xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/GlobalMerge.cpp (revision 963f5dc7a30624e95d72fb7f87b8892651164e46)
1 //===- GlobalMerge.cpp - Internal globals merging -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass merges globals with internal linkage into one. This way all the
10 // globals which were merged into a biggest one can be addressed using offsets
11 // from the same base pointer (no need for separate base pointer for each of the
12 // global). Such a transformation can significantly reduce the register pressure
13 // when many globals are involved.
14 //
15 // For example, consider the code which touches several global variables at
16 // once:
17 //
18 // static int foo[N], bar[N], baz[N];
19 //
20 // for (i = 0; i < N; ++i) {
21 //    foo[i] = bar[i] * baz[i];
22 // }
23 //
24 //  On ARM the addresses of 3 arrays should be kept in the registers, thus
25 //  this code has quite large register pressure (loop body):
26 //
27 //  ldr     r1, [r5], #4
28 //  ldr     r2, [r6], #4
29 //  mul     r1, r2, r1
30 //  str     r1, [r0], #4
31 //
32 //  Pass converts the code to something like:
33 //
34 //  static struct {
35 //    int foo[N];
36 //    int bar[N];
37 //    int baz[N];
38 //  } merged;
39 //
40 //  for (i = 0; i < N; ++i) {
41 //    merged.foo[i] = merged.bar[i] * merged.baz[i];
42 //  }
43 //
44 //  and in ARM code this becomes:
45 //
46 //  ldr     r0, [r5, #40]
47 //  ldr     r1, [r5, #80]
48 //  mul     r0, r1, r0
49 //  str     r0, [r5], #4
50 //
51 //  note that we saved 2 registers here almostly "for free".
52 //
53 // However, merging globals can have tradeoffs:
54 // - it confuses debuggers, tools, and users
55 // - it makes linker optimizations less useful (order files, LOHs, ...)
56 // - it forces usage of indexed addressing (which isn't necessarily "free")
57 // - it can increase register pressure when the uses are disparate enough.
58 //
59 // We use heuristics to discover the best global grouping we can (cf cl::opts).
60 //
61 // ===---------------------------------------------------------------------===//
62 
63 #include "llvm/ADT/BitVector.h"
64 #include "llvm/ADT/DenseMap.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/Statistic.h"
68 #include "llvm/ADT/StringRef.h"
69 #include "llvm/ADT/Triple.h"
70 #include "llvm/ADT/Twine.h"
71 #include "llvm/CodeGen/Passes.h"
72 #include "llvm/IR/BasicBlock.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DerivedTypes.h"
76 #include "llvm/IR/Function.h"
77 #include "llvm/IR/GlobalAlias.h"
78 #include "llvm/IR/GlobalValue.h"
79 #include "llvm/IR/GlobalVariable.h"
80 #include "llvm/IR/Instruction.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/Type.h"
83 #include "llvm/IR/Use.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/InitializePasses.h"
86 #include "llvm/MC/SectionKind.h"
87 #include "llvm/Pass.h"
88 #include "llvm/Support/Casting.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Debug.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetLoweringObjectFile.h"
93 #include "llvm/Target/TargetMachine.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstddef>
97 #include <cstdint>
98 #include <string>
99 #include <vector>
100 
101 using namespace llvm;
102 
103 #define DEBUG_TYPE "global-merge"
104 
105 // FIXME: This is only useful as a last-resort way to disable the pass.
106 static cl::opt<bool>
107 EnableGlobalMerge("enable-global-merge", cl::Hidden,
108                   cl::desc("Enable the global merge pass"),
109                   cl::init(true));
110 
111 static cl::opt<unsigned>
112 GlobalMergeMaxOffset("global-merge-max-offset", cl::Hidden,
113                      cl::desc("Set maximum offset for global merge pass"),
114                      cl::init(0));
115 
116 static cl::opt<bool> GlobalMergeGroupByUse(
117     "global-merge-group-by-use", cl::Hidden,
118     cl::desc("Improve global merge pass to look at uses"), cl::init(true));
119 
120 static cl::opt<bool> GlobalMergeIgnoreSingleUse(
121     "global-merge-ignore-single-use", cl::Hidden,
122     cl::desc("Improve global merge pass to ignore globals only used alone"),
123     cl::init(true));
124 
125 static cl::opt<bool>
126 EnableGlobalMergeOnConst("global-merge-on-const", cl::Hidden,
127                          cl::desc("Enable global merge pass on constants"),
128                          cl::init(false));
129 
130 // FIXME: this could be a transitional option, and we probably need to remove
131 // it if only we are sure this optimization could always benefit all targets.
