xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/Utils.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file This file implements the utility functions used by the GlobalISel
9 /// pipeline.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/Utils.h"
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/CodeGen/CodeGenCommonISel.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
19 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
20 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
21 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
22 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/MachineSizeOpts.h"
28 #include "llvm/CodeGen/RegisterBankInfo.h"
29 #include "llvm/CodeGen/StackProtector.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/TargetOpcodes.h"
33 #include "llvm/CodeGen/TargetPassConfig.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Transforms/Utils/SizeOpts.h"
38 #include <numeric>
39 #include <optional>
40 
41 #define DEBUG_TYPE "globalisel-utils"
42 
43 using namespace llvm;
44 using namespace MIPatternMatch;
45 
46 Register llvm::constrainRegToClass(MachineRegisterInfo &MRI,
47                                    const TargetInstrInfo &TII,
48                                    const RegisterBankInfo &RBI, Register Reg,
49                                    const TargetRegisterClass &RegClass) {
50   if (!RBI.constrainGenericRegister(Reg, RegClass, MRI))
51     return MRI.createVirtualRegister(&RegClass);
52 
53   return Reg;
54 }
55 
56 Register llvm::constrainOperandRegClass(
57     const MachineFunction &MF, const TargetRegisterInfo &TRI,
58     MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
59     const RegisterBankInfo &RBI, MachineInstr &InsertPt,
60     const TargetRegisterClass &RegClass, MachineOperand &RegMO) {
61   Register Reg = RegMO.getReg();
62   // Assume physical registers are properly constrained.
63   assert(Reg.isVirtual() && "PhysReg not implemented");
64 
65   // Save the old register class to check whether
66   // the change notifications will be required.
67   // TODO: A better approach would be to pass
68   // the observers to constrainRegToClass().
69   auto *OldRegClass = MRI.getRegClassOrNull(Reg);
70   Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass);
71   // If we created a new virtual register because the class is not compatible
72   // then create a copy between the new and the old register.
73   if (ConstrainedReg != Reg) {
74     MachineBasicBlock::iterator InsertIt(&InsertPt);
75     MachineBasicBlock &MBB = *InsertPt.getParent();
76     // FIXME: The copy needs to have the classes constrained for its operands.
77     // Use operand's regbank to get the class for old register (Reg).
78     if (RegMO.isUse()) {
79       BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(),
80               TII.get(TargetOpcode::COPY), ConstrainedReg)
81           .addReg(Reg);
82     } else {
83       assert(RegMO.isDef() && "Must be a definition");
84       BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(),
85               TII.get(TargetOpcode::COPY), Reg)
86           .addReg(ConstrainedReg);
87     }
88     if (GISelChangeObserver *Observer = MF.getObserver()) {
89       Observer->changingInstr(*RegMO.getParent());
90     }
91     RegMO.setReg(ConstrainedReg);
92     if (GISelChangeObserver *Observer = MF.getObserver()) {
93       Observer->changedInstr(*RegMO.getParent());
94     }
95   } else if (OldRegClass != MRI.getRegClassOrNull(Reg)) {
96     if (GISelChangeObserver *Observer = MF.getObserver()) {
97       if (!RegMO.isDef()) {
98         MachineInstr *RegDef = MRI.getVRegDef(Reg);
99         Observer->changedInstr(*RegDef);
100       }
101       Observer->changingAllUsesOfReg(MRI, Reg);
102       Observer->finishedChangingAllUsesOfReg();
103     }
104   }
105   return ConstrainedReg;
106 }
107 
108 Register llvm::constrainOperandRegClass(
109     const MachineFunction &MF, const TargetRegisterInfo &TRI,
110     MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
111     const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II,
112     MachineOperand &RegMO, unsigned OpIdx) {
113   Register Reg = RegMO.getReg();
114   // Assume physical registers are properly constrained.
115   assert(Reg.isVirtual() && "PhysReg not implemented");
116 
117   const TargetRegisterClass *OpRC = TII.getRegClass(II, OpIdx, &TRI, MF);
118   // Some of the target independent instructions, like COPY, may not impose any
119   // register class constraints on some of their operands: If it's a use, we can
120   // skip constraining as the instruction defining the register would constrain
121   // it.
