1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The inline spiller modifies the machine function directly instead of 10 // inserting spills and restores in VirtRegMap. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "Spiller.h" 15 #include "SplitKit.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/CodeGen/LiveInterval.h" 27 #include "llvm/CodeGen/LiveIntervals.h" 28 #include "llvm/CodeGen/LiveRangeCalc.h" 29 #include "llvm/CodeGen/LiveRangeEdit.h" 30 #include "llvm/CodeGen/LiveStacks.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineInstrBuilder.h" 38 #include "llvm/CodeGen/MachineInstrBundle.h" 39 #include "llvm/CodeGen/MachineLoopInfo.h" 40 #include "llvm/CodeGen/MachineOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/SlotIndexes.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetOpcodes.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/VirtRegMap.h" 48 #include "llvm/Config/llvm-config.h" 49 #include "llvm/Support/BlockFrequency.h" 50 #include "llvm/Support/BranchProbability.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include <cassert> 57 #include <iterator> 58 #include <tuple> 59 #include <utility> 60 #include <vector> 61 62 using namespace llvm; 63 64 #define DEBUG_TYPE "regalloc" 65 66 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 67 STATISTIC(NumSnippets, "Number of spilled snippets"); 68 STATISTIC(NumSpills, "Number of spills inserted"); 69 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 70 STATISTIC(NumReloads, "Number of reloads inserted"); 71 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 72 STATISTIC(NumFolded, "Number of folded stack accesses"); 73 STATISTIC(NumFoldedLoads, "Number of folded loads"); 74 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 75 76 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, 77 cl::desc("Disable inline spill hoisting")); 78 static cl::opt<bool> 79 RestrictStatepointRemat("restrict-statepoint-remat", 80 cl::init(false), cl::Hidden, 81 cl::desc("Restrict remat for statepoint operands")); 82 83 namespace { 84 85 class HoistSpillHelper : private LiveRangeEdit::Delegate { 86 MachineFunction &MF; 87 LiveIntervals &LIS; 88 LiveStacks &LSS; 89 AliasAnalysis *AA; 90 MachineDominatorTree &MDT; 91 MachineLoopInfo &Loops; 92 VirtRegMap &VRM; 93 MachineRegisterInfo &MRI; 94 const TargetInstrInfo &TII; 95 const TargetRegisterInfo &TRI; 96 const MachineBlockFrequencyInfo &MBFI; 97 98 InsertPointAnalysis IPA; 99 100 // Map from StackSlot to the LiveInterval of the original register. 101 // Note the LiveInterval of the original register may have been deleted 102 // after it is spilled. We keep a copy here to track the range where 103 // spills can be moved. 104 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI; 105 106 // Map from pair of (StackSlot and Original VNI) to a set of spills which 107 // have the same stackslot and have equal values defined by Original VNI. 108 // These spills are mergeable and are hoist candiates. 109 using MergeableSpillsMap = 110 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>; 111 MergeableSpillsMap MergeableSpills; 112 113 /// This is the map from original register to a set containing all its 114 /// siblings. To hoist a spill to another BB, we need to find out a live 115 /// sibling there and use it as the source of the new spill. 116 DenseMap<unsigned, SmallSetVector<unsigned, 16>> Virt2SiblingsMap; 117 118 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 119 MachineBasicBlock &BB, unsigned &LiveReg); 120 121 void rmRedundantSpills( 122 SmallPtrSet<MachineInstr *, 16> &Spills, 123 SmallVectorImpl<MachineInstr *> &SpillsToRm, 124 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 125 126 void getVisitOrders( 127 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 128 SmallVectorImpl<MachineDomTreeNode *> &Orders, 129 SmallVectorImpl<MachineInstr *> &SpillsToRm, 130 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 131 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 132 133 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI, 134 SmallPtrSet<MachineInstr *, 16> &Spills, 135 SmallVectorImpl<MachineInstr *> &SpillsToRm, 136 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns); 137 138 public: 139 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf, 140 VirtRegMap &vrm) 141 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 142 LSS(pass.getAnalysis<LiveStacks>()), 143 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 144 MDT(pass.getAnalysis<MachineDominatorTree>()), 145 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 146 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 147 TRI(*mf.getSubtarget().getRegisterInfo()), 148 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 149 IPA(LIS, mf.getNumBlockIDs()) {} 150 151 void addToMergeableSpills(MachineInstr &Spill, int StackSlot, 152 unsigned Original); 153 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot); 154 void hoistAllSpills(); 155 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 156 }; 157 158 class InlineSpiller : public Spiller { 159 MachineFunction &MF; 160 LiveIntervals &LIS; 161 LiveStacks &LSS; 162 AliasAnalysis *AA; 163 MachineDominatorTree &MDT; 164 MachineLoopInfo &Loops; 165 VirtRegMap &VRM; 166 MachineRegisterInfo &MRI; 167 const TargetInstrInfo &TII; 168 const TargetRegisterInfo &TRI; 169 const MachineBlockFrequencyInfo &MBFI; 170 171 // Variables that are valid during spill(), but used by multiple methods. 172 LiveRangeEdit *Edit; 173 LiveInterval *StackInt; 174 int StackSlot; 175 unsigned Original; 176 177 // All registers to spill to StackSlot, including the main register. 178 SmallVector<unsigned, 8> RegsToSpill; 179 180 // All COPY instructions to/from snippets. 181 // They are ignored since both operands refer to the same stack slot. 182 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 183 184 // Values that failed to remat at some point. 185 SmallPtrSet<VNInfo*, 8> UsedValues; 186 187 // Dead defs generated during spilling. 188 SmallVector<MachineInstr*, 8> DeadDefs; 189 190 // Object records spills information and does the hoisting. 