xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/ImplicitNullChecks.cpp (revision 0d8fe2373503aeac48492f28073049a8bfa4feb5)
1 //===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass turns explicit null checks of the form
10 //
11 //   test %r10, %r10
12 //   je throw_npe
13 //   movl (%r10), %esi
14 //   ...
15 //
16 // to
17 //
18 //   faulting_load_op("movl (%r10), %esi", throw_npe)
19 //   ...
20 //
21 // With the help of a runtime that understands the .fault_maps section,
22 // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
23 // a page fault.
24 // Store and LoadStore are also supported.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/Analysis/AliasAnalysis.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/CodeGen/FaultMaps.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFunctionPass.h"
40 #include "llvm/CodeGen/MachineInstr.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/PseudoSourceValue.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/TargetOpcodes.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/IR/BasicBlock.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/MC/MCInstrDesc.h"
55 #include "llvm/MC/MCRegisterInfo.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/CommandLine.h"
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 
62 using namespace llvm;
63 
64 static cl::opt<int> PageSize("imp-null-check-page-size",
65                              cl::desc("The page size of the target in bytes"),
66                              cl::init(4096), cl::Hidden);
67 
68 static cl::opt<unsigned> MaxInstsToConsider(
69     "imp-null-max-insts-to-consider",
70     cl::desc("The max number of instructions to consider hoisting loads over "
71              "(the algorithm is quadratic over this number)"),
72     cl::Hidden, cl::init(8));
73 
74 #define DEBUG_TYPE "implicit-null-checks"
75 
76 STATISTIC(NumImplicitNullChecks,
77           "Number of explicit null checks made implicit");
78 
79 namespace {
80 
81 class ImplicitNullChecks : public MachineFunctionPass {
82   /// Return true if \c computeDependence can process \p MI.
83   static bool canHandle(const MachineInstr *MI);
84 
85   /// Helper function for \c computeDependence.  Return true if \p A
86   /// and \p B do not have any dependences between them, and can be
87   /// re-ordered without changing program semantics.
88   bool canReorder(const MachineInstr *A, const MachineInstr *B);
89 
90   /// A data type for representing the result computed by \c
91   /// computeDependence.  States whether it is okay to reorder the
92   /// instruction passed to \c computeDependence with at most one
93   /// dependency.
94   struct DependenceResult {
95     /// Can we actually re-order \p MI with \p Insts (see \c
96     /// computeDependence).
97     bool CanReorder;
98 
99     /// If non-None, then an instruction in \p Insts that also must be
100     /// hoisted.
101     Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence;
102 
103     /*implicit*/ DependenceResult(
104         bool CanReorder,
105         Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence)
106         : CanReorder(CanReorder), PotentialDependence(PotentialDependence) {
107       assert((!PotentialDependence || CanReorder) &&
108              "!CanReorder && PotentialDependence.hasValue() not allowed!");
109     }
110   };
111 
112   /// Compute a result for the following question: can \p MI be
113   /// re-ordered from after \p Insts to before it.
114   ///
115   /// \c canHandle should return true for all instructions in \p
116   /// Insts.
117   DependenceResult computeDependence(const MachineInstr *MI,
118                                      ArrayRef<MachineInstr *> Block);
119 
120   /// Represents one null check that can be made implicit.
121   class NullCheck {
122     // The memory operation the null check can be folded into.
123     MachineInstr *MemOperation;
124 
125     // The instruction actually doing the null check (Ptr != 0).
126     MachineInstr *CheckOperation;
127 
128     // The block the check resides in.
129     MachineBasicBlock *CheckBlock;
130 
131     // The block branched to if the pointer is non-null.
132     MachineBasicBlock *NotNullSucc;
133 
134     // The block branched to if the pointer is null.
135     MachineBasicBlock *NullSucc;
136 
137     // If this is non-null, then MemOperation has a dependency on this
138     // instruction; and it needs to be hoisted to execute before MemOperation.
