1 //===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass turns explicit null checks of the form 10 // 11 // test %r10, %r10 12 // je throw_npe 13 // movl (%r10), %esi 14 // ... 15 // 16 // to 17 // 18 // faulting_load_op("movl (%r10), %esi", throw_npe) 19 // ... 20 // 21 // With the help of a runtime that understands the .fault_maps section, 22 // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs 23 // a page fault. 24 // Store and LoadStore are also supported. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/Optional.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/Analysis/AliasAnalysis.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/CodeGen/FaultMaps.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFunctionPass.h" 40 #include "llvm/CodeGen/MachineInstr.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineOperand.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/PseudoSourceValue.h" 46 #include "llvm/CodeGen/TargetInstrInfo.h" 47 #include "llvm/CodeGen/TargetOpcodes.h" 48 #include "llvm/CodeGen/TargetRegisterInfo.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/MC/MCInstrDesc.h" 55 #include "llvm/MC/MCRegisterInfo.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/CommandLine.h" 58 #include <cassert> 59 #include <cstdint> 60 #include <iterator> 61 62 using namespace llvm; 63 64 static cl::opt<int> PageSize("imp-null-check-page-size", 65 cl::desc("The page size of the target in bytes"), 66 cl::init(4096), cl::Hidden); 67 68 static cl::opt<unsigned> MaxInstsToConsider( 69 "imp-null-max-insts-to-consider", 70 cl::desc("The max number of instructions to consider hoisting loads over " 71 "(the algorithm is quadratic over this number)"), 72 cl::Hidden, cl::init(8)); 73 74 #define DEBUG_TYPE "implicit-null-checks" 75 76 STATISTIC(NumImplicitNullChecks, 77 "Number of explicit null checks made implicit"); 78 79 namespace { 80 81 class ImplicitNullChecks : public MachineFunctionPass { 82 /// Return true if \c computeDependence can process \p MI. 83 static bool canHandle(const MachineInstr *MI); 84 85 /// Helper function for \c computeDependence. Return true if \p A 86 /// and \p B do not have any dependences between them, and can be 87 /// re-ordered without changing program semantics. 88 bool canReorder(const MachineInstr *A, const MachineInstr *B); 89 90 /// A data type for representing the result computed by \c 91 /// computeDependence. States whether it is okay to reorder the 92 /// instruction passed to \c computeDependence with at most one 93 /// dependency. 94 struct DependenceResult { 95 /// Can we actually re-order \p MI with \p Insts (see \c 96 /// computeDependence). 97 bool CanReorder; 98 99 /// If non-None, then an instruction in \p Insts that also must be 100 /// hoisted. 101 Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence; 102 103 /*implicit*/ DependenceResult( 104 bool CanReorder, 105 Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence) 106 : CanReorder(CanReorder), PotentialDependence(PotentialDependence) { 107 assert((!PotentialDependence || CanReorder) && 108 "!CanReorder && PotentialDependence.hasValue() not allowed!"); 109 } 110 }; 111 112 /// Compute a result for the following question: can \p MI be 113 /// re-ordered from after \p Insts to before it. 114 /// 115 /// \c canHandle should return true for all instructions in \p 116 /// Insts. 117 DependenceResult computeDependence(const MachineInstr *MI, 118 ArrayRef<MachineInstr *> Block); 119 120 /// Represents one null check that can be made implicit. 121 class NullCheck { 122 // The memory operation the null check can be folded into. 123 MachineInstr *MemOperation; 124 125 // The instruction actually doing the null check (Ptr != 0). 126 MachineInstr *CheckOperation; 127 128 // The block the check resides in. 129 MachineBasicBlock *CheckBlock; 130 131 // The block branched to if the pointer is non-null. 132 MachineBasicBlock *NotNullSucc; 133 134 // The block branched to if the pointer is null. 135 MachineBasicBlock *NullSucc; 136 137 // If this is non-null, then MemOperation has a dependency on this 138 // instruction; and it needs to be hoisted to execute before MemOperation. 