xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/IfConversion.cpp (revision 96190b4fef3b4a0cc3ca0606b0c4e3e69a5e6717)
1 //===- IfConversion.cpp - Machine code if conversion pass -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the machine instruction level if-conversion pass, which
10 // tries to convert conditional branches into predicated instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "BranchFolding.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/MBFIWrapper.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetLowering.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSchedule.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/InitializePasses.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/BranchProbability.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <functional>
51 #include <iterator>
52 #include <memory>
53 #include <utility>
54 #include <vector>
55 
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "if-converter"
59 
60 // Hidden options for help debugging.
61 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
62 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
63 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
64 static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
65                                    cl::init(false), cl::Hidden);
66 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
67                                     cl::init(false), cl::Hidden);
68 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
69                                      cl::init(false), cl::Hidden);
70 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
71                                       cl::init(false), cl::Hidden);
72 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
73                                       cl::init(false), cl::Hidden);
74 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
75                                     cl::init(false), cl::Hidden);
76 static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
77                                         cl::init(false), cl::Hidden);
78 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
79                                      cl::init(true), cl::Hidden);
80 
81 STATISTIC(NumSimple,       "Number of simple if-conversions performed");
82 STATISTIC(NumSimpleFalse,  "Number of simple (F) if-conversions performed");
83 STATISTIC(NumTriangle,     "Number of triangle if-conversions performed");
84 STATISTIC(NumTriangleRev,  "Number of triangle (R) if-conversions performed");
85 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
86 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
87 STATISTIC(NumDiamonds,     "Number of diamond if-conversions performed");
88 STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed");
89 STATISTIC(NumIfConvBBs,    "Number of if-converted blocks");
90 STATISTIC(NumDupBBs,       "Number of duplicated blocks");
91 STATISTIC(NumUnpred,       "Number of true blocks of diamonds unpredicated");
92 
93 namespace {
94 
95   class IfConverter : public MachineFunctionPass {
96     enum IfcvtKind {
97       ICNotClassfied,  // BB data valid, but not classified.
98       ICSimpleFalse,   // Same as ICSimple, but on the false path.
99       ICSimple,        // BB is entry of an one split, no rejoin sub-CFG.
100       ICTriangleFRev,  // Same as ICTriangleFalse, but false path rev condition.
101       ICTriangleRev,   // Same as ICTriangle, but true path rev condition.
102       ICTriangleFalse, // Same as ICTriangle, but on the false path.
103       ICTriangle,      // BB is entry of a triangle sub-CFG.
104       ICDiamond,       // BB is entry of a diamond sub-CFG.
105       ICForkedDiamond  // BB is entry of an almost diamond sub-CFG, with a
106                        // common tail that can be shared.
107     };
108 
109     /// One per MachineBasicBlock, this is used to cache the result
110     /// if-conversion feasibility analysis. This includes results from
111     /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
112     /// classification, and common tail block of its successors (if it's a
113     /// diamond shape), its size, whether it's predicable, and whether any
114     /// instruction can clobber the 'would-be' predicate.
115     ///
116     /// IsDone          - True if BB is not to be considered for ifcvt.
117     /// IsBeingAnalyzed - True if BB is currently being analyzed.
118     /// IsAnalyzed      - True if BB has been analyzed (info is still valid).
119     /// IsEnqueued      - True if BB has been enqueued to be ifcvt'ed.
120     /// IsBrAnalyzable  - True if analyzeBranch() returns false.
121     /// HasFallThrough  - True if BB may fallthrough to the following BB.
122     /// IsUnpredicable  - True if BB is known to be unpredicable.
123     /// ClobbersPred    - True if BB could modify predicates (e.g. has
124     ///                   cmp, call, etc.)
125     /// NonPredSize     - Number of non-predicated instructions.
126     /// ExtraCost       - Extra cost for multi-cycle instructions.
127     /// ExtraCost2      - Some instructions are slower when predicated
128     /// BB              - Corresponding MachineBasicBlock.
129     /// TrueBB / FalseBB- See analyzeBranch().
130     /// BrCond          - Conditions for end of block conditional branches.
131     /// Predicate       - Predicate used in the BB.
132     struct BBInfo {
133       bool IsDone          : 1;
134       bool IsBeingAnalyzed : 1;
135       bool IsAnalyzed      : 1;
136       bool IsEnqueued      : 1;
137       bool IsBrAnalyzable  : 1;
138       bool IsBrReversible  : 1;
139       bool HasFallThrough  : 1;
140       bool IsUnpredicable  : 1;
141       bool CannotBeCopied  : 1;
142       bool ClobbersPred    : 1;
143       unsigned NonPredSize = 0;
144       unsigned ExtraCost = 0;
145       unsigned ExtraCost2 = 0;
146       MachineBasicBlock *BB = nullptr;
147       MachineBasicBlock *TrueBB = nullptr;
148       MachineBasicBlock *FalseBB = nullptr;
149       SmallVector<MachineOperand, 4> BrCond;
150       SmallVector<MachineOperand, 4> Predicate;
151 
152       BBInfo() : IsDone(false), IsBeingAnalyzed(false),
153                  IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
154                  IsBrReversible(false), HasFallThrough(false),
155                  IsUnpredicable(false), CannotBeCopied(false),
156                  ClobbersPred(false) {}
157     };
158 
159     /// Record information about pending if-conversions to attempt:
160     /// BBI             - Corresponding BBInfo.
161     /// Kind            - Type of block. See IfcvtKind.
162     /// NeedSubsumption - True if the to-be-predicated BB has already been
163     ///                   predicated.
164     /// NumDups      - Number of instructions that would be duplicated due
165     ///                   to this if-conversion. (For diamonds, the number of
166     ///                   identical instructions at the beginnings of both
167     ///                   paths).
168     /// NumDups2     - For diamonds, the number of identical instructions
169     ///                   at the ends of both paths.
170     struct IfcvtToken {
171       BBInfo &BBI;
172       IfcvtKind Kind;
173       unsigned NumDups;
174       unsigned NumDups2;
175       bool NeedSubsumption : 1;
176       bool TClobbersPred : 1;
177       bool FClobbersPred : 1;
178 
179       IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0,
180                  bool tc = false, bool fc = false)
181         : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s),
182           TClobbersPred(tc), FClobbersPred(fc) {}
183     };
184 
185     /// Results of if-conversion feasibility analysis indexed by basic block
186     /// number.
187     std::vector<BBInfo> BBAnalysis;
188     TargetSchedModel SchedModel;
189 
190     const TargetLoweringBase *TLI = nullptr;
191     const TargetInstrInfo *TII = nullptr;
192     const TargetRegisterInfo *TRI = nullptr;
193     const MachineBranchProbabilityInfo *MBPI = nullptr;
194     MachineRegisterInfo *MRI = nullptr;
195 
196     LivePhysRegs Redefs;
197 
198     bool PreRegAlloc = true;
199     bool MadeChange = false;
200     int FnNum = -1;
201     std::function<bool(const MachineFunction &)> PredicateFtor;
202 
203   public:
204     static char ID;
205 
206     IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr)
207         : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
208       initializeIfConverterPass(*PassRegistry::getPassRegistry());
209     }
210 
211     void getAnalysisUsage(AnalysisUsage &AU) const override {
212       AU.addRequired<MachineBlockFrequencyInfo>();
213       AU.addRequired<MachineBranchProbabilityInfo>();
214       AU.addRequired<ProfileSummaryInfoWrapperPass>();
215       MachineFunctionPass::getAnalysisUsage(AU);
216     }
217 
218     bool runOnMachineFunction(MachineFunction &MF) override;
219 
220     MachineFunctionProperties getRequiredProperties() const override {
221       return MachineFunctionProperties().set(
222           MachineFunctionProperties::Property::NoVRegs);
223     }
224 
225   private:
226     bool reverseBranchCondition(BBInfo &BBI) const;
227     bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
228                      BranchProbability Prediction) const;
229     bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
230                        bool FalseBranch, unsigned &Dups,
231                        BranchProbability Prediction) const;
232     bool CountDuplicatedInstructions(
233         MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
234         MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
235         unsigned &Dups1, unsigned &Dups2,
236         MachineBasicBlock &TBB, MachineBasicBlock &FBB,
237         bool SkipUnconditionalBranches) const;
238     bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
239                       unsigned &Dups1, unsigned &Dups2,
240                       BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
241     bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
242                             unsigned &Dups1, unsigned &Dups2,
243                             BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
244     void AnalyzeBranches(BBInfo &BBI);
245     void ScanInstructions(BBInfo &BBI,
246                           MachineBasicBlock::iterator &Begin,
247                           MachineBasicBlock::iterator &End,
248                           bool BranchUnpredicable = false) const;
249     bool RescanInstructions(
250         MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
251         MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
252         BBInfo &TrueBBI, BBInfo &FalseBBI) const;
253     void AnalyzeBlock(MachineBasicBlock &MBB,
254                       std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
255     bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred,
256                              bool isTriangle = false, bool RevBranch = false,
257                              bool hasCommonTail = false);
258     void AnalyzeBlocks(MachineFunction &MF,
259                        std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
260     void InvalidatePreds(MachineBasicBlock &MBB);
261     bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
262     bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
263     bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
264                                 unsigned NumDups1, unsigned NumDups2,
265                                 bool TClobbersPred, bool FClobbersPred,
266                                 bool RemoveBranch, bool MergeAddEdges);
267     bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
268                           unsigned NumDups1, unsigned NumDups2,
269                           bool TClobbers, bool FClobbers);
270     bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind,
271                               unsigned NumDups1, unsigned NumDups2,
272                               bool TClobbers, bool FClobbers);
273     void PredicateBlock(BBInfo &BBI,
274                         MachineBasicBlock::iterator E,
275                         SmallVectorImpl<MachineOperand> &Cond,
276                         SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr);
277     void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
278                                SmallVectorImpl<MachineOperand> &Cond,
279                                bool IgnoreBr = false);
280     void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
281 
282     bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
283                             unsigned Cycle, unsigned Extra,
284                             BranchProbability Prediction) const {
285       return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
286                                                    Prediction);
287     }
288 
289     bool MeetIfcvtSizeLimit(BBInfo &TBBInfo, BBInfo &FBBInfo,
290                             MachineBasicBlock &CommBB, unsigned Dups,
291                             BranchProbability Prediction, bool Forked) const {
292       const MachineFunction &MF = *TBBInfo.BB->getParent();
293       if (MF.getFunction().hasMinSize()) {
294         MachineBasicBlock::iterator TIB = TBBInfo.BB->begin();
295         MachineBasicBlock::iterator FIB = FBBInfo.BB->begin();
296         MachineBasicBlock::iterator TIE = TBBInfo.BB->end();
297         MachineBasicBlock::iterator FIE = FBBInfo.BB->end();
298 
299         unsigned Dups1 = 0, Dups2 = 0;
300         if (!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
301                                          *TBBInfo.BB, *FBBInfo.BB,
302                                          /*SkipUnconditionalBranches*/ true))
303           llvm_unreachable("should already have been checked by ValidDiamond");
304 
305         unsigned BranchBytes = 0;
306         unsigned CommonBytes = 0;
307 
308         // Count common instructions at the start of the true and false blocks.