139     MachineInstr *OnlyDependency;
140 
141   public:
142     explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
143                        MachineBasicBlock *checkBlock,
144                        MachineBasicBlock *notNullSucc,
145                        MachineBasicBlock *nullSucc,
146                        MachineInstr *onlyDependency)
147         : MemOperation(memOperation), CheckOperation(checkOperation),
148           CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc),
149           OnlyDependency(onlyDependency) {}
150 
151     MachineInstr *getMemOperation() const { return MemOperation; }
152 
153     MachineInstr *getCheckOperation() const { return CheckOperation; }
154 
155     MachineBasicBlock *getCheckBlock() const { return CheckBlock; }
156 
157     MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; }
158 
159     MachineBasicBlock *getNullSucc() const { return NullSucc; }
160 
161     MachineInstr *getOnlyDependency() const { return OnlyDependency; }
162   };
163 
164   const TargetInstrInfo *TII = nullptr;
165   const TargetRegisterInfo *TRI = nullptr;
166   AliasAnalysis *AA = nullptr;
167   MachineFrameInfo *MFI = nullptr;
168 
169   bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
170                                  SmallVectorImpl<NullCheck> &NullCheckList);
171   MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB,
172                                     MachineBasicBlock *HandlerMBB);
173   void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
174 
175   enum AliasResult {
176     AR_NoAlias,
177     AR_MayAlias,
178     AR_WillAliasEverything
179   };
180 
181   /// Returns AR_NoAlias if \p MI memory operation does not alias with
182   /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if
183   /// they may alias and any further memory operation may alias with \p PrevMI.
184   AliasResult areMemoryOpsAliased(const MachineInstr &MI,
185                                   const MachineInstr *PrevMI) const;
186 
187   enum SuitabilityResult {
188     SR_Suitable,
189     SR_Unsuitable,
190     SR_Impossible
191   };
192 
193   /// Return SR_Suitable if \p MI a memory operation that can be used to
194   /// implicitly null check the value in \p PointerReg, SR_Unsuitable if
195   /// \p MI cannot be used to null check and SR_Impossible if there is
196   /// no sense to continue lookup due to any other instruction will not be able
197   /// to be used. \p PrevInsts is the set of instruction seen since
198   /// the explicit null check on \p PointerReg.
199   SuitabilityResult isSuitableMemoryOp(const MachineInstr &MI,
200                                        unsigned PointerReg,
201                                        ArrayRef<MachineInstr *> PrevInsts);
202 
203   /// Returns true if \p DependenceMI can clobber the liveIns in NullSucc block
204   /// if it was hoisted to the NullCheck block. This is used by caller
205   /// canHoistInst to decide if DependenceMI can be hoisted safely.
206   bool canDependenceHoistingClobberLiveIns(MachineInstr *DependenceMI,
207                                            MachineBasicBlock *NullSucc);
208 
209   /// Return true if \p FaultingMI can be hoisted from after the
210   /// instructions in \p InstsSeenSoFar to before them.  Set \p Dependence to a
211   /// non-null value if we also need to (and legally can) hoist a dependency.
212   bool canHoistInst(MachineInstr *FaultingMI,
213                     ArrayRef<MachineInstr *> InstsSeenSoFar,
214                     MachineBasicBlock *NullSucc, MachineInstr *&Dependence);
215 
216 public:
217   static char ID;
218 
219   ImplicitNullChecks() : MachineFunctionPass(ID) {
220     initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
221   }
222 
223   bool runOnMachineFunction(MachineFunction &MF) override;
224 
225   void getAnalysisUsage(AnalysisUsage &AU) const override {
226     AU.addRequired<AAResultsWrapperPass>();
227     MachineFunctionPass::getAnalysisUsage(AU);
228   }
229 
230   MachineFunctionProperties getRequiredProperties() const override {
231     return MachineFunctionProperties().set(
232         MachineFunctionProperties::Property::NoVRegs);
233   }
234 };
235 
236 } // end anonymous namespace
237 
238 bool ImplicitNullChecks::canHandle(const MachineInstr *MI) {
239   if (MI->isCall() || MI->mayRaiseFPException() ||
240       MI->hasUnmodeledSideEffects())
241     return false;
242   auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); };
243   (void)IsRegMask;
244 
245   assert(!llvm::any_of(MI->operands(), IsRegMask) &&
246          "Calls were filtered out above!");
247 
248   auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); };
249   return llvm::all_of(MI->memoperands(), IsUnordered);
250 }
251 
252 ImplicitNullChecks::DependenceResult
253 ImplicitNullChecks::computeDependence(const MachineInstr *MI,
254                                       ArrayRef<MachineInstr *> Block) {
255   assert(llvm::all_of(Block, canHandle) && "Check this first!");
256   assert(!is_contained(Block, MI) && "Block must be exclusive of MI!");
257 
258   Optional<ArrayRef<MachineInstr *>::iterator> Dep;
259 
260   for (auto I = Block.begin(), E = Block.end(); I != E; ++I) {
261     if (canReorder(*I, MI))
262       continue;
263 
264     if (Dep == None) {
265       // Found one possible dependency, keep track of it.