139 MachineInstr *OnlyDependency; 140 141 public: 142 explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation, 143 MachineBasicBlock *checkBlock, 144 MachineBasicBlock *notNullSucc, 145 MachineBasicBlock *nullSucc, 146 MachineInstr *onlyDependency) 147 : MemOperation(memOperation), CheckOperation(checkOperation), 148 CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc), 149 OnlyDependency(onlyDependency) {} 150 151 MachineInstr *getMemOperation() const { return MemOperation; } 152 153 MachineInstr *getCheckOperation() const { return CheckOperation; } 154 155 MachineBasicBlock *getCheckBlock() const { return CheckBlock; } 156 157 MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; } 158 159 MachineBasicBlock *getNullSucc() const { return NullSucc; } 160 161 MachineInstr *getOnlyDependency() const { return OnlyDependency; } 162 }; 163 164 const TargetInstrInfo *TII = nullptr; 165 const TargetRegisterInfo *TRI = nullptr; 166 AliasAnalysis *AA = nullptr; 167 MachineFrameInfo *MFI = nullptr; 168 169 bool analyzeBlockForNullChecks(MachineBasicBlock &MBB, 170 SmallVectorImpl<NullCheck> &NullCheckList); 171 MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB, 172 MachineBasicBlock *HandlerMBB); 173 void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList); 174 175 enum AliasResult { 176 AR_NoAlias, 177 AR_MayAlias, 178 AR_WillAliasEverything 179 }; 180 181 /// Returns AR_NoAlias if \p MI memory operation does not alias with 182 /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if 183 /// they may alias and any further memory operation may alias with \p PrevMI. 184 AliasResult areMemoryOpsAliased(const MachineInstr &MI, 185 const MachineInstr *PrevMI) const; 186 187 enum SuitabilityResult { 188 SR_Suitable, 189 SR_Unsuitable, 190 SR_Impossible 191 }; 192 193 /// Return SR_Suitable if \p MI a memory operation that can be used to 194 /// implicitly null check the value in \p PointerReg, SR_Unsuitable if 195 /// \p MI cannot be used to null check and SR_Impossible if there is 196 /// no sense to continue lookup due to any other instruction will not be able 197 /// to be used. \p PrevInsts is the set of instruction seen since 198 /// the explicit null check on \p PointerReg. 199 SuitabilityResult isSuitableMemoryOp(const MachineInstr &MI, 200 unsigned PointerReg, 201 ArrayRef<MachineInstr *> PrevInsts); 202 203 /// Return true if \p FaultingMI can be hoisted from after the 204 /// instructions in \p InstsSeenSoFar to before them. Set \p Dependence to a 205 /// non-null value if we also need to (and legally can) hoist a depedency. 206 bool canHoistInst(MachineInstr *FaultingMI, unsigned PointerReg, 207 ArrayRef<MachineInstr *> InstsSeenSoFar, 208 MachineBasicBlock *NullSucc, MachineInstr *&Dependence); 209 210 public: 211 static char ID; 212 213 ImplicitNullChecks() : MachineFunctionPass(ID) { 214 initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry()); 215 } 216 217 bool runOnMachineFunction(MachineFunction &MF) override; 218 219 void getAnalysisUsage(AnalysisUsage &AU) const override { 220 AU.addRequired<AAResultsWrapperPass>(); 221 MachineFunctionPass::getAnalysisUsage(AU); 222 } 223 224 MachineFunctionProperties getRequiredProperties() const override { 225 return MachineFunctionProperties().set( 226 MachineFunctionProperties::Property::NoVRegs); 227 } 228 }; 229 230 } // end anonymous namespace 231 232 bool ImplicitNullChecks::canHandle(const MachineInstr *MI) { 233 if (MI->isCall() || MI->mayRaiseFPException() || 234 MI->hasUnmodeledSideEffects()) 235 return false; 236 auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); }; 237 (void)IsRegMask; 238 239 assert(!llvm::any_of(MI->operands(), IsRegMask) && 240 "Calls were filtered out above!"); 241 242 auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); }; 243 return llvm::all_of(MI->memoperands(), IsUnordered); 244 } 245 246 ImplicitNullChecks::DependenceResult 247 