122 
123   if (OpRC) {
124     // Obtain the RC from incoming regbank if it is a proper sub-class. Operands
125     // can have multiple regbanks for a superclass that combine different
126     // register types (E.g., AMDGPU's VGPR and AGPR). The regbank ambiguity
127     // resolved by targets during regbankselect should not be overridden.
128     if (const auto *SubRC = TRI.getCommonSubClass(
129             OpRC, TRI.getConstrainedRegClassForOperand(RegMO, MRI)))
130       OpRC = SubRC;
131 
132     OpRC = TRI.getAllocatableClass(OpRC);
133   }
134 
135   if (!OpRC) {
136     assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) &&
137            "Register class constraint is required unless either the "
138            "instruction is target independent or the operand is a use");
139     // FIXME: Just bailing out like this here could be not enough, unless we
140     // expect the users of this function to do the right thing for PHIs and
141     // COPY:
142     //   v1 = COPY v0
143     //   v2 = COPY v1
144     // v1 here may end up not being constrained at all. Please notice that to
145     // reproduce the issue we likely need a destination pattern of a selection
146     // rule producing such extra copies, not just an input GMIR with them as
147     // every existing target using selectImpl handles copies before calling it
148     // and they never reach this function.
149     return Reg;
150   }
151   return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *OpRC,
152                                   RegMO);
153 }
154 
155 bool llvm::constrainSelectedInstRegOperands(MachineInstr &I,
156                                             const TargetInstrInfo &TII,
157                                             const TargetRegisterInfo &TRI,
158                                             const RegisterBankInfo &RBI) {
159   assert(!isPreISelGenericOpcode(I.getOpcode()) &&
160          "A selected instruction is expected");
161   MachineBasicBlock &MBB = *I.getParent();
162   MachineFunction &MF = *MBB.getParent();
163   MachineRegisterInfo &MRI = MF.getRegInfo();
164 
165   for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) {
166     MachineOperand &MO = I.getOperand(OpI);
167 
168     // There's nothing to be done on non-register operands.
169     if (!MO.isReg())
170       continue;
171 
172     LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n');
173     assert(MO.isReg() && "Unsupported non-reg operand");
174 
175     Register Reg = MO.getReg();
176     // Physical registers don't need to be constrained.
177     if (Reg.isPhysical())
178       continue;
179 
180     // Register operands with a value of 0 (e.g. predicate operands) don't need
181     // to be constrained.
182     if (Reg == 0)
183       continue;
184 
185     // If the operand is a vreg, we should constrain its regclass, and only
186     // insert COPYs if that's impossible.
187     // constrainOperandRegClass does that for us.
188     constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(), MO, OpI);
189 
190     // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been
191     // done.
192     if (MO.isUse()) {
193       int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO);
194       if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx))
195         I.tieOperands(DefIdx, OpI);
196     }
197   }
198   return true;
199 }
200 
201 bool llvm::canReplaceReg(Register DstReg, Register SrcReg,
202                          MachineRegisterInfo &MRI) {
203   // Give up if either DstReg or SrcReg  is a physical register.
204   if (DstReg.isPhysical() || SrcReg.isPhysical())
205     return false;
206   // Give up if the types don't match.
207   if (MRI.getType(DstReg) != MRI.getType(SrcReg))
208     return false;
209   // Replace if either DstReg has no constraints or the register
210   // constraints match.
211   const auto &DstRBC = MRI.getRegClassOrRegBank(DstReg);
212   if (!DstRBC || DstRBC == MRI.getRegClassOrRegBank(SrcReg))
213     return true;
214 
215   // Otherwise match if the Src is already a regclass that is covered by the Dst
216   // RegBank.
217   return DstRBC.is<const RegisterBank *>() && MRI.getRegClassOrNull(SrcReg) &&
218          DstRBC.get<const RegisterBank *>()->covers(
219              *MRI.getRegClassOrNull(SrcReg));
220 }
221 
222 bool llvm::isTriviallyDead(const MachineInstr &MI,
223                            const MachineRegisterInfo &MRI) {
224   // FIXME: This logical is mostly duplicated with
225   // DeadMachineInstructionElim::isDead. Why is LOCAL_ESCAPE not considered in
226   // MachineInstr::isLabel?