266       Dep = I;
267     } else {
268       // We found two dependencies, so bail out.
269       return {false, None};
270     }
271   }
272 
273   return {true, Dep};
274 }
275 
276 bool ImplicitNullChecks::canReorder(const MachineInstr *A,
277                                     const MachineInstr *B) {
278   assert(canHandle(A) && canHandle(B) && "Precondition!");
279 
280   // canHandle makes sure that we _can_ correctly analyze the dependencies
281   // between A and B here -- for instance, we should not be dealing with heap
282   // load-store dependencies here.
283 
284   for (const auto &MOA : A->operands()) {
285     if (!(MOA.isReg() && MOA.getReg()))
286       continue;
287 
288     Register RegA = MOA.getReg();
289     for (const auto &MOB : B->operands()) {
290       if (!(MOB.isReg() && MOB.getReg()))
291         continue;
292 
293       Register RegB = MOB.getReg();
294 
295       if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef()))
296         return false;
297     }
298   }
299 
300   return true;
301 }
302 
303 bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
304   TII = MF.getSubtarget().getInstrInfo();
305   TRI = MF.getRegInfo().getTargetRegisterInfo();
306   MFI = &MF.getFrameInfo();
307   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
308 
309   SmallVector<NullCheck, 16> NullCheckList;
310 
311   for (auto &MBB : MF)
312     analyzeBlockForNullChecks(MBB, NullCheckList);
313 
314   if (!NullCheckList.empty())
315     rewriteNullChecks(NullCheckList);
316 
317   return !NullCheckList.empty();
318 }
319 
320 // Return true if any register aliasing \p Reg is live-in into \p MBB.
321 static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
322                            MachineBasicBlock *MBB, unsigned Reg) {
323   for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid();
324        ++AR)
325     if (MBB->isLiveIn(*AR))
326       return true;
327   return false;
328 }
329 
330 ImplicitNullChecks::AliasResult
331 ImplicitNullChecks::areMemoryOpsAliased(const MachineInstr &MI,
332                                         const MachineInstr *PrevMI) const {
333   // If it is not memory access, skip the check.
334   if (!(PrevMI->mayStore() || PrevMI->mayLoad()))
335     return AR_NoAlias;
336   // Load-Load may alias
337   if (!(MI.mayStore() || PrevMI->mayStore()))
338     return AR_NoAlias;
339   // We lost info, conservatively alias. If it was store then no sense to
340   // continue because we won't be able to check against it further.
341   if (MI.memoperands_empty())
342     return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias;
343   if (PrevMI->memoperands_empty())
344     return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias;
345 
346   for (MachineMemOperand *MMO1 : MI.memoperands()) {
347     // MMO1 should have a value due it comes from operation we'd like to use
348     // as implicit null check.
349     assert(MMO1->getValue() && "MMO1 should have a Value!");
350     for (MachineMemOperand *MMO2 : PrevMI->memoperands()) {
351       if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) {
352         if (PSV->mayAlias(MFI))
353           return AR_MayAlias;
354         continue;
355       }
356       llvm::AliasResult AAResult = AA->alias(
357           MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()),
358           MemoryLocation::getAfter(MMO2->getValue(), MMO2->getAAInfo()));
359       if (AAResult != NoAlias)
360         return AR_MayAlias;
361     }
362   }
363   return AR_NoAlias;
364 }
365 
366 ImplicitNullChecks::SuitabilityResult
367 ImplicitNullChecks::isSuitableMemoryOp(const MachineInstr &MI,
368                                        unsigned PointerReg,
369                                        ArrayRef<MachineInstr *> PrevInsts) {
370   // Implementation restriction for faulting_op insertion
371   // TODO: This could be relaxed if we find a test case which warrants it.