309         for (auto &I : make_range(TBBInfo.BB->begin(), TIB)) {
310           LLVM_DEBUG(dbgs() << "Common inst: " << I);
311           CommonBytes += TII->getInstSizeInBytes(I);
312         }
313         for (auto &I : make_range(FBBInfo.BB->begin(), FIB)) {
314           LLVM_DEBUG(dbgs() << "Common inst: " << I);
315           CommonBytes += TII->getInstSizeInBytes(I);
316         }
317 
318         // Count instructions at the end of the true and false blocks, after
319         // the ones we plan to predicate. Analyzable branches will be removed
320         // (unless this is a forked diamond), and all other instructions are
321         // common between the two blocks.
322         for (auto &I : make_range(TIE, TBBInfo.BB->end())) {
323           if (I.isBranch() && TBBInfo.IsBrAnalyzable && !Forked) {
324             LLVM_DEBUG(dbgs() << "Saving branch: " << I);
325             BranchBytes += TII->predictBranchSizeForIfCvt(I);
326           } else {
327             LLVM_DEBUG(dbgs() << "Common inst: " << I);
328             CommonBytes += TII->getInstSizeInBytes(I);
329           }
330         }
331         for (auto &I : make_range(FIE, FBBInfo.BB->end())) {
332           if (I.isBranch() && FBBInfo.IsBrAnalyzable && !Forked) {
333             LLVM_DEBUG(dbgs() << "Saving branch: " << I);
334             BranchBytes += TII->predictBranchSizeForIfCvt(I);
335           } else {
336             LLVM_DEBUG(dbgs() << "Common inst: " << I);
337             CommonBytes += TII->getInstSizeInBytes(I);
338           }
339         }
340         for (auto &I : CommBB.terminators()) {
341           if (I.isBranch()) {
342             LLVM_DEBUG(dbgs() << "Saving branch: " << I);
343             BranchBytes += TII->predictBranchSizeForIfCvt(I);
344           }
345         }
346 
347         // The common instructions in one branch will be eliminated, halving
348         // their code size.
349         CommonBytes /= 2;
350 
351         // Count the instructions which we need to predicate.
352         unsigned NumPredicatedInstructions = 0;
353         for (auto &I : make_range(TIB, TIE)) {
354           if (!I.isDebugInstr()) {
355             LLVM_DEBUG(dbgs() << "Predicating: " << I);
356             NumPredicatedInstructions++;
357           }
358         }
359         for (auto &I : make_range(FIB, FIE)) {
360           if (!I.isDebugInstr()) {
361             LLVM_DEBUG(dbgs() << "Predicating: " << I);
362             NumPredicatedInstructions++;
363           }
364         }
365 
366         // Even though we're optimising for size at the expense of performance,
367         // avoid creating really long predicated blocks.
368         if (NumPredicatedInstructions > 15)
369           return false;
370 
371         // Some targets (e.g. Thumb2) need to insert extra instructions to
372         // start predicated blocks.
373         unsigned ExtraPredicateBytes = TII->extraSizeToPredicateInstructions(
374             MF, NumPredicatedInstructions);
375 
376         LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(BranchBytes=" << BranchBytes
377                           << ", CommonBytes=" << CommonBytes
378                           << ", NumPredicatedInstructions="
379                           << NumPredicatedInstructions
380                           << ", ExtraPredicateBytes=" << ExtraPredicateBytes
381                           << ")\n");
382         return (BranchBytes + CommonBytes) > ExtraPredicateBytes;
383       } else {
384         unsigned TCycle = TBBInfo.NonPredSize + TBBInfo.ExtraCost - Dups;
385         unsigned FCycle = FBBInfo.NonPredSize + FBBInfo.ExtraCost - Dups;
386         bool Res = TCycle > 0 && FCycle > 0 &&
387                    TII->isProfitableToIfCvt(
388                        *TBBInfo.BB, TCycle, TBBInfo.ExtraCost2, *FBBInfo.BB,
389                        FCycle, FBBInfo.ExtraCost2, Prediction);
390         LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(TCycle=" << TCycle
391                           << ", FCycle=" << FCycle
392                           << ", TExtra=" << TBBInfo.ExtraCost2 << ", FExtra="
393                           << FBBInfo.ExtraCost2 << ") = " << Res << "\n");
394         return Res;
395       }
396     }
397 
398     /// Returns true if Block ends without a terminator.
399     bool blockAlwaysFallThrough(BBInfo &BBI) const {
400       return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
401     }
402 
403     /// Used to sort if-conversion candidates.
404     static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
405                               const std::unique_ptr<IfcvtToken> &C2) {
406       int Incr1 = (C1->Kind == ICDiamond)
407         ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
408       int Incr2 = (C2->Kind == ICDiamond)
409         ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
410       if (Incr1 > Incr2)
411         return true;
412       else if (Incr1 == Incr2) {
413         // Favors subsumption.
414         if (!C1->NeedSubsumption && C2->NeedSubsumption)
415           return true;
416         else if (C1->NeedSubsumption == C2->NeedSubsumption) {
417           // Favors diamond over triangle, etc.
418           if ((unsigned)C1->Kind < (unsigned)C2->Kind)
419             return true;
420           else if (C1->Kind == C2->Kind)
421             return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
422         }
423       }
424       return false;
425     }
426   };
427 
428 } // end anonymous namespace
429 
430 char IfConverter::ID = 0;
431 
432 char &llvm::IfConverterID = IfConverter::ID;
433 
434 INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false)
435 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
436 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
437 INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false)
438 
439 bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
440   if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF)))
441     return false;
442 
443   const TargetSubtargetInfo &ST = MF.getSubtarget();
444   TLI = ST.getTargetLowering();
445   TII = ST.getInstrInfo();
446   TRI = ST.getRegisterInfo();
447   MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
448   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
449   ProfileSummaryInfo *PSI =
450       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
451   MRI = &MF.getRegInfo();
452   SchedModel.init(&ST);
453 
454   if (!TII) return false;
455 
456   PreRegAlloc = MRI->isSSA();
457 
458   bool BFChange = false;
459   if (!PreRegAlloc) {
460     // Tail merge tend to expose more if-conversion opportunities.
461     BranchFolder BF(true, false, MBFI, *MBPI, PSI);
462     BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo());
463   }
464 
465   LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'"
466                     << MF.getName() << "\'");
467 
468   if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
469     LLVM_DEBUG(dbgs() << " skipped\n");
470     return false;
471   }
472   LLVM_DEBUG(dbgs() << "\n");
473 
474   MF.RenumberBlocks();
475   BBAnalysis.resize(MF.getNumBlockIDs());
476 
477   std::vector<std::unique_ptr<IfcvtToken>> Tokens;
478   MadeChange = false;
479   unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
480     NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
481   while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
482     // Do an initial analysis for each basic block and find all the potential
483     // candidates to perform if-conversion.
484     bool Change = false;
485     AnalyzeBlocks(MF, Tokens);
486     while (!Tokens.empty()) {
487       std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
488       Tokens.pop_back();
489       BBInfo &BBI = Token->BBI;
490       IfcvtKind Kind = Token->Kind;
491       unsigned NumDups = Token->NumDups;
492       unsigned NumDups2 = Token->NumDups2;
493 
494       // If the block has been evicted out of the queue or it has already been
495       // marked dead (due to it being predicated), then skip it.
496       if (BBI.IsDone)
497         BBI.IsEnqueued = false;
498       if (!BBI.IsEnqueued)
499         continue;
500 
501       BBI.IsEnqueued = false;
502 
503       bool RetVal = false;
504       switch (Kind) {
505       default: llvm_unreachable("Unexpected!");
506       case ICSimple:
507       case ICSimpleFalse: {
508         bool isFalse = Kind == ICSimpleFalse;
509         if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
510         LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
511                           << (Kind == ICSimpleFalse ? " false" : "")
512                           << "): " << printMBBReference(*BBI.BB) << " ("
513                           << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber()
514                                                       : BBI.TrueBB->getNumber())
515                           << ") ");
516         RetVal = IfConvertSimple(BBI, Kind);
517         LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
518         if (RetVal) {
519           if (isFalse) ++NumSimpleFalse;
520           else         ++NumSimple;
521         }
522        break;
523       }
524       case ICTriangle:
525       case ICTriangleRev:
526       case ICTriangleFalse:
527       case ICTriangleFRev: {
528         bool isFalse = Kind == ICTriangleFalse;
529         bool isRev   = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
530         if (DisableTriangle && !isFalse && !isRev) break;
531         if (DisableTriangleR && !isFalse && isRev) break;
532         if (DisableTriangleF && isFalse && !isRev) break;
533         LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
534         if (isFalse)
535           LLVM_DEBUG(dbgs() << " false");
536         if (isRev)
537           LLVM_DEBUG(dbgs() << " rev");
538         LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB)
539                           << " (T:" << BBI.TrueBB->getNumber()
540                           << ",F:" << BBI.FalseBB->getNumber() << ") ");
541         RetVal = IfConvertTriangle(BBI, Kind);
542         LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
543         if (RetVal) {
544           if (isFalse)
545             ++NumTriangleFalse;
546           else if (isRev)
547             ++NumTriangleRev;
548           else
549             ++NumTriangle;
550         }
551         break;
552       }
553       case ICDiamond:
554         if (DisableDiamond) break;
555         LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB)
556                           << " (T:" << BBI.TrueBB->getNumber()
557                           << ",F:" << BBI.FalseBB->getNumber() << ") ");
558         RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2,
559                                   Token->TClobbersPred,
560                                   Token->FClobbersPred);
561         LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
562         if (RetVal) ++NumDiamonds;
563         break;
564       case ICForkedDiamond:
565         if (DisableForkedDiamond) break;
566         LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
567                           << printMBBReference(*BBI.BB)
568                           << " (T:" << BBI.TrueBB->getNumber()
569                           << ",F:" << BBI.FalseBB->getNumber() << ") ");
570         RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2,
571                                       Token->TClobbersPred,
572                                       Token->FClobbersPred);
573         LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
574         if (RetVal) ++NumForkedDiamonds;
575         break;
576       }
577 
578       if (RetVal && MRI->tracksLiveness())
579         recomputeLivenessFlags(*BBI.BB);
580 
581       Change |= RetVal;
582 
583       NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
584         NumTriangleFalse + NumTriangleFRev + NumDiamonds;
585       if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
586         break;
587     }
588 
589     if (!Change)
590       break;
591     MadeChange |= Change;
592   }
593 
594   Tokens.clear();
595   BBAnalysis.clear();
596 
597   if (MadeChange && IfCvtBranchFold) {
598     BranchFolder BF(false, false, MBFI, *MBPI, PSI);
599     BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo());
600   }
601 
602   MadeChange |= BFChange;
603   return MadeChange;
604 }
605 
606 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
607 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
608                                          MachineBasicBlock *TrueBB) {
609   for (MachineBasicBlock *SuccBB : BB->successors()) {
610     if (SuccBB != TrueBB)
611       return SuccBB;
612   }
613   return nullptr;
614 }
615 
616 /// Reverse the condition of the end of the block branch. Swap block's 'true'
617 /// and 'false' successors.