ImplicitNullChecks::computeDependence(const MachineInstr *MI, 248 ArrayRef<MachineInstr *> Block) { 249 assert(llvm::all_of(Block, canHandle) && "Check this first!"); 250 assert(!is_contained(Block, MI) && "Block must be exclusive of MI!"); 251 252 Optional<ArrayRef<MachineInstr *>::iterator> Dep; 253 254 for (auto I = Block.begin(), E = Block.end(); I != E; ++I) { 255 if (canReorder(*I, MI)) 256 continue; 257 258 if (Dep == None) { 259 // Found one possible dependency, keep track of it. 260 Dep = I; 261 } else { 262 // We found two dependencies, so bail out. 263 return {false, None}; 264 } 265 } 266 267 return {true, Dep}; 268 } 269 270 bool ImplicitNullChecks::canReorder(const MachineInstr *A, 271 const MachineInstr *B) { 272 assert(canHandle(A) && canHandle(B) && "Precondition!"); 273 274 // canHandle makes sure that we _can_ correctly analyze the dependencies 275 // between A and B here -- for instance, we should not be dealing with heap 276 // load-store dependencies here. 277 278 for (auto MOA : A->operands()) { 279 if (!(MOA.isReg() && MOA.getReg())) 280 continue; 281 282 Register RegA = MOA.getReg(); 283 for (auto MOB : B->operands()) { 284 if (!(MOB.isReg() && MOB.getReg())) 285 continue; 286 287 Register RegB = MOB.getReg(); 288 289 if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef())) 290 return false; 291 } 292 } 293 294 return true; 295 } 296 297 bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) { 298 TII = MF.getSubtarget().getInstrInfo(); 299 TRI = MF.getRegInfo().getTargetRegisterInfo(); 300 MFI = &MF.getFrameInfo(); 301 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 302 303 SmallVector<NullCheck, 16> NullCheckList; 304 305 for (auto &MBB : MF) 306 analyzeBlockForNullChecks(MBB, NullCheckList); 307 308 if (!NullCheckList.empty()) 309 rewriteNullChecks(NullCheckList); 310 311 return !NullCheckList.empty(); 312 } 313 314 // Return true if any register aliasing \p Reg is live-in into \p MBB. 315 static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI, 316 MachineBasicBlock *MBB, unsigned Reg) { 317 for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid(); 318 ++AR) 319 if (MBB->isLiveIn(*AR)) 320 return true; 321 return false; 322 } 323 324 ImplicitNullChecks::AliasResult 325 ImplicitNullChecks::areMemoryOpsAliased(const MachineInstr &MI, 326 const MachineInstr *PrevMI) const { 327 // If it is not memory access, skip the check. 328 if (!(PrevMI->mayStore() || PrevMI->mayLoad())) 329 return AR_NoAlias; 330 // Load-Load may alias 331 if (!(MI.mayStore() || PrevMI->mayStore())) 332 return AR_NoAlias; 333 // We lost info, conservatively alias. If it was store then no sense to 334 // continue because we won't be able to check against it further. 335 if (MI.memoperands_empty()) 336 return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias; 337 if (PrevMI->memoperands_empty()) 338 return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias; 339 340 for (MachineMemOperand *MMO1 : MI.memoperands()) { 341 // MMO1 should have a value due it comes from operation we'd like to use 342 // as implicit null check. 343 assert(MMO1->getValue() && "MMO1 should have a Value!"); 344 for (MachineMemOperand *MMO2 : PrevMI->memoperands()) { 345 if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) { 346 if (PSV->mayAlias(MFI)) 347 return AR_MayAlias; 348 continue; 349 } 350 llvm::AliasResult AAResult = 351 AA->alias(MemoryLocation(MMO1->getValue(), LocationSize::unknown(), 352 MMO1->getAAInfo()), 353 MemoryLocation(MMO2->getValue(), LocationSize::unknown(), 354 MMO2->getAAInfo())); 355 if (AAResult != NoAlias) 356 return AR_MayAlias; 357 } 358 } 359 return AR_NoAlias; 360 } 361 362 ImplicitNullChecks::SuitabilityResult 363 ImplicitNullChecks::isSuitableMemoryOp(const MachineInstr &MI, 364 unsigned PointerReg, 365 ArrayRef<MachineInstr *> PrevInsts) { 366 int64_t Offset; 367 bool OffsetIsScalable; 368 const MachineOperand *BaseOp; 369 370 371 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI) || 372 !BaseOp->isReg() || BaseOp->getReg() != PointerReg) 373 return SR_Unsuitable; 374 375 // FIXME: This algorithm assumes instructions have fixed-size offsets. 