xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/ImplicitNullChecks.cpp (revision 734e82fe33aa764367791a7d603b383996c6b40b)
1 //===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass turns explicit null checks of the form
10 //
11 //   test %r10, %r10
12 //   je throw_npe
13 //   movl (%r10), %esi
14 //   ...
15 //
16 // to
17 //
18 //   faulting_load_op("movl (%r10), %esi", throw_npe)
19 //   ...
20 //
21 // With the help of a runtime that understands the .fault_maps section,
22 // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
23 // a page fault.
24 // Store and LoadStore are also supported.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/MemoryLocation.h"
34 #include "llvm/CodeGen/FaultMaps.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineFunctionPass.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/PseudoSourceValue.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetOpcodes.h"
46 #include "llvm/CodeGen/TargetRegisterInfo.h"
47 #include "llvm/CodeGen/TargetSubtargetInfo.h"
48 #include "llvm/IR/BasicBlock.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/InitializePasses.h"
52 #include "llvm/MC/MCInstrDesc.h"
53 #include "llvm/MC/MCRegisterInfo.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CommandLine.h"
56 #include <cassert>
57 #include <cstdint>
58 #include <iterator>
59 
60 using namespace llvm;
61 
62 static cl::opt<int> PageSize("imp-null-check-page-size",
63                              cl::desc("The page size of the target in bytes"),
64                              cl::init(4096), cl::Hidden);
65 
66 static cl::opt<unsigned> MaxInstsToConsider(
67     "imp-null-max-insts-to-consider",
68     cl::desc("The max number of instructions to consider hoisting loads over "
69              "(the algorithm is quadratic over this number)"),
70     cl::Hidden, cl::init(8));
71 
72 #define DEBUG_TYPE "implicit-null-checks"
73 
74 STATISTIC(NumImplicitNullChecks,
75           "Number of explicit null checks made implicit");
76 
77 namespace {
78 
79 class ImplicitNullChecks : public MachineFunctionPass {
80   /// Return true if \c computeDependence can process \p MI.
81   static bool canHandle(const MachineInstr *MI);
82 
83   /// Helper function for \c computeDependence.  Return true if \p A
84   /// and \p B do not have any dependences between them, and can be
85   /// re-ordered without changing program semantics.
86   bool canReorder(const MachineInstr *A, const MachineInstr *B);
87 
88   /// A data type for representing the result computed by \c
89   /// computeDependence.  States whether it is okay to reorder the
90   /// instruction passed to \c computeDependence with at most one
91   /// dependency.
92   struct DependenceResult {
93     /// Can we actually re-order \p MI with \p Insts (see \c
94     /// computeDependence).
95     bool CanReorder;
96 
97     /// If non-None, then an instruction in \p Insts that also must be
98     /// hoisted.
99     std::optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence;
100 
101     /*implicit*/ DependenceResult(
102         bool CanReorder,
103         std::optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence)
104         : CanReorder(CanReorder), PotentialDependence(PotentialDependence) {
105       assert((!PotentialDependence || CanReorder) &&
106              "!CanReorder && PotentialDependence.hasValue() not allowed!");
107     }
108   };
109 
110   /// Compute a result for the following question: can \p MI be
111   /// re-ordered from after \p Insts to before it.
112   ///
113   /// \c canHandle should return true for all instructions in \p
114   /// Insts.
115   DependenceResult computeDependence(const MachineInstr *MI,
116                                      ArrayRef<MachineInstr *> Block);
117 
118   /// Represents one null check that can be made implicit.
119   class NullCheck {
120     // The memory operation the null check can be folded into.
121     MachineInstr *MemOperation;
122 
123     // The instruction actually doing the null check (Ptr != 0).
124     MachineInstr *CheckOperation;
125 
126     // The block the check resides in.
127     MachineBasicBlock *CheckBlock;
128 
129     // The block branched to if the pointer is non-null.
130     MachineBasicBlock *NotNullSucc;
131 
132     // The block branched to if the pointer is null.
133     MachineBasicBlock *NullSucc;
134 
135     // If this is non-null, then MemOperation has a dependency on this
136     // instruction; and it needs to be hoisted to execute before MemOperation.