372   if (MI.getDesc().getNumDefs() > 1)
373    return SR_Unsuitable;
374 
375   if (!MI.mayLoadOrStore() || MI.isPredicable())
376     return SR_Unsuitable;
377   auto AM = TII->getAddrModeFromMemoryOp(MI, TRI);
378   if (!AM)
379     return SR_Unsuitable;
380   auto AddrMode = *AM;
381   const Register BaseReg = AddrMode.BaseReg, ScaledReg = AddrMode.ScaledReg;
382   int64_t Displacement = AddrMode.Displacement;
383 
384   // We need the base of the memory instruction to be same as the register
385   // where the null check is performed (i.e. PointerReg).
386   if (BaseReg != PointerReg && ScaledReg != PointerReg)
387     return SR_Unsuitable;
388   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
389   unsigned PointerRegSizeInBits = TRI->getRegSizeInBits(PointerReg, MRI);
390   // Bail out of the sizes of BaseReg, ScaledReg and PointerReg are not the
391   // same.
392   if ((BaseReg &&
393        TRI->getRegSizeInBits(BaseReg, MRI) != PointerRegSizeInBits) ||
394       (ScaledReg &&
395        TRI->getRegSizeInBits(ScaledReg, MRI) != PointerRegSizeInBits))
396     return SR_Unsuitable;
397 
398   // Returns true if RegUsedInAddr is used for calculating the displacement
399   // depending on addressing mode. Also calculates the Displacement.
400   auto CalculateDisplacementFromAddrMode = [&](Register RegUsedInAddr,
401                                                int64_t Multiplier) {
402     // The register can be NoRegister, which is defined as zero for all targets.
403     // Consider instruction of interest as `movq 8(,%rdi,8), %rax`. Here the
404     // ScaledReg is %rdi, while there is no BaseReg.
405     if (!RegUsedInAddr)
406       return false;
407     assert(Multiplier && "expected to be non-zero!");
408     MachineInstr *ModifyingMI = nullptr;
409     for (auto It = std::next(MachineBasicBlock::const_reverse_iterator(&MI));
410          It != MI.getParent()->rend(); It++) {
411       const MachineInstr *CurrMI = &*It;
412       if (CurrMI->modifiesRegister(RegUsedInAddr, TRI)) {
413         ModifyingMI = const_cast<MachineInstr *>(CurrMI);
414         break;
415       }
416     }
417     if (!ModifyingMI)
418       return false;
419     // Check for the const value defined in register by ModifyingMI. This means
420     // all other previous values for that register has been invalidated.
421     int64_t ImmVal;
422     if (!TII->getConstValDefinedInReg(*ModifyingMI, RegUsedInAddr, ImmVal))
423       return false;
424     // Calculate the reg size in bits, since this is needed for bailing out in
425     // case of overflow.
426     int32_t RegSizeInBits = TRI->getRegSizeInBits(RegUsedInAddr, MRI);
427     APInt ImmValC(RegSizeInBits, ImmVal, true /*IsSigned*/);
428     APInt MultiplierC(RegSizeInBits, Multiplier);
429     assert(MultiplierC.isStrictlyPositive() &&
430            "expected to be a positive value!");
431     bool IsOverflow;
432     // Sign of the product depends on the sign of the ImmVal, since Multiplier
433     // is always positive.
434     APInt Product = ImmValC.smul_ov(MultiplierC, IsOverflow);
435     if (IsOverflow)
436       return false;
437     APInt DisplacementC(64, Displacement, true /*isSigned*/);
438     DisplacementC = Product.sadd_ov(DisplacementC, IsOverflow);
439     if (IsOverflow)
440       return false;
441 
442     // We only handle diplacements upto 64 bits wide.
443     if (DisplacementC.getActiveBits() > 64)
444       return false;
445     Displacement = DisplacementC.getSExtValue();
446     return true;
447   };
448 
449   // If a register used in the address is constant, fold it's effect into the
450   // displacement for ease of analysis.
451   bool BaseRegIsConstVal = false, ScaledRegIsConstVal = false;
452   if (CalculateDisplacementFromAddrMode(BaseReg, 1))
453     BaseRegIsConstVal = true;
454   if (CalculateDisplacementFromAddrMode(ScaledReg, AddrMode.Scale))
455     ScaledRegIsConstVal = true;
456 
457   // The register which is not null checked should be part of the Displacement
458   // calculation, otherwise we do not know whether the Displacement is made up
459   // by some symbolic values.