227 
228   // Don't delete frame allocation labels.
229   if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE)
230     return false;
231   // LIFETIME markers should be preserved even if they seem dead.
232   if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
233       MI.getOpcode() == TargetOpcode::LIFETIME_END)
234     return false;
235 
236   // If we can move an instruction, we can remove it.  Otherwise, it has
237   // a side-effect of some sort.
238   bool SawStore = false;
239   if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI())
240     return false;
241 
242   // Instructions without side-effects are dead iff they only define dead vregs.
243   for (const auto &MO : MI.all_defs()) {
244     Register Reg = MO.getReg();
245     if (Reg.isPhysical() || !MRI.use_nodbg_empty(Reg))
246       return false;
247   }
248   return true;
249 }
250 
251 static void reportGISelDiagnostic(DiagnosticSeverity Severity,
252                                   MachineFunction &MF,
253                                   const TargetPassConfig &TPC,
254                                   MachineOptimizationRemarkEmitter &MORE,
255                                   MachineOptimizationRemarkMissed &R) {
256   bool IsFatal = Severity == DS_Error &&
257                  TPC.isGlobalISelAbortEnabled();
258   // Print the function name explicitly if we don't have a debug location (which
259   // makes the diagnostic less useful) or if we're going to emit a raw error.
260   if (!R.getLocation().isValid() || IsFatal)
261     R << (" (in function: " + MF.getName() + ")").str();
262 
263   if (IsFatal)
264     report_fatal_error(Twine(R.getMsg()));
265   else
266     MORE.emit(R);
267 }
268 
269 void llvm::reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC,
270                               MachineOptimizationRemarkEmitter &MORE,
271                               MachineOptimizationRemarkMissed &R) {
272   reportGISelDiagnostic(DS_Warning, MF, TPC, MORE, R);
273 }
274 
275 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
276                               MachineOptimizationRemarkEmitter &MORE,
277                               MachineOptimizationRemarkMissed &R) {
278   MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
279   reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R);
280 }
281 
282 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
283                               MachineOptimizationRemarkEmitter &MORE,
284                               const char *PassName, StringRef Msg,
285                               const MachineInstr &MI) {
286   MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ",
287                                     MI.getDebugLoc(), MI.getParent());
288   R << Msg;
289   // Printing MI is expensive;  only do it if expensive remarks are enabled.
290   if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName))
291     R << ": " << ore::MNV("Inst", MI);
292   reportGISelFailure(MF, TPC, MORE, R);
293 }
294 
295 std::optional<APInt> llvm::getIConstantVRegVal(Register VReg,
296                                                const MachineRegisterInfo &MRI) {
297   std::optional<ValueAndVReg> ValAndVReg = getIConstantVRegValWithLookThrough(
298       VReg, MRI, /*LookThroughInstrs*/ false);
299   assert((!ValAndVReg || ValAndVReg->VReg == VReg) &&
300          "Value found while looking through instrs");
301   if (!ValAndVReg)
302     return std::nullopt;
303   return ValAndVReg->Value;
304 }
305 
306 std::optional<int64_t>
307 llvm::getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI) {
308   std::optional<APInt> Val = getIConstantVRegVal(VReg, MRI);
309   if (Val && Val->getBitWidth() <= 64)
310     return Val->getSExtValue();
311   return std::nullopt;
312 }
313 
314 namespace {
315 
316 // This function is used in many places, and as such, it has some
317 // micro-optimizations to try and make it as fast as it can be.
318 //
319 // - We use template arguments to avoid an indirect call caused by passing a
320 // function_ref/std::function
321 // - GetAPCstValue does not return std::optional<APInt> as that's expensive.
322 // Instead it returns true/false and places the result in a pre-constructed
323 // APInt.
324 //
325 // Please change this function carefully and benchmark your changes.
