xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/ImplicitNullChecks.cpp (revision 162ae9c834f6d9f9cb443bd62cceb23e0b5fef48)
1 //===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass turns explicit null checks of the form
10 //
11 //   test %r10, %r10
12 //   je throw_npe
13 //   movl (%r10), %esi
14 //   ...
15 //
16 // to
17 //
18 //   faulting_load_op("movl (%r10), %esi", throw_npe)
19 //   ...
20 //
21 // With the help of a runtime that understands the .fault_maps section,
22 // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
23 // a page fault.
24 // Store and LoadStore are also supported.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/Analysis/AliasAnalysis.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/CodeGen/FaultMaps.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFunctionPass.h"
40 #include "llvm/CodeGen/MachineInstr.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/PseudoSourceValue.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/TargetOpcodes.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/IR/BasicBlock.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/MC/MCInstrDesc.h"
54 #include "llvm/MC/MCRegisterInfo.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/CommandLine.h"
57 #include <cassert>
58 #include <cstdint>
59 #include <iterator>
60 
61 using namespace llvm;
62 
63 static cl::opt<int> PageSize("imp-null-check-page-size",
64                              cl::desc("The page size of the target in bytes"),
65                              cl::init(4096), cl::Hidden);
66 
67 static cl::opt<unsigned> MaxInstsToConsider(
68     "imp-null-max-insts-to-consider",
69     cl::desc("The max number of instructions to consider hoisting loads over "
70              "(the algorithm is quadratic over this number)"),
71     cl::Hidden, cl::init(8));
72 
73 #define DEBUG_TYPE "implicit-null-checks"
74 
75 STATISTIC(NumImplicitNullChecks,
76           "Number of explicit null checks made implicit");
77 
78 namespace {
79 
80 class ImplicitNullChecks : public MachineFunctionPass {
81   /// Return true if \c computeDependence can process \p MI.
82   static bool canHandle(const MachineInstr *MI);
83 
84   /// Helper function for \c computeDependence.  Return true if \p A
85   /// and \p B do not have any dependences between them, and can be
86   /// re-ordered without changing program semantics.
87   bool canReorder(const MachineInstr *A, const MachineInstr *B);
88 
89   /// A data type for representing the result computed by \c
90   /// computeDependence.  States whether it is okay to reorder the
91   /// instruction passed to \c computeDependence with at most one
92   /// dependency.
93   struct DependenceResult {
94     /// Can we actually re-order \p MI with \p Insts (see \c
95     /// computeDependence).
96     bool CanReorder;
97 
98     /// If non-None, then an instruction in \p Insts that also must be
99     /// hoisted.
100     Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence;
101 
102     /*implicit*/ DependenceResult(
103         bool CanReorder,
104         Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence)
105         : CanReorder(CanReorder), PotentialDependence(PotentialDependence) {
106       assert((!PotentialDependence || CanReorder) &&
107              "!CanReorder && PotentialDependence.hasValue() not allowed!");
108     }
109   };
110 
111   /// Compute a result for the following question: can \p MI be
112   /// re-ordered from after \p Insts to before it.
113   ///
114   /// \c canHandle should return true for all instructions in \p
115   /// Insts.
116   DependenceResult computeDependence(const MachineInstr *MI,
117                                      ArrayRef<MachineInstr *> Block);
118 
119   /// Represents one null check that can be made implicit.
120   class NullCheck {
121     // The memory operation the null check can be folded into.
122     MachineInstr *MemOperation;
123 
124     // The instruction actually doing the null check (Ptr != 0).
125     MachineInstr *CheckOperation;
126 
127     // The block the check resides in.
128     MachineBasicBlock *CheckBlock;
129 
130     // The block branched to if the pointer is non-null.
131     MachineBasicBlock *NotNullSucc;
132 
133     // The block branched to if the pointer is null.
134     MachineBasicBlock *NullSucc;
135 
136     // If this is non-null, then MemOperation has a dependency on this
137     // instruction; and it needs to be hoisted to execute before MemOperation.
