1 //===- IfConversion.cpp - Machine code if conversion pass -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the machine instruction level if-conversion pass, which 10 // tries to convert conditional branches into predicated instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "BranchFolding.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/SparseSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/CodeGen/LivePhysRegs.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineFunctionPass.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/MBFIWrapper.h" 35 #include "llvm/CodeGen/TargetInstrInfo.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSchedule.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/MC/MCRegisterInfo.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/BranchProbability.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <functional> 53 #include <iterator> 54 #include <memory> 55 #include <utility> 56 #include <vector> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "if-converter" 61 62 // Hidden options for help debugging. 63 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden); 64 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden); 65 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden); 66 static cl::opt<bool> DisableSimple("disable-ifcvt-simple", 67 cl::init(false), cl::Hidden); 68 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false", 69 cl::init(false), cl::Hidden); 70 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle", 71 cl::init(false), cl::Hidden); 72 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev", 73 cl::init(false), cl::Hidden); 74 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false", 75 cl::init(false), cl::Hidden); 76 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev", 77 cl::init(false), cl::Hidden); 78 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond", 79 cl::init(false), cl::Hidden); 80 static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond", 81 cl::init(false), cl::Hidden); 82 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold", 83 cl::init(true), cl::Hidden); 84 85 STATISTIC(NumSimple, "Number of simple if-conversions performed"); 86 STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed"); 87 STATISTIC(NumTriangle, "Number of triangle if-conversions performed"); 88 STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed"); 89 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed"); 90 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed"); 91 STATISTIC(NumDiamonds, "Number of diamond if-conversions performed"); 92 STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed"); 93 STATISTIC(NumIfConvBBs, "Number of if-converted blocks"); 94 STATISTIC(NumDupBBs, "Number of duplicated blocks"); 95 STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated"); 96 97 namespace { 98 99 class IfConverter : public MachineFunctionPass { 100 enum IfcvtKind { 101 ICNotClassfied, // BB data valid, but not classified. 102 ICSimpleFalse, // Same as ICSimple, but on the false path. 103 ICSimple, // BB is entry of an one split, no rejoin sub-CFG. 104 ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition. 105 ICTriangleRev, // Same as ICTriangle, but true path rev condition. 106 ICTriangleFalse, // Same as ICTriangle, but on the false path. 107 ICTriangle, // BB is entry of a triangle sub-CFG. 108 ICDiamond, // BB is entry of a diamond sub-CFG. 109 ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a 110 // common tail that can be shared. 111 }; 112 113 /// One per MachineBasicBlock, this is used to cache the result 114 /// if-conversion feasibility analysis. This includes results from 115 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its 116 /// classification, and common tail block of its successors (if it's a 117 /// diamond shape), its size, whether it's predicable, and whether any 118 /// instruction can clobber the 'would-be' predicate. 119 /// 120 /// IsDone - True if BB is not to be considered for ifcvt. 121 /// IsBeingAnalyzed - True if BB is currently being analyzed. 122 /// IsAnalyzed - True if BB has been analyzed (info is still valid). 123 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed. 124 /// IsBrAnalyzable - True if analyzeBranch() returns false. 125 /// HasFallThrough - True if BB may fallthrough to the following BB. 126 /// IsUnpredicable - True if BB is known to be unpredicable. 127 /// ClobbersPred - True if BB could modify predicates (e.g. has 128 /// cmp, call, etc.) 129 /// NonPredSize - Number of non-predicated instructions. 130 /// ExtraCost - Extra cost for multi-cycle instructions. 131 /// ExtraCost2 - Some instructions are slower when predicated 132 /// BB - Corresponding MachineBasicBlock. 133 /// TrueBB / FalseBB- See analyzeBranch(). 134 /// BrCond - Conditions for end of block conditional branches. 135 /// Predicate - Predicate used in the BB. 136 struct BBInfo { 137 bool IsDone : 1; 138 bool IsBeingAnalyzed : 1; 139 bool IsAnalyzed : 1; 140 bool IsEnqueued : 1; 141 bool IsBrAnalyzable : 1; 142 bool IsBrReversible : 1; 143 bool HasFallThrough : 1; 144 bool IsUnpredicable : 1; 145 bool CannotBeCopied : 1; 146 bool ClobbersPred : 1; 147 unsigned NonPredSize = 0; 148 unsigned ExtraCost = 0; 149 unsigned ExtraCost2 = 0; 150 MachineBasicBlock *BB = nullptr; 151 MachineBasicBlock *TrueBB = nullptr; 152 MachineBasicBlock *FalseBB = nullptr; 153 SmallVector<MachineOperand, 4> BrCond; 154 SmallVector<MachineOperand, 4> Predicate; 155 156 BBInfo() : IsDone(false), IsBeingAnalyzed(false), 157 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false), 158 IsBrReversible(false), HasFallThrough(false), 159 IsUnpredicable(false), CannotBeCopied(false), 160 ClobbersPred(false) {} 161 }; 162 163 /// Record information about pending if-conversions to attempt: 164 /// BBI - Corresponding BBInfo. 165 /// Kind - Type of block. See IfcvtKind. 166 /// NeedSubsumption - True if the to-be-predicated BB has already been 167 /// predicated. 168 /// NumDups - Number of instructions that would be duplicated due 169 /// to this if-conversion. (For diamonds, the number of 170 /// identical instructions at the beginnings of both 171 /// paths). 172 /// NumDups2 - For diamonds, the number of identical instructions 173 /// at the ends of both paths. 174 struct IfcvtToken { 175 BBInfo &BBI; 176 IfcvtKind Kind; 177 unsigned NumDups; 178 unsigned NumDups2; 179 bool NeedSubsumption : 1; 180 bool TClobbersPred : 1; 181 bool FClobbersPred : 1; 182 183 IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0, 184 bool tc = false, bool fc = false) 185 : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s), 186 TClobbersPred(tc), FClobbersPred(fc) {} 187 }; 188 189 /// Results of if-conversion feasibility analysis indexed by basic block 190 /// number. 191 std::vector<BBInfo> BBAnalysis; 192 TargetSchedModel SchedModel; 193 194 const TargetLoweringBase *TLI; 195 const TargetInstrInfo *TII; 196 const TargetRegisterInfo *TRI; 197 const MachineBranchProbabilityInfo *MBPI; 198 MachineRegisterInfo *MRI; 199 200 LivePhysRegs Redefs; 201 202 bool PreRegAlloc; 203 bool MadeChange; 204 int FnNum = -1; 205 std::function<bool(const MachineFunction &)> PredicateFtor; 206 207 public: 208 static char ID; 209 210 IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr) 211 : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) { 212 initializeIfConverterPass(*PassRegistry::getPassRegistry()); 213 } 214 215 void getAnalysisUsage(AnalysisUsage &AU) const override { 216 AU.addRequired<MachineBlockFrequencyInfo>(); 217 AU.addRequired<MachineBranchProbabilityInfo>(); 218 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 219 MachineFunctionPass::getAnalysisUsage(AU); 220 } 221 222 bool runOnMachineFunction(MachineFunction &MF) override; 223 224 MachineFunctionProperties getRequiredProperties() const override { 225 return MachineFunctionProperties().set( 226 MachineFunctionProperties::Property::NoVRegs); 227 } 228 229 private: 230 bool reverseBranchCondition(BBInfo &BBI) const; 231 bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 232 BranchProbability Prediction) const; 233 bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 234 bool FalseBranch, unsigned &Dups, 235 BranchProbability Prediction) const; 236 bool CountDuplicatedInstructions( 237 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 238 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 239 unsigned &Dups1, unsigned &Dups2, 240 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 241 bool SkipUnconditionalBranches) const; 242 bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 243 unsigned &Dups1, unsigned &Dups2, 244 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 245 bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 246 unsigned &Dups1, unsigned &Dups2, 247 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 248 void AnalyzeBranches(BBInfo &BBI); 249 void ScanInstructions(BBInfo &BBI, 250 MachineBasicBlock::iterator &Begin, 251 MachineBasicBlock::iterator &End, 252 bool BranchUnpredicable = false) const; 253 bool RescanInstructions( 254 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 255 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 256 BBInfo &TrueBBI, BBInfo &FalseBBI) const; 257 void AnalyzeBlock(MachineBasicBlock &MBB, 258 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 259 bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred, 260 bool isTriangle = false, bool RevBranch = false, 261 bool hasCommonTail = false); 262 void AnalyzeBlocks(MachineFunction &MF, 263 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 264 void InvalidatePreds(MachineBasicBlock &MBB); 265 bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind); 266 bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind); 267 bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 268 unsigned NumDups1, unsigned NumDups2, 269 bool TClobbersPred, bool FClobbersPred, 270 bool RemoveBranch, bool MergeAddEdges); 271 bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 272 unsigned NumDups1, unsigned NumDups2, 273 bool TClobbers, bool FClobbers); 274 bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind, 275 unsigned NumDups1, unsigned NumDups2, 276 bool TClobbers, bool FClobbers); 277 void PredicateBlock(BBInfo &BBI, 278 MachineBasicBlock::iterator E, 279 SmallVectorImpl<MachineOperand> &Cond, 280 SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr); 281 void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 282 SmallVectorImpl<MachineOperand> &Cond, 283 bool IgnoreBr = false); 284 void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true); 285 286 bool MeetIfcvtSizeLimit(MachineBasicBlock &BB, 287 unsigned Cycle, unsigned Extra, 288 BranchProbability Prediction) const { 289 return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra, 290 Prediction); 291 } 292 293 bool MeetIfcvtSizeLimit(BBInfo &TBBInfo, BBInfo &FBBInfo, 294 MachineBasicBlock &CommBB, unsigned Dups, 295 BranchProbability Prediction, bool Forked) const { 296 const MachineFunction &MF = *TBBInfo.BB->getParent(); 297 if (MF.getFunction().hasMinSize()) { 298 MachineBasicBlock::iterator TIB = TBBInfo.BB->begin(); 299 MachineBasicBlock::iterator FIB = FBBInfo.BB->begin(); 300 MachineBasicBlock::iterator TIE = TBBInfo.BB->end(); 301 MachineBasicBlock::iterator FIE = FBBInfo.BB->end(); 302 303 unsigned Dups1, Dups2; 304 if (!