618 bool IfConverter::reverseBranchCondition(BBInfo &BBI) const {
619   DebugLoc dl;  // FIXME: this is nowhere
620   if (!TII->reverseBranchCondition(BBI.BrCond)) {
621     TII->removeBranch(*BBI.BB);
622     TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
623     std::swap(BBI.TrueBB, BBI.FalseBB);
624     return true;
625   }
626   return false;
627 }
628 
629 /// Returns the next block in the function blocks ordering. If it is the end,
630 /// returns NULL.
631 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) {
632   MachineFunction::iterator I = MBB.getIterator();
633   MachineFunction::iterator E = MBB.getParent()->end();
634   if (++I == E)
635     return nullptr;
636   return &*I;
637 }
638 
639 /// Returns true if the 'true' block (along with its predecessor) forms a valid
640 /// simple shape for ifcvt. It also returns the number of instructions that the
641 /// ifcvt would need to duplicate if performed in Dups.
642 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
643                               BranchProbability Prediction) const {
644   Dups = 0;
645   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
646     return false;
647 
648   if (TrueBBI.IsBrAnalyzable)
649     return false;
650 
651   if (TrueBBI.BB->pred_size() > 1) {
652     if (TrueBBI.CannotBeCopied ||
653         !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
654                                         Prediction))
655       return false;
656     Dups = TrueBBI.NonPredSize;
657   }
658 
659   return true;
660 }
661 
662 /// Returns true if the 'true' and 'false' blocks (along with their common
663 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
664 /// true, it checks if 'true' block's false branch branches to the 'false' block
665 /// rather than the other way around. It also returns the number of instructions
666 /// that the ifcvt would need to duplicate if performed in 'Dups'.
667 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
668                                 bool FalseBranch, unsigned &Dups,
669                                 BranchProbability Prediction) const {
670   Dups = 0;
671   if (TrueBBI.BB == FalseBBI.BB)
672     return false;
673 
674   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
675     return false;
676 
677   if (TrueBBI.BB->pred_size() > 1) {
678     if (TrueBBI.CannotBeCopied)
679       return false;
680 
681     unsigned Size = TrueBBI.NonPredSize;
682     if (TrueBBI.IsBrAnalyzable) {
683       if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
684         // Ends with an unconditional branch. It will be removed.
685         --Size;
686       else {
687         MachineBasicBlock *FExit = FalseBranch
688           ? TrueBBI.TrueBB : TrueBBI.FalseBB;
689         if (FExit)
690           // Require a conditional branch
691           ++Size;
692       }
693     }
694     if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
695       return false;
696     Dups = Size;
697   }
698 
699   MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
700   if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
701     MachineFunction::iterator I = TrueBBI.BB->getIterator();
702     if (++I == TrueBBI.BB->getParent()->end())
703       return false;
704     TExit = &*I;
705   }
706   return TExit && TExit == FalseBBI.BB;
707 }
708 
709 /// Count duplicated instructions and move the iterators to show where they
710 /// are.
711 /// @param TIB True Iterator Begin
712 /// @param FIB False Iterator Begin
713 /// These two iterators initially point to the first instruction of the two
714 /// blocks, and finally point to the first non-shared instruction.
715 /// @param TIE True Iterator End
716 /// @param FIE False Iterator End
717 /// These two iterators initially point to End() for the two blocks() and
718 /// finally point to the first shared instruction in the tail.
719 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
720 /// two blocks.
721 /// @param Dups1 count of duplicated instructions at the beginning of the 2
722 /// blocks.
723 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
724 /// @param SkipUnconditionalBranches if true, Don't make sure that
725 /// unconditional branches at the end of the blocks are the same. True is
726 /// passed when the blocks are analyzable to allow for fallthrough to be
727 /// handled.
728 /// @return false if the shared portion prevents if conversion.
729 bool IfConverter::CountDuplicatedInstructions(
730     MachineBasicBlock::iterator &TIB,
731     MachineBasicBlock::iterator &FIB,
732     MachineBasicBlock::iterator &TIE,
733     MachineBasicBlock::iterator &FIE,
734     unsigned &Dups1, unsigned &Dups2,
735     MachineBasicBlock &TBB, MachineBasicBlock &FBB,
736     bool SkipUnconditionalBranches) const {
737   while (TIB != TIE && FIB != FIE) {
738     // Skip dbg_value instructions. These do not count.
739     TIB = skipDebugInstructionsForward(TIB, TIE, false);
740     FIB = skipDebugInstructionsForward(FIB, FIE, false);
741     if (TIB == TIE || FIB == FIE)
742       break;
743     if (!TIB->isIdenticalTo(*FIB))
744       break;
745     // A pred-clobbering instruction in the shared portion prevents
746     // if-conversion.
747     std::vector<MachineOperand> PredDefs;
748     if (TII->ClobbersPredicate(*TIB, PredDefs, false))
749       return false;
750     // If we get all the way to the branch instructions, don't count them.
751     if (!TIB->isBranch())
752       ++Dups1;
753     ++TIB;
754     ++FIB;
755   }
756 
757   // Check for already containing all of the block.
758   if (TIB == TIE || FIB == FIE)
759     return true;
760   // Now, in preparation for counting duplicate instructions at the ends of the
761   // blocks, switch to reverse_iterators. Note that getReverse() returns an
762   // iterator that points to the same instruction, unlike std::reverse_iterator.
763   // We have to do our own shifting so that we get the same range.
764   MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse());
765   MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse());
766   const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse());
767   const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse());
768 
769   if (!TBB.succ_empty() || !FBB.succ_empty()) {
770     if (SkipUnconditionalBranches) {
771       while (RTIE != RTIB && RTIE->isUnconditionalBranch())
772         ++RTIE;
773       while (RFIE != RFIB && RFIE->isUnconditionalBranch())
774         ++RFIE;
775     }
776   }
777 
778   // Count duplicate instructions at the ends of the blocks.
779   while (RTIE != RTIB && RFIE != RFIB) {
780     // Skip dbg_value instructions. These do not count.
781     // Note that these are reverse iterators going forward.
782     RTIE = skipDebugInstructionsForward(RTIE, RTIB, false);
783     RFIE = skipDebugInstructionsForward(RFIE, RFIB, false);
784     if (RTIE == RTIB || RFIE == RFIB)
785       break;
786     if (!RTIE->isIdenticalTo(*RFIE))
787       break;
788     // We have to verify that any branch instructions are the same, and then we
789     // don't count them toward the # of duplicate instructions.
790     if (!RTIE->isBranch())
791       ++Dups2;
792     ++RTIE;
793     ++RFIE;
794   }
795   TIE = std::next(RTIE.getReverse());
796   FIE = std::next(RFIE.getReverse());
797   return true;
798 }
799 
800 /// RescanInstructions - Run ScanInstructions on a pair of blocks.
801 /// @param TIB - True Iterator Begin, points to first non-shared instruction
802 /// @param FIB - False Iterator Begin, points to first non-shared instruction
803 /// @param TIE - True Iterator End, points past last non-shared instruction
804 /// @param FIE - False Iterator End, points past last non-shared instruction
805 /// @param TrueBBI  - BBInfo to update for the true block.
806 /// @param FalseBBI - BBInfo to update for the false block.
807 /// @returns - false if either block cannot be predicated or if both blocks end
808 ///   with a predicate-clobbering instruction.
809 bool IfConverter::RescanInstructions(
810     MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
811     MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
812     BBInfo &TrueBBI, BBInfo &FalseBBI) const {
813   bool BranchUnpredicable = true;
814   TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false;
815   ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable);
816   if (TrueBBI.IsUnpredicable)
817     return false;
818   ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable);
819   if (FalseBBI.IsUnpredicable)
820     return false;
821   if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)
822     return false;
823   return true;
824 }
825 
826 #ifndef NDEBUG
827 static void verifySameBranchInstructions(
828     MachineBasicBlock *MBB1,
829     MachineBasicBlock *MBB2) {
830   const MachineBasicBlock::reverse_iterator B1 = MBB1->rend();
831   const MachineBasicBlock::reverse_iterator B2 = MBB2->rend();
832   MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin();
833   MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin();
834   while (E1 != B1 && E2 != B2) {
835     skipDebugInstructionsForward(E1, B1, false);
836     skipDebugInstructionsForward(E2, B2, false);
837     if (E1 == B1 && E2 == B2)
838       break;
839 
840     if (E1 == B1) {
841       assert(!E2->isBranch() && "Branch mis-match, one block is empty.");
842       break;
843     }
844     if (E2 == B2) {
845       assert(!E1->isBranch() && "Branch mis-match, one block is empty.");
846       break;
847     }
848 
849     if (E1->isBranch() || E2->isBranch())
850       assert(E1->isIdenticalTo(*E2) &&
851              "Branch mis-match, branch instructions don't match.");
852     else
853       break;
854     ++E1;
855     ++E2;
856   }
857 }
858 #endif
859 
860 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
861 /// with their common predecessor) form a diamond if a common tail block is
862 /// extracted.
863 /// While not strictly a diamond, this pattern would form a diamond if
864 /// tail-merging had merged the shared tails.
865 ///           EBB
866 ///         _/   \_
867 ///         |     |
868 ///        TBB   FBB
869 ///        /  \ /   \
870 ///  FalseBB TrueBB FalseBB
871 /// Currently only handles analyzable branches.
872 /// Specifically excludes actual diamonds to avoid overlap.
873 bool IfConverter::ValidForkedDiamond(
874     BBInfo &TrueBBI, BBInfo &FalseBBI,
875     unsigned &Dups1, unsigned &Dups2,
876     BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
877   Dups1 = Dups2 = 0;
878   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
879       FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
880     return false;
881 
882   if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable)
883     return false;
884   // Don't IfConvert blocks that can't be folded into their predecessor.
885   if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
886     return false;
887 
888   // This function is specifically looking for conditional tails, as
889   // unconditional tails are already handled by the standard diamond case.
890   if (TrueBBI.BrCond.size() == 0 ||
891       FalseBBI.BrCond.size() == 0)
892     return false;
893 
894   MachineBasicBlock *TT = TrueBBI.TrueBB;
895   MachineBasicBlock *TF = TrueBBI.FalseBB;
896   MachineBasicBlock *FT = FalseBBI.TrueBB;
897   MachineBasicBlock *FF = FalseBBI.FalseBB;
898 
899   if (!TT)
900     TT = getNextBlock(*TrueBBI.BB);
901   if (!TF)
902     TF = getNextBlock(*TrueBBI.BB);
903   if (!FT)
904     FT = getNextBlock(*FalseBBI.BB);
905   if (!FF)
906     FF = getNextBlock(*FalseBBI.BB);
907 
908   if (!TT || !TF)
909     return false;
910 
911   // Check successors. If they don't match, bail.