137     MachineInstr *OnlyDependency;
138 
139   public:
140     explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
141                        MachineBasicBlock *checkBlock,
142                        MachineBasicBlock *notNullSucc,
143                        MachineBasicBlock *nullSucc,
144                        MachineInstr *onlyDependency)
145         : MemOperation(memOperation), CheckOperation(checkOperation),
146           CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc),
147           OnlyDependency(onlyDependency) {}
148 
149     MachineInstr *getMemOperation() const { return MemOperation; }
150 
151     MachineInstr *getCheckOperation() const { return CheckOperation; }
152 
153     MachineBasicBlock *getCheckBlock() const { return CheckBlock; }
154 
155     MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; }
156 
157     MachineBasicBlock *getNullSucc() const { return NullSucc; }
158 
159     MachineInstr *getOnlyDependency() const { return OnlyDependency; }
160   };
161 
162   const TargetInstrInfo *TII = nullptr;
163   const TargetRegisterInfo *TRI = nullptr;
164   AliasAnalysis *AA = nullptr;
165   MachineFrameInfo *MFI = nullptr;
166 
167   bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
168                                  SmallVectorImpl<NullCheck> &NullCheckList);
169   MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB,
170                                     MachineBasicBlock *HandlerMBB);
171   void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
172 
173   enum AliasResult {
174     AR_NoAlias,
175     AR_MayAlias,
176     AR_WillAliasEverything
177   };
178 
179   /// Returns AR_NoAlias if \p MI memory operation does not alias with
180   /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if
181   /// they may alias and any further memory operation may alias with \p PrevMI.
182   AliasResult areMemoryOpsAliased(const MachineInstr &MI,
183                                   const MachineInstr *PrevMI) const;
184 
185   enum SuitabilityResult {
186     SR_Suitable,
187     SR_Unsuitable,
188     SR_Impossible
189   };
190 
191   /// Return SR_Suitable if \p MI a memory operation that can be used to
192   /// implicitly null check the value in \p PointerReg, SR_Unsuitable if
193   /// \p MI cannot be used to null check and SR_Impossible if there is
194   /// no sense to continue lookup due to any other instruction will not be able
195   /// to be used. \p PrevInsts is the set of instruction seen since
196   /// the explicit null check on \p PointerReg.
197   SuitabilityResult isSuitableMemoryOp(const MachineInstr &MI,
198                                        unsigned PointerReg,
199                                        ArrayRef<MachineInstr *> PrevInsts);
200 
201   /// Returns true if \p DependenceMI can clobber the liveIns in NullSucc block
202   /// if it was hoisted to the NullCheck block. This is used by caller
203   /// canHoistInst to decide if DependenceMI can be hoisted safely.
204   bool canDependenceHoistingClobberLiveIns(MachineInstr *DependenceMI,
205                                            MachineBasicBlock *NullSucc);
206 
207   /// Return true if \p FaultingMI can be hoisted from after the
208   /// instructions in \p InstsSeenSoFar to before them.  Set \p Dependence to a
209   /// non-null value if we also need to (and legally can) hoist a dependency.
210   bool canHoistInst(MachineInstr *FaultingMI,
211                     ArrayRef<MachineInstr *> InstsSeenSoFar,
212                     MachineBasicBlock *NullSucc, MachineInstr *&Dependence);
213 
214 public:
215   static char ID;
216 
217   ImplicitNullChecks() : MachineFunctionPass(ID) {
218     initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
219   }
220 
221   bool runOnMachineFunction(MachineFunction &MF) override;
222 
223   void getAnalysisUsage(AnalysisUsage &AU) const override {
224     AU.addRequired<AAResultsWrapperPass>();
225     MachineFunctionPass::getAnalysisUsage(AU);
226   }
227 
228   MachineFunctionProperties getRequiredProperties() const override {
229     return MachineFunctionProperties().set(
230         MachineFunctionProperties::Property::NoVRegs);
231   }
232 };
233 
234 } // end anonymous namespace
235 
236 bool ImplicitNullChecks::canHandle(const MachineInstr *MI) {
237   if (MI->isCall() || MI->mayRaiseFPException() ||
238       MI->hasUnmodeledSideEffects())
239     return false;
240   auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); };
241   (void)IsRegMask;
242 
243   assert(llvm::none_of(MI->operands(), IsRegMask) &&
244          "Calls were filtered out above!");
245 
246   auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); };
247   return llvm::all_of(MI->memoperands(), IsUnordered);
248 }
249 
250 ImplicitNullChecks::DependenceResult
251 ImplicitNullChecks::computeDependence(const MachineInstr *MI,
252                                       ArrayRef<MachineInstr *> Block) {
253   assert(llvm::all_of(Block, canHandle) && "Check this first!");
254   assert(!is_contained(Block, MI) && "Block must be exclusive of MI!");
255 
256   std::optional<ArrayRef<MachineInstr *>::iterator> Dep;
257 
258   for (auto I = Block.begin(), E = Block.end(); I != E; ++I) {
259     if (canReorder(*I, MI))
260       continue;
261 
262     if (Dep == std::nullopt) {
263       // Found one possible dependency, keep track of it.