132 static cl::opt<cl::boolOrDefault>
133 EnableGlobalMergeOnExternal("global-merge-on-external", cl::Hidden,
134      cl::desc("Enable global merge pass on external linkage"));
135 
136 STATISTIC(NumMerged, "Number of globals merged");
137 
138 namespace {
139 
140   class GlobalMerge : public FunctionPass {
141     const TargetMachine *TM = nullptr;
142 
143     // FIXME: Infer the maximum possible offset depending on the actual users
144     // (these max offsets are different for the users inside Thumb or ARM
145     // functions), see the code that passes in the offset in the ARM backend
146     // for more information.
147     unsigned MaxOffset;
148 
149     /// Whether we should try to optimize for size only.
150     /// Currently, this applies a dead simple heuristic: only consider globals
151     /// used in minsize functions for merging.
152     /// FIXME: This could learn about optsize, and be used in the cost model.
153     bool OnlyOptimizeForSize = false;
154 
155     /// Whether we should merge global variables that have external linkage.
156     bool MergeExternalGlobals = false;
157 
158     bool IsMachO;
159 
160     bool doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
161                  Module &M, bool isConst, unsigned AddrSpace) const;
162 
163     /// Merge everything in \p Globals for which the corresponding bit
164     /// in \p GlobalSet is set.
165     bool doMerge(const SmallVectorImpl<GlobalVariable *> &Globals,
166                  const BitVector &GlobalSet, Module &M, bool isConst,
167                  unsigned AddrSpace) const;
168 
169     /// Check if the given variable has been identified as must keep
170     /// \pre setMustKeepGlobalVariables must have been called on the Module that
171     ///      contains GV
172     bool isMustKeepGlobalVariable(const GlobalVariable *GV) const {
173       return MustKeepGlobalVariables.count(GV);
174     }
175 
176     /// Collect every variables marked as "used" or used in a landing pad
177     /// instruction for this Module.
178     void setMustKeepGlobalVariables(Module &M);
179 
180     /// Collect every variables marked as "used"
181     void collectUsedGlobalVariables(Module &M, StringRef Name);
182 
183     /// Keep track of the GlobalVariable that must not be merged away
184     SmallPtrSet<const GlobalVariable *, 16> MustKeepGlobalVariables;
185 
186   public:
187     static char ID;             // Pass identification, replacement for typeid.
188 
189     explicit GlobalMerge()
190         : FunctionPass(ID), MaxOffset(GlobalMergeMaxOffset) {
191       initializeGlobalMergePass(*PassRegistry::getPassRegistry());
192     }
193 
194     explicit GlobalMerge(const TargetMachine *TM, unsigned MaximalOffset,
195                          bool OnlyOptimizeForSize, bool MergeExternalGlobals)
196         : FunctionPass(ID), TM(TM), MaxOffset(MaximalOffset),
197           OnlyOptimizeForSize(OnlyOptimizeForSize),
198           MergeExternalGlobals(MergeExternalGlobals) {
199       initializeGlobalMergePass(*PassRegistry::getPassRegistry());
200     }
201 
202     bool doInitialization(Module &M) override;
203     bool runOnFunction(Function &F) override;
204     bool doFinalization(Module &M) override;
205 
206     StringRef getPassName() const override { return "Merge internal globals"; }
207 
208     void getAnalysisUsage(AnalysisUsage &AU) const override {
209       AU.setPreservesCFG();
210       FunctionPass::getAnalysisUsage(AU);
211     }
212   };
213 
214 } // end anonymous namespace
215 
216 char GlobalMerge::ID = 0;
217 
218 INITIALIZE_PASS(GlobalMerge, DEBUG_TYPE, "Merge global variables", false, false)
219 
220 bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
221                           Module &M, bool isConst, unsigned AddrSpace) const {
222   auto &DL = M.getDataLayout();
223   // FIXME: Find better heuristics
224   llvm::stable_sort(
225       Globals, [&DL](const GlobalVariable *GV1, const GlobalVariable *GV2) {
226         // We don't support scalable global variables.