376 if (OffsetIsScalable) 377 return SR_Unsuitable; 378 379 // We want the mem access to be issued at a sane offset from PointerReg, 380 // so that if PointerReg is null then the access reliably page faults. 381 if (!(MI.mayLoadOrStore() && !MI.isPredicable() && 382 -PageSize < Offset && Offset < PageSize)) 383 return SR_Unsuitable; 384 385 // Finally, check whether the current memory access aliases with previous one. 386 for (auto *PrevMI : PrevInsts) { 387 AliasResult AR = areMemoryOpsAliased(MI, PrevMI); 388 if (AR == AR_WillAliasEverything) 389 return SR_Impossible; 390 if (AR == AR_MayAlias) 391 return SR_Unsuitable; 392 } 393 return SR_Suitable; 394 } 395 396 bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI, 397 unsigned PointerReg, 398 ArrayRef<MachineInstr *> InstsSeenSoFar, 399 MachineBasicBlock *NullSucc, 400 MachineInstr *&Dependence) { 401 auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar); 402 if (!DepResult.CanReorder) 403 return false; 404 405 if (!DepResult.PotentialDependence) { 406 Dependence = nullptr; 407 return true; 408 } 409 410 auto DependenceItr = *DepResult.PotentialDependence; 411 auto *DependenceMI = *DependenceItr; 412 413 // We don't want to reason about speculating loads. Note -- at this point 414 // we should have already filtered out all of the other non-speculatable 415 // things, like calls and stores. 416 // We also do not want to hoist stores because it might change the memory 417 // while the FaultingMI may result in faulting. 418 assert(canHandle(DependenceMI) && "Should never have reached here!"); 419 if (DependenceMI->mayLoadOrStore()) 420 return false; 421 422 for (auto &DependenceMO : DependenceMI->operands()) { 423 if (!(DependenceMO.isReg() && DependenceMO.getReg())) 424 continue; 425 426 // Make sure that we won't clobber any live ins to the sibling block by 427 // hoisting Dependency. For instance, we can't hoist INST to before the 428 // null check (even if it safe, and does not violate any dependencies in 429 // the non_null_block) if %rdx is live in to _null_block. 430 // 431 // test %rcx, %rcx 432 // je _null_block 433 // _non_null_block: 434 // %rdx = INST 435 // ... 436 // 437 // This restriction does not apply to the faulting load inst because in 438 // case the pointer loaded from is in the null page, the load will not 439 // semantically execute, and affect machine state. That is, if the load 440 // was loading into %rax and it faults, the value of %rax should stay the 441 // same as it would have been had the load not have executed and we'd have 442 // branched to NullSucc directly. 443 if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg())) 444 return false; 445 446 // The Dependency can't be re-defining the base register -- then we won't 447 // get the memory operation on the address we want. This is already 448 // checked in \c IsSuitableMemoryOp. 449 assert(!(DependenceMO.isDef() && 450 TRI->regsOverlap(DependenceMO.getReg(), PointerReg)) && 451 "Should have been checked before!"); 452 } 453 454 auto DepDepResult = 455 computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr}); 456 457 if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence) 458 return false; 459 460 Dependence = DependenceMI; 461 return true; 462 } 463 464 /// Analyze MBB to check if its terminating branch can be turned into an 465 /// implicit null check. If yes, append a description of the said null check to 466 /// NullCheckList and return true, else return false. 