264       Dep = I;
265     } else {
266       // We found two dependencies, so bail out.
267       return {false, std::nullopt};
268     }
269   }
270 
271   return {true, Dep};
272 }
273 
274 bool ImplicitNullChecks::canReorder(const MachineInstr *A,
275                                     const MachineInstr *B) {
276   assert(canHandle(A) && canHandle(B) && "Precondition!");
277 
278   // canHandle makes sure that we _can_ correctly analyze the dependencies
279   // between A and B here -- for instance, we should not be dealing with heap
280   // load-store dependencies here.
281 
282   for (const auto &MOA : A->operands()) {
283     if (!(MOA.isReg() && MOA.getReg()))
284       continue;
285 
286     Register RegA = MOA.getReg();
287     for (const auto &MOB : B->operands()) {
288       if (!(MOB.isReg() && MOB.getReg()))
289         continue;
290 
291       Register RegB = MOB.getReg();
292 
293       if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef()))
294         return false;
295     }
296   }
297 
298   return true;
299 }
300 
301 bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
302   TII = MF.getSubtarget().getInstrInfo();
303   TRI = MF.getRegInfo().getTargetRegisterInfo();
304   MFI = &MF.getFrameInfo();
305   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
306 
307   SmallVector<NullCheck, 16> NullCheckList;
308 
309   for (auto &MBB : MF)
310     analyzeBlockForNullChecks(MBB, NullCheckList);
311 
312   if (!NullCheckList.empty())
313     rewriteNullChecks(NullCheckList);
314 
315   return !NullCheckList.empty();
316 }
317 
318 // Return true if any register aliasing \p Reg is live-in into \p MBB.
319 static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
320                            MachineBasicBlock *MBB, unsigned Reg) {
321   for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid();
322        ++AR)
323     if (MBB->isLiveIn(*AR))
324       return true;
325   return false;
326 }
327 
328 ImplicitNullChecks::AliasResult
329 ImplicitNullChecks::areMemoryOpsAliased(const MachineInstr &MI,
330                                         const MachineInstr *PrevMI) const {
331   // If it is not memory access, skip the check.
332   if (!(PrevMI->mayStore() || PrevMI->mayLoad()))
333     return AR_NoAlias;
334   // Load-Load may alias
335   if (!(MI.mayStore() || PrevMI->mayStore()))
336     return AR_NoAlias;
337   // We lost info, conservatively alias. If it was store then no sense to
338   // continue because we won't be able to check against it further.
339   if (MI.memoperands_empty())
340     return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias;
341   if (PrevMI->memoperands_empty())
342     return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias;
343 
344   for (MachineMemOperand *MMO1 : MI.memoperands()) {
345     // MMO1 should have a value due it comes from operation we'd like to use
346     // as implicit null check.
347     assert(MMO1->getValue() && "MMO1 should have a Value!");
348     for (MachineMemOperand *MMO2 : PrevMI->memoperands()) {
349       if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) {
350         if (PSV->mayAlias(MFI))
351           return AR_MayAlias;
352         continue;
353       }
354       if (!AA->isNoAlias(
355               MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()),
356               MemoryLocation::getAfter(MMO2->getValue(), MMO2->getAAInfo())))
357         return AR_MayAlias;
358     }
359   }
360   return AR_NoAlias;
361 }
362 
363 ImplicitNullChecks::SuitabilityResult
364 ImplicitNullChecks::isSuitableMemoryOp(const MachineInstr &MI,
365                                        unsigned PointerReg,
366                                        ArrayRef<MachineInstr *> PrevInsts) {
367   // Implementation restriction for faulting_op insertion
368   // TODO: This could be relaxed if we find a test case which warrants it.