227         return DL.getTypeAllocSize(GV1->getValueType()).getFixedSize() <
228                DL.getTypeAllocSize(GV2->getValueType()).getFixedSize();
229       });
230 
231   // If we want to just blindly group all globals together, do so.
232   if (!GlobalMergeGroupByUse) {
233     BitVector AllGlobals(Globals.size());
234     AllGlobals.set();
235     return doMerge(Globals, AllGlobals, M, isConst, AddrSpace);
236   }
237 
238   // If we want to be smarter, look at all uses of each global, to try to
239   // discover all sets of globals used together, and how many times each of
240   // these sets occurred.
241   //
242   // Keep this reasonably efficient, by having an append-only list of all sets
243   // discovered so far (UsedGlobalSet), and mapping each "together-ness" unit of
244   // code (currently, a Function) to the set of globals seen so far that are
245   // used together in that unit (GlobalUsesByFunction).
246   //
247   // When we look at the Nth global, we know that any new set is either:
248   // - the singleton set {N}, containing this global only, or
249   // - the union of {N} and a previously-discovered set, containing some
250   //   combination of the previous N-1 globals.
251   // Using that knowledge, when looking at the Nth global, we can keep:
252   // - a reference to the singleton set {N} (CurGVOnlySetIdx)
253   // - a list mapping each previous set to its union with {N} (EncounteredUGS),
254   //   if it actually occurs.
255 
256   // We keep track of the sets of globals used together "close enough".
257   struct UsedGlobalSet {
258     BitVector Globals;
259     unsigned UsageCount = 1;
260 
261     UsedGlobalSet(size_t Size) : Globals(Size) {}
262   };
263 
264   // Each set is unique in UsedGlobalSets.
265   std::vector<UsedGlobalSet> UsedGlobalSets;
266 
267   // Avoid repeating the create-global-set pattern.
268   auto CreateGlobalSet = [&]() -> UsedGlobalSet & {
269     UsedGlobalSets.emplace_back(Globals.size());
270     return UsedGlobalSets.back();
271   };
272 
273   // The first set is the empty set.
274   CreateGlobalSet().UsageCount = 0;
275 
276   // We define "close enough" to be "in the same function".
277   // FIXME: Grouping uses by function is way too aggressive, so we should have
278   // a better metric for distance between uses.
279   // The obvious alternative would be to group by BasicBlock, but that's in
280   // turn too conservative..
281   // Anything in between wouldn't be trivial to compute, so just stick with
282   // per-function grouping.
283 
284   // The value type is an index into UsedGlobalSets.
285   // The default (0) conveniently points to the empty set.
286   DenseMap<Function *, size_t /*UsedGlobalSetIdx*/> GlobalUsesByFunction;
287 
288   // Now, look at each merge-eligible global in turn.
289 
290   // Keep track of the sets we already encountered to which we added the
291   // current global.
292   // Each element matches the same-index element in UsedGlobalSets.
293   // This lets us efficiently tell whether a set has already been expanded to
294   // include the current global.
295   std::vector<size_t> EncounteredUGS;
296 
297   for (size_t GI = 0, GE = Globals.size(); GI != GE; ++GI) {
298     GlobalVariable *GV = Globals[GI];
299 
300     // Reset the encountered sets for this global...
301     std::fill(EncounteredUGS.begin(), EncounteredUGS.end(), 0);
302     // ...and grow it in case we created new sets for the previous global.
303     EncounteredUGS.resize(UsedGlobalSets.size());
304 
305     // We might need to create a set that only consists of the current global.