138     MachineInstr *OnlyDependency;
139 
140   public:
141     explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
142                        MachineBasicBlock *checkBlock,
143                        MachineBasicBlock *notNullSucc,
144                        MachineBasicBlock *nullSucc,
145                        MachineInstr *onlyDependency)
146         : MemOperation(memOperation), CheckOperation(checkOperation),
147           CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc),
148           OnlyDependency(onlyDependency) {}
149 
150     MachineInstr *getMemOperation() const { return MemOperation; }
151 
152     MachineInstr *getCheckOperation() const { return CheckOperation; }
153 
154     MachineBasicBlock *getCheckBlock() const { return CheckBlock; }
155 
156     MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; }
157 
158     MachineBasicBlock *getNullSucc() const { return NullSucc; }
159 
160     MachineInstr *getOnlyDependency() const { return OnlyDependency; }
161   };
162 
163   const TargetInstrInfo *TII = nullptr;
164   const TargetRegisterInfo *TRI = nullptr;
165   AliasAnalysis *AA = nullptr;
166   MachineFrameInfo *MFI = nullptr;
167 
168   bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
169                                  SmallVectorImpl<NullCheck> &NullCheckList);
170   MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB,
171                                     MachineBasicBlock *HandlerMBB);
172   void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
173 
174   enum AliasResult {
175     AR_NoAlias,
176     AR_MayAlias,
177     AR_WillAliasEverything
178   };
179 
180   /// Returns AR_NoAlias if \p MI memory operation does not alias with
181   /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if
182   /// they may alias and any further memory operation may alias with \p PrevMI.
183   AliasResult areMemoryOpsAliased(const MachineInstr &MI,
184                                   const MachineInstr *PrevMI) const;
185 
186   enum SuitabilityResult {
187     SR_Suitable,
188     SR_Unsuitable,
189     SR_Impossible
190   };
191 
192   /// Return SR_Suitable if \p MI a memory operation that can be used to
193   /// implicitly null check the value in \p PointerReg, SR_Unsuitable if
194   /// \p MI cannot be used to null check and SR_Impossible if there is
195   /// no sense to continue lookup due to any other instruction will not be able
196   /// to be used. \p PrevInsts is the set of instruction seen since
197   /// the explicit null check on \p PointerReg.
198   SuitabilityResult isSuitableMemoryOp(const MachineInstr &MI,
199                                        unsigned PointerReg,
200                                        ArrayRef<MachineInstr *> PrevInsts);
201 
202   /// Return true if \p FaultingMI can be hoisted from after the
203   /// instructions in \p InstsSeenSoFar to before them.  Set \p Dependence to a
204   /// non-null value if we also need to (and legally can) hoist a depedency.
205   bool canHoistInst(MachineInstr *FaultingMI, unsigned PointerReg,
206                     ArrayRef<MachineInstr *> InstsSeenSoFar,
207                     MachineBasicBlock *NullSucc, MachineInstr *&Dependence);
208 
209 public:
210   static char ID;
211 
212   ImplicitNullChecks() : MachineFunctionPass(ID) {
213     initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
214   }
215 
216   bool runOnMachineFunction(MachineFunction &MF) override;
217 
218   void getAnalysisUsage(AnalysisUsage &AU) const override {
219     AU.addRequired<AAResultsWrapperPass>();
220     MachineFunctionPass::getAnalysisUsage(AU);
221   }
222 
223   MachineFunctionProperties getRequiredProperties() const override {
224     return MachineFunctionProperties().set(
225         MachineFunctionProperties::Property::NoVRegs);
226   }
227 };
228 
229 } // end anonymous namespace
230 
231 bool ImplicitNullChecks::canHandle(const MachineInstr *MI) {
232   if (MI->isCall() || MI->mayRaiseFPException() ||
233       MI->hasUnmodeledSideEffects())
234     return false;
235   auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); };
236   (void)IsRegMask;
237 
238   assert(!llvm::any_of(MI->operands(), IsRegMask) &&
239          "Calls were filtered out above!");
240 
241   auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); };
242   return llvm::all_of(MI->memoperands(), IsUnordered);
243 }
244 
245 ImplicitNullChecks::DependenceResult
246 ImplicitNullChecks::computeDependence(const MachineInstr *MI,
247                                       ArrayRef<MachineInstr *> Block) {
248   assert(llvm::all_of(Block, canHandle) && "Check this first!");
249   assert(!is_contained(Block, MI) && "Block must be exclusive of MI!");
250 
251   Optional<ArrayRef<MachineInstr *>::iterator> Dep;
252 
253   for (auto I = Block.begin(), E = Block.end(); I != E; ++I) {
254     if (canReorder(*I, MI))
255       continue;
256 
257     if (Dep == None) {
258       // Found one possible dependency, keep track of it.