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 305 *TBBInfo.BB, *FBBInfo.BB, 306 /*SkipUnconditionalBranches*/ true)) 307 llvm_unreachable("should already have been checked by ValidDiamond"); 308 309 unsigned BranchBytes = 0; 310 unsigned CommonBytes = 0; 311 312 // Count common instructions at the start of the true and false blocks. 313 for (auto &I : make_range(TBBInfo.BB->begin(), TIB)) { 314 LLVM_DEBUG(dbgs() << "Common inst: " << I); 315 CommonBytes += TII->getInstSizeInBytes(I); 316 } 317 for (auto &I : make_range(FBBInfo.BB->begin(), FIB)) { 318 LLVM_DEBUG(dbgs() << "Common inst: " << I); 319 CommonBytes += TII->getInstSizeInBytes(I); 320 } 321 322 // Count instructions at the end of the true and false blocks, after 323 // the ones we plan to predicate. Analyzable branches will be removed 324 // (unless this is a forked diamond), and all other instructions are 325 // common between the two blocks. 326 for (auto &I : make_range(TIE, TBBInfo.BB->end())) { 327 if (I.isBranch() && TBBInfo.IsBrAnalyzable && !Forked) { 328 LLVM_DEBUG(dbgs() << "Saving branch: " << I); 329 BranchBytes += TII->predictBranchSizeForIfCvt(I); 330 } else { 331 LLVM_DEBUG(dbgs() << "Common inst: " << I); 332 CommonBytes += TII->getInstSizeInBytes(I); 333 } 334 } 335 for (auto &I : make_range(FIE, FBBInfo.BB->end())) { 336 if (I.isBranch() && FBBInfo.IsBrAnalyzable && !Forked) { 337 LLVM_DEBUG(dbgs() << "Saving branch: " << I); 338 BranchBytes += TII->predictBranchSizeForIfCvt(I); 339 } else { 340 LLVM_DEBUG(dbgs() << "Common inst: " << I); 341 CommonBytes += TII->getInstSizeInBytes(I); 342 } 343 } 344 for (auto &I : CommBB.terminators()) { 345 if (I.isBranch()) { 346 LLVM_DEBUG(dbgs() << "Saving branch: " << I); 347 BranchBytes += TII->predictBranchSizeForIfCvt(I); 348 } 349 } 350 351 // The common instructions in one branch will be eliminated, halving 352 // their code size. 353 CommonBytes /= 2; 354 355 // Count the instructions which we need to predicate. 356 unsigned NumPredicatedInstructions = 0; 357 for (auto &I : make_range(TIB, TIE)) { 358 if (!I.isDebugInstr()) { 359 LLVM_DEBUG(dbgs() << "Predicating: " << I); 360 NumPredicatedInstructions++; 361 } 362 } 363 for (auto &I : make_range(FIB, FIE)) { 364 if (!I.isDebugInstr()) { 365 LLVM_DEBUG(dbgs() << "Predicating: " << I); 366 NumPredicatedInstructions++; 367 } 368 } 369 370 // Even though we're optimising for size at the expense of performance, 371 // avoid creating really long predicated blocks. 372 if (NumPredicatedInstructions > 15) 373 return false; 374 375 // Some targets (e.g. Thumb2) need to insert extra instructions to 376 // start predicated blocks. 377 unsigned ExtraPredicateBytes = TII->extraSizeToPredicateInstructions( 378 MF, NumPredicatedInstructions); 379 380 LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(BranchBytes=" << BranchBytes 381 << ", CommonBytes=" << CommonBytes 382 << ", NumPredicatedInstructions=" 383 << NumPredicatedInstructions 384 << ", ExtraPredicateBytes=" << ExtraPredicateBytes 385 << ")\n"); 386 return (BranchBytes + CommonBytes) > ExtraPredicateBytes; 387 } else { 388 unsigned TCycle = TBBInfo.NonPredSize + TBBInfo.ExtraCost - Dups; 389 unsigned FCycle = FBBInfo.NonPredSize + FBBInfo.ExtraCost - Dups; 390 bool Res = TCycle > 0 && FCycle > 0 && 391 TII->isProfitableToIfCvt( 392 *TBBInfo.BB, TCycle, TBBInfo.ExtraCost2, *FBBInfo.BB, 393 FCycle, FBBInfo.ExtraCost2, Prediction); 394 LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(TCycle=" << TCycle 395 << ", FCycle=" << FCycle 396 << ", TExtra=" << TBBInfo.ExtraCost2 << ", FExtra=" 397 << FBBInfo.ExtraCost2 << ") = " << Res << "\n"); 398 return Res; 399 } 400 } 401 402 /// Returns true if Block ends without a terminator. 403 bool blockAlwaysFallThrough(BBInfo &BBI) const { 404 return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr; 405 } 406 407 /// Used to sort if-conversion candidates. 408 static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1, 409 const std::unique_ptr<IfcvtToken> &C2) { 410 int Incr1 = (C1->Kind == ICDiamond) 411 ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups; 412 int Incr2 = (C2->Kind == ICDiamond) 413 ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups; 414 if (Incr1 > Incr2) 415 return true; 416 else if (Incr1 == Incr2) { 417 // Favors subsumption. 418 if (!C1->NeedSubsumption && C2->NeedSubsumption) 419 return true; 420 else if (C1->NeedSubsumption == C2->NeedSubsumption) { 421 // Favors diamond over triangle, etc. 422 if ((unsigned)C1->Kind < (unsigned)C2->Kind) 423 return true; 424 else if (C1->Kind == C2->Kind) 425 return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber(); 426 } 427 } 428 return false; 429 } 430 }; 431 432 } // end anonymous namespace 433 434 char IfConverter::ID = 0; 435 436 char &llvm::IfConverterID = IfConverter::ID; 437 438 INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false) 439 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 440 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 441 INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false) 442 443 bool IfConverter::runOnMachineFunction(MachineFunction &MF) { 444 if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF))) 445 return false; 446 447 const TargetSubtargetInfo &ST = MF.getSubtarget(); 448 TLI = ST.getTargetLowering(); 449 TII = ST.getInstrInfo(); 450 TRI = ST.getRegisterInfo(); 451 MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>()); 452 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 453 ProfileSummaryInfo *PSI = 454 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 455 MRI = &MF.getRegInfo(); 456 SchedModel.init(&ST); 457 458 if (!TII) return false; 459 460 PreRegAlloc = MRI->isSSA(); 461 462 bool BFChange = false; 463 if (!PreRegAlloc) { 464 // Tail merge tend to expose more if-conversion opportunities. 465 BranchFolder BF(true, false, MBFI, *MBPI, PSI); 466 BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo()); 467 } 468 469 LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'" 470 << MF.getName() << "\'"); 471 472 if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) { 473 LLVM_DEBUG(dbgs() << " skipped\n"); 474 return false; 475 } 476 LLVM_DEBUG(dbgs() << "\n"); 477 478 MF.RenumberBlocks(); 479 BBAnalysis.resize(MF.getNumBlockIDs()); 480 481 std::vector<std::unique_ptr<IfcvtToken>> Tokens; 482 MadeChange = false; 483 unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + 484 NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds; 485 while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) { 486 // Do an initial analysis for each basic block and find all the potential 487 // candidates to perform if-conversion. 488 bool Change = false; 489 AnalyzeBlocks(MF, Tokens); 490 while (!Tokens.empty()) { 491 std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back()); 492 Tokens.pop_back(); 493 BBInfo &BBI = Token->BBI; 494 IfcvtKind Kind = Token->Kind; 495 unsigned NumDups = Token->NumDups; 496 unsigned NumDups2 = Token->NumDups2; 497 498 // If the block has been evicted out of the queue or it has already been 499 // marked dead (due to it being predicated), then skip it. 500 if (BBI.IsDone) 501 BBI.IsEnqueued = false; 502 if (!BBI.IsEnqueued) 503 continue; 504 505 BBI.IsEnqueued = false; 506 507 bool RetVal = false; 508 switch (Kind) { 509 default: llvm_unreachable("Unexpected!"); 510 case ICSimple: 511 case ICSimpleFalse: { 512 bool isFalse = Kind == ICSimpleFalse; 513 if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break; 514 LLVM_DEBUG(dbgs() << "Ifcvt (Simple" 515 << (Kind == ICSimpleFalse ? " false" : "") 516 << "): " << printMBBReference(*BBI.BB) << " (" 517 << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber() 518 : BBI.TrueBB->getNumber()) 519 << ") "); 520 RetVal = IfConvertSimple(BBI, Kind); 521 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 522 if (RetVal) { 523 if (isFalse) ++NumSimpleFalse; 524 else ++NumSimple; 525 } 526 break; 527 } 528 case ICTriangle: 529 case ICTriangleRev: 530 case ICTriangleFalse: 531 case ICTriangleFRev: { 532 bool isFalse = Kind == ICTriangleFalse; 533 bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev); 534 if (DisableTriangle && !isFalse && !isRev) break; 535 if (DisableTriangleR && !isFalse && isRev) break; 536 if (DisableTriangleF && isFalse && !isRev) break; 537 if (DisableTriangleFR && isFalse && isRev) break; 538 LLVM_DEBUG(dbgs() << "Ifcvt (Triangle"); 539 if (isFalse) 540 LLVM_DEBUG(dbgs() << " false"); 541 if (isRev) 542 LLVM_DEBUG(dbgs() << " rev"); 543 LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB) 544 << " (T:" << BBI.TrueBB->getNumber() 545 << ",F:" << BBI.FalseBB->getNumber() << ") "); 546 RetVal = IfConvertTriangle(BBI, Kind); 547 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 548 if (RetVal) { 549 if (isFalse) { 550 if (isRev) ++NumTriangleFRev; 551 else ++NumTriangleFalse; 552 } else { 553 if (isRev) ++NumTriangleRev; 554 else ++NumTriangle; 555 } 556 } 557 break; 558 } 559 case ICDiamond: 560 if (DisableDiamond) break; 561 LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB) 562 << " (T:" << BBI.TrueBB->getNumber() 563 << ",F:" << BBI.FalseBB->getNumber() << ") "); 564 RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2, 565 Token->TClobbersPred, 566 Token->FClobbersPred); 567 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 568 if (RetVal) ++NumDiamonds; 569 break; 570 case ICForkedDiamond: 571 if (DisableForkedDiamond) break; 572 LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): " 573 << printMBBReference(*BBI.BB) 574 << " (T:" << BBI.TrueBB->getNumber() 575 << ",F:" << BBI.FalseBB->getNumber() << ") "); 576 RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2, 577 Token->TClobbersPred, 578 Token->FClobbersPred); 579 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 580 if (RetVal) ++NumForkedDiamonds; 581 break; 582 } 583 584 if (RetVal && MRI->tracksLiveness()) 585 recomputeLivenessFlags(*BBI.BB); 586 587 Change |= RetVal; 588 589 NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev + 590 NumTriangleFalse + NumTriangleFRev + NumDiamonds; 591 if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit) 592 break; 593 } 594 595 if (!Change) 596 break; 597 MadeChange |= Change; 598 } 599 600 Tokens.clear(); 601 BBAnalysis.clear(); 602 603 if (MadeChange && IfCvtBranchFold) { 604 BranchFolder BF(false, false, MBFI, *MBPI, PSI); 605 BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo()); 606 } 607 608 MadeChange |= BFChange; 609 return MadeChange; 610 } 611 612 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor. 613 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 614 MachineBasicBlock *TrueBB) { 615 for (MachineBasicBlock *SuccBB : BB->successors()) { 616 if (SuccBB != TrueBB) 617 return SuccBB; 618 } 619 return nullptr; 620 } 621 622 /// Reverse the condition of the end of the block branch. Swap block's 'true' 623 /// and 'false' successors. 