1 //===- IndirectBrExpandPass.cpp - Expand indirectbr to switch -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// 10 /// Implements an expansion pass to turn `indirectbr` instructions in the IR 11 /// into `switch` instructions. This works by enumerating the basic blocks in 12 /// a dense range of integers, replacing each `blockaddr` constant with the 13 /// corresponding integer constant, and then building a switch that maps from 14 /// the integers to the actual blocks. All of the indirectbr instructions in the 15 /// function are redirected to this common switch. 16 /// 17 /// While this is generically useful if a target is unable to codegen 18 /// `indirectbr` natively, it is primarily useful when there is some desire to 19 /// get the builtin non-jump-table lowering of a switch even when the input 20 /// source contained an explicit indirect branch construct. 21 /// 22 /// Note that it doesn't make any sense to enable this pass unless a target also 23 /// disables jump-table lowering of switches. Doing that is likely to pessimize 24 /// the code. 25 /// 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/Sequence.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/Analysis/DomTreeUpdater.h" 32 #include "llvm/CodeGen/IndirectBrExpand.h" 33 #include "llvm/CodeGen/TargetPassConfig.h" 34 #include "llvm/CodeGen/TargetSubtargetInfo.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/InitializePasses.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Target/TargetMachine.h" 44 #include <optional> 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "indirectbr-expand" 49 50 namespace { 51 52 class IndirectBrExpandLegacyPass : public FunctionPass { 53 public: 54 static char ID; // Pass identification, replacement for typeid 55 56 IndirectBrExpandLegacyPass() : FunctionPass(ID) { 57 initializeIndirectBrExpandLegacyPassPass(*PassRegistry::getPassRegistry()); 58 } 59 60 void getAnalysisUsage(AnalysisUsage &AU) const override { 61 AU.addPreserved<DominatorTreeWrapperPass>(); 62 } 63 64 bool runOnFunction(Function &F) override; 65 }; 66 67 } // end anonymous namespace 68 69 static bool runImpl(Function &F, const TargetLowering *TLI, 70 DomTreeUpdater *DTU); 71 72 PreservedAnalyses IndirectBrExpandPass::run(Function &F, 73 FunctionAnalysisManager &FAM) { 74 auto *STI = TM->getSubtargetImpl(F); 75 if (!STI->enableIndirectBrExpand()) 76 return PreservedAnalyses::all(); 77 78 auto *TLI = STI->getTargetLowering(); 79 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 80 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 81 82 bool Changed = runImpl(F, TLI, DT ? &DTU : nullptr); 83 if (!Changed) 84 return PreservedAnalyses::all(); 85 PreservedAnalyses PA; 86 PA.preserve<DominatorTreeAnalysis>(); 87 return PA; 88 } 89 90 char IndirectBrExpandLegacyPass::ID = 0; 91 92 INITIALIZE_PASS_BEGIN(IndirectBrExpandLegacyPass, DEBUG_TYPE, 93 "Expand indirectbr instructions", false, false) 94 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 95 INITIALIZE_PASS_END(IndirectBrExpandLegacyPass, DEBUG_TYPE, 96 "Expand indirectbr instructions", false, false) 97 98 FunctionPass *llvm::createIndirectBrExpandPass() { 99 return new IndirectBrExpandLegacyPass(); 100 } 101 102 bool runImpl(Function &F, const TargetLowering *TLI, DomTreeUpdater *DTU) { 103 auto &DL = F.getDataLayout(); 104 105 SmallVector<IndirectBrInst *, 1> IndirectBrs; 106 107 // Set of all potential successors for indirectbr instructions. 