259       Dep = I;
260     } else {
261       // We found two dependencies, so bail out.
262       return {false, None};
263     }
264   }
265 
266   return {true, Dep};
267 }
268 
269 bool ImplicitNullChecks::canReorder(const MachineInstr *A,
270                                     const MachineInstr *B) {
271   assert(canHandle(A) && canHandle(B) && "Precondition!");
272 
273   // canHandle makes sure that we _can_ correctly analyze the dependencies
274   // between A and B here -- for instance, we should not be dealing with heap
275   // load-store dependencies here.
276 
277   for (auto MOA : A->operands()) {
278     if (!(MOA.isReg() && MOA.getReg()))
279       continue;
280 
281     unsigned RegA = MOA.getReg();
282     for (auto MOB : B->operands()) {
283       if (!(MOB.isReg() && MOB.getReg()))
284         continue;
285 
286       unsigned RegB = MOB.getReg();
287 
288       if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef()))
289         return false;
290     }
291   }
292 
293   return true;
294 }
295 
296 bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
297   TII = MF.getSubtarget().getInstrInfo();
298   TRI = MF.getRegInfo().getTargetRegisterInfo();
299   MFI = &MF.getFrameInfo();
300   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
301 
302   SmallVector<NullCheck, 16> NullCheckList;
303 
304   for (auto &MBB : MF)
305     analyzeBlockForNullChecks(MBB, NullCheckList);
306 
307   if (!NullCheckList.empty())
308     rewriteNullChecks(NullCheckList);
309 
310   return !NullCheckList.empty();
311 }
312 
313 // Return true if any register aliasing \p Reg is live-in into \p MBB.
314 static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
315                            MachineBasicBlock *MBB, unsigned Reg) {
316   for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid();
317        ++AR)
318     if (MBB->isLiveIn(*AR))
319       return true;
320   return false;
321 }
322 
323 ImplicitNullChecks::AliasResult
324 ImplicitNullChecks::areMemoryOpsAliased(const MachineInstr &MI,
325                                         const MachineInstr *PrevMI) const {
326   // If it is not memory access, skip the check.
327   if (!(PrevMI->mayStore() || PrevMI->mayLoad()))
328     return AR_NoAlias;
329   // Load-Load may alias
330   if (!(MI.mayStore() || PrevMI->mayStore()))
331     return AR_NoAlias;
332   // We lost info, conservatively alias. If it was store then no sense to
333   // continue because we won't be able to check against it further.
334   if (MI.memoperands_empty())
335     return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias;
336   if (PrevMI->memoperands_empty())
337     return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias;
338 
339   for (MachineMemOperand *MMO1 : MI.memoperands()) {
340     // MMO1 should have a value due it comes from operation we'd like to use
341     // as implicit null check.
342     assert(MMO1->getValue() && "MMO1 should have a Value!");
343     for (MachineMemOperand *MMO2 : PrevMI->memoperands()) {
344       if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) {
345         if (PSV->mayAlias(MFI))
346           return AR_MayAlias;
347         continue;
348       }
349       llvm::AliasResult AAResult =
350           AA->alias(MemoryLocation(MMO1->getValue(), LocationSize::unknown(),
351                                    MMO1->getAAInfo()),
352                     MemoryLocation(MMO2->getValue(), LocationSize::unknown(),
353                                    MMO2->getAAInfo()));
354       if (AAResult != NoAlias)
355         return AR_MayAlias;
356     }
357   }
358   return AR_NoAlias;
359 }
360 
361 ImplicitNullChecks::SuitabilityResult
362 ImplicitNullChecks::isSuitableMemoryOp(const MachineInstr &MI,
363                                        unsigned PointerReg,
364                                        ArrayRef<MachineInstr *> PrevInsts) {
365   int64_t Offset;
366   const MachineOperand *BaseOp;
367 
368   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI) ||
369       !BaseOp->isReg() || BaseOp->getReg() != PointerReg)
370     return SR_Unsuitable;
371 
372   // We want the mem access to be issued at a sane offset from PointerReg,
373   // so that if PointerReg is null then the access reliably page faults.