306     // Keep track of its index into UsedGlobalSets.
307     size_t CurGVOnlySetIdx = 0;
308 
309     // For each global, look at all its Uses.
310     for (auto &U : GV->uses()) {
311       // This Use might be a ConstantExpr.  We're interested in Instruction
312       // users, so look through ConstantExpr...
313       Use *UI, *UE;
314       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
315         if (CE->use_empty())
316           continue;
317         UI = &*CE->use_begin();
318         UE = nullptr;
319       } else if (isa<Instruction>(U.getUser())) {
320         UI = &U;
321         UE = UI->getNext();
322       } else {
323         continue;
324       }
325 
326       // ...to iterate on all the instruction users of the global.
327       // Note that we iterate on Uses and not on Users to be able to getNext().
328       for (; UI != UE; UI = UI->getNext()) {
329         Instruction *I = dyn_cast<Instruction>(UI->getUser());
330         if (!I)
331           continue;
332 
333         Function *ParentFn = I->getParent()->getParent();
334 
335         // If we're only optimizing for size, ignore non-minsize functions.
336         if (OnlyOptimizeForSize && !ParentFn->hasMinSize())
337           continue;
338 
339         size_t UGSIdx = GlobalUsesByFunction[ParentFn];
340 
341         // If this is the first global the basic block uses, map it to the set
342         // consisting of this global only.
343         if (!UGSIdx) {
344           // If that set doesn't exist yet, create it.
345           if (!CurGVOnlySetIdx) {
346             CurGVOnlySetIdx = UsedGlobalSets.size();
347             CreateGlobalSet().Globals.set(GI);
348           } else {
349             ++UsedGlobalSets[CurGVOnlySetIdx].UsageCount;
350           }
351 
352           GlobalUsesByFunction[ParentFn] = CurGVOnlySetIdx;
353           continue;
354         }
355 
356         // If we already encountered this BB, just increment the counter.
357         if (UsedGlobalSets[UGSIdx].Globals.test(GI)) {
358           ++UsedGlobalSets[UGSIdx].UsageCount;
359           continue;
360         }
361 
362         // If not, the previous set wasn't actually used in this function.
363         --UsedGlobalSets[UGSIdx].UsageCount;
364 
365         // If we already expanded the previous set to include this global, just
366         // reuse that expanded set.
367         if (size_t ExpandedIdx = EncounteredUGS[UGSIdx]) {
368           ++UsedGlobalSets[ExpandedIdx].UsageCount;
369           GlobalUsesByFunction[ParentFn] = ExpandedIdx;
370           continue;
371         }
372 
373         // If not, create a new set consisting of the union of the previous set
374         // and this global.  Mark it as encountered, so we can reuse it later.
375         GlobalUsesByFunction[ParentFn] = EncounteredUGS[UGSIdx] =
376             UsedGlobalSets.size();
377 
378         UsedGlobalSet &NewUGS = CreateGlobalSet();
379         NewUGS.Globals.set(GI);
380         NewUGS.Globals |= UsedGlobalSets[UGSIdx].Globals;
381       }
382     }
383   }
384 
385   // Now we found a bunch of sets of globals used together.  We accumulated
386   // the number of times we encountered the sets (i.e., the number of blocks
387   // that use that exact set of globals).
388   //
389   // Multiply that by the size of the set to give us a crude profitability
390   // metric.
391   llvm::stable_sort(UsedGlobalSets,
392                     [](const UsedGlobalSet &UGS1, const UsedGlobalSet &UGS2) {
393                       return UGS1.Globals.count() * UGS1.UsageCount <
394                              UGS2.Globals.count() * UGS2.UsageCount;
395                     });
396 
397   // We can choose to merge all globals together, but ignore globals never used
398   // with another global.  This catches the obviously non-profitable cases of
399   // having a single global, but is aggressive enough for any other case.
