size with WorkSet"); 1370 1371 #ifndef NDEBUG 1372 LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n"); 1373 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1374 for (; RIt != Orders.rend(); RIt++) 1375 LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ","); 1376 LLVM_DEBUG(dbgs() << "\n"); 1377 #endif 1378 } 1379 1380 /// Try to hoist spills according to BB hotness. The spills to removed will 1381 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in 1382 /// \p SpillsToIns. 1383 void HoistSpillHelper::runHoistSpills( 1384 LiveInterval &OrigLI, VNInfo &OrigVNI, 1385 SmallPtrSet<MachineInstr *, 16> &Spills, 1386 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1387 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) { 1388 // Visit order of dominator tree nodes. 1389 SmallVector<MachineDomTreeNode *, 32> Orders; 1390 // SpillsToKeep contains all the nodes where spills are to be inserted 1391 // during hoisting. If the spill to be inserted is an original spill 1392 // (not a hoisted one), the value of the map entry is 0. If the spill 1393 // is a hoisted spill, the value of the map entry is the VReg to be used 1394 // as the source of the spill. 1395 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep; 1396 // Map from BB to the first spill inside of it. 1397 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; 1398 1399 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); 1400 1401 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def); 1402 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, 1403 SpillBBToSpill); 1404 1405 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of 1406 // nodes set and the cost of all the spills inside those nodes. 1407 // The nodes set are the locations where spills are to be inserted 1408 // in the subtree of current node. 1409 using NodesCostPair = 1410 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>; 1411 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; 1412 1413 // Iterate Orders set in reverse order, which will be a bottom-up order 1414 // in the dominator tree. Once we visit a dom tree node, we know its 1415 // children have already been visited and the spill locations in the 1416 // subtrees of all the children have been determined. 1417 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1418 for (; RIt != Orders.rend(); RIt++) { 1419 MachineBasicBlock *Block = (*RIt)->getBlock(); 1420 1421 // If Block contains an original spill, simply continue. 1422 if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) { 1423 SpillsInSubTreeMap[*RIt].first.insert(*RIt); 1424 // SpillsInSubTreeMap[*RIt].second contains the cost of spill. 1425 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block); 1426 continue; 1427 } 1428 1429 // Collect spills in subtree of current node (*RIt) to 1430 // SpillsInSubTreeMap[*RIt].first. 1431 for (MachineDomTreeNode *Child : (*RIt)->children()) { 1432 if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end()) 1433 continue; 1434 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below 1435 // should be placed before getting the begin and end iterators of 1436 // SpillsInSubTreeMap[Child].first, or else the iterators may be 1437 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time 1438 // and the map grows and then the original buckets in the map are moved. 1439 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1440 SpillsInSubTreeMap[*RIt].first; 1441 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1442 SubTreeCost += SpillsInSubTreeMap[Child].second; 1443 auto BI = SpillsInSubTreeMap[Child].first.begin(); 1444 auto EI = SpillsInSubTreeMap[Child].first.end(); 1445 SpillsInSubTree.insert(BI, EI); 1446 SpillsInSubTreeMap.erase(Child); 1447 } 1448 1449 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1450 SpillsInSubTreeMap[*RIt].first; 1451 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1452 // No spills in subtree, simply continue. 1453 if (SpillsInSubTree.empty()) 1454 continue; 1455 1456 // Check whether Block is a possible candidate to insert spill. 1457 Register LiveReg; 1458 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg)) 1459 continue; 1460 1461 // If there are multiple spills that could be merged, bias a little 1462 // to hoist the spill. 1463 BranchProbability MarginProb = (SpillsInSubTree.size() > 1) 1464 ? BranchProbability(9, 10) 1465 : BranchProbability(1, 1); 1466 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) { 1467 // Hoist: Move spills to current Block. 1468 for (const auto SpillBB : SpillsInSubTree) { 1469 // When SpillBB is a BB contains original spill, insert the spill 1470 // to SpillsToRm. 1471 if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() && 1472 !SpillsToKeep[SpillBB]) { 1473 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; 1474 SpillsToRm.push_back(SpillToRm); 1475 } 1476 // SpillBB will not contain spill anymore, remove it from SpillsToKeep. 1477 SpillsToKeep.erase(SpillBB); 1478 } 1479 // Current Block is the BB containing the new hoisted spill. Add it to 1480 // SpillsToKeep. LiveReg is the source of the new spill. 