624 bool IfConverter::reverseBranchCondition(BBInfo &BBI) const { 625 DebugLoc dl; // FIXME: this is nowhere 626 if (!TII->reverseBranchCondition(BBI.BrCond)) { 627 TII->removeBranch(*BBI.BB); 628 TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl); 629 std::swap(BBI.TrueBB, BBI.FalseBB); 630 return true; 631 } 632 return false; 633 } 634 635 /// Returns the next block in the function blocks ordering. If it is the end, 636 /// returns NULL. 637 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) { 638 MachineFunction::iterator I = MBB.getIterator(); 639 MachineFunction::iterator E = MBB.getParent()->end(); 640 if (++I == E) 641 return nullptr; 642 return &*I; 643 } 644 645 /// Returns true if the 'true' block (along with its predecessor) forms a valid 646 /// simple shape for ifcvt. It also returns the number of instructions that the 647 /// ifcvt would need to duplicate if performed in Dups. 648 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 649 BranchProbability Prediction) const { 650 Dups = 0; 651 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 652 return false; 653 654 if (TrueBBI.IsBrAnalyzable) 655 return false; 656 657 if (TrueBBI.BB->pred_size() > 1) { 658 if (TrueBBI.CannotBeCopied || 659 !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize, 660 Prediction)) 661 return false; 662 Dups = TrueBBI.NonPredSize; 663 } 664 665 return true; 666 } 667 668 /// Returns true if the 'true' and 'false' blocks (along with their common 669 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is 670 /// true, it checks if 'true' block's false branch branches to the 'false' block 671 /// rather than the other way around. It also returns the number of instructions 672 /// that the ifcvt would need to duplicate if performed in 'Dups'. 673 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 674 bool FalseBranch, unsigned &Dups, 675 BranchProbability Prediction) const { 676 Dups = 0; 677 if (TrueBBI.BB == FalseBBI.BB) 678 return false; 679 680 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 681 return false; 682 683 if (TrueBBI.BB->pred_size() > 1) { 684 if (TrueBBI.CannotBeCopied) 685 return false; 686 687 unsigned Size = TrueBBI.NonPredSize; 688 if (TrueBBI.IsBrAnalyzable) { 689 if (TrueBBI.TrueBB && TrueBBI.BrCond.empty()) 690 // Ends with an unconditional branch. It will be removed. 691 --Size; 692 else { 693 MachineBasicBlock *FExit = FalseBranch 694 ? TrueBBI.TrueBB : TrueBBI.FalseBB; 695 if (FExit) 696 // Require a conditional branch 697 ++Size; 698 } 699 } 700 if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction)) 701 return false; 702 Dups = Size; 703 } 704 705 MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB; 706 if (!TExit && blockAlwaysFallThrough(TrueBBI)) { 707 MachineFunction::iterator I = TrueBBI.BB->getIterator(); 708 if (++I == TrueBBI.BB->getParent()->end()) 709 return false; 710 TExit = &*I; 711 } 712 return TExit && TExit == FalseBBI.BB; 713 } 714 715 /// Count duplicated instructions and move the iterators to show where they 716 /// are. 717 /// @param TIB True Iterator Begin 718 /// @param FIB False Iterator Begin 719 /// These two iterators initially point to the first instruction of the two 720 /// blocks, and finally point to the first non-shared instruction. 721 /// @param TIE True Iterator End 722 /// @param FIE False Iterator End 723 /// These two iterators initially point to End() for the two blocks() and 724 /// finally point to the first shared instruction in the tail. 725 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of 726 /// two blocks. 727 /// @param Dups1 count of duplicated instructions at the beginning of the 2 728 /// blocks. 729 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks. 730 /// @param SkipUnconditionalBranches if true, Don't make sure that 731 /// unconditional branches at the end of the blocks are the same. True is 732 /// passed when the blocks are analyzable to allow for fallthrough to be 733 /// handled. 734 /// @return false if the shared portion prevents if conversion. 735 bool IfConverter::CountDuplicatedInstructions( 736 MachineBasicBlock::iterator &TIB, 737 MachineBasicBlock::iterator &FIB, 738 MachineBasicBlock::iterator &TIE, 739 MachineBasicBlock::iterator &FIE, 740 unsigned &Dups1, unsigned &Dups2, 741 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 742 bool SkipUnconditionalBranches) const { 743 while (TIB != TIE && FIB != FIE) { 744 // Skip dbg_value instructions. These do not count. 745 TIB = skipDebugInstructionsForward(TIB, TIE); 746 FIB = skipDebugInstructionsForward(FIB, FIE); 747 if (TIB == TIE || FIB == FIE) 748 break; 749 if (!TIB->isIdenticalTo(*FIB)) 750 break; 751 // A pred-clobbering instruction in the shared portion prevents 752 // if-conversion. 753 std::vector<MachineOperand> PredDefs; 754 if (TII->DefinesPredicate(*TIB, PredDefs)) 755 return false; 756 // If we get all the way to the branch instructions, don't count them. 757 if (!TIB->isBranch()) 758 ++Dups1; 759 ++TIB; 760 ++FIB; 761 } 762 763 // Check for already containing all of the block. 764 if (TIB == TIE || FIB == FIE) 765 return true; 766 // Now, in preparation for counting duplicate instructions at the ends of the 767 // blocks, switch to reverse_iterators. Note that getReverse() returns an 768 // iterator that points to the same instruction, unlike std::reverse_iterator. 769 // We have to do our own shifting so that we get the same range. 770 MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse()); 771 MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse()); 772 const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse()); 773 const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse()); 774 775 if (!TBB.succ_empty() || !FBB.succ_empty()) { 776 if (SkipUnconditionalBranches) { 777 while (RTIE != RTIB && RTIE->isUnconditionalBranch()) 778 ++RTIE; 779 while (RFIE != RFIB && RFIE->isUnconditionalBranch()) 780 ++RFIE; 781 } 782 } 783 784 // Count duplicate instructions at the ends of the blocks. 785 while (RTIE != RTIB && RFIE != RFIB) { 786 // Skip dbg_value instructions. These do not count. 787 // Note that these are reverse iterators going forward. 788 RTIE = skipDebugInstructionsForward(RTIE, RTIB); 789 RFIE = skipDebugInstructionsForward(RFIE, RFIB); 790 if (RTIE == RTIB || RFIE == RFIB) 791 break; 792 if (!RTIE->isIdenticalTo(*RFIE)) 793 break; 794 // We have to verify that any branch instructions are the same, and then we 795 // don't count them toward the # of duplicate instructions. 796 if (!RTIE->isBranch()) 797 ++Dups2; 798 ++RTIE; 799 ++RFIE; 800 } 801 TIE = std::next(RTIE.getReverse()); 802 FIE = std::next(RFIE.getReverse()); 803 return true; 804 } 805 806 /// RescanInstructions - Run ScanInstructions on a pair of blocks. 807 /// @param TIB - True Iterator Begin, points to first non-shared instruction 808 /// @param FIB - False Iterator Begin, points to first non-shared instruction 809 /// @param TIE - True Iterator End, points past last non-shared instruction 810 /// @param FIE - False Iterator End, points past last non-shared instruction 811 /// @param TrueBBI - BBInfo to update for the true block. 812 /// @param FalseBBI - BBInfo to update for the false block. 813 /// @returns - false if either block cannot be predicated or if both blocks end 814 /// with a predicate-clobbering instruction. 815 bool IfConverter::RescanInstructions( 816 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 817 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 818 BBInfo &TrueBBI, BBInfo &FalseBBI) const { 819 bool BranchUnpredicable = true; 820 TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false; 821 ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable); 822 if (TrueBBI.IsUnpredicable) 823 return false; 824 ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable); 825 if (FalseBBI.IsUnpredicable) 826 return false; 827 if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred) 828 return false; 829 return true; 830 } 831 832 #ifndef NDEBUG 833 static void verifySameBranchInstructions( 834 MachineBasicBlock *MBB1, 835 MachineBasicBlock *MBB2) { 836 const MachineBasicBlock::reverse_iterator B1 = MBB1->rend(); 837 const MachineBasicBlock::reverse_iterator B2 = MBB2->rend(); 838 MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin(); 839 MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin(); 840 while (E1 != B1 && E2 != B2) { 841 skipDebugInstructionsForward(E1, B1); 842 skipDebugInstructionsForward(E2, B2); 843 if (E1 == B1 && E2 == B2) 844 break; 845 846 if (E1 == B1) { 847 assert(!E2->isBranch() && "Branch mis-match, one block is empty."); 848 break; 849 } 850 if (E2 == B2) { 851 assert(!E1->isBranch() && "Branch mis-match, one block is empty."); 852 break; 853 } 854 855 if (E1->isBranch() || E2->isBranch()) 856 assert(E1->isIdenticalTo(*E2) && 857 "Branch mis-match, branch instructions don't match."); 858 else 859 break; 860 ++E1; 861 ++E2; 862 } 863 } 864 #endif 865 866 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along 867 /// with their common predecessor) form a diamond if a common tail block is 868 /// extracted. 869 /// While not strictly a diamond, this pattern would form a diamond if 870 /// tail-merging had merged the shared tails. 871 /// EBB 872 /// _/ \_ 873 /// | | 874 /// TBB FBB 875 /// / \ / \ 876 /// FalseBB TrueBB FalseBB 877 /// Currently only handles analyzable branches. 878 /// Specifically excludes actual diamonds to avoid overlap. 879 bool IfConverter::ValidForkedDiamond( 880 BBInfo &TrueBBI, BBInfo &FalseBBI, 881 unsigned &Dups1, unsigned &Dups2, 882 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 883 Dups1 = Dups2 = 0; 884 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 885 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 886 return false; 887 888 if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable) 889 return false; 890 // Don't IfConvert blocks that can't be folded into their predecessor. 