912   if (!((TT == FT && TF == FF) || (TF == FT && TT == FF)))
913     return false;
914 
915   bool FalseReversed = false;
916   if (TF == FT && TT == FF) {
917     // If the branches are opposing, but we can't reverse, don't do it.
918     if (!FalseBBI.IsBrReversible)
919       return false;
920     FalseReversed = true;
921     reverseBranchCondition(FalseBBI);
922   }
923   auto UnReverseOnExit = make_scope_exit([&]() {
924     if (FalseReversed)
925       reverseBranchCondition(FalseBBI);
926   });
927 
928   // Count duplicate instructions at the beginning of the true and false blocks.
929   MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
930   MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
931   MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
932   MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
933   if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
934                                   *TrueBBI.BB, *FalseBBI.BB,
935                                   /* SkipUnconditionalBranches */ true))
936     return false;
937 
938   TrueBBICalc.BB = TrueBBI.BB;
939   FalseBBICalc.BB = FalseBBI.BB;
940   TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable;
941   FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable;
942   if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
943     return false;
944 
945   // The size is used to decide whether to if-convert, and the shared portions
946   // are subtracted off. Because of the subtraction, we just use the size that
947   // was calculated by the original ScanInstructions, as it is correct.
948   TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
949   FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
950   return true;
951 }
952 
953 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
954 /// with their common predecessor) forms a valid diamond shape for ifcvt.
955 bool IfConverter::ValidDiamond(
956     BBInfo &TrueBBI, BBInfo &FalseBBI,
957     unsigned &Dups1, unsigned &Dups2,
958     BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
959   Dups1 = Dups2 = 0;
960   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
961       FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
962     return false;
963 
964   // If the True and False BBs are equal we're dealing with a degenerate case
965   // that we don't treat as a diamond.
966   if (TrueBBI.BB == FalseBBI.BB)
967     return false;
968 
969   MachineBasicBlock *TT = TrueBBI.TrueBB;
970   MachineBasicBlock *FT = FalseBBI.TrueBB;
971 
972   if (!TT && blockAlwaysFallThrough(TrueBBI))
973     TT = getNextBlock(*TrueBBI.BB);
974   if (!FT && blockAlwaysFallThrough(FalseBBI))
975     FT = getNextBlock(*FalseBBI.BB);
976   if (TT != FT)
977     return false;
978   if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
979     return false;
980   if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
981     return false;
982 
983   // FIXME: Allow true block to have an early exit?
984   if (TrueBBI.FalseBB || FalseBBI.FalseBB)
985     return false;
986 
987   // Count duplicate instructions at the beginning and end of the true and
988   // false blocks.
989   // Skip unconditional branches only if we are considering an analyzable
990   // diamond. Otherwise the branches must be the same.
991   bool SkipUnconditionalBranches =
992       TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable;
993   MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
994   MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
995   MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
996   MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
997   if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
998                                   *TrueBBI.BB, *FalseBBI.BB,
999                                   SkipUnconditionalBranches))
1000     return false;
1001 
1002   TrueBBICalc.BB = TrueBBI.BB;
1003   FalseBBICalc.BB = FalseBBI.BB;
1004   TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable;
1005   FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable;
1006   if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
1007     return false;
1008   // The size is used to decide whether to if-convert, and the shared portions
1009   // are subtracted off. Because of the subtraction, we just use the size that
1010   // was calculated by the original ScanInstructions, as it is correct.
1011   TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
1012   FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
1013   return true;
1014 }
1015 
1016 /// AnalyzeBranches - Look at the branches at the end of a block to determine if
1017 /// the block is predicable.
1018 void IfConverter::AnalyzeBranches(BBInfo &BBI) {
1019   if (BBI.IsDone)
1020     return;
1021 
1022   BBI.TrueBB = BBI.FalseBB = nullptr;
1023   BBI.BrCond.clear();
1024   BBI.IsBrAnalyzable =
1025       !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
1026   if (!BBI.IsBrAnalyzable) {
1027     BBI.TrueBB = nullptr;
1028     BBI.FalseBB = nullptr;
1029     BBI.BrCond.clear();
1030   }
1031 
1032   SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1033   BBI.IsBrReversible = (RevCond.size() == 0) ||
1034       !TII->reverseBranchCondition(RevCond);
1035   BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
1036 
1037   if (BBI.BrCond.size()) {
1038     // No false branch. This BB must end with a conditional branch and a
1039     // fallthrough.
1040     if (!BBI.FalseBB)
1041       BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
1042     if (!BBI.FalseBB) {
1043       // Malformed bcc? True and false blocks are the same?
1044       BBI.IsUnpredicable = true;
1045     }
1046   }
1047 }
1048 
1049 /// ScanInstructions - Scan all the instructions in the block to determine if
1050 /// the block is predicable. In most cases, that means all the instructions
1051 /// in the block are isPredicable(). Also checks if the block contains any
1052 /// instruction which can clobber a predicate (e.g. condition code register).
1053 /// If so, the block is not predicable unless it's the last instruction.
1054 void IfConverter::ScanInstructions(BBInfo &BBI,
1055                                    MachineBasicBlock::iterator &Begin,
1056                                    MachineBasicBlock::iterator &End,
1057                                    bool BranchUnpredicable) const {
1058   if (BBI.IsDone || BBI.IsUnpredicable)
1059     return;
1060 
1061   bool AlreadyPredicated = !BBI.Predicate.empty();
1062 
1063   BBI.NonPredSize = 0;
1064   BBI.ExtraCost = 0;
1065   BBI.ExtraCost2 = 0;
1066   BBI.ClobbersPred = false;
1067   for (MachineInstr &MI : make_range(Begin, End)) {
1068     if (MI.isDebugInstr())
1069       continue;
1070 
1071     // It's unsafe to duplicate convergent instructions in this context, so set
1072     // BBI.CannotBeCopied to true if MI is convergent.  To see why, consider the
1073     // following CFG, which is subject to our "simple" transformation.
1074     //
1075     //    BB0     // if (c1) goto BB1; else goto BB2;
1076     //   /   \
1077     //  BB1   |
1078     //   |   BB2  // if (c2) goto TBB; else goto FBB;
1079     //   |   / |
1080     //   |  /  |
1081     //   TBB   |
1082     //    |    |
1083     //    |   FBB
1084     //    |
1085     //    exit
1086     //
1087     // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
1088     // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
1089     // TBB contains a convergent instruction.  This is safe iff doing so does
1090     // not add a control-flow dependency to the convergent instruction -- i.e.,
1091     // it's safe iff the set of control flows that leads us to the convergent
1092     // instruction does not get smaller after the transformation.
1093     //
1094     // Originally we executed TBB if c1 || c2.  After the transformation, there
1095     // are two copies of TBB's instructions.  We get to the first if c1, and we
1096     // get to the second if !c1 && c2.
1097     //
1098     // There are clearly fewer ways to satisfy the condition "c1" than
1099     // "c1 || c2".  Since we've shrunk the set of control flows which lead to
1100     // our convergent instruction, the transformation is unsafe.
1101     if (MI.isNotDuplicable() || MI.isConvergent())
1102       BBI.CannotBeCopied = true;
1103 
1104     bool isPredicated = TII->isPredicated(MI);
1105     bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();
1106 
1107     if (BranchUnpredicable && MI.isBranch()) {
1108       BBI.IsUnpredicable = true;
1109       return;
1110     }
1111 
1112     // A conditional branch is not predicable, but it may be eliminated.
1113     if (isCondBr)
1114       continue;
1115 
1116     if (!isPredicated) {
1117       BBI.NonPredSize++;
1118       unsigned ExtraPredCost = TII->getPredicationCost(MI);
1119       unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
1120       if (NumCycles > 1)
1121         BBI.ExtraCost += NumCycles-1;
1122       BBI.ExtraCost2 += ExtraPredCost;
1123     } else if (!AlreadyPredicated) {
1124       // FIXME: This instruction is already predicated before the
1125       // if-conversion pass. It's probably something like a conditional move.
1126       // Mark this block unpredicable for now.
1127       BBI.IsUnpredicable = true;
1128       return;
1129     }
1130 
1131     if (BBI.ClobbersPred && !isPredicated) {
1132       // Predicate modification instruction should end the block (except for
1133       // already predicated instructions and end of block branches).
1134       // Predicate may have been modified, the subsequent (currently)
1135       // unpredicated instructions cannot be correctly predicated.
1136       BBI.IsUnpredicable = true;
1137       return;
1138     }
1139 
1140     // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
1141     // still potentially predicable.
1142     std::vector<MachineOperand> PredDefs;
1143     if (TII->ClobbersPredicate(MI, PredDefs, true))
1144       BBI.ClobbersPred = true;
1145 
1146     if (!TII->isPredicable(MI)) {
1147       BBI.IsUnpredicable = true;
1148       return;
1149     }
1150   }
1151 }
1152 
1153 /// Determine if the block is a suitable candidate to be predicated by the
1154 /// specified predicate.
1155 /// @param BBI BBInfo for the block to check
1156 /// @param Pred Predicate array for the branch that leads to BBI
1157 /// @param isTriangle true if the Analysis is for a triangle
1158 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
1159 ///        case
1160 /// @param hasCommonTail true if BBI shares a tail with a sibling block that
1161 ///        contains any instruction that would make the block unpredicable.
1162 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
1163                                       SmallVectorImpl<MachineOperand> &Pred,
1164                                       bool isTriangle, bool RevBranch,
1165                                       bool hasCommonTail) {
1166   // If the block is dead or unpredicable, then it cannot be predicated.
1167   // Two blocks may share a common unpredicable tail, but this doesn't prevent
1168   // them from being if-converted. The non-shared portion is assumed to have
1169   // been checked
1170   if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail))
1171     return false;
1172 
1173   // If it is already predicated but we couldn't analyze its terminator, the
1174   // latter might fallthrough, but we can't determine where to.
1175   // Conservatively avoid if-converting again.
1176   if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
1177     return false;
1178 
1179   // If it is already predicated, check if the new predicate subsumes
1180   // its predicate.
1181   if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
1182     return false;
1183 
1184   if (!hasCommonTail && BBI.BrCond.size()) {
1185     if (!isTriangle)
1186       return false;
1187 
1188     // Test predicate subsumption.
1189     SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
1190     SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1191     if (RevBranch) {
1192       if (TII->reverseBranchCondition(Cond))
1193         return false;
1194     }
1195     if (TII->reverseBranchCondition(RevPred) ||
1196         !TII->SubsumesPredicate(Cond, RevPred))
1197       return false;
1198   }
1199 
1200   return true;
1201 }
1202 
1203 /// Analyze the structure of the sub-CFG starting from the specified block.