400   if (GlobalMergeIgnoreSingleUse) {
401     BitVector AllGlobals(Globals.size());
402     for (size_t i = 0, e = UsedGlobalSets.size(); i != e; ++i) {
403       const UsedGlobalSet &UGS = UsedGlobalSets[e - i - 1];
404       if (UGS.UsageCount == 0)
405         continue;
406       if (UGS.Globals.count() > 1)
407         AllGlobals |= UGS.Globals;
408     }
409     return doMerge(Globals, AllGlobals, M, isConst, AddrSpace);
410   }
411 
412   // Starting from the sets with the best (=biggest) profitability, find a
413   // good combination.
414   // The ideal (and expensive) solution can only be found by trying all
415   // combinations, looking for the one with the best profitability.
416   // Don't be smart about it, and just pick the first compatible combination,
417   // starting with the sets with the best profitability.
418   BitVector PickedGlobals(Globals.size());
419   bool Changed = false;
420 
421   for (size_t i = 0, e = UsedGlobalSets.size(); i != e; ++i) {
422     const UsedGlobalSet &UGS = UsedGlobalSets[e - i - 1];
423     if (UGS.UsageCount == 0)
424       continue;
425     if (PickedGlobals.anyCommon(UGS.Globals))
426       continue;
427     PickedGlobals |= UGS.Globals;
428     // If the set only contains one global, there's no point in merging.
429     // Ignore the global for inclusion in other sets though, so keep it in
430     // PickedGlobals.
431     if (UGS.Globals.count() < 2)
432       continue;
433     Changed |= doMerge(Globals, UGS.Globals, M, isConst, AddrSpace);
434   }
435 
436   return Changed;
437 }
438 
439 bool GlobalMerge::doMerge(const SmallVectorImpl<GlobalVariable *> &Globals,
440                           const BitVector &GlobalSet, Module &M, bool isConst,
441                           unsigned AddrSpace) const {
442   assert(Globals.size() > 1);
443 
444   Type *Int32Ty = Type::getInt32Ty(M.getContext());
445   Type *Int8Ty = Type::getInt8Ty(M.getContext());
446   auto &DL = M.getDataLayout();
447 
448   LLVM_DEBUG(dbgs() << " Trying to merge set, starts with #"
449                     << GlobalSet.find_first() << "\n");
450 
451   bool Changed = false;
452   ssize_t i = GlobalSet.find_first();
453   while (i != -1) {
454     ssize_t j = 0;
455     uint64_t MergedSize = 0;
456     std::vector<Type*> Tys;
457     std::vector<Constant*> Inits;
458     std::vector<unsigned> StructIdxs;
459 
460     bool HasExternal = false;
461     StringRef FirstExternalName;
462     Align MaxAlign;
463     unsigned CurIdx = 0;
464     for (j = i; j != -1; j = GlobalSet.find_next(j)) {
465       Type *Ty = Globals[j]->getValueType();
466 
467       // Make sure we use the same alignment AsmPrinter would use.
468       Align Alignment = DL.getPreferredAlign(Globals[j]);
469       unsigned Padding = alignTo(MergedSize, Alignment) - MergedSize;
470       MergedSize += Padding;
471       MergedSize += DL.getTypeAllocSize(Ty);
472       if (MergedSize > MaxOffset) {
473         break;
474       }
475       if (Padding) {
476         Tys.push_back(ArrayType::get(Int8Ty, Padding));
477         Inits.push_back(ConstantAggregateZero::get(Tys.back()));
478         ++CurIdx;
479       }
480       Tys.push_back(Ty);
481       Inits.push_back(Globals[j]->getInitializer());
482       StructIdxs.push_back(CurIdx++);
483 
484       MaxAlign = std::max(MaxAlign, Alignment);
485 
486       if (Globals[j]->hasExternalLinkage() && !HasExternal) {
487         HasExternal = true;
488         FirstExternalName = Globals[j]->getName();
489       }
490     }
491 
492     // Exit early if there is only one global to merge.
493     if (Tys.size() < 2) {
494       i = j;
495       continue;
496     }
497 
498     // If merged variables doesn't have external linkage, we needn't to expose
499     // the symbol after merging.
500     GlobalValue::LinkageTypes Linkage = HasExternal
501                                             ? GlobalValue::ExternalLinkage
502                                             : GlobalValue::InternalLinkage;
503     // Use a packed struct so we can control alignment.