467 bool ImplicitNullChecks::analyzeBlockForNullChecks( 468 MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) { 469 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 470 471 MDNode *BranchMD = nullptr; 472 if (auto *BB = MBB.getBasicBlock()) 473 BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit); 474 475 if (!BranchMD) 476 return false; 477 478 MachineBranchPredicate MBP; 479 480 if (TII->analyzeBranchPredicate(MBB, MBP, true)) 481 return false; 482 483 // Is the predicate comparing an integer to zero? 484 if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 485 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 486 MBP.Predicate == MachineBranchPredicate::PRED_EQ))) 487 return false; 488 489 // If we cannot erase the test instruction itself, then making the null check 490 // implicit does not buy us much. 491 if (!MBP.SingleUseCondition) 492 return false; 493 494 MachineBasicBlock *NotNullSucc, *NullSucc; 495 496 if (MBP.Predicate == MachineBranchPredicate::PRED_NE) { 497 NotNullSucc = MBP.TrueDest; 498 NullSucc = MBP.FalseDest; 499 } else { 500 NotNullSucc = MBP.FalseDest; 501 NullSucc = MBP.TrueDest; 502 } 503 504 // We handle the simplest case for now. We can potentially do better by using 505 // the machine dominator tree. 506 if (NotNullSucc->pred_size() != 1) 507 return false; 508 509 // To prevent the invalid transformation of the following code: 510 // 511 // mov %rax, %rcx 512 // test %rax, %rax 513 // %rax = ... 514 // je throw_npe 515 // mov(%rcx), %r9 516 // mov(%rax), %r10 517 // 518 // into: 519 // 520 // mov %rax, %rcx 521 // %rax = .... 522 // faulting_load_op("movl (%rax), %r10", throw_npe) 523 // mov(%rcx), %r9 524 // 525 // we must ensure that there are no instructions between the 'test' and 526 // conditional jump that modify %rax. 527 const Register PointerReg = MBP.LHS.getReg(); 528 529 assert(MBP.ConditionDef->getParent() == &MBB && "Should be in basic block"); 530 531 for (auto I = MBB.rbegin(); MBP.ConditionDef != &*I; ++I) 532 if (I->modifiesRegister(PointerReg, TRI)) 533 return false; 534 535 // Starting with a code fragment like: 536 // 537 // test %rax, %rax 538 // jne LblNotNull 539 // 540 // LblNull: 541 // callq throw_NullPointerException 542 // 543 // LblNotNull: 544 // Inst0 545 // Inst1 546 // ... 547 // Def = Load (%rax + <offset>) 548 // ... 549 // 550 // 551 // we want to end up with 552 // 553 // Def = FaultingLoad (%rax + <offset>), LblNull 554 // jmp LblNotNull ;; explicit or fallthrough 555 // 556 // LblNotNull: 557 // Inst0 558 // Inst1 559 // ... 560 // 561 // LblNull: 562 // callq throw_NullPointerException 563 // 564 // 565 // To see why this is legal, consider the two possibilities: 566 // 567 // 1. %rax is null: since we constrain <offset> to be less than PageSize, the 568 // load instruction dereferences the null page, causing a segmentation 569 // fault. 570 // 571 // 2. %rax is not null: in this case we know that the load cannot fault, as 572 // otherwise the load would've faulted in the original program too and the 573 // original program would've been undefined. 574 // 575 // This reasoning cannot be extended to justify hoisting through arbitrary 576 // control flow. For instance, in the example below (in pseudo-C) 577 // 578 // if (ptr == null) { throw_npe(); unreachable; } 579 // if (some_cond) { return 42; } 580 // v = ptr->field; // LD 581 // ... 582 // 583 // we cannot (without code duplication) use the load marked "LD" to null check 584 // ptr -- clause (2) above does not apply in this case. In the above program 585 // the safety of ptr->field can be dependent on some_cond; and, for instance, 586 // ptr could be some non-null invalid reference that never gets loaded from 587 // because some_cond is always true. 588 589 SmallVector<MachineInstr *, 8> InstsSeenSoFar; 590 591 for (auto &MI : *NotNullSucc) { 592 if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider) 593 return false; 594 595 MachineInstr *Dependence; 596 SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar); 597 if (SR == SR_Impossible) 598 return false; 599 if (SR == SR_Suitable && 600 canHoistInst(&MI, PointerReg, InstsSeenSoFar, NullSucc, Dependence)) { 601 NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc, 602 NullSucc, Dependence); 603 return true; 604 } 605 606 // If MI re-defines the PointerReg then we cannot move further. 