326 template <bool (*IsConstantOpcode)(const MachineInstr *),
327           bool (*GetAPCstValue)(const MachineInstr *MI, APInt &)>
328 std::optional<ValueAndVReg>
329 getConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI,
330                                   bool LookThroughInstrs = true,
331                                   bool LookThroughAnyExt = false) {
332   SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes;
333   MachineInstr *MI;
334 
335   while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI) &&
336          LookThroughInstrs) {
337     switch (MI->getOpcode()) {
338     case TargetOpcode::G_ANYEXT:
339       if (!LookThroughAnyExt)
340         return std::nullopt;
341       [[fallthrough]];
342     case TargetOpcode::G_TRUNC:
343     case TargetOpcode::G_SEXT:
344     case TargetOpcode::G_ZEXT:
345       SeenOpcodes.push_back(std::make_pair(
346           MI->getOpcode(),
347           MRI.getType(MI->getOperand(0).getReg()).getSizeInBits()));
348       VReg = MI->getOperand(1).getReg();
349       break;
350     case TargetOpcode::COPY:
351       VReg = MI->getOperand(1).getReg();
352       if (VReg.isPhysical())
353         return std::nullopt;
354       break;
355     case TargetOpcode::G_INTTOPTR:
356       VReg = MI->getOperand(1).getReg();
357       break;
358     default:
359       return std::nullopt;
360     }
361   }
362   if (!MI || !IsConstantOpcode(MI))
363     return std::nullopt;
364 
365   APInt Val;
366   if (!GetAPCstValue(MI, Val))
367     return std::nullopt;
368   for (auto &Pair : reverse(SeenOpcodes)) {
369     switch (Pair.first) {
370     case TargetOpcode::G_TRUNC:
371       Val = Val.trunc(Pair.second);
372       break;
373     case TargetOpcode::G_ANYEXT:
374     case TargetOpcode::G_SEXT:
375       Val = Val.sext(Pair.second);
376       break;
377     case TargetOpcode::G_ZEXT:
378       Val = Val.zext(Pair.second);
379       break;
380     }
381   }
382 
383   return ValueAndVReg{std::move(Val), VReg};
384 }
385 
386 bool isIConstant(const MachineInstr *MI) {
387   if (!MI)
388     return false;
389   return MI->getOpcode() == TargetOpcode::G_CONSTANT;
390 }
391 
392 bool isFConstant(const MachineInstr *MI) {
393   if (!MI)
394     return false;
395   return MI->getOpcode() == TargetOpcode::G_FCONSTANT;
396 }
397 
398 bool isAnyConstant(const MachineInstr *MI) {
399   if (!MI)
400     return false;
401   unsigned Opc = MI->getOpcode();
402   return Opc == TargetOpcode::G_CONSTANT || Opc == TargetOpcode::G_FCONSTANT;
403 }
404 
405 bool getCImmAsAPInt(const MachineInstr *MI, APInt &Result) {
406   const MachineOperand &CstVal = MI->getOperand(1);
407   if (!CstVal.isCImm())
408     return false;
409   Result = CstVal.getCImm()->getValue();
410   return true;
411 }
412 
413 bool getCImmOrFPImmAsAPInt(const MachineInstr *MI, APInt &Result) {
414   const MachineOperand &CstVal = MI->getOperand(1);
415   if (CstVal.isCImm())
416     Result = CstVal.getCImm()->getValue();
417   else if (CstVal.isFPImm())
418     Result = CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
419   else
420     return false;
421   return true;
422 }
423 
424 } // end anonymous namespace
425 
426 std::optional<ValueAndVReg> llvm::getIConstantVRegValWithLookThrough(
427     Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) {
428   return getConstantVRegValWithLookThrough<isIConstant, getCImmAsAPInt>(
429       VReg, MRI, LookThroughInstrs);
430 }
431 
432 std::optional<ValueAndVReg> llvm::getAnyConstantVRegValWithLookThrough(
433     Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs,
434     bool LookThroughAnyExt) {
435   return getConstantVRegValWithLookThrough<isAnyConstant,
436                                            getCImmOrFPImmAsAPInt>(
437       VReg, MRI, LookThroughInstrs, LookThroughAnyExt);
438 }
439 