374   if (!((MI.mayLoad() || MI.mayStore()) && !MI.isPredicable() &&
375         -PageSize < Offset && Offset < PageSize))
376     return SR_Unsuitable;
377 
378   // Finally, check whether the current memory access aliases with previous one.
379   for (auto *PrevMI : PrevInsts) {
380     AliasResult AR = areMemoryOpsAliased(MI, PrevMI);
381     if (AR == AR_WillAliasEverything)
382       return SR_Impossible;
383     if (AR == AR_MayAlias)
384       return SR_Unsuitable;
385   }
386   return SR_Suitable;
387 }
388 
389 bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI,
390                                       unsigned PointerReg,
391                                       ArrayRef<MachineInstr *> InstsSeenSoFar,
392                                       MachineBasicBlock *NullSucc,
393                                       MachineInstr *&Dependence) {
394   auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar);
395   if (!DepResult.CanReorder)
396     return false;
397 
398   if (!DepResult.PotentialDependence) {
399     Dependence = nullptr;
400     return true;
401   }
402 
403   auto DependenceItr = *DepResult.PotentialDependence;
404   auto *DependenceMI = *DependenceItr;
405 
406   // We don't want to reason about speculating loads.  Note -- at this point
407   // we should have already filtered out all of the other non-speculatable
408   // things, like calls and stores.
409   // We also do not want to hoist stores because it might change the memory
410   // while the FaultingMI may result in faulting.
411   assert(canHandle(DependenceMI) && "Should never have reached here!");
412   if (DependenceMI->mayLoadOrStore())
413     return false;
414 
415   for (auto &DependenceMO : DependenceMI->operands()) {
416     if (!(DependenceMO.isReg() && DependenceMO.getReg()))
417       continue;
418 
419     // Make sure that we won't clobber any live ins to the sibling block by
420     // hoisting Dependency.  For instance, we can't hoist INST to before the
421     // null check (even if it safe, and does not violate any dependencies in
422     // the non_null_block) if %rdx is live in to _null_block.
423     //
424     //    test %rcx, %rcx
425     //    je _null_block
426     //  _non_null_block:
427     //    %rdx = INST
428     //    ...
429     //
430     // This restriction does not apply to the faulting load inst because in
431     // case the pointer loaded from is in the null page, the load will not
432     // semantically execute, and affect machine state.  That is, if the load
433     // was loading into %rax and it faults, the value of %rax should stay the
434     // same as it would have been had the load not have executed and we'd have
435     // branched to NullSucc directly.
436     if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg()))
437       return false;
438 
439     // The Dependency can't be re-defining the base register -- then we won't
440     // get the memory operation on the address we want.  This is already
441     // checked in \c IsSuitableMemoryOp.
442     assert(!(DependenceMO.isDef() &&
443              TRI->regsOverlap(DependenceMO.getReg(), PointerReg)) &&
444            "Should have been checked before!");
445   }
446 
447   auto DepDepResult =
448       computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr});
449 
450   if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence)
451     return false;
452 
453   Dependence = DependenceMI;
454   return true;
455 }
456 
457 /// Analyze MBB to check if its terminating branch can be turned into an
458 /// implicit null check.  If yes, append a description of the said null check to
459 /// NullCheckList and return true, else return false.
460 bool ImplicitNullChecks::analyzeBlockForNullChecks(
461     MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
462   using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
463 
464   MDNode *BranchMD = nullptr;
465   if (auto *BB = MBB.getBasicBlock())
466     BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
467 
468   if (!BranchMD)
469     return false;
470 
471   MachineBranchPredicate MBP;
472 
473   if (TII->analyzeBranchPredicate(MBB, MBP, true))
474     return false;
475 
476   // Is the predicate comparing an integer to zero?
477   if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
478         (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
479          MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
480     return false;
481 
482   // If we cannot erase the test instruction itself, then making the null check
483   // implicit does not buy us much.