191 HoistSpillHelper HSpiller; 192 193 ~InlineSpiller() override = default; 194 195 public: 196 InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm) 197 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 198 LSS(pass.getAnalysis<LiveStacks>()), 199 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 200 MDT(pass.getAnalysis<MachineDominatorTree>()), 201 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 202 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 203 TRI(*mf.getSubtarget().getRegisterInfo()), 204 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 205 HSpiller(pass, mf, vrm) {} 206 207 void spill(LiveRangeEdit &) override; 208 void postOptimization() override; 209 210 private: 211 bool isSnippet(const LiveInterval &SnipLI); 212 void collectRegsToSpill(); 213 214 bool isRegToSpill(unsigned Reg) { return is_contained(RegsToSpill, Reg); } 215 216 bool isSibling(unsigned Reg); 217 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); 218 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 219 220 void markValueUsed(LiveInterval*, VNInfo*); 221 bool canGuaranteeAssignmentAfterRemat(unsigned VReg, MachineInstr &MI); 222 bool reMaterializeFor(LiveInterval &, MachineInstr &MI); 223 void reMaterializeAll(); 224 225 bool coalesceStackAccess(MachineInstr *MI, unsigned Reg); 226 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>, 227 MachineInstr *LoadMI = nullptr); 228 void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI); 229 void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI); 230 231 void spillAroundUses(unsigned Reg); 232 void spillAll(); 233 }; 234 235 } // end anonymous namespace 236 237 Spiller::~Spiller() = default; 238 239 void Spiller::anchor() {} 240 241 Spiller *llvm::createInlineSpiller(MachineFunctionPass &pass, 242 MachineFunction &mf, 243 VirtRegMap &vrm) { 244 return new InlineSpiller(pass, mf, vrm); 245 } 246 247 //===----------------------------------------------------------------------===// 248 // Snippets 249 //===----------------------------------------------------------------------===// 250 251 // When spilling a virtual register, we also spill any snippets it is connected 252 // to. The snippets are small live ranges that only have a single real use, 253 // leftovers from live range splitting. Spilling them enables memory operand 254 // folding or tightens the live range around the single use. 255 // 256 // This minimizes register pressure and maximizes the store-to-load distance for 257 // spill slots which can be important in tight loops. 258 259 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 260 /// otherwise return 0. 261 static unsigned isFullCopyOf(const MachineInstr &MI, unsigned Reg) { 262 if (!MI.isFullCopy()) 263 return 0; 264 if (MI.getOperand(0).getReg() == Reg) 265 return MI.getOperand(1).getReg(); 266 if (MI.getOperand(1).getReg() == Reg) 267 return MI.getOperand(0).getReg(); 268 return 0; 269 } 270 271 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 272 /// It is assumed that SnipLI is a virtual register with the same original as 273 /// Edit->getReg(). 274 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 275 unsigned Reg = Edit->getReg(); 276 277 // A snippet is a tiny live range with only a single instruction using it 278 // besides copies to/from Reg or spills/fills. We accept: 279 // 280 // %snip = COPY %Reg / FILL fi# 281 // %snip = USE %snip 282 // %Reg = COPY %snip / SPILL %snip, fi# 283 // 284 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) 285 return false; 286 287 MachineInstr *UseMI = nullptr; 288 289 // Check that all uses satisfy our criteria. 290 for (MachineRegisterInfo::reg_instr_nodbg_iterator 291 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg), 292 E = MRI.reg_instr_nodbg_end(); RI != E; ) { 293 MachineInstr &MI = *RI++; 294 295 // Allow copies to/from Reg. 296 if (isFullCopyOf(MI, Reg)) 297 continue; 298 299 // Allow stack slot loads. 300 int FI; 301 if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 302 continue; 303 304 // Allow stack slot stores. 305 if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 306 continue; 307 308 // Allow a single additional instruction. 309 if (UseMI && &MI != UseMI) 310 return false; 311 UseMI = &MI; 312 } 313 return true; 314 } 315 316 /// collectRegsToSpill - Collect live range snippets that only have a single 317 /// real use. 318 void InlineSpiller::collectRegsToSpill() { 319 unsigned Reg = Edit->getReg(); 320 321 // Main register always spills. 322 RegsToSpill.assign(1, Reg); 323 SnippetCopies.clear(); 324 325 // Snippets all have the same original, so there can't be any for an original 326 // register. 327 if (Original == Reg) 328 return; 329 330 for (MachineRegisterInfo::reg_instr_iterator 331 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) { 332 MachineInstr &MI = *RI++; 333 unsigned SnipReg = isFullCopyOf(MI, Reg); 334 if (!isSibling(SnipReg)) 335 continue; 336 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 337 if (!isSnippet(SnipLI)) 338 continue; 339 SnippetCopies.insert(&MI); 340 if (isRegToSpill(SnipReg)) 341 continue; 342 RegsToSpill.push_back(SnipReg); 343 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 344 ++NumSnippets; 345 } 346 } 347 348 bool InlineSpiller::isSibling(unsigned Reg) { 349 return Register::isVirtualRegister(Reg) && VRM.getOriginal(Reg) == Original; 350 } 351 352 /// It is beneficial to spill to earlier place in the same BB in case 353 /// as follows: 354 /// There is an alternative def earlier in the same MBB. 355 /// Hoist the spill as far as possible in SpillMBB. This can ease 356 /// register pressure: 357 /// 358 /// x = def 359 /// y = use x 360 /// s = copy x 361 /// 362 /// Hoisting the spill of s to immediately after the def removes the 363 /// interference between x and y: 364 /// 365 /// x = def 366 /// spill x 367 /// y = use killed x 368 /// 369 /// This hoist only helps when the copy kills its source. 370 /// 371 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, 372 MachineInstr &CopyMI) { 373 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 374 #ifndef NDEBUG 375 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 376 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 377 #endif 378 379 Register SrcReg = CopyMI.getOperand(1).getReg(); 380 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 381 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); 382 LiveQueryResult SrcQ = SrcLI.Query(Idx); 383 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def); 384 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) 385 return false; 386 387 // Conservatively extend the stack slot range to the range of the original 388 // value. We may be able to do better with stack slot coloring by being more 389 // careful here. 390 assert(StackInt && "No stack slot assigned yet."); 391 LiveInterval &OrigLI = LIS.getInterval(Original); 392 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 393 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 394 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 395 << *StackInt << '\n'); 396 397 // We are going to spill SrcVNI immediately after its def, so clear out 398 // any later spills of the same value. 399 eliminateRedundantSpills(SrcLI, SrcVNI); 400 401 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def); 402 MachineBasicBlock::iterator MII; 403 if (SrcVNI->isPHIDef()) 404 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 405 else { 406 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def); 407 assert(DefMI && "Defining instruction disappeared"); 408 MII = DefMI; 409 ++MII; 410 } 411 // Insert spill without kill flag immediately after def. 412 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot, 413 MRI.getRegClass(SrcReg), &TRI); 414 --MII; // Point to store instruction. 415 LIS.InsertMachineInstrInMaps(*MII); 416 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII); 417 418 HSpiller.addToMergeableSpills(*MII, StackSlot, Original); 419 ++NumSpills; 420 return true; 421 } 422 423 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 424 /// redundant spills of this value in SLI.reg and sibling copies. 