369   if (MI.getDesc().getNumDefs() > 1)
370    return SR_Unsuitable;
371 
372   if (!MI.mayLoadOrStore() || MI.isPredicable())
373     return SR_Unsuitable;
374   auto AM = TII->getAddrModeFromMemoryOp(MI, TRI);
375   if (!AM)
376     return SR_Unsuitable;
377   auto AddrMode = *AM;
378   const Register BaseReg = AddrMode.BaseReg, ScaledReg = AddrMode.ScaledReg;
379   int64_t Displacement = AddrMode.Displacement;
380 
381   // We need the base of the memory instruction to be same as the register
382   // where the null check is performed (i.e. PointerReg).
383   if (BaseReg != PointerReg && ScaledReg != PointerReg)
384     return SR_Unsuitable;
385   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
386   unsigned PointerRegSizeInBits = TRI->getRegSizeInBits(PointerReg, MRI);
387   // Bail out of the sizes of BaseReg, ScaledReg and PointerReg are not the
388   // same.
389   if ((BaseReg &&
390        TRI->getRegSizeInBits(BaseReg, MRI) != PointerRegSizeInBits) ||
391       (ScaledReg &&
392        TRI->getRegSizeInBits(ScaledReg, MRI) != PointerRegSizeInBits))
393     return SR_Unsuitable;
394 
395   // Returns true if RegUsedInAddr is used for calculating the displacement
396   // depending on addressing mode. Also calculates the Displacement.
397   auto CalculateDisplacementFromAddrMode = [&](Register RegUsedInAddr,
398                                                int64_t Multiplier) {
399     // The register can be NoRegister, which is defined as zero for all targets.
400     // Consider instruction of interest as `movq 8(,%rdi,8), %rax`. Here the
401     // ScaledReg is %rdi, while there is no BaseReg.
402     if (!RegUsedInAddr)
403       return false;
404     assert(Multiplier && "expected to be non-zero!");
405     MachineInstr *ModifyingMI = nullptr;
406     for (auto It = std::next(MachineBasicBlock::const_reverse_iterator(&MI));
407          It != MI.getParent()->rend(); It++) {
408       const MachineInstr *CurrMI = &*It;
409       if (CurrMI->modifiesRegister(RegUsedInAddr, TRI)) {
410         ModifyingMI = const_cast<MachineInstr *>(CurrMI);
411         break;
412       }
413     }
414     if (!ModifyingMI)
415       return false;
416     // Check for the const value defined in register by ModifyingMI. This means
417     // all other previous values for that register has been invalidated.
418     int64_t ImmVal;
419     if (!TII->getConstValDefinedInReg(*ModifyingMI, RegUsedInAddr, ImmVal))
420       return false;
421     // Calculate the reg size in bits, since this is needed for bailing out in
422     // case of overflow.
423     int32_t RegSizeInBits = TRI->getRegSizeInBits(RegUsedInAddr, MRI);
424     APInt ImmValC(RegSizeInBits, ImmVal, true /*IsSigned*/);
425     APInt MultiplierC(RegSizeInBits, Multiplier);
426     assert(MultiplierC.isStrictlyPositive() &&
427            "expected to be a positive value!");
428     bool IsOverflow;
429     // Sign of the product depends on the sign of the ImmVal, since Multiplier
430     // is always positive.
431     APInt Product = ImmValC.smul_ov(MultiplierC, IsOverflow);
432     if (IsOverflow)
433       return false;
434     APInt DisplacementC(64, Displacement, true /*isSigned*/);
435     DisplacementC = Product.sadd_ov(DisplacementC, IsOverflow);
436     if (IsOverflow)
437       return false;
438 
439     // We only handle diplacements upto 64 bits wide.
440     if (DisplacementC.getActiveBits() > 64)
441       return false;
442     Displacement = DisplacementC.getSExtValue();
443     return true;
444   };
445 
446   // If a register used in the address is constant, fold it's effect into the
447   // displacement for ease of analysis.
448   bool BaseRegIsConstVal = false, ScaledRegIsConstVal = false;
449   if (CalculateDisplacementFromAddrMode(BaseReg, 1))
450     BaseRegIsConstVal = true;
451   if (CalculateDisplacementFromAddrMode(ScaledReg, AddrMode.Scale))
452     ScaledRegIsConstVal = true;
453 
454   // The register which is not null checked should be part of the Displacement
455   // calculation, otherwise we do not know whether the Displacement is made up
456   // by some symbolic values.