108 SmallPtrSet<BasicBlock *, 4> IndirectBrSuccs; 109 110 // Build a list of indirectbrs that we want to rewrite. 111 for (BasicBlock &BB : F) 112 if (auto *IBr = dyn_cast<IndirectBrInst>(BB.getTerminator())) { 113 // Handle the degenerate case of no successors by replacing the indirectbr 114 // with unreachable as there is no successor available. 115 if (IBr->getNumSuccessors() == 0) { 116 (void)new UnreachableInst(F.getContext(), IBr->getIterator()); 117 IBr->eraseFromParent(); 118 continue; 119 } 120 121 IndirectBrs.push_back(IBr); 122 for (BasicBlock *SuccBB : IBr->successors()) 123 IndirectBrSuccs.insert(SuccBB); 124 } 125 126 if (IndirectBrs.empty()) 127 return false; 128 129 // If we need to replace any indirectbrs we need to establish integer 130 // constants that will correspond to each of the basic blocks in the function 131 // whose address escapes. We do that here and rewrite all the blockaddress 132 // constants to just be those integer constants cast to a pointer type. 133 SmallVector<BasicBlock *, 4> BBs; 134 135 for (BasicBlock &BB : F) { 136 // Skip blocks that aren't successors to an indirectbr we're going to 137 // rewrite. 138 if (!IndirectBrSuccs.count(&BB)) 139 continue; 140 141 auto IsBlockAddressUse = [&](const Use &U) { 142 return isa<BlockAddress>(U.getUser()); 143 }; 144 auto BlockAddressUseIt = llvm::find_if(BB.uses(), IsBlockAddressUse); 145 if (BlockAddressUseIt == BB.use_end()) 146 continue; 147 148 assert(std::find_if(std::next(BlockAddressUseIt), BB.use_end(), 149 IsBlockAddressUse) == BB.use_end() && 150 "There should only ever be a single blockaddress use because it is " 151 "a constant and should be uniqued."); 152 153 auto *BA = cast<BlockAddress>(BlockAddressUseIt->getUser()); 154 155 // Skip if the constant was formed but ended up not being used (due to DCE 156 // or whatever). 157 if (!BA->isConstantUsed()) 158 continue; 159 160 // Compute the index we want to use for this basic block. We can't use zero 161 // because null can be compared with block addresses. 162 int BBIndex = BBs.size() + 1; 163 BBs.push_back(&BB); 164 165 auto *ITy = cast<IntegerType>(DL.getIntPtrType(BA->getType())); 166 ConstantInt *BBIndexC = ConstantInt::get(ITy, BBIndex); 167 168 // Now rewrite the blockaddress to an integer constant based on the index. 169 // FIXME: This part doesn't properly recognize other uses of blockaddress 170 // expressions, for instance, where they are used to pass labels to 171 // asm-goto. This part of the pass needs a rework. 172 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(BBIndexC, BA->getType())); 173 } 174 175 if (BBs.empty()) { 176 // There are no blocks whose address is taken, so any indirectbr instruction 177 // cannot get a valid input and we can replace all of them with unreachable. 178 SmallVector<DominatorTree::UpdateType, 8> Updates; 179 if (DTU) 180 Updates.reserve(IndirectBrSuccs.size()); 181 for (auto *IBr : IndirectBrs) { 182 if (DTU) { 183 for (BasicBlock *SuccBB : IBr->successors()) 184 Updates.push_back({DominatorTree::Delete, IBr->getParent(), SuccBB}); 185 } 186 (void)new UnreachableInst(F.getContext(), IBr->getIterator()); 187 IBr->eraseFromParent(); 188 } 189 if (DTU) { 190 assert(Updates.size() == IndirectBrSuccs.size() && 191 "Got unexpected update count."); 192 DTU->applyUpdates(Updates); 193 } 194 return true; 195 } 196 197 BasicBlock *SwitchBB; 198 Value *SwitchValue; 199 200 // Compute a common integer type across all the indirectbr instructions. 