1204 /// Record its successors and whether it looks like an if-conversion candidate.
1205 void IfConverter::AnalyzeBlock(
1206     MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1207   struct BBState {
1208     BBState(MachineBasicBlock &MBB) : MBB(&MBB) {}
1209     MachineBasicBlock *MBB;
1210 
1211     /// This flag is true if MBB's successors have been analyzed.
1212     bool SuccsAnalyzed = false;
1213   };
1214 
1215   // Push MBB to the stack.
1216   SmallVector<BBState, 16> BBStack(1, MBB);
1217 
1218   while (!BBStack.empty()) {
1219     BBState &State = BBStack.back();
1220     MachineBasicBlock *BB = State.MBB;
1221     BBInfo &BBI = BBAnalysis[BB->getNumber()];
1222 
1223     if (!State.SuccsAnalyzed) {
1224       if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
1225         BBStack.pop_back();
1226         continue;
1227       }
1228 
1229       BBI.BB = BB;
1230       BBI.IsBeingAnalyzed = true;
1231 
1232       AnalyzeBranches(BBI);
1233       MachineBasicBlock::iterator Begin = BBI.BB->begin();
1234       MachineBasicBlock::iterator End = BBI.BB->end();
1235       ScanInstructions(BBI, Begin, End);
1236 
1237       // Unanalyzable or ends with fallthrough or unconditional branch, or if is
1238       // not considered for ifcvt anymore.
1239       if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
1240         BBI.IsBeingAnalyzed = false;
1241         BBI.IsAnalyzed = true;
1242         BBStack.pop_back();
1243         continue;
1244       }
1245 
1246       // Do not ifcvt if either path is a back edge to the entry block.
1247       if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
1248         BBI.IsBeingAnalyzed = false;
1249         BBI.IsAnalyzed = true;
1250         BBStack.pop_back();
1251         continue;
1252       }
1253 
1254       // Do not ifcvt if true and false fallthrough blocks are the same.
1255       if (!BBI.FalseBB) {
1256         BBI.IsBeingAnalyzed = false;
1257         BBI.IsAnalyzed = true;
1258         BBStack.pop_back();
1259         continue;
1260       }
1261 
1262       // Push the False and True blocks to the stack.
1263       State.SuccsAnalyzed = true;
1264       BBStack.push_back(*BBI.FalseBB);
1265       BBStack.push_back(*BBI.TrueBB);
1266       continue;
1267     }
1268 
1269     BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1270     BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1271 
1272     if (TrueBBI.IsDone && FalseBBI.IsDone) {
1273       BBI.IsBeingAnalyzed = false;
1274       BBI.IsAnalyzed = true;
1275       BBStack.pop_back();
1276       continue;
1277     }
1278 
1279     SmallVector<MachineOperand, 4>
1280         RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1281     bool CanRevCond = !TII->reverseBranchCondition(RevCond);
1282 
1283     unsigned Dups = 0;
1284     unsigned Dups2 = 0;
1285     bool TNeedSub = !TrueBBI.Predicate.empty();
1286     bool FNeedSub = !FalseBBI.Predicate.empty();
1287     bool Enqueued = false;
1288 
1289     BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
1290 
1291     if (CanRevCond) {
1292       BBInfo TrueBBICalc, FalseBBICalc;
1293       auto feasibleDiamond = [&](bool Forked) {
1294         bool MeetsSize = MeetIfcvtSizeLimit(TrueBBICalc, FalseBBICalc, *BB,
1295                                             Dups + Dups2, Prediction, Forked);
1296         bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond,
1297                                                 /* IsTriangle */ false, /* RevCond */ false,
1298                                                 /* hasCommonTail */ true);
1299         bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond,
1300                                                  /* IsTriangle */ false, /* RevCond */ false,
1301                                                  /* hasCommonTail */ true);
1302         return MeetsSize && TrueFeasible && FalseFeasible;
1303       };
1304 
1305       if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1306                        TrueBBICalc, FalseBBICalc)) {
1307         if (feasibleDiamond(false)) {
1308           // Diamond:
1309           //   EBB
1310           //   / \_
1311           //  |   |
1312           // TBB FBB
1313           //   \ /
1314           //  TailBB
1315           // Note TailBB can be empty.
1316           Tokens.push_back(std::make_unique<IfcvtToken>(
1317               BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1318               (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1319           Enqueued = true;
1320         }
1321       } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1322                                     TrueBBICalc, FalseBBICalc)) {
1323         if (feasibleDiamond(true)) {
1324           // ForkedDiamond:
1325           // if TBB and FBB have a common tail that includes their conditional
1326           // branch instructions, then we can If Convert this pattern.
1327           //          EBB
1328           //         _/ \_
1329           //         |   |
1330           //        TBB  FBB
1331           //        / \ /   \
1332           //  FalseBB TrueBB FalseBB
1333           //
1334           Tokens.push_back(std::make_unique<IfcvtToken>(
1335               BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1336               (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1337           Enqueued = true;
1338         }
1339       }
1340     }
1341 
1342     if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
1343         MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1344                            TrueBBI.ExtraCost2, Prediction) &&
1345         FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
1346       // Triangle:
1347       //   EBB
1348       //   | \_
1349       //   |  |
1350       //   | TBB
1351       //   |  /
1352       //   FBB
1353       Tokens.push_back(
1354           std::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
1355       Enqueued = true;
1356     }
1357 
1358     if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
1359         MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1360                            TrueBBI.ExtraCost2, Prediction) &&
1361         FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
1362       Tokens.push_back(
1363           std::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
1364       Enqueued = true;
1365     }
1366 
1367     if (ValidSimple(TrueBBI, Dups, Prediction) &&
1368         MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1369                            TrueBBI.ExtraCost2, Prediction) &&
1370         FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
1371       // Simple (split, no rejoin):
1372       //   EBB
1373       //   | \_
1374       //   |  |
1375       //   | TBB---> exit
1376       //   |
1377       //   FBB
1378       Tokens.push_back(
1379           std::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
1380       Enqueued = true;
1381     }
1382 
1383     if (CanRevCond) {
1384       // Try the other path...
1385       if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
1386                         Prediction.getCompl()) &&
1387           MeetIfcvtSizeLimit(*FalseBBI.BB,
1388                              FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1389                              FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1390           FeasibilityAnalysis(FalseBBI, RevCond, true)) {
1391         Tokens.push_back(std::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
1392                                                        FNeedSub, Dups));
1393         Enqueued = true;
1394       }
1395 
1396       if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
1397                         Prediction.getCompl()) &&
1398           MeetIfcvtSizeLimit(*FalseBBI.BB,
1399                              FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1400                            FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1401         FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
1402         Tokens.push_back(
1403             std::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
1404         Enqueued = true;
1405       }
1406 
1407       if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
1408           MeetIfcvtSizeLimit(*FalseBBI.BB,
1409                              FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1410                              FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1411           FeasibilityAnalysis(FalseBBI, RevCond)) {
1412         Tokens.push_back(
1413             std::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
1414         Enqueued = true;
1415       }
1416     }
1417 
1418     BBI.IsEnqueued = Enqueued;
1419     BBI.IsBeingAnalyzed = false;
1420     BBI.IsAnalyzed = true;
1421     BBStack.pop_back();
1422   }
1423 }
1424 
1425 /// Analyze all blocks and find entries for all if-conversion candidates.
1426 void IfConverter::AnalyzeBlocks(
1427     MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1428   for (MachineBasicBlock &MBB : MF)
1429     AnalyzeBlock(MBB, Tokens);
1430 
1431   // Sort to favor more complex ifcvt scheme.
1432   llvm::stable_sort(Tokens, IfcvtTokenCmp);
1433 }
1434 
1435 /// Returns true either if ToMBB is the next block after MBB or that all the
1436 /// intervening blocks are empty (given MBB can fall through to its next block).
1437 static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) {
1438   MachineFunction::iterator PI = MBB.getIterator();
1439   MachineFunction::iterator I = std::next(PI);
1440   MachineFunction::iterator TI = ToMBB.getIterator();
1441   MachineFunction::iterator E = MBB.getParent()->end();
1442   while (I != TI) {
1443     // Check isSuccessor to avoid case where the next block is empty, but
1444     // it's not a successor.
1445     if (I == E || !I->empty() || !PI->isSuccessor(&*I))
1446       return false;
1447     PI = I++;
1448   }
1449   // Finally see if the last I is indeed a successor to PI.
1450   return PI->isSuccessor(&*I);
1451 }
1452 
1453 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it
1454 /// can be if-converted. If predecessor is already enqueued, dequeue it!
1455 void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) {
1456   for (const MachineBasicBlock *Predecessor : MBB.predecessors()) {
1457     BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
1458     if (PBBI.IsDone || PBBI.BB == &MBB)
1459       continue;
1460     PBBI.IsAnalyzed = false;
1461     PBBI.IsEnqueued = false;
1462   }
1463 }
1464 
1465 /// Inserts an unconditional branch from \p MBB to \p ToMBB.
1466 static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB,
1467                                const TargetInstrInfo *TII) {
1468   DebugLoc dl;  // FIXME: this is nowhere
1469   SmallVector<MachineOperand, 0> NoCond;
1470   TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl);
1471 }
1472 
1473 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
1474 /// values defined in MI which are also live/used by MI.
1475 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
1476   const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo();
1477 
1478   // Before stepping forward past MI, remember which regs were live
1479   // before MI. This is needed to set the Undef flag only when reg is
1480   // dead.
1481   SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI;
1482   LiveBeforeMI.setUniverse(TRI->getNumRegs());
1483   for (unsigned Reg : Redefs)
1484     LiveBeforeMI.insert(Reg);
1485 
1486   SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers;
1487   Redefs.stepForward(MI, Clobbers);
1488 
1489   // Now add the implicit uses for each of the clobbered values.
1490   for (auto Clobber : Clobbers) {
1491     // FIXME: Const cast here is nasty, but better than making StepForward
1492     // take a mutable instruction instead of const.
1493     unsigned Reg = Clobber.first;
1494     MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second);
1495     MachineInstr *OpMI = Op.getParent();
1496     MachineInstrBuilder MIB(*OpMI->getMF(), OpMI);
1497     if (Op.isRegMask()) {
1498       // First handle regmasks.  They clobber any entries in the mask which
1499       // means that we need a def for those registers.
1500       if (LiveBeforeMI.count(Reg))
1501         MIB.addReg(Reg, RegState::Implicit);
1502 
1503       // We also need to add an implicit def of this register for the later
1504       // use to read from.
1505       // For the register allocator to have allocated a register clobbered
1506       // by the call which is used later, it must be the case that
1507       // the call doesn't return.