457   // This matters because we do not want to incorrectly assume that load from
458   // falls in the zeroth faulting page in the "sane offset check" below.
459   if ((BaseReg && BaseReg != PointerReg && !BaseRegIsConstVal) ||
460       (ScaledReg && ScaledReg != PointerReg && !ScaledRegIsConstVal))
461     return SR_Unsuitable;
462 
463   // We want the mem access to be issued at a sane offset from PointerReg,
464   // so that if PointerReg is null then the access reliably page faults.
465   if (!(-PageSize < Displacement && Displacement < PageSize))
466     return SR_Unsuitable;
467 
468   // Finally, check whether the current memory access aliases with previous one.
469   for (auto *PrevMI : PrevInsts) {
470     AliasResult AR = areMemoryOpsAliased(MI, PrevMI);
471     if (AR == AR_WillAliasEverything)
472       return SR_Impossible;
473     if (AR == AR_MayAlias)
474       return SR_Unsuitable;
475   }
476   return SR_Suitable;
477 }
478 
479 bool ImplicitNullChecks::canDependenceHoistingClobberLiveIns(
480     MachineInstr *DependenceMI, MachineBasicBlock *NullSucc) {
481   for (const auto &DependenceMO : DependenceMI->operands()) {
482     if (!(DependenceMO.isReg() && DependenceMO.getReg()))
483       continue;
484 
485     // Make sure that we won't clobber any live ins to the sibling block by
486     // hoisting Dependency.  For instance, we can't hoist INST to before the
487     // null check (even if it safe, and does not violate any dependencies in
488     // the non_null_block) if %rdx is live in to _null_block.
489     //
490     //    test %rcx, %rcx
491     //    je _null_block
492     //  _non_null_block:
493     //    %rdx = INST
494     //    ...
495     //
496     // This restriction does not apply to the faulting load inst because in
497     // case the pointer loaded from is in the null page, the load will not
498     // semantically execute, and affect machine state.  That is, if the load
499     // was loading into %rax and it faults, the value of %rax should stay the
500     // same as it would have been had the load not have executed and we'd have
501     // branched to NullSucc directly.
502     if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg()))
503       return true;
504 
505   }
506 
507   // The dependence does not clobber live-ins in NullSucc block.
508   return false;
509 }
510 
511 bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI,
512                                       ArrayRef<MachineInstr *> InstsSeenSoFar,
513                                       MachineBasicBlock *NullSucc,
514                                       MachineInstr *&Dependence) {
515   auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar);
516   if (!DepResult.CanReorder)
517     return false;
518 
519   if (!DepResult.PotentialDependence) {
520     Dependence = nullptr;
521     return true;
522   }
523 
524   auto DependenceItr = *DepResult.PotentialDependence;
525   auto *DependenceMI = *DependenceItr;
526 
527   // We don't want to reason about speculating loads.  Note -- at this point
528   // we should have already filtered out all of the other non-speculatable
529   // things, like calls and stores.
530   // We also do not want to hoist stores because it might change the memory
531   // while the FaultingMI may result in faulting.
532   assert(canHandle(DependenceMI) && "Should never have reached here!");
533   if (DependenceMI->mayLoadOrStore())
534     return false;
535 
536   if (canDependenceHoistingClobberLiveIns(DependenceMI, NullSucc))
537     return false;
538 
539   auto DepDepResult =
540       computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr});
541 
542   if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence)
543     return false;
544 
545   Dependence = DependenceMI;
546   return true;
547 }
548 
549 /// Analyze MBB to check if its terminating branch can be turned into an
550 /// implicit null check.  If yes, append a description of the said null check to
551 /// NullCheckList and return true, else return false.
552 bool ImplicitNullChecks::analyzeBlockForNullChecks(
553     MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
554   using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
555 
556   MDNode *BranchMD = nullptr;
557   if (auto *BB = MBB.getBasicBlock())
558     BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
559 
560   if (!BranchMD)
561     return false;
562 
563   MachineBranchPredicate MBP;
564 
565   if (TII->analyzeBranchPredicate(MBB, MBP, true))
566     return false;
567 
568   // Is the predicate comparing an integer to zero?