504     StructType *MergedTy = StructType::get(M.getContext(), Tys, true);
505     Constant *MergedInit = ConstantStruct::get(MergedTy, Inits);
506 
507     // On Darwin external linkage needs to be preserved, otherwise
508     // dsymutil cannot preserve the debug info for the merged
509     // variables.  If they have external linkage, use the symbol name
510     // of the first variable merged as the suffix of global symbol
511     // name.  This avoids a link-time naming conflict for the
512     // _MergedGlobals symbols.
513     Twine MergedName =
514         (IsMachO && HasExternal)
515             ? "_MergedGlobals_" + FirstExternalName
516             : "_MergedGlobals";
517     auto MergedLinkage = IsMachO ? Linkage : GlobalValue::PrivateLinkage;
518     auto *MergedGV = new GlobalVariable(
519         M, MergedTy, isConst, MergedLinkage, MergedInit, MergedName, nullptr,
520         GlobalVariable::NotThreadLocal, AddrSpace);
521 
522     MergedGV->setAlignment(MaxAlign);
523     MergedGV->setSection(Globals[i]->getSection());
524 
525     const StructLayout *MergedLayout = DL.getStructLayout(MergedTy);
526     for (ssize_t k = i, idx = 0; k != j; k = GlobalSet.find_next(k), ++idx) {
527       GlobalValue::LinkageTypes Linkage = Globals[k]->getLinkage();
528       std::string Name(Globals[k]->getName());
529       GlobalValue::VisibilityTypes Visibility = Globals[k]->getVisibility();
530       GlobalValue::DLLStorageClassTypes DLLStorage =
531           Globals[k]->getDLLStorageClass();
532 
533       // Copy metadata while adjusting any debug info metadata by the original
534       // global's offset within the merged global.
535       MergedGV->copyMetadata(Globals[k],
536                              MergedLayout->getElementOffset(StructIdxs[idx]));
537 
538       Constant *Idx[2] = {
539           ConstantInt::get(Int32Ty, 0),
540           ConstantInt::get(Int32Ty, StructIdxs[idx]),
541       };
542       Constant *GEP =
543           ConstantExpr::getInBoundsGetElementPtr(MergedTy, MergedGV, Idx);
544       Globals[k]->replaceAllUsesWith(GEP);
545       Globals[k]->eraseFromParent();
546 
547       // When the linkage is not internal we must emit an alias for the original
548       // variable name as it may be accessed from another object. On non-Mach-O
549       // we can also emit an alias for internal linkage as it's safe to do so.
550       // It's not safe on Mach-O as the alias (and thus the portion of the
551       // MergedGlobals variable) may be dead stripped at link time.
552       if (Linkage != GlobalValue::InternalLinkage || !IsMachO) {
553         GlobalAlias *GA = GlobalAlias::create(Tys[StructIdxs[idx]], AddrSpace,
554                                               Linkage, Name, GEP, &M);
555         GA->setVisibility(Visibility);
556         GA->setDLLStorageClass(DLLStorage);
557       }
558 
559       NumMerged++;
560     }
561     Changed = true;
562     i = j;
563   }
564 
565   return Changed;
566 }
567 
568 void GlobalMerge::collectUsedGlobalVariables(Module &M, StringRef Name) {
569   // Extract global variables from llvm.used array
570   const GlobalVariable *GV = M.getGlobalVariable(Name);
571   if (!GV || !GV->hasInitializer()) return;
572 
573   // Should be an array of 'i8*'.
574   const ConstantArray *InitList = cast<ConstantArray>(GV->getInitializer());
575 
576   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
577     if (const GlobalVariable *G =
578         dyn_cast<GlobalVariable>(InitList->getOperand(i)->stripPointerCasts()))
579       MustKeepGlobalVariables.insert(G);
580 }
581 
582 void GlobalMerge::setMustKeepGlobalVariables(Module &M) {
583   collectUsedGlobalVariables(M, "llvm.used");
584   collectUsedGlobalVariables(M, "llvm.compiler.used");
585 
586   for (Function &F : M) {
587     for (BasicBlock &BB : F) {
588       Instruction *Pad = BB.getFirstNonPHI();
589       if (!Pad->isEHPad())
590         continue;
591 
592       // Keep globals used by landingpads and catchpads.