460   // This matters because we do not want to incorrectly assume that load from
461   // falls in the zeroth faulting page in the "sane offset check" below.
462   if ((BaseReg && BaseReg != PointerReg && !BaseRegIsConstVal) ||
463       (ScaledReg && ScaledReg != PointerReg && !ScaledRegIsConstVal))
464     return SR_Unsuitable;
465 
466   // We want the mem access to be issued at a sane offset from PointerReg,
467   // so that if PointerReg is null then the access reliably page faults.
468   if (!(-PageSize < Displacement && Displacement < PageSize))
469     return SR_Unsuitable;
470 
471   // Finally, check whether the current memory access aliases with previous one.
472   for (auto *PrevMI : PrevInsts) {
473     AliasResult AR = areMemoryOpsAliased(MI, PrevMI);
474     if (AR == AR_WillAliasEverything)
475       return SR_Impossible;
476     if (AR == AR_MayAlias)
477       return SR_Unsuitable;
478   }
479   return SR_Suitable;
480 }
481 
482 bool ImplicitNullChecks::canDependenceHoistingClobberLiveIns(
483     MachineInstr *DependenceMI, MachineBasicBlock *NullSucc) {
484   for (const auto &DependenceMO : DependenceMI->operands()) {
485     if (!(DependenceMO.isReg() && DependenceMO.getReg()))
486       continue;
487 
488     // Make sure that we won't clobber any live ins to the sibling block by
489     // hoisting Dependency.  For instance, we can't hoist INST to before the
490     // null check (even if it safe, and does not violate any dependencies in
491     // the non_null_block) if %rdx is live in to _null_block.
492     //
493     //    test %rcx, %rcx
494     //    je _null_block
495     //  _non_null_block:
496     //    %rdx = INST
497     //    ...
498     //
499     // This restriction does not apply to the faulting load inst because in
500     // case the pointer loaded from is in the null page, the load will not
501     // semantically execute, and affect machine state.  That is, if the load
502     // was loading into %rax and it faults, the value of %rax should stay the
503     // same as it would have been had the load not have executed and we'd have
504     // branched to NullSucc directly.
505     if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg()))
506       return true;
507 
508   }
509 
510   // The dependence does not clobber live-ins in NullSucc block.
511   return false;
512 }
513 
514 bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI,
515                                       ArrayRef<MachineInstr *> InstsSeenSoFar,
516                                       MachineBasicBlock *NullSucc,
517                                       MachineInstr *&Dependence) {
518   auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar);
519   if (!DepResult.CanReorder)
520     return false;
521 
522   if (!DepResult.PotentialDependence) {
523     Dependence = nullptr;
524     return true;
525   }
526 
527   auto DependenceItr = *DepResult.PotentialDependence;
528   auto *DependenceMI = *DependenceItr;
529 
530   // We don't want to reason about speculating loads.  Note -- at this point
531   // we should have already filtered out all of the other non-speculatable
532   // things, like calls and stores.
533   // We also do not want to hoist stores because it might change the memory
534   // while the FaultingMI may result in faulting.
535   assert(canHandle(DependenceMI) && "Should never have reached here!");
536   if (DependenceMI->mayLoadOrStore())
537     return false;
538 
539   if (canDependenceHoistingClobberLiveIns(DependenceMI, NullSucc))
540     return false;
541 
542   auto DepDepResult =
543       computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr});
544 
545   if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence)
546     return false;
547 
548   Dependence = DependenceMI;
549   return true;
550 }
551 
552 /// Analyze MBB to check if its terminating branch can be turned into an
553 /// implicit null check.  If yes, append a description of the said null check to
554 /// NullCheckList and return true, else return false.
555 bool ImplicitNullChecks::analyzeBlockForNullChecks(
556     MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
557   using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
558 
559   MDNode *BranchMD = nullptr;
560   if (auto *BB = MBB.getBasicBlock())
561     BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
562 
563   if (!BranchMD)
564     return false;
565 
566   MachineBranchPredicate MBP;
567 
568   if (TII->analyzeBranchPredicate(MBB, MBP, true))
569     return false;
570 
571   // Is the predicate comparing an integer to zero?