425 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 426 assert(VNI && "Missing value"); 427 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 428 WorkList.push_back(std::make_pair(&SLI, VNI)); 429 assert(StackInt && "No stack slot assigned yet."); 430 431 do { 432 LiveInterval *LI; 433 std::tie(LI, VNI) = WorkList.pop_back_val(); 434 unsigned Reg = LI->reg; 435 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@' 436 << VNI->def << " in " << *LI << '\n'); 437 438 // Regs to spill are taken care of. 439 if (isRegToSpill(Reg)) 440 continue; 441 442 // Add all of VNI's live range to StackInt. 443 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 444 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 445 446 // Find all spills and copies of VNI. 447 for (MachineRegisterInfo::use_instr_nodbg_iterator 448 UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 449 UI != E; ) { 450 MachineInstr &MI = *UI++; 451 if (!MI.isCopy() && !MI.mayStore()) 452 continue; 453 SlotIndex Idx = LIS.getInstructionIndex(MI); 454 if (LI->getVNInfoAt(Idx) != VNI) 455 continue; 456 457 // Follow sibling copies down the dominator tree. 458 if (unsigned DstReg = isFullCopyOf(MI, Reg)) { 459 if (isSibling(DstReg)) { 460 LiveInterval &DstLI = LIS.getInterval(DstReg); 461 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 462 assert(DstVNI && "Missing defined value"); 463 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 464 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 465 } 466 continue; 467 } 468 469 // Erase spills. 470 int FI; 471 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 472 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI); 473 // eliminateDeadDefs won't normally remove stores, so switch opcode. 474 MI.setDesc(TII.get(TargetOpcode::KILL)); 475 DeadDefs.push_back(&MI); 476 ++NumSpillsRemoved; 477 if (HSpiller.rmFromMergeableSpills(MI, StackSlot)) 478 --NumSpills; 479 } 480 } 481 } while (!WorkList.empty()); 482 } 483 484 //===----------------------------------------------------------------------===// 485 // Rematerialization 486 //===----------------------------------------------------------------------===// 487 488 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 489 /// instruction cannot be eliminated. See through snippet copies 490 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 491 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 492 WorkList.push_back(std::make_pair(LI, VNI)); 493 do { 494 std::tie(LI, VNI) = WorkList.pop_back_val(); 495 if (!UsedValues.insert(VNI).second) 496 continue; 497 498 if (VNI->isPHIDef()) { 499 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 500 for (MachineBasicBlock *P : MBB->predecessors()) { 501 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P)); 502 if (PVNI) 503 WorkList.push_back(std::make_pair(LI, PVNI)); 504 } 505 continue; 506 } 507 508 // Follow snippet copies. 509 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 510 if (!SnippetCopies.count(MI)) 511 continue; 512 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 513 assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy"); 514 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 515 assert(SnipVNI && "Snippet undefined before copy"); 516 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 517 } while (!WorkList.empty()); 518 } 519 520 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(unsigned VReg, 521 MachineInstr &MI) { 522 if (!RestrictStatepointRemat) 523 return true; 524 // Here's a quick explanation of the problem we're trying to handle here: 525 // * There are some pseudo instructions with more vreg uses than there are 526 // physical registers on the machine. 527 // * This is normally handled by spilling the vreg, and folding the reload 528 // into the user instruction. (Thus decreasing the number of used vregs 529 // until the remainder can be assigned to physregs.) 530 // * However, since we may try to spill vregs in any order, we can end up 531 // trying to spill each operand to the instruction, and then rematting it 532 // instead. When that happens, the new live intervals (for the remats) are 533 // expected to be trivially assignable (i.e. RS_Done). However, since we 534 // may have more remats than physregs, we're guaranteed to fail to assign 535 // one. 536 // At the moment, we only handle this for STATEPOINTs since they're the only 537 // pseudo op where we've seen this. If we start seeing other instructions 538 // with the same problem, we need to revisit this. 539 return (MI.getOpcode() != TargetOpcode::STATEPOINT); 540 } 541 542 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 543 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { 544 // Analyze instruction 545 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 546 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg, &Ops); 547 548 if (!RI.Reads) 549 return false; 550 551 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 552 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 553 554 if (!ParentVNI) { 555 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: "); 556 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 557 MachineOperand &MO = MI.getOperand(i); 558 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) 559 MO.setIsUndef(); 560 } 561 LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI); 562 return true; 563 } 564 565 if (SnippetCopies.count(&MI)) 566 return false; 567 568 LiveInterval &OrigLI = LIS.getInterval(Original); 569 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 570 LiveRangeEdit::Remat RM(ParentVNI); 571 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 572 573 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) { 574 markValueUsed(&VirtReg, ParentVNI); 575 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 576 return false; 577 } 578 579 // If the instruction also writes VirtReg.reg, it had better not require the 580 // same register for uses and defs. 581 if (RI.Tied) { 582 markValueUsed(&VirtReg, ParentVNI); 583 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI); 584 return false; 585 } 586 587 // Before rematerializing into a register for a single instruction, try to 588 // fold a load into the instruction. That avoids allocating a new register. 589 if (RM.OrigMI->canFoldAsLoad() && 590 foldMemoryOperand(Ops, RM.OrigMI)) { 591 Edit->markRematerialized(RM.ParentVNI); 592 ++NumFoldedLoads; 593 return true; 594 } 595 596 // If we can't guarantee that we'll be able to actually assign the new vreg, 597 // we can't remat. 598 if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg, MI)) { 599 markValueUsed(&VirtReg, ParentVNI); 600 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 601 return false; 602 } 603 604 // Allocate a new register for the remat. 605 unsigned NewVReg = Edit->createFrom(Original); 606 607 // Finally we can rematerialize OrigMI before MI. 608 SlotIndex DefIdx = 609 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI); 610 611 // We take the DebugLoc from MI, since OrigMI may be attributed to a 612 // different source location. 