1508       MIB.addReg(Reg, RegState::Implicit | RegState::Define);
1509       continue;
1510     }
1511     if (any_of(TRI->subregs_inclusive(Reg),
1512                [&](MCPhysReg S) { return LiveBeforeMI.count(S); }))
1513       MIB.addReg(Reg, RegState::Implicit);
1514   }
1515 }
1516 
1517 /// If convert a simple (split, no rejoin) sub-CFG.
1518 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
1519   BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
1520   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1521   BBInfo *CvtBBI = &TrueBBI;
1522   BBInfo *NextBBI = &FalseBBI;
1523 
1524   SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1525   if (Kind == ICSimpleFalse)
1526     std::swap(CvtBBI, NextBBI);
1527 
1528   MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1529   MachineBasicBlock &NextMBB = *NextBBI->BB;
1530   if (CvtBBI->IsDone ||
1531       (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1532     // Something has changed. It's no longer safe to predicate this block.
1533     BBI.IsAnalyzed = false;
1534     CvtBBI->IsAnalyzed = false;
1535     return false;
1536   }
1537 
1538   if (CvtMBB.hasAddressTaken())
1539     // Conservatively abort if-conversion if BB's address is taken.
1540     return false;
1541 
1542   if (Kind == ICSimpleFalse)
1543     if (TII->reverseBranchCondition(Cond))
1544       llvm_unreachable("Unable to reverse branch condition!");
1545 
1546   Redefs.init(*TRI);
1547 
1548   if (MRI->tracksLiveness()) {
1549     // Initialize liveins to the first BB. These are potentially redefined by
1550     // predicated instructions.
1551     Redefs.addLiveInsNoPristines(CvtMBB);
1552     Redefs.addLiveInsNoPristines(NextMBB);
1553   }
1554 
1555   // Remove the branches from the entry so we can add the contents of the true
1556   // block to it.
1557   BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1558 
1559   if (CvtMBB.pred_size() > 1) {
1560     // Copy instructions in the true block, predicate them, and add them to
1561     // the entry block.
1562     CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
1563 
1564     // Keep the CFG updated.
1565     BBI.BB->removeSuccessor(&CvtMBB, true);
1566   } else {
1567     // Predicate the instructions in the true block.
1568     PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1569 
1570     // Merge converted block into entry block. The BB to Cvt edge is removed
1571     // by MergeBlocks.
1572     MergeBlocks(BBI, *CvtBBI);
1573   }
1574 
1575   bool IterIfcvt = true;
1576   if (!canFallThroughTo(*BBI.BB, NextMBB)) {
1577     InsertUncondBranch(*BBI.BB, NextMBB, TII);
1578     BBI.HasFallThrough = false;
1579     // Now ifcvt'd block will look like this:
1580     // BB:
1581     // ...
1582     // t, f = cmp
1583     // if t op
1584     // b BBf
1585     //
1586     // We cannot further ifcvt this block because the unconditional branch
1587     // will have to be predicated on the new condition, that will not be
1588     // available if cmp executes.
1589     IterIfcvt = false;
1590   }
1591 
1592   // Update block info. BB can be iteratively if-converted.
1593   if (!IterIfcvt)
1594     BBI.IsDone = true;
1595   InvalidatePreds(*BBI.BB);
1596   CvtBBI->IsDone = true;
1597 
1598   // FIXME: Must maintain LiveIns.
1599   return true;
1600 }
1601 
1602 /// If convert a triangle sub-CFG.
1603 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
1604   BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1605   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1606   BBInfo *CvtBBI = &TrueBBI;
1607   BBInfo *NextBBI = &FalseBBI;
1608   DebugLoc dl;  // FIXME: this is nowhere
1609 
1610   SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1611   if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1612     std::swap(CvtBBI, NextBBI);
1613 
1614   MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1615   MachineBasicBlock &NextMBB = *NextBBI->BB;
1616   if (CvtBBI->IsDone ||
1617       (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1618     // Something has changed. It's no longer safe to predicate this block.
1619     BBI.IsAnalyzed = false;
1620     CvtBBI->IsAnalyzed = false;
1621     return false;
1622   }
1623 
1624   if (CvtMBB.hasAddressTaken())
1625     // Conservatively abort if-conversion if BB's address is taken.
1626     return false;
1627 
1628   if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1629     if (TII->reverseBranchCondition(Cond))
1630       llvm_unreachable("Unable to reverse branch condition!");
1631 
1632   if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
1633     if (reverseBranchCondition(*CvtBBI)) {
1634       // BB has been changed, modify its predecessors (except for this
1635       // one) so they don't get ifcvt'ed based on bad intel.
1636       for (MachineBasicBlock *PBB : CvtMBB.predecessors()) {
1637         if (PBB == BBI.BB)
1638           continue;
1639         BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
1640         if (PBBI.IsEnqueued) {
1641           PBBI.IsAnalyzed = false;
1642           PBBI.IsEnqueued = false;
1643         }
1644       }
1645     }
1646   }
1647 
1648   // Initialize liveins to the first BB. These are potentially redefined by
1649   // predicated instructions.
1650   Redefs.init(*TRI);
1651   if (MRI->tracksLiveness()) {
1652     Redefs.addLiveInsNoPristines(CvtMBB);
1653     Redefs.addLiveInsNoPristines(NextMBB);
1654   }
1655 
1656   bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
1657   BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
1658 
1659   if (HasEarlyExit) {
1660     // Get probabilities before modifying CvtMBB and BBI.BB.
1661     CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB);
1662     CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB);
1663     BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB);
1664     BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB);
1665   }
1666 
1667   // Remove the branches from the entry so we can add the contents of the true
1668   // block to it.
1669   BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1670 
1671   if (CvtMBB.pred_size() > 1) {
1672     // Copy instructions in the true block, predicate them, and add them to
1673     // the entry block.
1674     CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
1675   } else {
1676     // Predicate the 'true' block after removing its branch.
1677     CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB);
1678     PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1679 
1680     // Now merge the entry of the triangle with the true block.
1681     MergeBlocks(BBI, *CvtBBI, false);
1682   }
1683 
1684   // Keep the CFG updated.
1685   BBI.BB->removeSuccessor(&CvtMBB, true);
1686 
1687   // If 'true' block has a 'false' successor, add an exit branch to it.
1688   if (HasEarlyExit) {
1689     SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
1690                                            CvtBBI->BrCond.end());
1691     if (TII->reverseBranchCondition(RevCond))
1692       llvm_unreachable("Unable to reverse branch condition!");
1693 
1694     // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
1695     // NewNext = New_Prob(BBI.BB, NextMBB) =
1696     //   Prob(BBI.BB, NextMBB) +
1697     //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
1698     // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
1699     //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
1700     auto NewTrueBB = getNextBlock(*BBI.BB);
1701     auto NewNext = BBNext + BBCvt * CvtNext;
1702     auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB);
1703     if (NewTrueBBIter != BBI.BB->succ_end())
1704       BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
1705 
1706     auto NewFalse = BBCvt * CvtFalse;
1707     TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
1708     BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
1709   }
1710 
1711   // Merge in the 'false' block if the 'false' block has no other
1712   // predecessors. Otherwise, add an unconditional branch to 'false'.
1713   bool FalseBBDead = false;
1714   bool IterIfcvt = true;
1715   bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB);
1716   if (!isFallThrough) {
1717     // Only merge them if the true block does not fallthrough to the false
1718     // block. By not merging them, we make it possible to iteratively
1719     // ifcvt the blocks.
1720     if (!HasEarlyExit &&
1721         NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough &&
1722         !NextMBB.hasAddressTaken()) {
1723       MergeBlocks(BBI, *NextBBI);
1724       FalseBBDead = true;
1725     } else {
1726       InsertUncondBranch(*BBI.BB, NextMBB, TII);
1727       BBI.HasFallThrough = false;
1728     }
1729     // Mixed predicated and unpredicated code. This cannot be iteratively
1730     // predicated.
1731     IterIfcvt = false;
1732   }
1733 
1734   // Update block info. BB can be iteratively if-converted.
1735   if (!IterIfcvt)
1736     BBI.IsDone = true;
1737   InvalidatePreds(*BBI.BB);
1738   CvtBBI->IsDone = true;
1739   if (FalseBBDead)
1740     NextBBI->IsDone = true;
1741 
1742   // FIXME: Must maintain LiveIns.
1743   return true;
1744 }
1745 
1746 /// Common code shared between diamond conversions.
1747 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
1748 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
1749 ///               and FalseBBI
1750 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
1751 ///               and \p FalseBBI
1752 /// \p RemoveBranch - Remove the common branch of the two blocks before
1753 ///                   predicating. Only false for unanalyzable fallthrough
1754 ///                   cases. The caller will replace the branch if necessary.
1755 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
1756 ///                    unanalyzable fallthrough
1757 bool IfConverter::IfConvertDiamondCommon(
1758     BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
1759     unsigned NumDups1, unsigned NumDups2,
1760     bool TClobbersPred, bool FClobbersPred,
1761     bool RemoveBranch, bool MergeAddEdges) {
1762 
1763   if (TrueBBI.IsDone || FalseBBI.IsDone ||
1764       TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) {
1765     // Something has changed. It's no longer safe to predicate these blocks.
1766     BBI.IsAnalyzed = false;
1767     TrueBBI.IsAnalyzed = false;
1768     FalseBBI.IsAnalyzed = false;
1769     return false;
1770   }
1771 
1772   if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
1773     // Conservatively abort if-conversion if either BB has its address taken.
1774     return false;
1775 
1776   // Put the predicated instructions from the 'true' block before the
1777   // instructions from the 'false' block, unless the true block would clobber
1778   // the predicate, in which case, do the opposite.
1779   BBInfo *BBI1 = &TrueBBI;
1780   BBInfo *BBI2 = &FalseBBI;
1781   SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1782   if (TII->reverseBranchCondition(RevCond))
1783     llvm_unreachable("Unable to reverse branch condition!");
1784   SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
1785   SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
1786 
1787   // Figure out the more profitable ordering.
1788   bool DoSwap = false;
1789   if (TClobbersPred && !FClobbersPred)
1790     DoSwap = true;
1791   else if (!TClobbersPred && !FClobbersPred) {
1792     if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
1793       DoSwap = true;
1794   } else if (TClobbersPred && FClobbersPred)
1795     llvm_unreachable("Predicate info cannot be clobbered by both sides.");
1796   if (DoSwap) {
1797     std::swap(BBI1, BBI2);
1798     std::swap(Cond1, Cond2);
1799   }
1800 
1801   // Remove the conditional branch from entry to the blocks.
1802   BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1803 
1804   MachineBasicBlock &MBB1 = *BBI1->BB;
1805   MachineBasicBlock &MBB2 = *BBI2->BB;
1806 
1807   // Initialize the Redefs:
1808   // - BB2 live-in regs need implicit uses before being redefined by BB1
1809   //   instructions.
1810   // - BB1 live-out regs need implicit uses before being redefined by BB2
1811   //   instructions. We start with BB1 live-ins so we have the live-out regs
1812   //   after tracking the BB1 instructions.