891 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 892 return false; 893 894 // This function is specifically looking for conditional tails, as 895 // unconditional tails are already handled by the standard diamond case. 896 if (TrueBBI.BrCond.size() == 0 || 897 FalseBBI.BrCond.size() == 0) 898 return false; 899 900 MachineBasicBlock *TT = TrueBBI.TrueBB; 901 MachineBasicBlock *TF = TrueBBI.FalseBB; 902 MachineBasicBlock *FT = FalseBBI.TrueBB; 903 MachineBasicBlock *FF = FalseBBI.FalseBB; 904 905 if (!TT) 906 TT = getNextBlock(*TrueBBI.BB); 907 if (!TF) 908 TF = getNextBlock(*TrueBBI.BB); 909 if (!FT) 910 FT = getNextBlock(*FalseBBI.BB); 911 if (!FF) 912 FF = getNextBlock(*FalseBBI.BB); 913 914 if (!TT || !TF) 915 return false; 916 917 // Check successors. If they don't match, bail. 918 if (!((TT == FT && TF == FF) || (TF == FT && TT == FF))) 919 return false; 920 921 bool FalseReversed = false; 922 if (TF == FT && TT == FF) { 923 // If the branches are opposing, but we can't reverse, don't do it. 924 if (!FalseBBI.IsBrReversible) 925 return false; 926 FalseReversed = true; 927 reverseBranchCondition(FalseBBI); 928 } 929 auto UnReverseOnExit = make_scope_exit([&]() { 930 if (FalseReversed) 931 reverseBranchCondition(FalseBBI); 932 }); 933 934 // Count duplicate instructions at the beginning of the true and false blocks. 935 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 936 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 937 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 938 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 939 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 940 *TrueBBI.BB, *FalseBBI.BB, 941 /* SkipUnconditionalBranches */ true)) 942 return false; 943 944 TrueBBICalc.BB = TrueBBI.BB; 945 FalseBBICalc.BB = FalseBBI.BB; 946 TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable; 947 FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable; 948 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 949 return false; 950 951 // The size is used to decide whether to if-convert, and the shared portions 952 // are subtracted off. Because of the subtraction, we just use the size that 953 // was calculated by the original ScanInstructions, as it is correct. 954 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 955 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 956 return true; 957 } 958 959 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along 960 /// with their common predecessor) forms a valid diamond shape for ifcvt. 961 bool IfConverter::ValidDiamond( 962 BBInfo &TrueBBI, BBInfo &FalseBBI, 963 unsigned &Dups1, unsigned &Dups2, 964 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 965 Dups1 = Dups2 = 0; 966 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 967 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 968 return false; 969 970 // If the True and False BBs are equal we're dealing with a degenerate case 971 // that we don't treat as a diamond. 972 if (TrueBBI.BB == FalseBBI.BB) 973 return false; 974 975 MachineBasicBlock *TT = TrueBBI.TrueBB; 976 MachineBasicBlock *FT = FalseBBI.TrueBB; 977 978 if (!TT && blockAlwaysFallThrough(TrueBBI)) 979 TT = getNextBlock(*TrueBBI.BB); 980 if (!FT && blockAlwaysFallThrough(FalseBBI)) 981 FT = getNextBlock(*FalseBBI.BB); 982 if (TT != FT) 983 return false; 984 if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable)) 985 return false; 986 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 987 return false; 988 989 // FIXME: Allow true block to have an early exit? 990 if (TrueBBI.FalseBB || FalseBBI.FalseBB) 991 return false; 992 993 // Count duplicate instructions at the beginning and end of the true and 994 // false blocks. 995 // Skip unconditional branches only if we are considering an analyzable 996 // diamond. Otherwise the branches must be the same. 997 bool SkipUnconditionalBranches = 998 TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable; 999 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 1000 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 1001 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 1002 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 1003 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 1004 *TrueBBI.BB, *FalseBBI.BB, 1005 SkipUnconditionalBranches)) 1006 return false; 1007 1008 TrueBBICalc.BB = TrueBBI.BB; 1009 FalseBBICalc.BB = FalseBBI.BB; 1010 TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable; 1011 FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable; 1012 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 1013 return false; 1014 // The size is used to decide whether to if-convert, and the shared portions 1015 // are subtracted off. Because of the subtraction, we just use the size that 1016 // was calculated by the original ScanInstructions, as it is correct. 1017 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 1018 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 1019 return true; 1020 } 1021 1022 /// AnalyzeBranches - Look at the branches at the end of a block to determine if 1023 /// the block is predicable. 1024 void IfConverter::AnalyzeBranches(BBInfo &BBI) { 1025 if (BBI.IsDone) 1026 return; 1027 1028 BBI.TrueBB = BBI.FalseBB = nullptr; 1029 BBI.BrCond.clear(); 1030 BBI.IsBrAnalyzable = 1031 !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond); 1032 if (!BBI.IsBrAnalyzable) { 1033 BBI.TrueBB = nullptr; 1034 BBI.FalseBB = nullptr; 1035 BBI.BrCond.clear(); 1036 } 1037 1038 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1039 BBI.IsBrReversible = (RevCond.size() == 0) || 1040 !TII->reverseBranchCondition(RevCond); 1041 BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr; 1042 1043 if (BBI.BrCond.size()) { 1044 // No false branch. This BB must end with a conditional branch and a 1045 // fallthrough. 1046 if (!BBI.FalseBB) 1047 BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB); 1048 if (!BBI.FalseBB) { 1049 // Malformed bcc? True and false blocks are the same? 1050 BBI.IsUnpredicable = true; 1051 } 1052 } 1053 } 1054 1055 /// ScanInstructions - Scan all the instructions in the block to determine if 1056 /// the block is predicable. In most cases, that means all the instructions 1057 /// in the block are isPredicable(). Also checks if the block contains any 1058 /// instruction which can clobber a predicate (e.g. condition code register). 1059 /// If so, the block is not predicable unless it's the last instruction. 1060 void IfConverter::ScanInstructions(BBInfo &BBI, 1061 MachineBasicBlock::iterator &Begin, 1062 MachineBasicBlock::iterator &End, 1063 bool BranchUnpredicable) const { 1064 if (BBI.IsDone || BBI.IsUnpredicable) 1065 return; 1066 1067 bool AlreadyPredicated = !BBI.Predicate.empty(); 1068 1069 BBI.NonPredSize = 0; 1070 BBI.ExtraCost = 0; 1071 BBI.ExtraCost2 = 0; 1072 BBI.ClobbersPred = false; 1073 for (MachineInstr &MI : make_range(Begin, End)) { 1074 if (MI.isDebugInstr()) 1075 continue; 1076 1077 // It's unsafe to duplicate convergent instructions in this context, so set 1078 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the 1079 // following CFG, which is subject to our "simple" transformation. 1080 // 1081 // BB0 // if (c1) goto BB1; else goto BB2; 1082 // / \ 1083 // BB1 | 1084 // | BB2 // if (c2) goto TBB; else goto FBB; 1085 // | / | 1086 // | / | 1087 // TBB | 1088 // | | 1089 // | FBB 1090 // | 1091 // exit 1092 // 1093 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd 1094 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose 1095 // TBB contains a convergent instruction. This is safe iff doing so does 1096 // not add a control-flow dependency to the convergent instruction -- i.e., 1097 // it's safe iff the set of control flows that leads us to the convergent 1098 // instruction does not get smaller after the transformation. 1099 // 1100 // Originally we executed TBB if c1 || c2. After the transformation, there 1101 // are two copies of TBB's instructions. We get to the first if c1, and we 1102 // get to the second if !c1 && c2. 1103 // 1104 // There are clearly fewer ways to satisfy the condition "c1" than 1105 // "c1 || c2". Since we've shrunk the set of control flows which lead to 1106 // our convergent instruction, the transformation is unsafe. 1107 if (MI.isNotDuplicable() || MI.isConvergent()) 1108 BBI.CannotBeCopied = true; 1109 1110 bool isPredicated = TII->isPredicated(MI); 1111 bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch(); 1112 1113 if (BranchUnpredicable && MI.isBranch()) { 1114 BBI.IsUnpredicable = true; 1115 return; 1116 } 1117 1118 // A conditional branch is not predicable, but it may be eliminated. 1119 if (isCondBr) 1120 continue; 1121 1122 if (!isPredicated) { 1123 BBI.NonPredSize++; 1124 unsigned ExtraPredCost = TII->getPredicationCost(MI); 1125 unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false); 1126 if (NumCycles > 1) 1127 BBI.ExtraCost += NumCycles-1; 1128 BBI.ExtraCost2 += ExtraPredCost; 1129 } else if (!AlreadyPredicated) { 1130 // FIXME: This instruction is already predicated before the 1131 // if-conversion pass. It's probably something like a conditional move. 1132 // Mark this block unpredicable for now. 1133 BBI.IsUnpredicable = true; 1134 return; 1135 } 1136 1137 if (BBI.ClobbersPred && !isPredicated) { 1138 // Predicate modification instruction should end the block (except for 1139 // already predicated instructions and end of block branches). 1140 // Predicate may have been modified, the subsequent (currently) 1141 // unpredicated instructions cannot be correctly predicated. 1142 BBI.IsUnpredicable = true; 1143 return; 1144 } 1145 1146 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are 1147 // still potentially predicable. 1148 std::vector<MachineOperand> PredDefs; 1149 if (TII->DefinesPredicate(MI, PredDefs)) 1150 BBI.ClobbersPred = true; 1151 1152 if (!TII->isPredicable(MI)) { 1153 BBI.IsUnpredicable = true; 1154 return; 1155 } 1156 } 1157 } 1158 1159 /// Determine if the block is a suitable candidate to be predicated by the 1160 /// specified predicate. 1161 /// @param BBI BBInfo for the block to check 1162 /// @param Pred Predicate array for the branch that leads to BBI 1163 /// @param isTriangle true if the Analysis is for a triangle 1164 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false 1165 /// case 1166 /// @param hasCommonTail true if BBI shares a tail with a sibling block that 1167 /// contains any instruction that would make the block unpredicable. 1168 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI, 1169 SmallVectorImpl<MachineOperand> &Pred, 1170 bool isTriangle, bool RevBranch, 1171 bool hasCommonTail) { 1172 // If the block is dead or unpredicable, then it cannot be predicated. 1173 // Two blocks may share a common unpredicable tail, but this doesn't prevent 1174 // them from being if-converted. The non-shared portion is assumed to have 1175 // been checked 1176 if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail)) 1177 return false; 1178 1179 // If it is already predicated but we couldn't analyze its terminator, the 1180 // latter might fallthrough, but we can't determine where to. 1181 // Conservatively avoid if-converting again. 