613 auto *NewMI = LIS.getInstructionFromIndex(DefIdx); 614 NewMI->setDebugLoc(MI.getDebugLoc()); 615 616 (void)DefIdx; 617 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 618 << *LIS.getInstructionFromIndex(DefIdx)); 619 620 // Replace operands 621 for (const auto &OpPair : Ops) { 622 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 623 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) { 624 MO.setReg(NewVReg); 625 MO.setIsKill(); 626 } 627 } 628 LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n'); 629 630 ++NumRemats; 631 return true; 632 } 633 634 /// reMaterializeAll - Try to rematerialize as many uses as possible, 635 /// and trim the live ranges after. 636 void InlineSpiller::reMaterializeAll() { 637 if (!Edit->anyRematerializable(AA)) 638 return; 639 640 UsedValues.clear(); 641 642 // Try to remat before all uses of snippets. 643 bool anyRemat = false; 644 for (unsigned Reg : RegsToSpill) { 645 LiveInterval &LI = LIS.getInterval(Reg); 646 for (MachineRegisterInfo::reg_bundle_iterator 647 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 648 RegI != E; ) { 649 MachineInstr &MI = *RegI++; 650 651 // Debug values are not allowed to affect codegen. 652 if (MI.isDebugValue()) 653 continue; 654 655 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " 656 "instruction that isn't a DBG_VALUE"); 657 658 anyRemat |= reMaterializeFor(LI, MI); 659 } 660 } 661 if (!anyRemat) 662 return; 663 664 // Remove any values that were completely rematted. 665 for (unsigned Reg : RegsToSpill) { 666 LiveInterval &LI = LIS.getInterval(Reg); 667 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 668 I != E; ++I) { 669 VNInfo *VNI = *I; 670 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 671 continue; 672 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 673 MI->addRegisterDead(Reg, &TRI); 674 if (!MI->allDefsAreDead()) 675 continue; 676 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 677 DeadDefs.push_back(MI); 678 } 679 } 680 681 // Eliminate dead code after remat. Note that some snippet copies may be 682 // deleted here. 683 if (DeadDefs.empty()) 684 return; 685 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 686 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 687 688 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions 689 // after rematerialization. To remove a VNI for a vreg from its LiveInterval, 690 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all 691 // removed, PHI VNI are still left in the LiveInterval. 692 // So to get rid of unused reg, we need to check whether it has non-dbg 693 // reference instead of whether it has non-empty interval. 694 unsigned ResultPos = 0; 695 for (unsigned Reg : RegsToSpill) { 696 if (MRI.reg_nodbg_empty(Reg)) { 697 Edit->eraseVirtReg(Reg); 698 continue; 699 } 700 701 assert(LIS.hasInterval(Reg) && 702 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && 703 "Empty and not used live-range?!"); 704 705 RegsToSpill[ResultPos++] = Reg; 706 } 707 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 708 LLVM_DEBUG(dbgs() << RegsToSpill.size() 709 << " registers to spill after remat.\n"); 710 } 711 712 //===----------------------------------------------------------------------===// 713 // Spilling 714 //===----------------------------------------------------------------------===// 715 716 /// If MI is a load or store of StackSlot, it can be removed. 717 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) { 718 int FI = 0; 719 unsigned InstrReg = TII.isLoadFromStackSlot(*MI, FI); 720 bool IsLoad = InstrReg; 721 if (!IsLoad) 722 InstrReg = TII.isStoreToStackSlot(*MI, FI); 723 724 // We have a stack access. Is it the right register and slot? 725 if (InstrReg != Reg || FI != StackSlot) 726 return false; 727 728 if (!IsLoad) 729 HSpiller.rmFromMergeableSpills(*MI, StackSlot); 730 731 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI); 732 LIS.RemoveMachineInstrFromMaps(*MI); 733 MI->eraseFromParent(); 734 735 if (IsLoad) { 736 ++NumReloadsRemoved; 737 --NumReloads; 738 } else { 739 ++NumSpillsRemoved; 740 --NumSpills; 741 } 742 743 return true; 744 } 745 746 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 747 LLVM_DUMP_METHOD 748 // Dump the range of instructions from B to E with their slot indexes. 749 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 750 MachineBasicBlock::iterator E, 751 LiveIntervals const &LIS, 752 const char *const header, 753 unsigned VReg =0) { 754 char NextLine = '\n'; 755 char SlotIndent = '\t'; 756 757 if (std::next(B) == E) { 758 NextLine = ' '; 759 SlotIndent = ' '; 760 } 761 762 dbgs() << '\t' << header << ": " << NextLine; 763 764 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 765 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); 766 767 // If a register was passed in and this instruction has it as a 768 // destination that is marked as an early clobber, print the 769 // early-clobber slot index. 770 if (VReg) { 771 MachineOperand *MO = I->findRegisterDefOperand(VReg); 772 if (MO && MO->isEarlyClobber()) 773 Idx = Idx.getRegSlot(true); 774 } 775 776 dbgs() << SlotIndent << Idx << '\t' << *I; 777 } 778 } 779 #endif 780 781 /// foldMemoryOperand - Try folding stack slot references in Ops into their 782 /// instructions. 783 /// 784 /// @param Ops Operand indices from AnalyzeVirtRegInBundle(). 785 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 786 /// @return True on success. 787 bool InlineSpiller:: 788 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops, 789 MachineInstr *LoadMI) { 790 if (Ops.empty()) 791 return false; 792 // Don't attempt folding in bundles. 793 MachineInstr *MI = Ops.front().first; 794 if (Ops.back().first != MI || MI->isBundled()) 795 return false; 796 797 bool WasCopy = MI->isCopy(); 798 unsigned ImpReg = 0; 799 800 // Spill subregs if the target allows it. 801 // We always want to spill subregs for stackmap/patchpoint pseudos. 802 bool SpillSubRegs = TII.isSubregFoldable() || 803 MI->getOpcode() == TargetOpcode::STATEPOINT || 804 MI->getOpcode() == TargetOpcode::PATCHPOINT || 805 MI->getOpcode() == TargetOpcode::STACKMAP; 806 807 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 808 // operands. 809 SmallVector<unsigned, 8> FoldOps; 810 for (const auto &OpPair : Ops) { 811 unsigned Idx = OpPair.second; 812 assert(MI == OpPair.first && "Instruction conflict during operand folding"); 813 MachineOperand &MO = MI->getOperand(Idx); 814 if (MO.isImplicit()) { 815 ImpReg = MO.getReg(); 816 continue; 817 } 818 819 if (!SpillSubRegs && MO.getSubReg()) 820 return false; 821 // We cannot fold a load instruction into a def. 822 if (LoadMI && MO.isDef()) 823 return false; 824 // Tied use operands should not be passed to foldMemoryOperand. 