572   if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
573         (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
574          MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
575     return false;
576 
577   // If there is a separate condition generation instruction, we chose not to
578   // transform unless we can remove both condition and consuming branch.
579   if (MBP.ConditionDef && !MBP.SingleUseCondition)
580     return false;
581 
582   MachineBasicBlock *NotNullSucc, *NullSucc;
583 
584   if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
585     NotNullSucc = MBP.TrueDest;
586     NullSucc = MBP.FalseDest;
587   } else {
588     NotNullSucc = MBP.FalseDest;
589     NullSucc = MBP.TrueDest;
590   }
591 
592   // We handle the simplest case for now.  We can potentially do better by using
593   // the machine dominator tree.
594   if (NotNullSucc->pred_size() != 1)
595     return false;
596 
597   const Register PointerReg = MBP.LHS.getReg();
598 
599   if (MBP.ConditionDef) {
600     // To prevent the invalid transformation of the following code:
601     //
602     //   mov %rax, %rcx
603     //   test %rax, %rax
604     //   %rax = ...
605     //   je throw_npe
606     //   mov(%rcx), %r9
607     //   mov(%rax), %r10
608     //
609     // into:
610     //
611     //   mov %rax, %rcx
612     //   %rax = ....
613     //   faulting_load_op("movl (%rax), %r10", throw_npe)
614     //   mov(%rcx), %r9
615     //
616     // we must ensure that there are no instructions between the 'test' and
617     // conditional jump that modify %rax.
618     assert(MBP.ConditionDef->getParent() ==  &MBB &&
619            "Should be in basic block");
620 
621     for (auto I = MBB.rbegin(); MBP.ConditionDef != &*I; ++I)
622       if (I->modifiesRegister(PointerReg, TRI))
623         return false;
624   }
625   // Starting with a code fragment like:
626   //
627   //   test %rax, %rax
628   //   jne LblNotNull
629   //
630   //  LblNull:
631   //   callq throw_NullPointerException
632   //
633   //  LblNotNull:
634   //   Inst0
635   //   Inst1
636   //   ...
637   //   Def = Load (%rax + <offset>)
638   //   ...
639   //
640   //
641   // we want to end up with
642   //
643   //   Def = FaultingLoad (%rax + <offset>), LblNull
644   //   jmp LblNotNull ;; explicit or fallthrough
645   //
646   //  LblNotNull:
647   //   Inst0
648   //   Inst1
649   //   ...
650   //
651   //  LblNull:
652   //   callq throw_NullPointerException
653   //
654   //
655   // To see why this is legal, consider the two possibilities:
656   //
657   //  1. %rax is null: since we constrain <offset> to be less than PageSize, the
658   //     load instruction dereferences the null page, causing a segmentation
659   //     fault.
660   //
661   //  2. %rax is not null: in this case we know that the load cannot fault, as
662   //     otherwise the load would've faulted in the original program too and the
663   //     original program would've been undefined.
664   //
665   // This reasoning cannot be extended to justify hoisting through arbitrary
666   // control flow.  For instance, in the example below (in pseudo-C)
667   //
668   //    if (ptr == null) { throw_npe(); unreachable; }
669   //    if (some_cond) { return 42; }
670   //    v = ptr->field;  // LD
671   //    ...
672   //
673   // we cannot (without code duplication) use the load marked "LD" to null check
674   // ptr -- clause (2) above does not apply in this case.  In the above program
675   // the safety of ptr->field can be dependent on some_cond; and, for instance,
676   // ptr could be some non-null invalid reference that never gets loaded from
677   // because some_cond is always true.
678 
679   SmallVector<MachineInstr *, 8> InstsSeenSoFar;
680 
681   for (auto &MI : *NotNullSucc) {
682     if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider)
683       return false;
684 
685     MachineInstr *Dependence;
686     SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar);
687     if (SR == SR_Impossible)
688       return false;
689     if (SR == SR_Suitable &&
690         canHoistInst(&MI, InstsSeenSoFar, NullSucc, Dependence)) {
691       NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
692                                  NullSucc, Dependence);
693       return true;
694     }
695 
696     // If MI re-defines the PointerReg in a way that changes the value of
697     // PointerReg if it was null, then we cannot move further.