1182 if (BBI.Predicate.size() && !BBI.IsBrAnalyzable) 1183 return false; 1184 1185 // If it is already predicated, check if the new predicate subsumes 1186 // its predicate. 1187 if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate)) 1188 return false; 1189 1190 if (!hasCommonTail && BBI.BrCond.size()) { 1191 if (!isTriangle) 1192 return false; 1193 1194 // Test predicate subsumption. 1195 SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end()); 1196 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1197 if (RevBranch) { 1198 if (TII->reverseBranchCondition(Cond)) 1199 return false; 1200 } 1201 if (TII->reverseBranchCondition(RevPred) || 1202 !TII->SubsumesPredicate(Cond, RevPred)) 1203 return false; 1204 } 1205 1206 return true; 1207 } 1208 1209 /// Analyze the structure of the sub-CFG starting from the specified block. 1210 /// Record its successors and whether it looks like an if-conversion candidate. 1211 void IfConverter::AnalyzeBlock( 1212 MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1213 struct BBState { 1214 BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {} 1215 MachineBasicBlock *MBB; 1216 1217 /// This flag is true if MBB's successors have been analyzed. 1218 bool SuccsAnalyzed; 1219 }; 1220 1221 // Push MBB to the stack. 1222 SmallVector<BBState, 16> BBStack(1, MBB); 1223 1224 while (!BBStack.empty()) { 1225 BBState &State = BBStack.back(); 1226 MachineBasicBlock *BB = State.MBB; 1227 BBInfo &BBI = BBAnalysis[BB->getNumber()]; 1228 1229 if (!State.SuccsAnalyzed) { 1230 if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) { 1231 BBStack.pop_back(); 1232 continue; 1233 } 1234 1235 BBI.BB = BB; 1236 BBI.IsBeingAnalyzed = true; 1237 1238 AnalyzeBranches(BBI); 1239 MachineBasicBlock::iterator Begin = BBI.BB->begin(); 1240 MachineBasicBlock::iterator End = BBI.BB->end(); 1241 ScanInstructions(BBI, Begin, End); 1242 1243 // Unanalyzable or ends with fallthrough or unconditional branch, or if is 1244 // not considered for ifcvt anymore. 1245 if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) { 1246 BBI.IsBeingAnalyzed = false; 1247 BBI.IsAnalyzed = true; 1248 BBStack.pop_back(); 1249 continue; 1250 } 1251 1252 // Do not ifcvt if either path is a back edge to the entry block. 1253 if (BBI.TrueBB == BB || BBI.FalseBB == BB) { 1254 BBI.IsBeingAnalyzed = false; 1255 BBI.IsAnalyzed = true; 1256 BBStack.pop_back(); 1257 continue; 1258 } 1259 1260 // Do not ifcvt if true and false fallthrough blocks are the same. 1261 if (!BBI.FalseBB) { 1262 BBI.IsBeingAnalyzed = false; 1263 BBI.IsAnalyzed = true; 1264 BBStack.pop_back(); 1265 continue; 1266 } 1267 1268 // Push the False and True blocks to the stack. 1269 State.SuccsAnalyzed = true; 1270 BBStack.push_back(*BBI.FalseBB); 1271 BBStack.push_back(*BBI.TrueBB); 1272 continue; 1273 } 1274 1275 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1276 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1277 1278 if (TrueBBI.IsDone && FalseBBI.IsDone) { 1279 BBI.IsBeingAnalyzed = false; 1280 BBI.IsAnalyzed = true; 1281 BBStack.pop_back(); 1282 continue; 1283 } 1284 1285 SmallVector<MachineOperand, 4> 1286 RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1287 bool CanRevCond = !TII->reverseBranchCondition(RevCond); 1288 1289 unsigned Dups = 0; 1290 unsigned Dups2 = 0; 1291 bool TNeedSub = !TrueBBI.Predicate.empty(); 1292 bool FNeedSub = !FalseBBI.Predicate.empty(); 1293 bool Enqueued = false; 1294 1295 BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB); 1296 1297 if (CanRevCond) { 1298 BBInfo TrueBBICalc, FalseBBICalc; 1299 auto feasibleDiamond = [&](bool Forked) { 1300 bool MeetsSize = MeetIfcvtSizeLimit(TrueBBICalc, FalseBBICalc, *BB, 1301 Dups + Dups2, Prediction, Forked); 1302 bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond, 1303 /* IsTriangle */ false, /* RevCond */ false, 1304 /* hasCommonTail */ true); 1305 bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond, 1306 /* IsTriangle */ false, /* RevCond */ false, 1307 /* hasCommonTail */ true); 1308 return MeetsSize && TrueFeasible && FalseFeasible; 1309 }; 1310 1311 if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1312 TrueBBICalc, FalseBBICalc)) { 1313 if (feasibleDiamond(false)) { 1314 // Diamond: 1315 // EBB 1316 // / \_ 1317 // | | 1318 // TBB FBB 1319 // \ / 1320 // TailBB 1321 // Note TailBB can be empty. 1322 Tokens.push_back(std::make_unique<IfcvtToken>( 1323 BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1324 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1325 Enqueued = true; 1326 } 1327 } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1328 TrueBBICalc, FalseBBICalc)) { 1329 if (feasibleDiamond(true)) { 1330 // ForkedDiamond: 1331 // if TBB and FBB have a common tail that includes their conditional 1332 // branch instructions, then we can If Convert this pattern. 1333 // EBB 1334 // _/ \_ 1335 // | | 1336 // TBB FBB 1337 // / \ / \ 1338 // FalseBB TrueBB FalseBB 1339 // 1340 Tokens.push_back(std::make_unique<IfcvtToken>( 1341 BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1342 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1343 Enqueued = true; 1344 } 1345 } 1346 } 1347 1348 if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) && 1349 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1350 TrueBBI.ExtraCost2, Prediction) && 1351 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) { 1352 // Triangle: 1353 // EBB 1354 // | \_ 1355 // | | 1356 // | TBB 1357 // | / 1358 // FBB 1359 Tokens.push_back( 1360 std::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups)); 1361 Enqueued = true; 1362 } 1363 1364 if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) && 1365 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1366 TrueBBI.ExtraCost2, Prediction) && 1367 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) { 1368 Tokens.push_back( 1369 std::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups)); 1370 Enqueued = true; 1371 } 1372 1373 if (ValidSimple(TrueBBI, Dups, Prediction) && 1374 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1375 TrueBBI.ExtraCost2, Prediction) && 1376 FeasibilityAnalysis(TrueBBI, BBI.BrCond)) { 1377 // Simple (split, no rejoin): 1378 // EBB 1379 // | \_ 1380 // | | 1381 // | TBB---> exit 1382 // | 1383 // FBB 1384 Tokens.push_back( 1385 std::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups)); 1386 Enqueued = true; 1387 } 1388 1389 if (CanRevCond) { 1390 // Try the other path... 1391 if (ValidTriangle(FalseBBI, TrueBBI, false, Dups, 1392 Prediction.getCompl()) && 1393 MeetIfcvtSizeLimit(*FalseBBI.BB, 1394 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1395 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1396 FeasibilityAnalysis(FalseBBI, RevCond, true)) { 1397 Tokens.push_back(std::make_unique<IfcvtToken>(BBI, ICTriangleFalse, 1398 FNeedSub, Dups)); 1399 Enqueued = true; 1400 } 1401 1402 if (ValidTriangle(FalseBBI, TrueBBI, true, Dups, 1403 Prediction.getCompl()) && 1404 MeetIfcvtSizeLimit(*FalseBBI.BB, 1405 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1406 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1407 FeasibilityAnalysis(FalseBBI, RevCond, true, true)) { 1408 Tokens.push_back( 1409 std::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups)); 1410 Enqueued = true; 1411 } 1412 1413 if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) && 1414 MeetIfcvtSizeLimit(*FalseBBI.BB, 1415 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1416 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1417 FeasibilityAnalysis(FalseBBI, RevCond)) { 1418 Tokens.push_back( 1419 std::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups)); 1420 Enqueued = true; 1421 } 1422 } 1423 1424 BBI.IsEnqueued = Enqueued; 1425 BBI.IsBeingAnalyzed = false; 1426 BBI.IsAnalyzed = true; 1427 BBStack.pop_back(); 1428 } 1429 } 1430 1431 /// Analyze all blocks and find entries for all if-conversion candidates. 1432 void IfConverter::AnalyzeBlocks( 1433 MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1434 for (MachineBasicBlock &MBB : MF) 1435 AnalyzeBlock(MBB, Tokens); 1436 1437 // Sort to favor more complex ifcvt scheme. 1438 llvm::stable_sort(Tokens, IfcvtTokenCmp); 1439 } 1440 1441 /// Returns true either if ToMBB is the next block after MBB or that all the 1442 /// intervening blocks are empty (given MBB can fall through to its next block). 1443 static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) { 1444 MachineFunction::iterator PI = MBB.getIterator(); 1445 MachineFunction::iterator I = std::next(PI); 1446 MachineFunction::iterator TI = ToMBB.getIterator(); 1447 MachineFunction::iterator E = MBB.getParent()->end(); 1448 while (I != TI) { 1449 // Check isSuccessor to avoid case where the next block is empty, but 1450 // it's not a successor. 1451 if (I == E || !I->empty() || !PI->isSuccessor(&*I)) 1452 return false; 1453 PI = I++; 1454 } 1455 // Finally see if the last I is indeed a successor to PI. 1456 return PI->isSuccessor(&*I); 1457 } 1458 1459 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it 1460 /// can be if-converted. If predecessor is already enqueued, dequeue it! 1461 void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) { 1462 for (const MachineBasicBlock *Predecessor : MBB.predecessors()) { 1463 BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()]; 1464 if (PBBI.IsDone || PBBI.BB == &MBB) 1465 continue; 1466 PBBI.IsAnalyzed = false; 1467 PBBI.IsEnqueued = false; 1468 } 1469 } 1470 1471 /// Inserts an unconditional branch from \p MBB to \p ToMBB. 1472 static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB, 1473 const TargetInstrInfo *TII) { 1474 DebugLoc dl; // FIXME: this is nowhere 1475 SmallVector<MachineOperand, 0> NoCond; 1476 TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl); 1477 } 1478 1479 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all 1480 /// values defined in MI which are also live/used by MI. 1481 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) { 1482 const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo(); 1483 1484 // Before stepping forward past MI, remember which regs were live 1485 // before MI. This is needed to set the Undef flag only when reg is 1486 // dead. 1487 SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI; 1488 LiveBeforeMI.setUniverse(TRI->getNumRegs()); 1489 for (unsigned Reg : Redefs) 1490 LiveBeforeMI.insert(Reg); 1491 1492 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers; 1493 Redefs.stepForward(MI, Clobbers); 1494 1495 // Now add the implicit uses for each of the clobbered values. 1496 for (auto Clobber : Clobbers) { 1497 // FIXME: Const cast here is nasty, but better than making StepForward 1498 // take a mutable instruction instead of const. 