825 if (!MI->isRegTiedToDefOperand(Idx)) 826 FoldOps.push_back(Idx); 827 } 828 829 // If we only have implicit uses, we won't be able to fold that. 830 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try! 831 if (FoldOps.empty()) 832 return false; 833 834 MachineInstrSpan MIS(MI, MI->getParent()); 835 836 MachineInstr *FoldMI = 837 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS) 838 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM); 839 if (!FoldMI) 840 return false; 841 842 // Remove LIS for any dead defs in the original MI not in FoldMI. 843 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { 844 if (!MO->isReg()) 845 continue; 846 Register Reg = MO->getReg(); 847 if (!Reg || Register::isVirtualRegister(Reg) || MRI.isReserved(Reg)) { 848 continue; 849 } 850 // Skip non-Defs, including undef uses and internal reads. 851 if (MO->isUse()) 852 continue; 853 PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI); 854 if (RI.FullyDefined) 855 continue; 856 // FoldMI does not define this physreg. Remove the LI segment. 857 assert(MO->isDead() && "Cannot fold physreg def"); 858 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 859 LIS.removePhysRegDefAt(Reg, Idx); 860 } 861 862 int FI; 863 if (TII.isStoreToStackSlot(*MI, FI) && 864 HSpiller.rmFromMergeableSpills(*MI, FI)) 865 --NumSpills; 866 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI); 867 if (MI->isCall()) 868 MI->getMF()->moveCallSiteInfo(MI, FoldMI); 869 MI->eraseFromParent(); 870 871 // Insert any new instructions other than FoldMI into the LIS maps. 872 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 873 for (MachineInstr &MI : MIS) 874 if (&MI != FoldMI) 875 LIS.InsertMachineInstrInMaps(MI); 876 877 // TII.foldMemoryOperand may have left some implicit operands on the 878 // instruction. Strip them. 879 if (ImpReg) 880 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 881 MachineOperand &MO = FoldMI->getOperand(i - 1); 882 if (!MO.isReg() || !MO.isImplicit()) 883 break; 884 if (MO.getReg() == ImpReg) 885 FoldMI->RemoveOperand(i - 1); 886 } 887 888 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 889 "folded")); 890 891 if (!WasCopy) 892 ++NumFolded; 893 else if (Ops.front().second == 0) { 894 ++NumSpills; 895 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original); 896 } else 897 ++NumReloads; 898 return true; 899 } 900 901 void InlineSpiller::insertReload(unsigned NewVReg, 902 SlotIndex Idx, 903 MachineBasicBlock::iterator MI) { 904 MachineBasicBlock &MBB = *MI->getParent(); 905 906 MachineInstrSpan MIS(MI, &MBB); 907 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 908 MRI.getRegClass(NewVReg), &TRI); 909 910 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 911 912 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 913 NewVReg)); 914 ++NumReloads; 915 } 916 917 /// Check if \p Def fully defines a VReg with an undefined value. 918 /// If that's the case, that means the value of VReg is actually 919 /// not relevant. 920 static bool isFullUndefDef(const MachineInstr &Def) { 921 if (!Def.isImplicitDef()) 922 return false; 923 assert(Def.getNumOperands() == 1 && 924 "Implicit def with more than one definition"); 925 // We can say that the VReg defined by Def is undef, only if it is 926 // fully defined by Def. Otherwise, some of the lanes may not be 927 // undef and the value of the VReg matters. 928 return !Def.getOperand(0).getSubReg(); 929 } 930 931 /// insertSpill - Insert a spill of NewVReg after MI. 932 void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill, 933 MachineBasicBlock::iterator MI) { 934 MachineBasicBlock &MBB = *MI->getParent(); 935 936 MachineInstrSpan MIS(MI, &MBB); 937 bool IsRealSpill = true; 938 if (isFullUndefDef(*MI)) { 939 // Don't spill undef value. 940 // Anything works for undef, in particular keeping the memory 941 // uninitialized is a viable option and it saves code size and 942 // run time. 943 BuildMI(MBB, std::next(MI), MI->getDebugLoc(), TII.get(TargetOpcode::KILL)) 944 .addReg(NewVReg, getKillRegState(isKill)); 945 IsRealSpill = false; 946 } else 947 TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot, 948 MRI.getRegClass(NewVReg), &TRI); 949 950 LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end()); 951 952 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS, 953 "spill")); 954 ++NumSpills; 955 if (IsRealSpill) 956 HSpiller.addToMergeableSpills(*std::next(MI), StackSlot, Original); 957 } 958 959 /// spillAroundUses - insert spill code around each use of Reg. 960 void InlineSpiller::spillAroundUses(unsigned Reg) { 961 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n'); 962 LiveInterval &OldLI = LIS.getInterval(Reg); 963 964 // Iterate over instructions using Reg. 965 for (MachineRegisterInfo::reg_bundle_iterator 966 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 967 RegI != E; ) { 968 MachineInstr *MI = &*(RegI++); 969 970 // Debug values are not allowed to affect codegen. 971 if (MI->isDebugValue()) { 972 // Modify DBG_VALUE now that the value is in a spill slot. 973 MachineBasicBlock *MBB = MI->getParent(); 974 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI); 975 buildDbgValueForSpill(*MBB, MI, *MI, StackSlot); 976 MBB->erase(MI); 977 continue; 978 } 979 980 assert(!MI->isDebugInstr() && "Did not expect to find a use in debug " 981 "instruction that isn't a DBG_VALUE"); 982 983 // Ignore copies to/from snippets. We'll delete them. 984 if (SnippetCopies.count(MI)) 985 continue; 986 987 // Stack slot accesses may coalesce away. 988 if (coalesceStackAccess(MI, Reg)) 989 continue; 990 991 // Analyze instruction. 992 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 993 VirtRegInfo RI = AnalyzeVirtRegInBundle(*MI, Reg, &Ops); 994 995 // Find the slot index where this instruction reads and writes OldLI. 996 // This is usually the def slot, except for tied early clobbers. 997 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 998 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 999 if (SlotIndex::isSameInstr(Idx, VNI->def)) 1000 Idx = VNI->def; 1001 1002 // Check for a sibling copy. 1003 unsigned SibReg = isFullCopyOf(*MI, Reg); 1004 if (SibReg && isSibling(SibReg)) { 1005 // This may actually be a copy between snippets. 1006 if (isRegToSpill(SibReg)) { 1007 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << *MI); 1008 SnippetCopies.insert(MI); 1009 continue; 1010 } 1011 if (RI.Writes) { 1012 if (hoistSpillInsideBB(OldLI, *MI)) { 1013 // This COPY is now dead, the value is already in the stack slot. 1014 MI->getOperand(0).setIsDead(); 1015 DeadDefs.push_back(MI); 1016 continue; 1017 } 1018 } else { 1019 // This is a reload for a sib-reg copy. Drop spills downstream. 1020 LiveInterval &SibLI = LIS.getInterval(SibReg); 1021 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 1022 // The COPY will fold to a reload below. 1023 } 1024 } 1025 1026 // Attempt to fold memory ops. 1027 if (foldMemoryOperand(Ops)) 1028 continue; 1029 1030 // Create a new virtual register for spill/fill. 1031 // FIXME: Infer regclass from instruction alone. 1032 unsigned NewVReg = Edit->createFrom(Reg); 1033 1034 if (RI.Reads) 1035 insertReload(NewVReg, Idx, MI); 1036 1037 // Rewrite instruction operands. 