1813   Redefs.init(*TRI);
1814   if (MRI->tracksLiveness()) {
1815     Redefs.addLiveInsNoPristines(MBB1);
1816     Redefs.addLiveInsNoPristines(MBB2);
1817   }
1818 
1819   // Remove the duplicated instructions at the beginnings of both paths.
1820   // Skip dbg_value instructions.
1821   MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr(false);
1822   MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr(false);
1823   BBI1->NonPredSize -= NumDups1;
1824   BBI2->NonPredSize -= NumDups1;
1825 
1826   // Skip past the dups on each side separately since there may be
1827   // differing dbg_value entries. NumDups1 can include a "return"
1828   // instruction, if it's not marked as "branch".
1829   for (unsigned i = 0; i < NumDups1; ++DI1) {
1830     if (DI1 == MBB1.end())
1831       break;
1832     if (!DI1->isDebugInstr())
1833       ++i;
1834   }
1835   while (NumDups1 != 0) {
1836     // Since this instruction is going to be deleted, update call
1837     // site info state if the instruction is call instruction.
1838     if (DI2->shouldUpdateCallSiteInfo())
1839       MBB2.getParent()->eraseCallSiteInfo(&*DI2);
1840 
1841     ++DI2;
1842     if (DI2 == MBB2.end())
1843       break;
1844     if (!DI2->isDebugInstr())
1845       --NumDups1;
1846   }
1847 
1848   if (MRI->tracksLiveness()) {
1849     for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) {
1850       SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy;
1851       Redefs.stepForward(MI, Dummy);
1852     }
1853   }
1854 
1855   BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1);
1856   MBB2.erase(MBB2.begin(), DI2);
1857 
1858   // The branches have been checked to match, so it is safe to remove the
1859   // branch in BB1 and rely on the copy in BB2. The complication is that
1860   // the blocks may end with a return instruction, which may or may not
1861   // be marked as "branch". If it's not, then it could be included in
1862   // "dups1", leaving the blocks potentially empty after moving the common
1863   // duplicates.
1864 #ifndef NDEBUG
1865   // Unanalyzable branches must match exactly. Check that now.
1866   if (!BBI1->IsBrAnalyzable)
1867     verifySameBranchInstructions(&MBB1, &MBB2);
1868 #endif
1869   // Remove duplicated instructions from the tail of MBB1: any branch
1870   // instructions, and the common instructions counted by NumDups2.
1871   DI1 = MBB1.end();
1872   while (DI1 != MBB1.begin()) {
1873     MachineBasicBlock::iterator Prev = std::prev(DI1);
1874     if (!Prev->isBranch() && !Prev->isDebugInstr())
1875       break;
1876     DI1 = Prev;
1877   }
1878   for (unsigned i = 0; i != NumDups2; ) {
1879     // NumDups2 only counted non-dbg_value instructions, so this won't
1880     // run off the head of the list.
1881     assert(DI1 != MBB1.begin());
1882 
1883     --DI1;
1884 
1885     // Since this instruction is going to be deleted, update call
1886     // site info state if the instruction is call instruction.
1887     if (DI1->shouldUpdateCallSiteInfo())
1888       MBB1.getParent()->eraseCallSiteInfo(&*DI1);
1889 
1890     // skip dbg_value instructions
1891     if (!DI1->isDebugInstr())
1892       ++i;
1893   }
1894   MBB1.erase(DI1, MBB1.end());
1895 
1896   DI2 = BBI2->BB->end();
1897   // The branches have been checked to match. Skip over the branch in the false
1898   // block so that we don't try to predicate it.
1899   if (RemoveBranch)
1900     BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB);
1901   else {
1902     // Make DI2 point to the end of the range where the common "tail"
1903     // instructions could be found.
1904     while (DI2 != MBB2.begin()) {
1905       MachineBasicBlock::iterator Prev = std::prev(DI2);
1906       if (!Prev->isBranch() && !Prev->isDebugInstr())
1907         break;
1908       DI2 = Prev;
1909     }
1910   }
1911   while (NumDups2 != 0) {
1912     // NumDups2 only counted non-dbg_value instructions, so this won't
1913     // run off the head of the list.
1914     assert(DI2 != MBB2.begin());
1915     --DI2;
1916     // skip dbg_value instructions
1917     if (!DI2->isDebugInstr())
1918       --NumDups2;
1919   }
1920 
1921   // Remember which registers would later be defined by the false block.
1922   // This allows us not to predicate instructions in the true block that would
1923   // later be re-defined. That is, rather than
1924   //   subeq  r0, r1, #1
1925   //   addne  r0, r1, #1
1926   // generate:
1927   //   sub    r0, r1, #1
1928   //   addne  r0, r1, #1
1929   SmallSet<MCPhysReg, 4> RedefsByFalse;
1930   SmallSet<MCPhysReg, 4> ExtUses;
1931   if (TII->isProfitableToUnpredicate(MBB1, MBB2)) {
1932     for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) {
1933       if (FI.isDebugInstr())
1934         continue;
1935       SmallVector<MCPhysReg, 4> Defs;
1936       for (const MachineOperand &MO : FI.operands()) {
1937         if (!MO.isReg())
1938           continue;
1939         Register Reg = MO.getReg();
1940         if (!Reg)
1941           continue;
1942         if (MO.isDef()) {
1943           Defs.push_back(Reg);
1944         } else if (!RedefsByFalse.count(Reg)) {
1945           // These are defined before ctrl flow reach the 'false' instructions.
1946           // They cannot be modified by the 'true' instructions.
1947           for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg))
1948             ExtUses.insert(SubReg);
1949         }
1950       }
1951 
1952       for (MCPhysReg Reg : Defs) {
1953         if (!ExtUses.count(Reg)) {
1954           for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg))
1955             RedefsByFalse.insert(SubReg);
1956         }
1957       }
1958     }
1959   }
1960 
1961   // Predicate the 'true' block.
1962   PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse);
1963 
1964   // After predicating BBI1, if there is a predicated terminator in BBI1 and
1965   // a non-predicated in BBI2, then we don't want to predicate the one from
1966   // BBI2. The reason is that if we merged these blocks, we would end up with
1967   // two predicated terminators in the same block.
1968   // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
1969   // predicate them either. They were checked to be identical, and so the
1970   // same branch would happen regardless of which path was taken.
1971   if (!MBB2.empty() && (DI2 == MBB2.end())) {
1972     MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator();
1973     MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator();
1974     bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T);
1975     bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T);
1976     if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable))
1977       --DI2;
1978   }
1979 
1980   // Predicate the 'false' block.
1981   PredicateBlock(*BBI2, DI2, *Cond2);
1982 
1983   // Merge the true block into the entry of the diamond.
1984   MergeBlocks(BBI, *BBI1, MergeAddEdges);
1985   MergeBlocks(BBI, *BBI2, MergeAddEdges);
1986   return true;
1987 }
1988 
1989 /// If convert an almost-diamond sub-CFG where the true
1990 /// and false blocks share a common tail.
1991 bool IfConverter::IfConvertForkedDiamond(
1992     BBInfo &BBI, IfcvtKind Kind,
1993     unsigned NumDups1, unsigned NumDups2,
1994     bool TClobbersPred, bool FClobbersPred) {
1995   BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
1996   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1997 
1998   // Save the debug location for later.
1999   DebugLoc dl;
2000   MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator();
2001   if (TIE != TrueBBI.BB->end())
2002     dl = TIE->getDebugLoc();
2003   // Removing branches from both blocks is safe, because we have already
2004   // determined that both blocks have the same branch instructions. The branch
2005   // will be added back at the end, unpredicated.
2006   if (!IfConvertDiamondCommon(
2007       BBI, TrueBBI, FalseBBI,
2008       NumDups1, NumDups2,
2009       TClobbersPred, FClobbersPred,
2010       /* RemoveBranch */ true, /* MergeAddEdges */ true))
2011     return false;
2012 
2013   // Add back the branch.
2014   // Debug location saved above when removing the branch from BBI2
2015   TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB,
2016                     TrueBBI.BrCond, dl);
2017 
2018   // Update block info.
2019   BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
2020   InvalidatePreds(*BBI.BB);
2021 
2022   // FIXME: Must maintain LiveIns.
2023   return true;
2024 }
2025 
2026 /// If convert a diamond sub-CFG.
2027 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
2028                                    unsigned NumDups1, unsigned NumDups2,
2029                                    bool TClobbersPred, bool FClobbersPred) {
2030   BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
2031   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
2032   MachineBasicBlock *TailBB = TrueBBI.TrueBB;
2033 
2034   // True block must fall through or end with an unanalyzable terminator.
2035   if (!TailBB) {
2036     if (blockAlwaysFallThrough(TrueBBI))
2037       TailBB = FalseBBI.TrueBB;
2038     assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
2039   }
2040 
2041   if (!IfConvertDiamondCommon(
2042       BBI, TrueBBI, FalseBBI,
2043       NumDups1, NumDups2,
2044       TClobbersPred, FClobbersPred,
2045       /* RemoveBranch */ TrueBBI.IsBrAnalyzable,
2046       /* MergeAddEdges */ TailBB == nullptr))
2047     return false;
2048 
2049   // If the if-converted block falls through or unconditionally branches into
2050   // the tail block, and the tail block does not have other predecessors, then
2051   // fold the tail block in as well. Otherwise, unless it falls through to the
2052   // tail, add a unconditional branch to it.
2053   if (TailBB) {
2054     // We need to remove the edges to the true and false blocks manually since
2055     // we didn't let IfConvertDiamondCommon update the CFG.
2056     BBI.BB->removeSuccessor(TrueBBI.BB);
2057     BBI.BB->removeSuccessor(FalseBBI.BB, true);
2058 
2059     BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
2060     bool CanMergeTail = !TailBBI.HasFallThrough &&
2061       !TailBBI.BB->hasAddressTaken();
2062     // The if-converted block can still have a predicated terminator
2063     // (e.g. a predicated return). If that is the case, we cannot merge
2064     // it with the tail block.
2065     MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
2066     if (TI != BBI.BB->end() && TII->isPredicated(*TI))
2067       CanMergeTail = false;
2068     // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
2069     // check if there are any other predecessors besides those.
2070     unsigned NumPreds = TailBB->pred_size();
2071     if (NumPreds > 1)
2072       CanMergeTail = false;
2073     else if (NumPreds == 1 && CanMergeTail) {
2074       MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
2075       if (*PI != TrueBBI.BB && *PI != FalseBBI.BB)
2076         CanMergeTail = false;
2077     }
2078     if (CanMergeTail) {
2079       MergeBlocks(BBI, TailBBI);
2080       TailBBI.IsDone = true;
2081     } else {
2082       BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
2083       InsertUncondBranch(*BBI.BB, *TailBB, TII);
2084       BBI.HasFallThrough = false;
2085     }
2086   }
2087 
2088   // Update block info.
2089   BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
2090   InvalidatePreds(*BBI.BB);
2091 
2092   // FIXME: Must maintain LiveIns.