1499 unsigned Reg = Clobber.first; 1500 MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second); 1501 MachineInstr *OpMI = Op.getParent(); 1502 MachineInstrBuilder MIB(*OpMI->getMF(), OpMI); 1503 if (Op.isRegMask()) { 1504 // First handle regmasks. They clobber any entries in the mask which 1505 // means that we need a def for those registers. 1506 if (LiveBeforeMI.count(Reg)) 1507 MIB.addReg(Reg, RegState::Implicit); 1508 1509 // We also need to add an implicit def of this register for the later 1510 // use to read from. 1511 // For the register allocator to have allocated a register clobbered 1512 // by the call which is used later, it must be the case that 1513 // the call doesn't return. 1514 MIB.addReg(Reg, RegState::Implicit | RegState::Define); 1515 continue; 1516 } 1517 if (LiveBeforeMI.count(Reg)) 1518 MIB.addReg(Reg, RegState::Implicit); 1519 else { 1520 bool HasLiveSubReg = false; 1521 for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) { 1522 if (!LiveBeforeMI.count(*S)) 1523 continue; 1524 HasLiveSubReg = true; 1525 break; 1526 } 1527 if (HasLiveSubReg) 1528 MIB.addReg(Reg, RegState::Implicit); 1529 } 1530 } 1531 } 1532 1533 /// If convert a simple (split, no rejoin) sub-CFG. 1534 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) { 1535 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1536 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1537 BBInfo *CvtBBI = &TrueBBI; 1538 BBInfo *NextBBI = &FalseBBI; 1539 1540 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1541 if (Kind == ICSimpleFalse) 1542 std::swap(CvtBBI, NextBBI); 1543 1544 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1545 MachineBasicBlock &NextMBB = *NextBBI->BB; 1546 if (CvtBBI->IsDone || 1547 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1548 // Something has changed. It's no longer safe to predicate this block. 1549 BBI.IsAnalyzed = false; 1550 CvtBBI->IsAnalyzed = false; 1551 return false; 1552 } 1553 1554 if (CvtMBB.hasAddressTaken()) 1555 // Conservatively abort if-conversion if BB's address is taken. 1556 return false; 1557 1558 if (Kind == ICSimpleFalse) 1559 if (TII->reverseBranchCondition(Cond)) 1560 llvm_unreachable("Unable to reverse branch condition!"); 1561 1562 Redefs.init(*TRI); 1563 1564 if (MRI->tracksLiveness()) { 1565 // Initialize liveins to the first BB. These are potentially redefined by 1566 // predicated instructions. 1567 Redefs.addLiveIns(CvtMBB); 1568 Redefs.addLiveIns(NextMBB); 1569 } 1570 1571 // Remove the branches from the entry so we can add the contents of the true 1572 // block to it. 1573 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1574 1575 if (CvtMBB.pred_size() > 1) { 1576 // Copy instructions in the true block, predicate them, and add them to 1577 // the entry block. 1578 CopyAndPredicateBlock(BBI, *CvtBBI, Cond); 1579 1580 // Keep the CFG updated. 1581 BBI.BB->removeSuccessor(&CvtMBB, true); 1582 } else { 1583 // Predicate the instructions in the true block. 1584 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1585 1586 // Merge converted block into entry block. The BB to Cvt edge is removed 1587 // by MergeBlocks. 1588 MergeBlocks(BBI, *CvtBBI); 1589 } 1590 1591 bool IterIfcvt = true; 1592 if (!canFallThroughTo(*BBI.BB, NextMBB)) { 1593 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1594 BBI.HasFallThrough = false; 1595 // Now ifcvt'd block will look like this: 1596 // BB: 1597 // ... 1598 // t, f = cmp 1599 // if t op 1600 // b BBf 1601 // 1602 // We cannot further ifcvt this block because the unconditional branch 1603 // will have to be predicated on the new condition, that will not be 1604 // available if cmp executes. 1605 IterIfcvt = false; 1606 } 1607 1608 // Update block info. BB can be iteratively if-converted. 1609 if (!IterIfcvt) 1610 BBI.IsDone = true; 1611 InvalidatePreds(*BBI.BB); 1612 CvtBBI->IsDone = true; 1613 1614 // FIXME: Must maintain LiveIns. 1615 return true; 1616 } 1617 1618 /// If convert a triangle sub-CFG. 1619 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) { 1620 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1621 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1622 BBInfo *CvtBBI = &TrueBBI; 1623 BBInfo *NextBBI = &FalseBBI; 1624 DebugLoc dl; // FIXME: this is nowhere 1625 1626 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1627 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1628 std::swap(CvtBBI, NextBBI); 1629 1630 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1631 MachineBasicBlock &NextMBB = *NextBBI->BB; 1632 if (CvtBBI->IsDone || 1633 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1634 // Something has changed. It's no longer safe to predicate this block. 1635 BBI.IsAnalyzed = false; 1636 CvtBBI->IsAnalyzed = false; 1637 return false; 1638 } 1639 1640 if (CvtMBB.hasAddressTaken()) 1641 // Conservatively abort if-conversion if BB's address is taken. 1642 return false; 1643 1644 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1645 if (TII->reverseBranchCondition(Cond)) 1646 llvm_unreachable("Unable to reverse branch condition!"); 1647 1648 if (Kind == ICTriangleRev || Kind == ICTriangleFRev) { 1649 if (reverseBranchCondition(*CvtBBI)) { 1650 // BB has been changed, modify its predecessors (except for this 1651 // one) so they don't get ifcvt'ed based on bad intel. 1652 for (MachineBasicBlock *PBB : CvtMBB.predecessors()) { 1653 if (PBB == BBI.BB) 1654 continue; 1655 BBInfo &PBBI = BBAnalysis[PBB->getNumber()]; 1656 if (PBBI.IsEnqueued) { 1657 PBBI.IsAnalyzed = false; 1658 PBBI.IsEnqueued = false; 1659 } 1660 } 1661 } 1662 } 1663 1664 // Initialize liveins to the first BB. These are potentially redefined by 1665 // predicated instructions. 1666 Redefs.init(*TRI); 1667 if (MRI->tracksLiveness()) { 1668 Redefs.addLiveIns(CvtMBB); 1669 Redefs.addLiveIns(NextMBB); 1670 } 1671 1672 bool HasEarlyExit = CvtBBI->FalseBB != nullptr; 1673 BranchProbability CvtNext, CvtFalse, BBNext, BBCvt; 1674 1675 if (HasEarlyExit) { 1676 // Get probabilities before modifying CvtMBB and BBI.BB. 1677 CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB); 1678 CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB); 1679 BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB); 1680 BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB); 1681 } 1682 1683 // Remove the branches from the entry so we can add the contents of the true 1684 // block to it. 1685 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1686 1687 if (CvtMBB.pred_size() > 1) { 1688 // Copy instructions in the true block, predicate them, and add them to 1689 // the entry block. 1690 CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true); 1691 } else { 1692 // Predicate the 'true' block after removing its branch. 1693 CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB); 1694 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1695 1696 // Now merge the entry of the triangle with the true block. 1697 MergeBlocks(BBI, *CvtBBI, false); 1698 } 1699 1700 // Keep the CFG updated. 1701 BBI.BB->removeSuccessor(&CvtMBB, true); 1702 1703 // If 'true' block has a 'false' successor, add an exit branch to it. 1704 if (HasEarlyExit) { 1705 SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(), 1706 CvtBBI->BrCond.end()); 1707 if (TII->reverseBranchCondition(RevCond)) 1708 llvm_unreachable("Unable to reverse branch condition!"); 1709 1710 // Update the edge probability for both CvtBBI->FalseBB and NextBBI. 1711 // NewNext = New_Prob(BBI.BB, NextMBB) = 1712 // Prob(BBI.BB, NextMBB) + 1713 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB) 1714 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) = 1715 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB) 1716 auto NewTrueBB = getNextBlock(*BBI.BB); 1717 auto NewNext = BBNext + BBCvt * CvtNext; 1718 auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB); 1719 if (NewTrueBBIter != BBI.BB->succ_end()) 1720 BBI.BB->setSuccProbability(NewTrueBBIter, NewNext); 1721 1722 auto NewFalse = BBCvt * CvtFalse; 1723 TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl); 1724 BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse); 1725 } 1726 1727 // Merge in the 'false' block if the 'false' block has no other 1728 // predecessors. Otherwise, add an unconditional branch to 'false'. 1729 bool FalseBBDead = false; 1730 bool IterIfcvt = true; 1731 bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB); 1732 if (!isFallThrough) { 1733 // Only merge them if the true block does not fallthrough to the false 1734 // block. By not merging them, we make it possible to iteratively 1735 // ifcvt the blocks. 1736 if (!HasEarlyExit && 1737 NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough && 1738 !NextMBB.hasAddressTaken()) { 1739 MergeBlocks(BBI, *NextBBI); 1740 FalseBBDead = true; 1741 } else { 1742 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1743 BBI.HasFallThrough = false; 1744 } 1745 // Mixed predicated and unpredicated code. This cannot be iteratively 1746 // predicated. 1747 IterIfcvt = false; 1748 } 1749 1750 // Update block info. BB can be iteratively if-converted. 1751 if (!IterIfcvt) 1752 BBI.IsDone = true; 1753 InvalidatePreds(*BBI.BB); 1754 CvtBBI->IsDone = true; 1755 if (FalseBBDead) 1756 NextBBI->IsDone = true; 1757 1758 // FIXME: Must maintain LiveIns. 1759 return true; 1760 } 1761 1762 /// Common code shared between diamond conversions. 1763 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape. 1764 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI 1765 /// and FalseBBI 1766 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI 1767 /// and \p FalseBBI 1768 /// \p RemoveBranch - Remove the common branch of the two blocks before 1769 /// predicating. Only false for unanalyzable fallthrough 1770 /// cases. The caller will replace the branch if necessary. 1771 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for 1772 /// unanalyzable fallthrough 1773 bool IfConverter::IfConvertDiamondCommon( 1774 BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 1775 unsigned NumDups1, unsigned NumDups2, 1776 bool TClobbersPred, bool FClobbersPred, 1777 bool RemoveBranch, bool MergeAddEdges) { 1778 1779 if (TrueBBI.IsDone || FalseBBI.IsDone || 1780 TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) { 1781 // Something has changed. It's no longer safe to predicate these blocks. 1782 BBI.IsAnalyzed = false; 1783 TrueBBI.IsAnalyzed = false; 1784 FalseBBI.IsAnalyzed = false; 1785 return false; 1786 } 1787 1788 if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken()) 1789 // Conservatively abort if-conversion if either BB has its address taken. 1790 return false; 1791 1792 // Put the predicated instructions from the 'true' block before the 1793 // instructions from the 'false' block, unless the true block would clobber 1794 // the predicate, in which case, do the opposite. 