1038 bool hasLiveDef = false; 1039 for (const auto &OpPair : Ops) { 1040 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 1041 MO.setReg(NewVReg); 1042 if (MO.isUse()) { 1043 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second)) 1044 MO.setIsKill(); 1045 } else { 1046 if (!MO.isDead()) 1047 hasLiveDef = true; 1048 } 1049 } 1050 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n'); 1051 1052 // FIXME: Use a second vreg if instruction has no tied ops. 1053 if (RI.Writes) 1054 if (hasLiveDef) 1055 insertSpill(NewVReg, true, MI); 1056 } 1057 } 1058 1059 /// spillAll - Spill all registers remaining after rematerialization. 1060 void InlineSpiller::spillAll() { 1061 // Update LiveStacks now that we are committed to spilling. 1062 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 1063 StackSlot = VRM.assignVirt2StackSlot(Original); 1064 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 1065 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 1066 } else 1067 StackInt = &LSS.getInterval(StackSlot); 1068 1069 if (Original != Edit->getReg()) 1070 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 1071 1072 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 1073 for (unsigned Reg : RegsToSpill) 1074 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg), 1075 StackInt->getValNumInfo(0)); 1076 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 1077 1078 // Spill around uses of all RegsToSpill. 1079 for (unsigned Reg : RegsToSpill) 1080 spillAroundUses(Reg); 1081 1082 // Hoisted spills may cause dead code. 1083 if (!DeadDefs.empty()) { 1084 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1085 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 1086 } 1087 1088 // Finally delete the SnippetCopies. 1089 for (unsigned Reg : RegsToSpill) { 1090 for (MachineRegisterInfo::reg_instr_iterator 1091 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); 1092 RI != E; ) { 1093 MachineInstr &MI = *(RI++); 1094 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy"); 1095 // FIXME: Do this with a LiveRangeEdit callback. 1096 LIS.RemoveMachineInstrFromMaps(MI); 1097 MI.eraseFromParent(); 1098 } 1099 } 1100 1101 // Delete all spilled registers. 1102 for (unsigned Reg : RegsToSpill) 1103 Edit->eraseVirtReg(Reg); 1104 } 1105 1106 void InlineSpiller::spill(LiveRangeEdit &edit) { 1107 ++NumSpilledRanges; 1108 Edit = &edit; 1109 assert(!Register::isStackSlot(edit.getReg()) && 1110 "Trying to spill a stack slot."); 1111 // Share a stack slot among all descendants of Original. 1112 Original = VRM.getOriginal(edit.getReg()); 1113 StackSlot = VRM.getStackSlot(Original); 1114 StackInt = nullptr; 1115 1116 LLVM_DEBUG(dbgs() << "Inline spilling " 1117 << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) 1118 << ':' << edit.getParent() << "\nFrom original " 1119 << printReg(Original) << '\n'); 1120 assert(edit.getParent().isSpillable() && 1121 "Attempting to spill already spilled value."); 1122 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1123 1124 collectRegsToSpill(); 1125 reMaterializeAll(); 1126 1127 // Remat may handle everything. 1128 if (!RegsToSpill.empty()) 1129 spillAll(); 1130 1131 Edit->calculateRegClassAndHint(MF, Loops, MBFI); 1132 } 1133 1134 /// Optimizations after all the reg selections and spills are done. 1135 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); } 1136 1137 /// When a spill is inserted, add the spill to MergeableSpills map. 1138 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot, 1139 unsigned Original) { 1140 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1141 LiveInterval &OrigLI = LIS.getInterval(Original); 1142 // save a copy of LiveInterval in StackSlotToOrigLI because the original 1143 // LiveInterval may be cleared after all its references are spilled. 1144 if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) { 1145 auto LI = std::make_unique<LiveInterval>(OrigLI.reg, OrigLI.weight); 1146 LI->assign(OrigLI, Allocator); 1147 StackSlotToOrigLI[StackSlot] = std::move(LI); 1148 } 1149 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1150 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot()); 1151 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1152 MergeableSpills[MIdx].insert(&Spill); 1153 } 1154 1155 /// When a spill is removed, remove the spill from MergeableSpills map. 1156 /// Return true if the spill is removed successfully. 1157 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill, 1158 int StackSlot) { 1159 auto It = StackSlotToOrigLI.find(StackSlot); 1160 if (It == StackSlotToOrigLI.end()) 1161 return false; 1162 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1163 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot()); 1164 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1165 return MergeableSpills[MIdx].erase(&Spill); 1166 } 1167 1168 /// Check BB to see if it is a possible target BB to place a hoisted spill, 1169 /// i.e., there should be a living sibling of OrigReg at the insert point. 1170 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 1171 MachineBasicBlock &BB, unsigned &LiveReg) { 1172 SlotIndex Idx; 1173 unsigned OrigReg = OrigLI.reg; 1174 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB); 1175 if (MI != BB.end()) 1176 Idx = LIS.getInstructionIndex(*MI); 1177 else 1178 Idx = LIS.getMBBEndIdx(&BB).getPrevSlot(); 1179 SmallSetVector<unsigned, 16> &Siblings = Virt2SiblingsMap[OrigReg]; 1180 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI"); 1181 1182 for (auto const SibReg : Siblings) { 1183 LiveInterval &LI = LIS.getInterval(SibReg); 1184 VNInfo *VNI = LI.getVNInfoAt(Idx); 1185 if (VNI) { 1186 LiveReg = SibReg; 1187 return true; 1188 } 1189 } 1190 return false; 1191 } 1192 1193 /// Remove redundant spills in the same BB. Save those redundant spills in 1194 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. 1195 void HoistSpillHelper::rmRedundantSpills( 1196 SmallPtrSet<MachineInstr *, 16> &Spills, 1197 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1198 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1199 // For each spill saw, check SpillBBToSpill[] and see if its BB already has 1200 // another spill inside. If a BB contains more than one spill, only keep the 1201 // earlier spill with smaller SlotIndex. 1202 for (const auto CurrentSpill : Spills) { 1203 MachineBasicBlock *Block = CurrentSpill->getParent(); 1204 MachineDomTreeNode *Node = MDT.getBase().getNode(Block); 1205 MachineInstr *PrevSpill = SpillBBToSpill[Node]; 1206 if (PrevSpill) { 1207 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill); 1208 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill); 1209 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; 1210 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; 1211 SpillsToRm.push_back(SpillToRm); 1212 SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep; 1213 } else { 1214 SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill; 1215 } 1216 } 1217 for (const auto SpillToRm : SpillsToRm) 1218 Spills.erase(SpillToRm); 1219 } 1220 1221 /// Starting from \p Root find a top-down traversal order of the dominator 1222 /// tree to visit all basic blocks containing the elements of \p Spills. 