569   if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
570         (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
571          MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
572     return false;
573 
574   // If there is a separate condition generation instruction, we chose not to
575   // transform unless we can remove both condition and consuming branch.
576   if (MBP.ConditionDef && !MBP.SingleUseCondition)
577     return false;
578 
579   MachineBasicBlock *NotNullSucc, *NullSucc;
580 
581   if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
582     NotNullSucc = MBP.TrueDest;
583     NullSucc = MBP.FalseDest;
584   } else {
585     NotNullSucc = MBP.FalseDest;
586     NullSucc = MBP.TrueDest;
587   }
588 
589   // We handle the simplest case for now.  We can potentially do better by using
590   // the machine dominator tree.
591   if (NotNullSucc->pred_size() != 1)
592     return false;
593 
594   const Register PointerReg = MBP.LHS.getReg();
595 
596   if (MBP.ConditionDef) {
597     // To prevent the invalid transformation of the following code:
598     //
599     //   mov %rax, %rcx
600     //   test %rax, %rax
601     //   %rax = ...
602     //   je throw_npe
603     //   mov(%rcx), %r9
604     //   mov(%rax), %r10
605     //
606     // into:
607     //
608     //   mov %rax, %rcx
609     //   %rax = ....
610     //   faulting_load_op("movl (%rax), %r10", throw_npe)
611     //   mov(%rcx), %r9
612     //
613     // we must ensure that there are no instructions between the 'test' and
614     // conditional jump that modify %rax.
615     assert(MBP.ConditionDef->getParent() ==  &MBB &&
616            "Should be in basic block");
617 
618     for (auto I = MBB.rbegin(); MBP.ConditionDef != &*I; ++I)
619       if (I->modifiesRegister(PointerReg, TRI))
620         return false;
621   }
622   // Starting with a code fragment like:
623   //
624   //   test %rax, %rax
625   //   jne LblNotNull
626   //
627   //  LblNull:
628   //   callq throw_NullPointerException
629   //
630   //  LblNotNull:
631   //   Inst0
632   //   Inst1
633   //   ...
634   //   Def = Load (%rax + <offset>)
635   //   ...
636   //
637   //
638   // we want to end up with
639   //
640   //   Def = FaultingLoad (%rax + <offset>), LblNull
641   //   jmp LblNotNull ;; explicit or fallthrough
642   //
643   //  LblNotNull:
644   //   Inst0
645   //   Inst1
646   //   ...
647   //
648   //  LblNull:
649   //   callq throw_NullPointerException
650   //
651   //
652   // To see why this is legal, consider the two possibilities:
653   //
654   //  1. %rax is null: since we constrain <offset> to be less than PageSize, the
655   //     load instruction dereferences the null page, causing a segmentation
656   //     fault.
657   //
658   //  2. %rax is not null: in this case we know that the load cannot fault, as
659   //     otherwise the load would've faulted in the original program too and the
660   //     original program would've been undefined.
661   //
662   // This reasoning cannot be extended to justify hoisting through arbitrary
663   // control flow.  For instance, in the example below (in pseudo-C)
664   //
665   //    if (ptr == null) { throw_npe(); unreachable; }
666   //    if (some_cond) { return 42; }
667   //    v = ptr->field;  // LD
668   //    ...
669   //
670   // we cannot (without code duplication) use the load marked "LD" to null check
671   // ptr -- clause (2) above does not apply in this case.  In the above program
672   // the safety of ptr->field can be dependent on some_cond; and, for instance,
673   // ptr could be some non-null invalid reference that never gets loaded from
674   // because some_cond is always true.
675 
676   SmallVector<MachineInstr *, 8> InstsSeenSoFar;
677 
678   for (auto &MI : *NotNullSucc) {
679     if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider)
680       return false;
681 
682     MachineInstr *Dependence;
683     SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar);
684     if (SR == SR_Impossible)
685       return false;
686     if (SR == SR_Suitable &&
687         canHoistInst(&MI, InstsSeenSoFar, NullSucc, Dependence)) {
688       NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
689                                  NullSucc, Dependence);
690       return true;
691     }
692 
693     // If MI re-defines the PointerReg in a way that changes the value of
694     // PointerReg if it was null, then we cannot move further.