1795 BBInfo *BBI1 = &TrueBBI; 1796 BBInfo *BBI2 = &FalseBBI; 1797 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1798 if (TII->reverseBranchCondition(RevCond)) 1799 llvm_unreachable("Unable to reverse branch condition!"); 1800 SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond; 1801 SmallVector<MachineOperand, 4> *Cond2 = &RevCond; 1802 1803 // Figure out the more profitable ordering. 1804 bool DoSwap = false; 1805 if (TClobbersPred && !FClobbersPred) 1806 DoSwap = true; 1807 else if (!TClobbersPred && !FClobbersPred) { 1808 if (TrueBBI.NonPredSize > FalseBBI.NonPredSize) 1809 DoSwap = true; 1810 } else if (TClobbersPred && FClobbersPred) 1811 llvm_unreachable("Predicate info cannot be clobbered by both sides."); 1812 if (DoSwap) { 1813 std::swap(BBI1, BBI2); 1814 std::swap(Cond1, Cond2); 1815 } 1816 1817 // Remove the conditional branch from entry to the blocks. 1818 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1819 1820 MachineBasicBlock &MBB1 = *BBI1->BB; 1821 MachineBasicBlock &MBB2 = *BBI2->BB; 1822 1823 // Initialize the Redefs: 1824 // - BB2 live-in regs need implicit uses before being redefined by BB1 1825 // instructions. 1826 // - BB1 live-out regs need implicit uses before being redefined by BB2 1827 // instructions. We start with BB1 live-ins so we have the live-out regs 1828 // after tracking the BB1 instructions. 1829 Redefs.init(*TRI); 1830 if (MRI->tracksLiveness()) { 1831 Redefs.addLiveIns(MBB1); 1832 Redefs.addLiveIns(MBB2); 1833 } 1834 1835 // Remove the duplicated instructions at the beginnings of both paths. 1836 // Skip dbg_value instructions. 1837 MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr(); 1838 MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr(); 1839 BBI1->NonPredSize -= NumDups1; 1840 BBI2->NonPredSize -= NumDups1; 1841 1842 // Skip past the dups on each side separately since there may be 1843 // differing dbg_value entries. NumDups1 can include a "return" 1844 // instruction, if it's not marked as "branch". 1845 for (unsigned i = 0; i < NumDups1; ++DI1) { 1846 if (DI1 == MBB1.end()) 1847 break; 1848 if (!DI1->isDebugInstr()) 1849 ++i; 1850 } 1851 while (NumDups1 != 0) { 1852 // Since this instruction is going to be deleted, update call 1853 // site info state if the instruction is call instruction. 1854 if (DI2->shouldUpdateCallSiteInfo()) 1855 MBB2.getParent()->eraseCallSiteInfo(&*DI2); 1856 1857 ++DI2; 1858 if (DI2 == MBB2.end()) 1859 break; 1860 if (!DI2->isDebugInstr()) 1861 --NumDups1; 1862 } 1863 1864 if (MRI->tracksLiveness()) { 1865 for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) { 1866 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy; 1867 Redefs.stepForward(MI, Dummy); 1868 } 1869 } 1870 1871 BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1); 1872 MBB2.erase(MBB2.begin(), DI2); 1873 1874 // The branches have been checked to match, so it is safe to remove the 1875 // branch in BB1 and rely on the copy in BB2. The complication is that 1876 // the blocks may end with a return instruction, which may or may not 1877 // be marked as "branch". If it's not, then it could be included in 1878 // "dups1", leaving the blocks potentially empty after moving the common 1879 // duplicates. 1880 #ifndef NDEBUG 1881 // Unanalyzable branches must match exactly. Check that now. 1882 if (!BBI1->IsBrAnalyzable) 1883 verifySameBranchInstructions(&MBB1, &MBB2); 1884 #endif 1885 // Remove duplicated instructions from the tail of MBB1: any branch 1886 // instructions, and the common instructions counted by NumDups2. 1887 DI1 = MBB1.end(); 1888 while (DI1 != MBB1.begin()) { 1889 MachineBasicBlock::iterator Prev = std::prev(DI1); 1890 if (!Prev->isBranch() && !Prev->isDebugInstr()) 1891 break; 1892 DI1 = Prev; 1893 } 1894 for (unsigned i = 0; i != NumDups2; ) { 1895 // NumDups2 only counted non-dbg_value instructions, so this won't 1896 // run off the head of the list. 1897 assert(DI1 != MBB1.begin()); 1898 1899 --DI1; 1900 1901 // Since this instruction is going to be deleted, update call 1902 // site info state if the instruction is call instruction. 1903 if (DI1->shouldUpdateCallSiteInfo()) 1904 MBB1.getParent()->eraseCallSiteInfo(&*DI1); 1905 1906 // skip dbg_value instructions 1907 if (!DI1->isDebugInstr()) 1908 ++i; 1909 } 1910 MBB1.erase(DI1, MBB1.end()); 1911 1912 DI2 = BBI2->BB->end(); 1913 // The branches have been checked to match. Skip over the branch in the false 1914 // block so that we don't try to predicate it. 1915 if (RemoveBranch) 1916 BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB); 1917 else { 1918 // Make DI2 point to the end of the range where the common "tail" 1919 // instructions could be found. 1920 while (DI2 != MBB2.begin()) { 1921 MachineBasicBlock::iterator Prev = std::prev(DI2); 1922 if (!Prev->isBranch() && !Prev->isDebugInstr()) 1923 break; 1924 DI2 = Prev; 1925 } 1926 } 1927 while (NumDups2 != 0) { 1928 // NumDups2 only counted non-dbg_value instructions, so this won't 1929 // run off the head of the list. 1930 assert(DI2 != MBB2.begin()); 1931 --DI2; 1932 // skip dbg_value instructions 1933 if (!DI2->isDebugInstr()) 1934 --NumDups2; 1935 } 1936 1937 // Remember which registers would later be defined by the false block. 1938 // This allows us not to predicate instructions in the true block that would 1939 // later be re-defined. That is, rather than 1940 // subeq r0, r1, #1 1941 // addne r0, r1, #1 1942 // generate: 1943 // sub r0, r1, #1 1944 // addne r0, r1, #1 1945 SmallSet<MCPhysReg, 4> RedefsByFalse; 1946 SmallSet<MCPhysReg, 4> ExtUses; 1947 if (TII->isProfitableToUnpredicate(MBB1, MBB2)) { 1948 for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) { 1949 if (FI.isDebugInstr()) 1950 continue; 1951 SmallVector<MCPhysReg, 4> Defs; 1952 for (const MachineOperand &MO : FI.operands()) { 1953 if (!MO.isReg()) 1954 continue; 1955 Register Reg = MO.getReg(); 1956 if (!Reg) 1957 continue; 1958 if (MO.isDef()) { 1959 Defs.push_back(Reg); 1960 } else if (!RedefsByFalse.count(Reg)) { 1961 // These are defined before ctrl flow reach the 'false' instructions. 1962 // They cannot be modified by the 'true' instructions. 1963 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1964 SubRegs.isValid(); ++SubRegs) 1965 ExtUses.insert(*SubRegs); 1966 } 1967 } 1968 1969 for (MCPhysReg Reg : Defs) { 1970 if (!ExtUses.count(Reg)) { 1971 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1972 SubRegs.isValid(); ++SubRegs) 1973 RedefsByFalse.insert(*SubRegs); 1974 } 1975 } 1976 } 1977 } 1978 1979 // Predicate the 'true' block. 1980 PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse); 1981 1982 // After predicating BBI1, if there is a predicated terminator in BBI1 and 1983 // a non-predicated in BBI2, then we don't want to predicate the one from 1984 // BBI2. The reason is that if we merged these blocks, we would end up with 1985 // two predicated terminators in the same block. 1986 // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't 1987 // predicate them either. They were checked to be identical, and so the 1988 // same branch would happen regardless of which path was taken. 1989 if (!MBB2.empty() && (DI2 == MBB2.end())) { 1990 MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator(); 1991 MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator(); 1992 bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T); 1993 bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T); 1994 if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable)) 1995 --DI2; 1996 } 1997 1998 // Predicate the 'false' block. 1999 PredicateBlock(*BBI2, DI2, *Cond2); 2000 2001 // Merge the true block into the entry of the diamond. 2002 MergeBlocks(BBI, *BBI1, MergeAddEdges); 2003 MergeBlocks(BBI, *BBI2, MergeAddEdges); 2004 return true; 2005 } 2006 2007 /// If convert an almost-diamond sub-CFG where the true 2008 /// and false blocks share a common tail. 2009 bool IfConverter::IfConvertForkedDiamond( 2010 BBInfo &BBI, IfcvtKind Kind, 2011 unsigned NumDups1, unsigned NumDups2, 2012 bool TClobbersPred, bool FClobbersPred) { 2013 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 2014 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 2015 2016 // Save the debug location for later. 2017 DebugLoc dl; 2018 MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator(); 2019 if (TIE != TrueBBI.BB->end()) 2020 dl = TIE->getDebugLoc(); 2021 // Removing branches from both blocks is safe, because we have already 2022 // determined that both blocks have the same branch instructions. The branch 2023 // will be added back at the end, unpredicated. 2024 if (!IfConvertDiamondCommon( 2025 BBI, TrueBBI, FalseBBI, 2026 NumDups1, NumDups2, 2027 TClobbersPred, FClobbersPred, 2028 /* RemoveBranch */ true, /* MergeAddEdges */ true)) 2029 return false; 2030 2031 // Add back the branch. 2032 // Debug location saved above when removing the branch from BBI2 2033 TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB, 2034 TrueBBI.BrCond, dl); 2035 2036 // Update block info. 2037 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 2038 InvalidatePreds(*BBI.BB); 2039 2040 // FIXME: Must maintain LiveIns. 2041 return true; 2042 } 2043 2044 /// If convert a diamond sub-CFG. 2045 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 2046 unsigned NumDups1, unsigned NumDups2, 2047 bool TClobbersPred, bool FClobbersPred) { 2048 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 2049 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 2050 MachineBasicBlock *TailBB = TrueBBI.TrueBB; 2051 2052 // True block must fall through or end with an unanalyzable terminator. 2053 if (!TailBB) { 2054 if (blockAlwaysFallThrough(TrueBBI)) 2055 TailBB = FalseBBI.TrueBB; 2056 assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!"); 2057 } 2058 2059 if (!IfConvertDiamondCommon( 2060 BBI, TrueBBI, FalseBBI, 2061 NumDups1, NumDups2, 2062 TClobbersPred, FClobbersPred, 2063 /* RemoveBranch */ TrueBBI.IsBrAnalyzable, 2064 /* MergeAddEdges */ TailBB == nullptr)) 2065 return false; 2066 2067 // If the if-converted block falls through or unconditionally branches into 2068 // the tail block, and the tail block does not have other predecessors, then 2069 // fold the tail block in as well. Otherwise, unless it falls through to the 2070 // tail, add a unconditional branch to it. 2071 if (TailBB) { 2072 // We need to remove the edges to the true and false blocks manually since 2073 // we didn't let IfConvertDiamondCommon update the CFG. 2074 BBI.BB->removeSuccessor(TrueBBI.BB); 2075 BBI.BB->removeSuccessor(FalseBBI.BB, true); 2076 2077 BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()]; 2078 bool CanMergeTail = !TailBBI.HasFallThrough && 2079 !TailBBI.BB->hasAddressTaken(); 2080 // The if-converted block can still have a predicated terminator 2081 // (e.g. a predicated return). If that is the case, we cannot merge 2082 // it with the tail block. 