593       for (const Use &U : Pad->operands()) {
594         if (const GlobalVariable *GV =
595                 dyn_cast<GlobalVariable>(U->stripPointerCasts()))
596           MustKeepGlobalVariables.insert(GV);
597       }
598     }
599   }
600 }
601 
602 bool GlobalMerge::doInitialization(Module &M) {
603   if (!EnableGlobalMerge)
604     return false;
605 
606   IsMachO = Triple(M.getTargetTriple()).isOSBinFormatMachO();
607 
608   auto &DL = M.getDataLayout();
609   DenseMap<std::pair<unsigned, StringRef>, SmallVector<GlobalVariable *, 16>>
610       Globals, ConstGlobals, BSSGlobals;
611   bool Changed = false;
612   setMustKeepGlobalVariables(M);
613 
614   // Grab all non-const globals.
615   for (auto &GV : M.globals()) {
616     // Merge is safe for "normal" internal or external globals only
617     if (GV.isDeclaration() || GV.isThreadLocal() || GV.hasImplicitSection())
618       continue;
619 
620     // It's not safe to merge globals that may be preempted
621     if (TM && !TM->shouldAssumeDSOLocal(M, &GV))
622       continue;
623 
624     if (!(MergeExternalGlobals && GV.hasExternalLinkage()) &&
625         !GV.hasInternalLinkage())
626       continue;
627 
628     PointerType *PT = dyn_cast<PointerType>(GV.getType());
629     assert(PT && "Global variable is not a pointer!");
630 
631     unsigned AddressSpace = PT->getAddressSpace();
632     StringRef Section = GV.getSection();
633 
634     // Ignore all 'special' globals.
635     if (GV.getName().startswith("llvm.") ||
636         GV.getName().startswith(".llvm."))
637       continue;
638 
639     // Ignore all "required" globals:
640     if (isMustKeepGlobalVariable(&GV))
641       continue;
642 
643     Type *Ty = GV.getValueType();
644     if (DL.getTypeAllocSize(Ty) < MaxOffset) {
645       if (TM &&
646           TargetLoweringObjectFile::getKindForGlobal(&GV, *TM).isBSS())
647         BSSGlobals[{AddressSpace, Section}].push_back(&GV);
648       else if (GV.isConstant())
649         ConstGlobals[{AddressSpace, Section}].push_back(&GV);
650       else
651         Globals[{AddressSpace, Section}].push_back(&GV);
652     }
653   }
654 
655   for (auto &P : Globals)
656     if (P.second.size() > 1)
657       Changed |= doMerge(P.second, M, false, P.first.first);
658 
659   for (auto &P : BSSGlobals)
660     if (P.second.size() > 1)
661       Changed |= doMerge(P.second, M, false, P.first.first);
662 
663   if (EnableGlobalMergeOnConst)
664     for (auto &P : ConstGlobals)
665       if (P.second.size() > 1)
666         Changed |= doMerge(P.second, M, true, P.first.first);
667 
668   return Changed;
669 }
670 
671 bool GlobalMerge::runOnFunction(Function &F) {
672   return false;
673 }
674 
675 bool GlobalMerge::doFinalization(Module &M) {
676   MustKeepGlobalVariables.clear();
677   return false;
678 }
679 
680 Pass *llvm::createGlobalMergePass(const TargetMachine *TM, unsigned Offset,
681                                   bool OnlyOptimizeForSize,
682                                   bool MergeExternalByDefault) {
683   bool MergeExternal = (EnableGlobalMergeOnExternal == cl::BOU_UNSET) ?
684     MergeExternalByDefault : (EnableGlobalMergeOnExternal == cl::BOU_TRUE);
685   return new GlobalMerge(TM, Offset, OnlyOptimizeForSize, MergeExternal);
686 }
687