484   if (!MBP.SingleUseCondition)
485     return false;
486 
487   MachineBasicBlock *NotNullSucc, *NullSucc;
488 
489   if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
490     NotNullSucc = MBP.TrueDest;
491     NullSucc = MBP.FalseDest;
492   } else {
493     NotNullSucc = MBP.FalseDest;
494     NullSucc = MBP.TrueDest;
495   }
496 
497   // We handle the simplest case for now.  We can potentially do better by using
498   // the machine dominator tree.
499   if (NotNullSucc->pred_size() != 1)
500     return false;
501 
502   // To prevent the invalid transformation of the following code:
503   //
504   //   mov %rax, %rcx
505   //   test %rax, %rax
506   //   %rax = ...
507   //   je throw_npe
508   //   mov(%rcx), %r9
509   //   mov(%rax), %r10
510   //
511   // into:
512   //
513   //   mov %rax, %rcx
514   //   %rax = ....
515   //   faulting_load_op("movl (%rax), %r10", throw_npe)
516   //   mov(%rcx), %r9
517   //
518   // we must ensure that there are no instructions between the 'test' and
519   // conditional jump that modify %rax.
520   const unsigned PointerReg = MBP.LHS.getReg();
521 
522   assert(MBP.ConditionDef->getParent() ==  &MBB && "Should be in basic block");
523 
524   for (auto I = MBB.rbegin(); MBP.ConditionDef != &*I; ++I)
525     if (I->modifiesRegister(PointerReg, TRI))
526       return false;
527 
528   // Starting with a code fragment like:
529   //
530   //   test %rax, %rax
531   //   jne LblNotNull
532   //
533   //  LblNull:
534   //   callq throw_NullPointerException
535   //
536   //  LblNotNull:
537   //   Inst0
538   //   Inst1
539   //   ...
540   //   Def = Load (%rax + <offset>)
541   //   ...
542   //
543   //
544   // we want to end up with
545   //
546   //   Def = FaultingLoad (%rax + <offset>), LblNull
547   //   jmp LblNotNull ;; explicit or fallthrough
548   //
549   //  LblNotNull:
550   //   Inst0
551   //   Inst1
552   //   ...
553   //
554   //  LblNull:
555   //   callq throw_NullPointerException
556   //
557   //
558   // To see why this is legal, consider the two possibilities:
559   //
560   //  1. %rax is null: since we constrain <offset> to be less than PageSize, the
561   //     load instruction dereferences the null page, causing a segmentation
562   //     fault.
563   //
564   //  2. %rax is not null: in this case we know that the load cannot fault, as
565   //     otherwise the load would've faulted in the original program too and the
566   //     original program would've been undefined.
567   //
568   // This reasoning cannot be extended to justify hoisting through arbitrary
569   // control flow.  For instance, in the example below (in pseudo-C)
570   //
571   //    if (ptr == null) { throw_npe(); unreachable; }
572   //    if (some_cond) { return 42; }
573   //    v = ptr->field;  // LD
574   //    ...
575   //
576   // we cannot (without code duplication) use the load marked "LD" to null check
577   // ptr -- clause (2) above does not apply in this case.  In the above program
578   // the safety of ptr->field can be dependent on some_cond; and, for instance,
579   // ptr could be some non-null invalid reference that never gets loaded from
580   // because some_cond is always true.
581 
582   SmallVector<MachineInstr *, 8> InstsSeenSoFar;
583 
584   for (auto &MI : *NotNullSucc) {
585     if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider)
586       return false;
587 
588     MachineInstr *Dependence;
589     SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar);
590     if (SR == SR_Impossible)
591       return false;
592     if (SR == SR_Suitable &&
593         canHoistInst(&MI, PointerReg, InstsSeenSoFar, NullSucc, Dependence)) {
594       NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
595                                  NullSucc, Dependence);
596       return true;
597     }
598 
599     // If MI re-defines the PointerReg then we cannot move further.
600     if (llvm::any_of(MI.operands(), [&](MachineOperand &MO) {
601           return MO.isReg() && MO.getReg() && MO.isDef() &&
602                  TRI->regsOverlap(MO.getReg(), PointerReg);
603         }))
604       return false;
605     InstsSeenSoFar.push_back(&MI);
606   }
607 
608   return false;
609 }
610 
611 /// Wrap a machine instruction, MI, into a FAULTING machine instruction.