1223 /// Redundant spills will be found and put into \p SpillsToRm at the same 1224 /// time. \p SpillBBToSpill will be populated as part of the process and 1225 /// maps a basic block to the first store occurring in the basic block. 1226 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre 1227 void HoistSpillHelper::getVisitOrders( 1228 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 1229 SmallVectorImpl<MachineDomTreeNode *> &Orders, 1230 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1231 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 1232 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1233 // The set contains all the possible BB nodes to which we may hoist 1234 // original spills. 1235 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; 1236 // Save the BB nodes on the path from the first BB node containing 1237 // non-redundant spill to the Root node. 1238 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; 1239 // All the spills to be hoisted must originate from a single def instruction 1240 // to the OrigReg. It means the def instruction should dominate all the spills 1241 // to be hoisted. We choose the BB where the def instruction is located as 1242 // the Root. 1243 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); 1244 // For every node on the dominator tree with spill, walk up on the dominator 1245 // tree towards the Root node until it is reached. If there is other node 1246 // containing spill in the middle of the path, the previous spill saw will 1247 // be redundant and the node containing it will be removed. All the nodes on 1248 // the path starting from the first node with non-redundant spill to the Root 1249 // node will be added to the WorkSet, which will contain all the possible 1250 // locations where spills may be hoisted to after the loop below is done. 1251 for (const auto Spill : Spills) { 1252 MachineBasicBlock *Block = Spill->getParent(); 1253 MachineDomTreeNode *Node = MDT[Block]; 1254 MachineInstr *SpillToRm = nullptr; 1255 while (Node != RootIDomNode) { 1256 // If Node dominates Block, and it already contains a spill, the spill in 1257 // Block will be redundant. 1258 if (Node != MDT[Block] && SpillBBToSpill[Node]) { 1259 SpillToRm = SpillBBToSpill[MDT[Block]]; 1260 break; 1261 /// If we see the Node already in WorkSet, the path from the Node to 1262 /// the Root node must already be traversed by another spill. 1263 /// Then no need to repeat. 1264 } else if (WorkSet.count(Node)) { 1265 break; 1266 } else { 1267 NodesOnPath.insert(Node); 1268 } 1269 Node = Node->getIDom(); 1270 } 1271 if (SpillToRm) { 1272 SpillsToRm.push_back(SpillToRm); 1273 } else { 1274 // Add a BB containing the original spills to SpillsToKeep -- i.e., 1275 // set the initial status before hoisting start. The value of BBs 1276 // containing original spills is set to 0, in order to descriminate 1277 // with BBs containing hoisted spills which will be inserted to 1278 // SpillsToKeep later during hoisting. 1279 SpillsToKeep[MDT[Block]] = 0; 1280 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end()); 1281 } 1282 NodesOnPath.clear(); 1283 } 1284 1285 // Sort the nodes in WorkSet in top-down order and save the nodes 1286 // in Orders. Orders will be used for hoisting in runHoistSpills. 1287 unsigned idx = 0; 1288 Orders.push_back(MDT.getBase().getNode(Root)); 1289 do { 1290 MachineDomTreeNode *Node = Orders[idx++]; 1291 const std::vector<MachineDomTreeNode *> &Children = Node->getChildren(); 1292 unsigned NumChildren = Children.size(); 1293 for (unsigned i = 0; i != NumChildren; ++i) { 1294 MachineDomTreeNode *Child = Children[i]; 1295 if (WorkSet.count(Child)) 1296 Orders.push_back(Child); 1297 } 1298 } while (idx != Orders.size()); 1299 assert(Orders.size() == WorkSet.size() && 1300 "Orders have different size with WorkSet"); 1301 1302 #ifndef NDEBUG 1303 LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n"); 1304 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1305 for (; RIt != Orders.rend(); RIt++) 1306 LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ","); 1307 LLVM_DEBUG(dbgs() << "\n"); 1308 #endif 1309 } 1310 1311 /// Try to hoist spills according to BB hotness. The spills to removed will 1312 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in 1313 /// \p SpillsToIns. 1314 void HoistSpillHelper::runHoistSpills( 1315 LiveInterval &OrigLI, VNInfo &OrigVNI, 1316 SmallPtrSet<MachineInstr *, 16> &Spills, 1317 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1318 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) { 1319 // Visit order of dominator tree nodes. 1320 SmallVector<MachineDomTreeNode *, 32> Orders; 1321 // SpillsToKeep contains all the nodes where spills are to be inserted 1322 // during hoisting. If the spill to be inserted is an original spill 1323 // (not a hoisted one), the value of the map entry is 0. If the spill 1324 // is a hoisted spill, the value of the map entry is the VReg to be used 1325 // as the source of the spill. 1326 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep; 1327 // Map from BB to the first spill inside of it. 1328 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; 1329 1330 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); 1331 1332 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def); 1333 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, 1334 SpillBBToSpill); 1335 1336 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of 1337 // nodes set and the cost of all the spills inside those nodes. 1338 // The nodes set are the locations where spills are to be inserted 1339 // in the subtree of current node. 1340 using NodesCostPair = 1341 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>; 1342 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; 1343 1344 // Iterate Orders set in reverse order, which will be a bottom-up order 1345 // in the dominator tree. Once we visit a dom tree node, we know its 1346 // children have already been visited and the spill locations in the 1347 // subtrees of all the children have been determined. 1348 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1349 for (; RIt != Orders.rend(); RIt++) { 1350 MachineBasicBlock *Block = (*RIt)->getBlock(); 1351 1352 // If Block contains an original spill, simply continue. 1353 if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) { 1354 SpillsInSubTreeMap[*RIt].first.insert(*RIt); 1355 // SpillsInSubTreeMap[*RIt].second contains the cost of spill. 1356 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block); 1357 continue; 1358 } 1359 1360 // Collect spills in subtree of current node (*RIt) to 1361 // SpillsInSubTreeMap[*RIt].first. 1362 const std::vector<MachineDomTreeNode *> &Children = (*RIt)->getChildren(); 1363 unsigned NumChildren = Children.size(); 1364 for (unsigned i = 0; i != NumChildren; ++i) { 1365 MachineDomTreeNode *Child = Children[i]; 1366 if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end()) 1367 continue; 1368 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below 1369 // should be placed before getting the begin and end iterators of 1370 // SpillsInSubTreeMap[Child].first, or else the iterators may be 1371 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time 1372 // and the map grows and then the original buckets in the map are moved. 