698     if (!TII->preservesZeroValueInReg(&MI, PointerReg, TRI))
699       return false;
700     InstsSeenSoFar.push_back(&MI);
701   }
702 
703   return false;
704 }
705 
706 /// Wrap a machine instruction, MI, into a FAULTING machine instruction.
707 /// The FAULTING instruction does the same load/store as MI
708 /// (defining the same register), and branches to HandlerMBB if the mem access
709 /// faults.  The FAULTING instruction is inserted at the end of MBB.
710 MachineInstr *ImplicitNullChecks::insertFaultingInstr(
711     MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) {
712   const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
713                                  // all targets.
714 
715   DebugLoc DL;
716   unsigned NumDefs = MI->getDesc().getNumDefs();
717   assert(NumDefs <= 1 && "other cases unhandled!");
718 
719   unsigned DefReg = NoRegister;
720   if (NumDefs != 0) {
721     DefReg = MI->getOperand(0).getReg();
722     assert(NumDefs == 1 && "expected exactly one def!");
723   }
724 
725   FaultMaps::FaultKind FK;
726   if (MI->mayLoad())
727     FK =
728         MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad;
729   else
730     FK = FaultMaps::FaultingStore;
731 
732   auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg)
733                  .addImm(FK)
734                  .addMBB(HandlerMBB)
735                  .addImm(MI->getOpcode());
736 
737   for (auto &MO : MI->uses()) {
738     if (MO.isReg()) {
739       MachineOperand NewMO = MO;
740       if (MO.isUse()) {
741         NewMO.setIsKill(false);
742       } else {
743         assert(MO.isDef() && "Expected def or use");
744         NewMO.setIsDead(false);
745       }
746       MIB.add(NewMO);
747     } else {
748       MIB.add(MO);
749     }
750   }
751 
752   MIB.setMemRefs(MI->memoperands());
753 
754   return MIB;
755 }
756 
757 /// Rewrite the null checks in NullCheckList into implicit null checks.
758 void ImplicitNullChecks::rewriteNullChecks(
759     ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
760   DebugLoc DL;
761 
762   for (auto &NC : NullCheckList) {
763     // Remove the conditional branch dependent on the null check.
764     unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock());
765     (void)BranchesRemoved;
766     assert(BranchesRemoved > 0 && "expected at least one branch!");
767 
768     if (auto *DepMI = NC.getOnlyDependency()) {
769       DepMI->removeFromParent();
770       NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI);
771     }
772 
773     // Insert a faulting instruction where the conditional branch was
774     // originally. We check earlier ensures that this bit of code motion
775     // is legal.  We do not touch the successors list for any basic block
776     // since we haven't changed control flow, we've just made it implicit.
777     MachineInstr *FaultingInstr = insertFaultingInstr(
778         NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc());
779     // Now the values defined by MemOperation, if any, are live-in of
780     // the block of MemOperation.
781     // The original operation may define implicit-defs alongside
782     // the value.
783     MachineBasicBlock *MBB = NC.getMemOperation()->getParent();
784     for (const MachineOperand &MO : FaultingInstr->operands()) {
785       if (!MO.isReg() || !MO.isDef())
786         continue;
787       Register Reg = MO.getReg();
788       if (!Reg || MBB->isLiveIn(Reg))
789         continue;
790       MBB->addLiveIn(Reg);
791     }
792 
793     if (auto *DepMI = NC.getOnlyDependency()) {
794       for (auto &MO : DepMI->operands()) {
795         if (!MO.isReg() || !MO.getReg() || !MO.isDef() || MO.isDead())
796           continue;
797         if (!NC.getNotNullSucc()->isLiveIn(MO.getReg()))
798           NC.getNotNullSucc()->addLiveIn(MO.getReg());
799       }
800     }
801 
802     NC.getMemOperation()->eraseFromParent();
803     if (auto *CheckOp = NC.getCheckOperation())
804       CheckOp->eraseFromParent();
805 
806     // Insert an *unconditional* branch to not-null successor - we expect
807     // block placement to remove fallthroughs later.
808     TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
809                       /*Cond=*/None, DL);
810 
811     NumImplicitNullChecks++;
812   }
813 }
814 
815 char ImplicitNullChecks::ID = 0;
816 
817 char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
818 
819 INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE,
820                       "Implicit null checks", false, false)
821 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
822 INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE,
823                     "Implicit null checks", false, false)
824