695     if (!TII->preservesZeroValueInReg(&MI, PointerReg, TRI))
696       return false;
697     InstsSeenSoFar.push_back(&MI);
698   }
699 
700   return false;
701 }
702 
703 /// Wrap a machine instruction, MI, into a FAULTING machine instruction.
704 /// The FAULTING instruction does the same load/store as MI
705 /// (defining the same register), and branches to HandlerMBB if the mem access
706 /// faults.  The FAULTING instruction is inserted at the end of MBB.
707 MachineInstr *ImplicitNullChecks::insertFaultingInstr(
708     MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) {
709   const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
710                                  // all targets.
711 
712   DebugLoc DL;
713   unsigned NumDefs = MI->getDesc().getNumDefs();
714   assert(NumDefs <= 1 && "other cases unhandled!");
715 
716   unsigned DefReg = NoRegister;
717   if (NumDefs != 0) {
718     DefReg = MI->getOperand(0).getReg();
719     assert(NumDefs == 1 && "expected exactly one def!");
720   }
721 
722   FaultMaps::FaultKind FK;
723   if (MI->mayLoad())
724     FK =
725         MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad;
726   else
727     FK = FaultMaps::FaultingStore;
728 
729   auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg)
730                  .addImm(FK)
731                  .addMBB(HandlerMBB)
732                  .addImm(MI->getOpcode());
733 
734   for (auto &MO : MI->uses()) {
735     if (MO.isReg()) {
736       MachineOperand NewMO = MO;
737       if (MO.isUse()) {
738         NewMO.setIsKill(false);
739       } else {
740         assert(MO.isDef() && "Expected def or use");
741         NewMO.setIsDead(false);
742       }
743       MIB.add(NewMO);
744     } else {
745       MIB.add(MO);
746     }
747   }
748 
749   MIB.setMemRefs(MI->memoperands());
750 
751   return MIB;
752 }
753 
754 /// Rewrite the null checks in NullCheckList into implicit null checks.
755 void ImplicitNullChecks::rewriteNullChecks(
756     ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
757   DebugLoc DL;
758 
759   for (const auto &NC : NullCheckList) {
760     // Remove the conditional branch dependent on the null check.
761     unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock());
762     (void)BranchesRemoved;
763     assert(BranchesRemoved > 0 && "expected at least one branch!");
764 
765     if (auto *DepMI = NC.getOnlyDependency()) {
766       DepMI->removeFromParent();
767       NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI);
768     }
769 
770     // Insert a faulting instruction where the conditional branch was
771     // originally. We check earlier ensures that this bit of code motion
772     // is legal.  We do not touch the successors list for any basic block
773     // since we haven't changed control flow, we've just made it implicit.
774     MachineInstr *FaultingInstr = insertFaultingInstr(
775         NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc());
776     // Now the values defined by MemOperation, if any, are live-in of
777     // the block of MemOperation.
778     // The original operation may define implicit-defs alongside
779     // the value.
780     MachineBasicBlock *MBB = NC.getMemOperation()->getParent();
781     for (const MachineOperand &MO : FaultingInstr->operands()) {
782       if (!MO.isReg() || !MO.isDef())
783         continue;
784       Register Reg = MO.getReg();
785       if (!Reg || MBB->isLiveIn(Reg))
786         continue;
787       MBB->addLiveIn(Reg);
788     }
789 
790     if (auto *DepMI = NC.getOnlyDependency()) {
791       for (auto &MO : DepMI->operands()) {
792         if (!MO.isReg() || !MO.getReg() || !MO.isDef() || MO.isDead())
793           continue;
794         if (!NC.getNotNullSucc()->isLiveIn(MO.getReg()))
795           NC.getNotNullSucc()->addLiveIn(MO.getReg());
796       }
797     }
798 
799     NC.getMemOperation()->eraseFromParent();
800     if (auto *CheckOp = NC.getCheckOperation())
801       CheckOp->eraseFromParent();
802 
803     // Insert an *unconditional* branch to not-null successor - we expect
804     // block placement to remove fallthroughs later.
805     TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
806                       /*Cond=*/std::nullopt, DL);
807 
808     NumImplicitNullChecks++;
809   }
810 }
811 
812 char ImplicitNullChecks::ID = 0;
813 
814 char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
815 
816 INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE,
817                       "Implicit null checks", false, false)
818 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
819 INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE,
820                     "Implicit null checks", false, false)
821