1481 SpillsToKeep[*RIt] = LiveReg; 1482 LLVM_DEBUG({ 1483 dbgs() << "spills in BB: "; 1484 for (const auto Rspill : SpillsInSubTree) 1485 dbgs() << Rspill->getBlock()->getNumber() << " "; 1486 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber() 1487 << "\n"; 1488 }); 1489 SpillsInSubTree.clear(); 1490 SpillsInSubTree.insert(*RIt); 1491 SubTreeCost = MBFI.getBlockFreq(Block); 1492 } 1493 } 1494 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), 1495 // save them to SpillsToIns. 1496 for (const auto &Ent : SpillsToKeep) { 1497 if (Ent.second) 1498 SpillsToIns[Ent.first->getBlock()] = Ent.second; 1499 } 1500 } 1501 1502 /// For spills with equal values, remove redundant spills and hoist those left 1503 /// to less hot spots. 1504 /// 1505 /// Spills with equal values will be collected into the same set in 1506 /// MergeableSpills when spill is inserted. These equal spills are originated 1507 /// from the same defining instruction and are dominated by the instruction. 1508 /// Before hoisting all the equal spills, redundant spills inside in the same 1509 /// BB are first marked to be deleted. Then starting from the spills left, walk 1510 /// up on the dominator tree towards the Root node where the define instruction 1511 /// is located, mark the dominated spills to be deleted along the way and 1512 /// collect the BB nodes on the path from non-dominated spills to the define 1513 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places 1514 /// where we are considering to hoist the spills. We iterate the WorkSet in 1515 /// bottom-up order, and for each node, we will decide whether to hoist spills 1516 /// inside its subtree to that node. In this way, we can get benefit locally 1517 /// even if hoisting all the equal spills to one cold place is impossible. 1518 void HoistSpillHelper::hoistAllSpills() { 1519 SmallVector<Register, 4> NewVRegs; 1520 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this); 1521 1522 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { 1523 Register Reg = Register::index2VirtReg(i); 1524 Register Original = VRM.getPreSplitReg(Reg); 1525 if (!MRI.def_empty(Reg)) 1526 Virt2SiblingsMap[Original].insert(Reg); 1527 } 1528 1529 // Each entry in MergeableSpills contains a spill set with equal values. 1530 for (auto &Ent : MergeableSpills) { 1531 int Slot = Ent.first.first; 1532 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot]; 1533 VNInfo *OrigVNI = Ent.first.second; 1534 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; 1535 if (Ent.second.empty()) 1536 continue; 1537 1538 LLVM_DEBUG({ 1539 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n" 1540 << "Equal spills in BB: "; 1541 for (const auto spill : EqValSpills) 1542 dbgs() << spill->getParent()->getNumber() << " "; 1543 dbgs() << "\n"; 1544 }); 1545 1546 // SpillsToRm is the spill set to be removed from EqValSpills. 1547 SmallVector<MachineInstr *, 16> SpillsToRm; 1548 // SpillsToIns is the spill set to be newly inserted after hoisting. 1549 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns; 1550 1551 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns); 1552 1553 LLVM_DEBUG({ 1554 dbgs() << "Finally inserted spills in BB: "; 1555 for (const auto &Ispill : SpillsToIns) 1556 dbgs() << Ispill.first->getNumber() << " "; 1557 dbgs() << "\nFinally removed spills in BB: "; 1558 for (const auto Rspill : SpillsToRm) 1559 dbgs() << Rspill->getParent()->getNumber() << " "; 1560 dbgs() << "\n"; 1561 }); 1562 1563 // Stack live range update. 1564 LiveInterval &StackIntvl = LSS.getInterval(Slot); 1565 if (!SpillsToIns.empty() || !SpillsToRm.empty()) 1566 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI, 1567 StackIntvl.getValNumInfo(0)); 1568 1569 // Insert hoisted spills. 1570 for (auto const &Insert : SpillsToIns) { 1571 MachineBasicBlock *BB = Insert.first; 1572 Register LiveReg = Insert.second; 1573 MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(OrigLI, *BB); 1574 MachineInstrSpan MIS(MII, BB); 1575 TII.storeRegToStackSlot(*BB, MII, LiveReg, false, Slot, 1576 MRI.getRegClass(LiveReg), &TRI); 1577 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII); 1578 for (const MachineInstr &MI : make_range(MIS.begin(), MII)) 1579 getVDefInterval(MI, LIS); 1580 ++NumSpills; 1581 } 1582 1583 // Remove redundant spills or change them to dead instructions. 1584 NumSpills -= SpillsToRm.size(); 1585 for (auto const RMEnt : SpillsToRm) { 1586 RMEnt->setDesc(TII.get(TargetOpcode::KILL)); 1587 for (unsigned i = RMEnt->getNumOperands(); i; --i) { 1588 MachineOperand &MO = RMEnt->getOperand(i - 1); 1589 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) 1590 RMEnt->RemoveOperand(i - 1); 1591 } 1592 } 1593 Edit.eliminateDeadDefs(SpillsToRm, None, AA); 1594 } 1595 } 1596 1597 /// For VirtReg clone, the \p New register should have the same physreg or 1598 /// stackslot as the \p old register. 1599 void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) { 1600 if (VRM.hasPhys(Old)) 1601 VRM.assignVirt2Phys(New, VRM.getPhys(Old)); 1602 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT) 1603 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old)); 1604 else 1605 llvm_unreachable("VReg should be assigned either physreg or stackslot"); 1606 if (VRM.hasShape(Old)) 1607 VRM.assignVirt2Shape(New, VRM.getShape(Old)); 1608 } 1609