2083 MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator(); 2084 if (TI != BBI.BB->end() && TII->isPredicated(*TI)) 2085 CanMergeTail = false; 2086 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB; 2087 // check if there are any other predecessors besides those. 2088 unsigned NumPreds = TailBB->pred_size(); 2089 if (NumPreds > 1) 2090 CanMergeTail = false; 2091 else if (NumPreds == 1 && CanMergeTail) { 2092 MachineBasicBlock::pred_iterator PI = TailBB->pred_begin(); 2093 if (*PI != TrueBBI.BB && *PI != FalseBBI.BB) 2094 CanMergeTail = false; 2095 } 2096 if (CanMergeTail) { 2097 MergeBlocks(BBI, TailBBI); 2098 TailBBI.IsDone = true; 2099 } else { 2100 BBI.BB->addSuccessor(TailBB, BranchProbability::getOne()); 2101 InsertUncondBranch(*BBI.BB, *TailBB, TII); 2102 BBI.HasFallThrough = false; 2103 } 2104 } 2105 2106 // Update block info. 2107 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 2108 InvalidatePreds(*BBI.BB); 2109 2110 // FIXME: Must maintain LiveIns. 2111 return true; 2112 } 2113 2114 static bool MaySpeculate(const MachineInstr &MI, 2115 SmallSet<MCPhysReg, 4> &LaterRedefs) { 2116 bool SawStore = true; 2117 if (!MI.isSafeToMove(nullptr, SawStore)) 2118 return false; 2119 2120 for (const MachineOperand &MO : MI.operands()) { 2121 if (!MO.isReg()) 2122 continue; 2123 Register Reg = MO.getReg(); 2124 if (!Reg) 2125 continue; 2126 if (MO.isDef() && !LaterRedefs.count(Reg)) 2127 return false; 2128 } 2129 2130 return true; 2131 } 2132 2133 /// Predicate instructions from the start of the block to the specified end with 2134 /// the specified condition. 2135 void IfConverter::PredicateBlock(BBInfo &BBI, 2136 MachineBasicBlock::iterator E, 2137 SmallVectorImpl<MachineOperand> &Cond, 2138 SmallSet<MCPhysReg, 4> *LaterRedefs) { 2139 bool AnyUnpred = false; 2140 bool MaySpec = LaterRedefs != nullptr; 2141 for (MachineInstr &I : make_range(BBI.BB->begin(), E)) { 2142 if (I.isDebugInstr() || TII->isPredicated(I)) 2143 continue; 2144 // It may be possible not to predicate an instruction if it's the 'true' 2145 // side of a diamond and the 'false' side may re-define the instruction's 2146 // defs. 2147 if (MaySpec && MaySpeculate(I, *LaterRedefs)) { 2148 AnyUnpred = true; 2149 continue; 2150 } 2151 // If any instruction is predicated, then every instruction after it must 2152 // be predicated. 2153 MaySpec = false; 2154 if (!TII->PredicateInstruction(I, Cond)) { 2155 #ifndef NDEBUG 2156 dbgs() << "Unable to predicate " << I << "!\n"; 2157 #endif 2158 llvm_unreachable(nullptr); 2159 } 2160 2161 // If the predicated instruction now redefines a register as the result of 2162 // if-conversion, add an implicit kill. 2163 UpdatePredRedefs(I, Redefs); 2164 } 2165 2166 BBI.Predicate.append(Cond.begin(), Cond.end()); 2167 2168 BBI.IsAnalyzed = false; 2169 BBI.NonPredSize = 0; 2170 2171 ++NumIfConvBBs; 2172 if (AnyUnpred) 2173 ++NumUnpred; 2174 } 2175 2176 /// Copy and predicate instructions from source BB to the destination block. 2177 /// Skip end of block branches if IgnoreBr is true. 2178 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 2179 SmallVectorImpl<MachineOperand> &Cond, 2180 bool IgnoreBr) { 2181 MachineFunction &MF = *ToBBI.BB->getParent(); 2182 2183 MachineBasicBlock &FromMBB = *FromBBI.BB; 2184 for (MachineInstr &I : FromMBB) { 2185 // Do not copy the end of the block branches. 2186 if (IgnoreBr && I.isBranch()) 2187 break; 2188 2189 MachineInstr *MI = MF.CloneMachineInstr(&I); 2190 // Make a copy of the call site info. 2191 if (I.isCandidateForCallSiteEntry()) 2192 MF.copyCallSiteInfo(&I, MI); 2193 2194 ToBBI.BB->insert(ToBBI.BB->end(), MI); 2195 ToBBI.NonPredSize++; 2196 unsigned ExtraPredCost = TII->getPredicationCost(I); 2197 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); 2198 if (NumCycles > 1) 2199 ToBBI.ExtraCost += NumCycles-1; 2200 ToBBI.ExtraCost2 += ExtraPredCost; 2201 2202 if (!TII->isPredicated(I) && !MI->isDebugInstr()) { 2203 if (!TII->PredicateInstruction(*MI, Cond)) { 2204 #ifndef NDEBUG 2205 dbgs() << "Unable to predicate " << I << "!\n"; 2206 #endif 2207 llvm_unreachable(nullptr); 2208 } 2209 } 2210 2211 // If the predicated instruction now redefines a register as the result of 2212 // if-conversion, add an implicit kill. 2213 UpdatePredRedefs(*MI, Redefs); 2214 } 2215 2216 if (!IgnoreBr) { 2217 std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(), 2218 FromMBB.succ_end()); 2219 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2220 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2221 2222 for (MachineBasicBlock *Succ : Succs) { 2223 // Fallthrough edge can't be transferred. 2224 if (Succ == FallThrough) 2225 continue; 2226 ToBBI.BB->addSuccessor(Succ); 2227 } 2228 } 2229 2230 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2231 ToBBI.Predicate.append(Cond.begin(), Cond.end()); 2232 2233 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2234 ToBBI.IsAnalyzed = false; 2235 2236 ++NumDupBBs; 2237 } 2238 2239 /// Move all instructions from FromBB to the end of ToBB. This will leave 2240 /// FromBB as an empty block, so remove all of its successor edges and move it 2241 /// to the end of the function. If AddEdges is true, i.e., when FromBBI's 2242 /// branch is being moved, add those successor edges to ToBBI and remove the old 2243 /// edge from ToBBI to FromBBI. 2244 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) { 2245 MachineBasicBlock &FromMBB = *FromBBI.BB; 2246 assert(!FromMBB.hasAddressTaken() && 2247 "Removing a BB whose address is taken!"); 2248 2249 // In case FromMBB contains terminators (e.g. return instruction), 2250 // first move the non-terminator instructions, then the terminators. 2251 MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator(); 2252 MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator(); 2253 ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI); 2254 2255 // If FromBB has non-predicated terminator we should copy it at the end. 2256 if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI)) 2257 ToTI = ToBBI.BB->end(); 2258 ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end()); 2259 2260 // Force normalizing the successors' probabilities of ToBBI.BB to convert all 2261 // unknown probabilities into known ones. 2262 // FIXME: This usage is too tricky and in the future we would like to 2263 // eliminate all unknown probabilities in MBB. 2264 if (ToBBI.IsBrAnalyzable) 2265 ToBBI.BB->normalizeSuccProbs(); 2266 2267 SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(), 2268 FromMBB.succ_end()); 2269 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2270 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2271 // The edge probability from ToBBI.BB to FromMBB, which is only needed when 2272 // AddEdges is true and FromMBB is a successor of ToBBI.BB. 2273 auto To2FromProb = BranchProbability::getZero(); 2274 if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) { 2275 // Remove the old edge but remember the edge probability so we can calculate 2276 // the correct weights on the new edges being added further down. 2277 To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB); 2278 ToBBI.BB->removeSuccessor(&FromMBB); 2279 } 2280 2281 for (MachineBasicBlock *Succ : FromSuccs) { 2282 // Fallthrough edge can't be transferred. 2283 if (Succ == FallThrough) { 2284 FromMBB.removeSuccessor(Succ); 2285 continue; 2286 } 2287 2288 auto NewProb = BranchProbability::getZero(); 2289 if (AddEdges) { 2290 // Calculate the edge probability for the edge from ToBBI.BB to Succ, 2291 // which is a portion of the edge probability from FromMBB to Succ. The 2292 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if 2293 // FromBBI is a successor of ToBBI.BB. See comment below for exception). 2294 NewProb = MBPI->getEdgeProbability(&FromMBB, Succ); 2295 2296 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This 2297 // only happens when if-converting a diamond CFG and FromMBB is the 2298 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we 2299 // could just use the probabilities on FromMBB's out-edges when adding 2300 // new successors. 2301 if (!To2FromProb.isZero()) 2302 NewProb *= To2FromProb; 2303 } 2304 2305 FromMBB.removeSuccessor(Succ); 2306 2307 if (AddEdges) { 2308 // If the edge from ToBBI.BB to Succ already exists, update the 2309 // probability of this edge by adding NewProb to it. An example is shown 2310 // below, in which A is ToBBI.BB and B is FromMBB. In this case we 2311 // don't have to set C as A's successor as it already is. We only need to 2312 // update the edge probability on A->C. Note that B will not be 2313 // immediately removed from A's successors. It is possible that B->D is 2314 // not removed either if D is a fallthrough of B. Later the edge A->D 2315 // (generated here) and B->D will be combined into one edge. To maintain 2316 // correct edge probability of this combined edge, we need to set the edge 2317 // probability of A->B to zero, which is already done above. The edge 2318 // probability on A->D is calculated by scaling the original probability 2319 // on A->B by the probability of B->D. 2320 // 2321 // Before ifcvt: After ifcvt (assume B->D is kept): 2322 // 2323 // A A 2324 // /| /|\ 2325 // / B / B| 2326 // | /| | || 2327 // |/ | | |/ 2328 // C D C D 2329 // 2330 if (ToBBI.BB->isSuccessor(Succ)) 2331 ToBBI.BB->setSuccProbability( 2332 find(ToBBI.BB->successors(), Succ), 2333 MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb); 2334 else 2335 ToBBI.BB->addSuccessor(Succ, NewProb); 2336 } 2337 } 2338 2339 // Move the now empty FromMBB out of the way to the end of the function so 2340 // it doesn't interfere with fallthrough checks done by canFallThroughTo(). 2341 MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin(); 2342 if (Last != &FromMBB) 2343 FromMBB.moveAfter(Last); 2344 2345 // Normalize the probabilities of ToBBI.BB's successors with all adjustment 2346 // we've done above. 2347 if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable) 2348 ToBBI.BB->normalizeSuccProbs(); 2349 2350 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2351 FromBBI.Predicate.clear(); 2352 2353 ToBBI.NonPredSize += FromBBI.NonPredSize; 2354 ToBBI.ExtraCost += FromBBI.ExtraCost; 2355 ToBBI.ExtraCost2 += FromBBI.ExtraCost2; 2356 FromBBI.NonPredSize = 0; 2357 FromBBI.ExtraCost = 0; 2358 FromBBI.ExtraCost2 = 0; 2359 2360 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2361 ToBBI.HasFallThrough = FromBBI.HasFallThrough; 2362 ToBBI.IsAnalyzed = false; 2363 FromBBI.IsAnalyzed = false; 2364 } 2365 2366 FunctionPass * 2367 llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) { 2368 return new IfConverter(std::move(Ftor)); 2369 } 2370