2093   return true;
2094 }
2095 
2096 static bool MaySpeculate(const MachineInstr &MI,
2097                          SmallSet<MCPhysReg, 4> &LaterRedefs) {
2098   bool SawStore = true;
2099   if (!MI.isSafeToMove(nullptr, SawStore))
2100     return false;
2101 
2102   for (const MachineOperand &MO : MI.operands()) {
2103     if (!MO.isReg())
2104       continue;
2105     Register Reg = MO.getReg();
2106     if (!Reg)
2107       continue;
2108     if (MO.isDef() && !LaterRedefs.count(Reg))
2109       return false;
2110   }
2111 
2112   return true;
2113 }
2114 
2115 /// Predicate instructions from the start of the block to the specified end with
2116 /// the specified condition.
2117 void IfConverter::PredicateBlock(BBInfo &BBI,
2118                                  MachineBasicBlock::iterator E,
2119                                  SmallVectorImpl<MachineOperand> &Cond,
2120                                  SmallSet<MCPhysReg, 4> *LaterRedefs) {
2121   bool AnyUnpred = false;
2122   bool MaySpec = LaterRedefs != nullptr;
2123   for (MachineInstr &I : make_range(BBI.BB->begin(), E)) {
2124     if (I.isDebugInstr() || TII->isPredicated(I))
2125       continue;
2126     // It may be possible not to predicate an instruction if it's the 'true'
2127     // side of a diamond and the 'false' side may re-define the instruction's
2128     // defs.
2129     if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
2130       AnyUnpred = true;
2131       continue;
2132     }
2133     // If any instruction is predicated, then every instruction after it must
2134     // be predicated.
2135     MaySpec = false;
2136     if (!TII->PredicateInstruction(I, Cond)) {
2137 #ifndef NDEBUG
2138       dbgs() << "Unable to predicate " << I << "!\n";
2139 #endif
2140       llvm_unreachable(nullptr);
2141     }
2142 
2143     // If the predicated instruction now redefines a register as the result of
2144     // if-conversion, add an implicit kill.
2145     UpdatePredRedefs(I, Redefs);
2146   }
2147 
2148   BBI.Predicate.append(Cond.begin(), Cond.end());
2149 
2150   BBI.IsAnalyzed = false;
2151   BBI.NonPredSize = 0;
2152 
2153   ++NumIfConvBBs;
2154   if (AnyUnpred)
2155     ++NumUnpred;
2156 }
2157 
2158 /// Copy and predicate instructions from source BB to the destination block.
2159 /// Skip end of block branches if IgnoreBr is true.
2160 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
2161                                         SmallVectorImpl<MachineOperand> &Cond,
2162                                         bool IgnoreBr) {
2163   MachineFunction &MF = *ToBBI.BB->getParent();
2164 
2165   MachineBasicBlock &FromMBB = *FromBBI.BB;
2166   for (MachineInstr &I : FromMBB) {
2167     // Do not copy the end of the block branches.
2168     if (IgnoreBr && I.isBranch())
2169       break;
2170 
2171     MachineInstr *MI = MF.CloneMachineInstr(&I);
2172     // Make a copy of the call site info.
2173     if (I.isCandidateForCallSiteEntry())
2174       MF.copyCallSiteInfo(&I, MI);
2175 
2176     ToBBI.BB->insert(ToBBI.BB->end(), MI);
2177     ToBBI.NonPredSize++;
2178     unsigned ExtraPredCost = TII->getPredicationCost(I);
2179     unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
2180     if (NumCycles > 1)
2181       ToBBI.ExtraCost += NumCycles-1;
2182     ToBBI.ExtraCost2 += ExtraPredCost;
2183 
2184     if (!TII->isPredicated(I) && !MI->isDebugInstr()) {
2185       if (!TII->PredicateInstruction(*MI, Cond)) {
2186 #ifndef NDEBUG
2187         dbgs() << "Unable to predicate " << I << "!\n";
2188 #endif
2189         llvm_unreachable(nullptr);
2190       }
2191     }
2192 
2193     // If the predicated instruction now redefines a register as the result of
2194     // if-conversion, add an implicit kill.
2195     UpdatePredRedefs(*MI, Redefs);
2196   }
2197 
2198   if (!IgnoreBr) {
2199     std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(),
2200                                            FromMBB.succ_end());
2201     MachineBasicBlock *NBB = getNextBlock(FromMBB);
2202     MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2203 
2204     for (MachineBasicBlock *Succ : Succs) {
2205       // Fallthrough edge can't be transferred.
2206       if (Succ == FallThrough)
2207         continue;
2208       ToBBI.BB->addSuccessor(Succ);
2209     }
2210   }
2211 
2212   ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2213   ToBBI.Predicate.append(Cond.begin(), Cond.end());
2214 
2215   ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2216   ToBBI.IsAnalyzed = false;
2217 
2218   ++NumDupBBs;
2219 }
2220 
2221 /// Move all instructions from FromBB to the end of ToBB.  This will leave
2222 /// FromBB as an empty block, so remove all of its successor edges and move it
2223 /// to the end of the function.  If AddEdges is true, i.e., when FromBBI's
2224 /// branch is being moved, add those successor edges to ToBBI and remove the old
2225 /// edge from ToBBI to FromBBI.
2226 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
2227   MachineBasicBlock &FromMBB = *FromBBI.BB;
2228   assert(!FromMBB.hasAddressTaken() &&
2229          "Removing a BB whose address is taken!");
2230 
2231   // If we're about to splice an INLINEASM_BR from FromBBI, we need to update
2232   // ToBBI's successor list accordingly.
2233   if (FromMBB.mayHaveInlineAsmBr())
2234     for (MachineInstr &MI : FromMBB)
2235       if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
2236         for (MachineOperand &MO : MI.operands())
2237           if (MO.isMBB() && !ToBBI.BB->isSuccessor(MO.getMBB()))
2238             ToBBI.BB->addSuccessor(MO.getMBB(), BranchProbability::getZero());
2239 
2240   // In case FromMBB contains terminators (e.g. return instruction),
2241   // first move the non-terminator instructions, then the terminators.
2242   MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator();
2243   MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
2244   ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI);
2245 
2246   // If FromBB has non-predicated terminator we should copy it at the end.
2247   if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI))
2248     ToTI = ToBBI.BB->end();
2249   ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end());
2250 
2251   // Force normalizing the successors' probabilities of ToBBI.BB to convert all
2252   // unknown probabilities into known ones.
2253   // FIXME: This usage is too tricky and in the future we would like to
2254   // eliminate all unknown probabilities in MBB.
2255   if (ToBBI.IsBrAnalyzable)
2256     ToBBI.BB->normalizeSuccProbs();
2257 
2258   SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.successors());
2259   MachineBasicBlock *NBB = getNextBlock(FromMBB);
2260   MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2261   // The edge probability from ToBBI.BB to FromMBB, which is only needed when
2262   // AddEdges is true and FromMBB is a successor of ToBBI.BB.
2263   auto To2FromProb = BranchProbability::getZero();
2264   if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) {
2265     // Remove the old edge but remember the edge probability so we can calculate
2266     // the correct weights on the new edges being added further down.
2267     To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB);
2268     ToBBI.BB->removeSuccessor(&FromMBB);
2269   }
2270 
2271   for (MachineBasicBlock *Succ : FromSuccs) {
2272     // Fallthrough edge can't be transferred.
2273     if (Succ == FallThrough) {
2274       FromMBB.removeSuccessor(Succ);
2275       continue;
2276     }
2277 
2278     auto NewProb = BranchProbability::getZero();
2279     if (AddEdges) {
2280       // Calculate the edge probability for the edge from ToBBI.BB to Succ,
2281       // which is a portion of the edge probability from FromMBB to Succ. The
2282       // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
2283       // FromBBI is a successor of ToBBI.BB. See comment below for exception).
2284       NewProb = MBPI->getEdgeProbability(&FromMBB, Succ);
2285 
2286       // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
2287       // only happens when if-converting a diamond CFG and FromMBB is the
2288       // tail BB.  In this case FromMBB post-dominates ToBBI.BB and hence we
2289       // could just use the probabilities on FromMBB's out-edges when adding
2290       // new successors.
2291       if (!To2FromProb.isZero())
2292         NewProb *= To2FromProb;
2293     }
2294 
2295     FromMBB.removeSuccessor(Succ);
2296 
2297     if (AddEdges) {
2298       // If the edge from ToBBI.BB to Succ already exists, update the
2299       // probability of this edge by adding NewProb to it. An example is shown
2300       // below, in which A is ToBBI.BB and B is FromMBB. In this case we
2301       // don't have to set C as A's successor as it already is. We only need to
2302       // update the edge probability on A->C. Note that B will not be
2303       // immediately removed from A's successors. It is possible that B->D is
2304       // not removed either if D is a fallthrough of B. Later the edge A->D
2305       // (generated here) and B->D will be combined into one edge. To maintain
2306       // correct edge probability of this combined edge, we need to set the edge
2307       // probability of A->B to zero, which is already done above. The edge
2308       // probability on A->D is calculated by scaling the original probability
2309       // on A->B by the probability of B->D.
2310       //
2311       // Before ifcvt:      After ifcvt (assume B->D is kept):
2312       //
2313       //       A                A
2314       //      /|               /|\
2315       //     / B              / B|
2316       //    | /|             |  ||
2317       //    |/ |             |  |/
2318       //    C  D             C  D
2319       //
2320       if (ToBBI.BB->isSuccessor(Succ))
2321         ToBBI.BB->setSuccProbability(
2322             find(ToBBI.BB->successors(), Succ),
2323             MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
2324       else
2325         ToBBI.BB->addSuccessor(Succ, NewProb);
2326     }
2327   }
2328 
2329   // Move the now empty FromMBB out of the way to the end of the function so
2330   // it doesn't interfere with fallthrough checks done by canFallThroughTo().
2331   MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin();
2332   if (Last != &FromMBB)
2333     FromMBB.moveAfter(Last);
2334 
2335   // Normalize the probabilities of ToBBI.BB's successors with all adjustment
2336   // we've done above.
2337   if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable)
2338     ToBBI.BB->normalizeSuccProbs();
2339 
2340   ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2341   FromBBI.Predicate.clear();
2342 
2343   ToBBI.NonPredSize += FromBBI.NonPredSize;
2344   ToBBI.ExtraCost += FromBBI.ExtraCost;
2345   ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
2346   FromBBI.NonPredSize = 0;
2347   FromBBI.ExtraCost = 0;
2348   FromBBI.ExtraCost2 = 0;
2349 
2350   ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2351   ToBBI.HasFallThrough = FromBBI.HasFallThrough;
2352   ToBBI.IsAnalyzed = false;
2353   FromBBI.IsAnalyzed = false;
2354 }
2355 
2356 FunctionPass *
2357 llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) {
2358   return new IfConverter(std::move(Ftor));
2359 }
2360