1373 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1374 SpillsInSubTreeMap[*RIt].first; 1375 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1376 SubTreeCost += SpillsInSubTreeMap[Child].second; 1377 auto BI = SpillsInSubTreeMap[Child].first.begin(); 1378 auto EI = SpillsInSubTreeMap[Child].first.end(); 1379 SpillsInSubTree.insert(BI, EI); 1380 SpillsInSubTreeMap.erase(Child); 1381 } 1382 1383 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1384 SpillsInSubTreeMap[*RIt].first; 1385 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1386 // No spills in subtree, simply continue. 1387 if (SpillsInSubTree.empty()) 1388 continue; 1389 1390 // Check whether Block is a possible candidate to insert spill. 1391 unsigned LiveReg = 0; 1392 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg)) 1393 continue; 1394 1395 // If there are multiple spills that could be merged, bias a little 1396 // to hoist the spill. 1397 BranchProbability MarginProb = (SpillsInSubTree.size() > 1) 1398 ? BranchProbability(9, 10) 1399 : BranchProbability(1, 1); 1400 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) { 1401 // Hoist: Move spills to current Block. 1402 for (const auto SpillBB : SpillsInSubTree) { 1403 // When SpillBB is a BB contains original spill, insert the spill 1404 // to SpillsToRm. 1405 if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() && 1406 !SpillsToKeep[SpillBB]) { 1407 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; 1408 SpillsToRm.push_back(SpillToRm); 1409 } 1410 // SpillBB will not contain spill anymore, remove it from SpillsToKeep. 1411 SpillsToKeep.erase(SpillBB); 1412 } 1413 // Current Block is the BB containing the new hoisted spill. Add it to 1414 // SpillsToKeep. LiveReg is the source of the new spill. 1415 SpillsToKeep[*RIt] = LiveReg; 1416 LLVM_DEBUG({ 1417 dbgs() << "spills in BB: "; 1418 for (const auto Rspill : SpillsInSubTree) 1419 dbgs() << Rspill->getBlock()->getNumber() << " "; 1420 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber() 1421 << "\n"; 1422 }); 1423 SpillsInSubTree.clear(); 1424 SpillsInSubTree.insert(*RIt); 1425 SubTreeCost = MBFI.getBlockFreq(Block); 1426 } 1427 } 1428 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), 1429 // save them to SpillsToIns. 1430 for (const auto &Ent : SpillsToKeep) { 1431 if (Ent.second) 1432 SpillsToIns[Ent.first->getBlock()] = Ent.second; 1433 } 1434 } 1435 1436 /// For spills with equal values, remove redundant spills and hoist those left 1437 /// to less hot spots. 1438 /// 1439 /// Spills with equal values will be collected into the same set in 1440 /// MergeableSpills when spill is inserted. These equal spills are originated 1441 /// from the same defining instruction and are dominated by the instruction. 1442 /// Before hoisting all the equal spills, redundant spills inside in the same 1443 /// BB are first marked to be deleted. Then starting from the spills left, walk 1444 /// up on the dominator tree towards the Root node where the define instruction 1445 /// is located, mark the dominated spills to be deleted along the way and 1446 /// collect the BB nodes on the path from non-dominated spills to the define 1447 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places 1448 /// where we are considering to hoist the spills. We iterate the WorkSet in 1449 /// bottom-up order, and for each node, we will decide whether to hoist spills 1450 /// inside its subtree to that node. In this way, we can get benefit locally 1451 /// even if hoisting all the equal spills to one cold place is impossible. 1452 void HoistSpillHelper::hoistAllSpills() { 1453 SmallVector<unsigned, 4> NewVRegs; 1454 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this); 1455 1456 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { 1457 unsigned Reg = Register::index2VirtReg(i); 1458 unsigned Original = VRM.getPreSplitReg(Reg); 1459 if (!MRI.def_empty(Reg)) 1460 Virt2SiblingsMap[Original].insert(Reg); 1461 } 1462 1463 // Each entry in MergeableSpills contains a spill set with equal values. 1464 for (auto &Ent : MergeableSpills) { 1465 int Slot = Ent.first.first; 1466 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot]; 1467 VNInfo *OrigVNI = Ent.first.second; 1468 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; 1469 if (Ent.second.empty()) 1470 continue; 1471 1472 LLVM_DEBUG({ 1473 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n" 1474 << "Equal spills in BB: "; 1475 for (const auto spill : EqValSpills) 1476 dbgs() << spill->getParent()->getNumber() << " "; 1477 dbgs() << "\n"; 1478 }); 1479 1480 // SpillsToRm is the spill set to be removed from EqValSpills. 1481 SmallVector<MachineInstr *, 16> SpillsToRm; 1482 // SpillsToIns is the spill set to be newly inserted after hoisting. 1483 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns; 1484 1485 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns); 1486 1487 LLVM_DEBUG({ 1488 dbgs() << "Finally inserted spills in BB: "; 1489 for (const auto &Ispill : SpillsToIns) 1490 dbgs() << Ispill.first->getNumber() << " "; 1491 dbgs() << "\nFinally removed spills in BB: "; 1492 for (const auto Rspill : SpillsToRm) 1493 dbgs() << Rspill->getParent()->getNumber() << " "; 1494 dbgs() << "\n"; 1495 }); 1496 1497 // Stack live range update. 1498 LiveInterval &StackIntvl = LSS.getInterval(Slot); 1499 if (!SpillsToIns.empty() || !SpillsToRm.empty()) 1500 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI, 1501 StackIntvl.getValNumInfo(0)); 1502 1503 // Insert hoisted spills. 1504 for (auto const &Insert : SpillsToIns) { 1505 MachineBasicBlock *BB = Insert.first; 1506 unsigned LiveReg = Insert.second; 1507 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, *BB); 1508 TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot, 1509 MRI.getRegClass(LiveReg), &TRI); 1510 LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI); 1511 ++NumSpills; 1512 } 1513 1514 // Remove redundant spills or change them to dead instructions. 1515 NumSpills -= SpillsToRm.size(); 1516 for (auto const RMEnt : SpillsToRm) { 1517 RMEnt->setDesc(TII.get(TargetOpcode::KILL)); 1518 for (unsigned i = RMEnt->getNumOperands(); i; --i) { 1519 MachineOperand &MO = RMEnt->getOperand(i - 1); 1520 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) 1521 RMEnt->RemoveOperand(i - 1); 1522 } 1523 } 1524 Edit.eliminateDeadDefs(SpillsToRm, None, AA); 1525 } 1526 } 1527 1528 /// For VirtReg clone, the \p New register should have the same physreg or 1529 /// stackslot as the \p old register. 1530 void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 1531 if (VRM.hasPhys(Old)) 1532 VRM.assignVirt2Phys(New, VRM.getPhys(Old)); 1533 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT) 1534 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old)); 1535 else 1536 llvm_unreachable("VReg should be assigned either physreg or stackslot"); 1537 } 1538