612 /// The FAULTING instruction does the same load/store as MI
613 /// (defining the same register), and branches to HandlerMBB if the mem access
614 /// faults.  The FAULTING instruction is inserted at the end of MBB.
615 MachineInstr *ImplicitNullChecks::insertFaultingInstr(
616     MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) {
617   const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
618                                  // all targets.
619 
620   DebugLoc DL;
621   unsigned NumDefs = MI->getDesc().getNumDefs();
622   assert(NumDefs <= 1 && "other cases unhandled!");
623 
624   unsigned DefReg = NoRegister;
625   if (NumDefs != 0) {
626     DefReg = MI->getOperand(0).getReg();
627     assert(NumDefs == 1 && "expected exactly one def!");
628   }
629 
630   FaultMaps::FaultKind FK;
631   if (MI->mayLoad())
632     FK =
633         MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad;
634   else
635     FK = FaultMaps::FaultingStore;
636 
637   auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg)
638                  .addImm(FK)
639                  .addMBB(HandlerMBB)
640                  .addImm(MI->getOpcode());
641 
642   for (auto &MO : MI->uses()) {
643     if (MO.isReg()) {
644       MachineOperand NewMO = MO;
645       if (MO.isUse()) {
646         NewMO.setIsKill(false);
647       } else {
648         assert(MO.isDef() && "Expected def or use");
649         NewMO.setIsDead(false);
650       }
651       MIB.add(NewMO);
652     } else {
653       MIB.add(MO);
654     }
655   }
656 
657   MIB.setMemRefs(MI->memoperands());
658 
659   return MIB;
660 }
661 
662 /// Rewrite the null checks in NullCheckList into implicit null checks.
663 void ImplicitNullChecks::rewriteNullChecks(
664     ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
665   DebugLoc DL;
666 
667   for (auto &NC : NullCheckList) {
668     // Remove the conditional branch dependent on the null check.
669     unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock());
670     (void)BranchesRemoved;
671     assert(BranchesRemoved > 0 && "expected at least one branch!");
672 
673     if (auto *DepMI = NC.getOnlyDependency()) {
674       DepMI->removeFromParent();
675       NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI);
676     }
677 
678     // Insert a faulting instruction where the conditional branch was
679     // originally. We check earlier ensures that this bit of code motion
680     // is legal.  We do not touch the successors list for any basic block
681     // since we haven't changed control flow, we've just made it implicit.
682     MachineInstr *FaultingInstr = insertFaultingInstr(
683         NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc());
684     // Now the values defined by MemOperation, if any, are live-in of
685     // the block of MemOperation.
686     // The original operation may define implicit-defs alongside
687     // the value.
688     MachineBasicBlock *MBB = NC.getMemOperation()->getParent();
689     for (const MachineOperand &MO : FaultingInstr->operands()) {
690       if (!MO.isReg() || !MO.isDef())
691         continue;
692       unsigned Reg = MO.getReg();
693       if (!Reg || MBB->isLiveIn(Reg))
694         continue;
695       MBB->addLiveIn(Reg);
696     }
697 
698     if (auto *DepMI = NC.getOnlyDependency()) {
699       for (auto &MO : DepMI->operands()) {
700         if (!MO.isReg() || !MO.getReg() || !MO.isDef())
701           continue;
702         if (!NC.getNotNullSucc()->isLiveIn(MO.getReg()))
703           NC.getNotNullSucc()->addLiveIn(MO.getReg());
704       }
705     }
706 
707     NC.getMemOperation()->eraseFromParent();
708     NC.getCheckOperation()->eraseFromParent();
709 
710     // Insert an *unconditional* branch to not-null successor.
711     TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
712                       /*Cond=*/None, DL);
713 
714     NumImplicitNullChecks++;
715   }
716 }
717 
718 char ImplicitNullChecks::ID = 0;
719 
720 char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
721 
722 INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE,
723                       "Implicit null checks", false, false)
724 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
725 INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE,
726                     "Implicit null checks", false, false)
727