607 if (llvm::any_of(MI.operands(), [&](MachineOperand &MO) { 608 return MO.isReg() && MO.getReg() && MO.isDef() && 609 TRI->regsOverlap(MO.getReg(), PointerReg); 610 })) 611 return false; 612 InstsSeenSoFar.push_back(&MI); 613 } 614 615 return false; 616 } 617 618 /// Wrap a machine instruction, MI, into a FAULTING machine instruction. 619 /// The FAULTING instruction does the same load/store as MI 620 /// (defining the same register), and branches to HandlerMBB if the mem access 621 /// faults. The FAULTING instruction is inserted at the end of MBB. 622 MachineInstr *ImplicitNullChecks::insertFaultingInstr( 623 MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) { 624 const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for 625 // all targets. 626 627 DebugLoc DL; 628 unsigned NumDefs = MI->getDesc().getNumDefs(); 629 assert(NumDefs <= 1 && "other cases unhandled!"); 630 631 unsigned DefReg = NoRegister; 632 if (NumDefs != 0) { 633 DefReg = MI->getOperand(0).getReg(); 634 assert(NumDefs == 1 && "expected exactly one def!"); 635 } 636 637 FaultMaps::FaultKind FK; 638 if (MI->mayLoad()) 639 FK = 640 MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad; 641 else 642 FK = FaultMaps::FaultingStore; 643 644 auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg) 645 .addImm(FK) 646 .addMBB(HandlerMBB) 647 .addImm(MI->getOpcode()); 648 649 for (auto &MO : MI->uses()) { 650 if (MO.isReg()) { 651 MachineOperand NewMO = MO; 652 if (MO.isUse()) { 653 NewMO.setIsKill(false); 654 } else { 655 assert(MO.isDef() && "Expected def or use"); 656 NewMO.setIsDead(false); 657 } 658 MIB.add(NewMO); 659 } else { 660 MIB.add(MO); 661 } 662 } 663 664 MIB.setMemRefs(MI->memoperands()); 665 666 return MIB; 667 } 668 669 /// Rewrite the null checks in NullCheckList into implicit null checks. 670 void ImplicitNullChecks::rewriteNullChecks( 671 ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) { 672 DebugLoc DL; 673 674 for (auto &NC : NullCheckList) { 675 // Remove the conditional branch dependent on the null check. 676 unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock()); 677 (void)BranchesRemoved; 678 assert(BranchesRemoved > 0 && "expected at least one branch!"); 679 680 if (auto *DepMI = NC.getOnlyDependency()) { 681 DepMI->removeFromParent(); 682 NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI); 683 } 684 685 // Insert a faulting instruction where the conditional branch was 686 // originally. We check earlier ensures that this bit of code motion 687 // is legal. We do not touch the successors list for any basic block 688 // since we haven't changed control flow, we've just made it implicit. 689 MachineInstr *FaultingInstr = insertFaultingInstr( 690 NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc()); 691 // Now the values defined by MemOperation, if any, are live-in of 692 // the block of MemOperation. 693 // The original operation may define implicit-defs alongside 694 // the value. 695 MachineBasicBlock *MBB = NC.getMemOperation()->getParent(); 696 for (const MachineOperand &MO : FaultingInstr->operands()) { 697 if (!MO.isReg() || !MO.isDef()) 698 continue; 699 Register Reg = MO.getReg(); 700 if (!Reg || MBB->isLiveIn(Reg)) 701 continue; 702 MBB->addLiveIn(Reg); 703 } 704 705 if (auto *DepMI = NC.getOnlyDependency()) { 706 for (auto &MO : DepMI->operands()) { 707 if (!MO.isReg() || !MO.getReg() || !MO.isDef() || MO.isDead()) 708 continue; 709 if (!NC.getNotNullSucc()->isLiveIn(MO.getReg())) 710 NC.getNotNullSucc()->addLiveIn(MO.getReg()); 711 } 712 } 713 714 NC.getMemOperation()->eraseFromParent(); 715 NC.getCheckOperation()->eraseFromParent(); 716 717 // Insert an *unconditional* branch to not-null successor. 718 TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr, 719 /*Cond=*/None, DL); 720 721 NumImplicitNullChecks++; 722 } 723 } 724 725 char ImplicitNullChecks::ID = 0; 726 727 char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID; 728 729 INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE, 730 "Implicit null checks", false, false) 731 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 732 INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE, 733 "Implicit null checks", false, false) 734