201 IntegerType *CommonITy = nullptr; 202 for (auto *IBr : IndirectBrs) { 203 auto *ITy = 204 cast<IntegerType>(DL.getIntPtrType(IBr->getAddress()->getType())); 205 if (!CommonITy || ITy->getBitWidth() > CommonITy->getBitWidth()) 206 CommonITy = ITy; 207 } 208 209 auto GetSwitchValue = [CommonITy](IndirectBrInst *IBr) { 210 return CastInst::CreatePointerCast(IBr->getAddress(), CommonITy, 211 Twine(IBr->getAddress()->getName()) + 212 ".switch_cast", 213 IBr->getIterator()); 214 }; 215 216 SmallVector<DominatorTree::UpdateType, 8> Updates; 217 218 if (IndirectBrs.size() == 1) { 219 // If we only have one indirectbr, we can just directly replace it within 220 // its block. 221 IndirectBrInst *IBr = IndirectBrs[0]; 222 SwitchBB = IBr->getParent(); 223 SwitchValue = GetSwitchValue(IBr); 224 if (DTU) { 225 Updates.reserve(IndirectBrSuccs.size()); 226 for (BasicBlock *SuccBB : IBr->successors()) 227 Updates.push_back({DominatorTree::Delete, IBr->getParent(), SuccBB}); 228 assert(Updates.size() == IndirectBrSuccs.size() && 229 "Got unexpected update count."); 230 } 231 IBr->eraseFromParent(); 232 } else { 233 // Otherwise we need to create a new block to hold the switch across BBs, 234 // jump to that block instead of each indirectbr, and phi together the 235 // values for the switch. 236 SwitchBB = BasicBlock::Create(F.getContext(), "switch_bb", &F); 237 auto *SwitchPN = PHINode::Create(CommonITy, IndirectBrs.size(), 238 "switch_value_phi", SwitchBB); 239 SwitchValue = SwitchPN; 240 241 // Now replace the indirectbr instructions with direct branches to the 242 // switch block and fill out the PHI operands. 243 if (DTU) 244 Updates.reserve(IndirectBrs.size() + 2 * IndirectBrSuccs.size()); 245 for (auto *IBr : IndirectBrs) { 246 SwitchPN->addIncoming(GetSwitchValue(IBr), IBr->getParent()); 247 BranchInst::Create(SwitchBB, IBr->getIterator()); 248 if (DTU) { 249 Updates.push_back({DominatorTree::Insert, IBr->getParent(), SwitchBB}); 250 for (BasicBlock *SuccBB : IBr->successors()) 251 Updates.push_back({DominatorTree::Delete, IBr->getParent(), SuccBB}); 252 } 253 IBr->eraseFromParent(); 254 } 255 } 256 257 // Now build the switch in the block. The block will have no terminator 258 // already. 259 auto *SI = SwitchInst::Create(SwitchValue, BBs[0], BBs.size(), SwitchBB); 260 261 // Add a case for each block. 262 for (int i : llvm::seq<int>(1, BBs.size())) 263 SI->addCase(ConstantInt::get(CommonITy, i + 1), BBs[i]); 264 265 if (DTU) { 266 // If there were multiple indirectbr's, they may have common successors, 267 // but in the dominator tree, we only track unique edges. 268 SmallPtrSet<BasicBlock *, 8> UniqueSuccessors; 269 Updates.reserve(Updates.size() + BBs.size()); 270 for (BasicBlock *BB : BBs) { 271 if (UniqueSuccessors.insert(BB).second) 272 Updates.push_back({DominatorTree::Insert, SwitchBB, BB}); 273 } 274 DTU->applyUpdates(Updates); 275 } 276 277 return true; 278 } 279 280 bool IndirectBrExpandLegacyPass::runOnFunction(Function &F) { 281 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 282 if (!TPC) 283 return false; 284 285 auto &TM = TPC->getTM<TargetMachine>(); 286 auto &STI = *TM.getSubtargetImpl(F); 287 if (!STI.enableIndirectBrExpand()) 288 return false; 289 auto *TLI = STI.getTargetLowering(); 290 291 std::optional<DomTreeUpdater> DTU; 292 if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>()) 293 DTU.emplace(DTWP->getDomTree(), DomTreeUpdater::UpdateStrategy::Lazy); 294 295 return runImpl(F, TLI, DTU ? &*DTU : nullptr); 296 } 297