440 std::optional<FPValueAndVReg> llvm::getFConstantVRegValWithLookThrough(
441     Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) {
442   auto Reg =
443       getConstantVRegValWithLookThrough<isFConstant, getCImmOrFPImmAsAPInt>(
444           VReg, MRI, LookThroughInstrs);
445   if (!Reg)
446     return std::nullopt;
447   return FPValueAndVReg{getConstantFPVRegVal(Reg->VReg, MRI)->getValueAPF(),
448                         Reg->VReg};
449 }
450 
451 const ConstantFP *
452 llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) {
453   MachineInstr *MI = MRI.getVRegDef(VReg);
454   if (TargetOpcode::G_FCONSTANT != MI->getOpcode())
455     return nullptr;
456   return MI->getOperand(1).getFPImm();
457 }
458 
459 std::optional<DefinitionAndSourceRegister>
460 llvm::getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) {
461   Register DefSrcReg = Reg;
462   auto *DefMI = MRI.getVRegDef(Reg);
463   auto DstTy = MRI.getType(DefMI->getOperand(0).getReg());
464   if (!DstTy.isValid())
465     return std::nullopt;
466   unsigned Opc = DefMI->getOpcode();
467   while (Opc == TargetOpcode::COPY || isPreISelGenericOptimizationHint(Opc)) {
468     Register SrcReg = DefMI->getOperand(1).getReg();
469     auto SrcTy = MRI.getType(SrcReg);
470     if (!SrcTy.isValid())
471       break;
472     DefMI = MRI.getVRegDef(SrcReg);
473     DefSrcReg = SrcReg;
474     Opc = DefMI->getOpcode();
475   }
476   return DefinitionAndSourceRegister{DefMI, DefSrcReg};
477 }
478 
479 MachineInstr *llvm::getDefIgnoringCopies(Register Reg,
480                                          const MachineRegisterInfo &MRI) {
481   std::optional<DefinitionAndSourceRegister> DefSrcReg =
482       getDefSrcRegIgnoringCopies(Reg, MRI);
483   return DefSrcReg ? DefSrcReg->MI : nullptr;
484 }
485 
486 Register llvm::getSrcRegIgnoringCopies(Register Reg,
487                                        const MachineRegisterInfo &MRI) {
488   std::optional<DefinitionAndSourceRegister> DefSrcReg =
489       getDefSrcRegIgnoringCopies(Reg, MRI);
490   return DefSrcReg ? DefSrcReg->Reg : Register();
491 }
492 
493 void llvm::extractParts(Register Reg, LLT Ty, int NumParts,
494                         SmallVectorImpl<Register> &VRegs,
495                         MachineIRBuilder &MIRBuilder,
496                         MachineRegisterInfo &MRI) {
497   for (int i = 0; i < NumParts; ++i)
498     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
499   MIRBuilder.buildUnmerge(VRegs, Reg);
500 }
501 
502 bool llvm::extractParts(Register Reg, LLT RegTy, LLT MainTy, LLT &LeftoverTy,
503                         SmallVectorImpl<Register> &VRegs,
504                         SmallVectorImpl<Register> &LeftoverRegs,
505                         MachineIRBuilder &MIRBuilder,
506                         MachineRegisterInfo &MRI) {
507   assert(!LeftoverTy.isValid() && "this is an out argument");
508 
509   unsigned RegSize = RegTy.getSizeInBits();
510   unsigned MainSize = MainTy.getSizeInBits();
511   unsigned NumParts = RegSize / MainSize;
512   unsigned LeftoverSize = RegSize - NumParts * MainSize;
513 
514   // Use an unmerge when possible.
515   if (LeftoverSize == 0) {
516     for (unsigned I = 0; I < NumParts; ++I)
517       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
518     MIRBuilder.buildUnmerge(VRegs, Reg);
519     return true;
520   }
521 
522   // Try to use unmerge for irregular vector split where possible
523   // For example when splitting a <6 x i32> into <4 x i32> with <2 x i32>
524   // leftover, it becomes:
525   //  <2 x i32> %2, <2 x i32>%3, <2 x i32> %4 = G_UNMERGE_VALUE <6 x i32> %1
526   //  <4 x i32> %5 = G_CONCAT_VECTOR <2 x i32> %2, <2 x i32> %3
527   if (RegTy.isVector() && MainTy.isVector()) {
528     unsigned RegNumElts = RegTy.getNumElements();
529     unsigned MainNumElts = MainTy.getNumElements();
530     unsigned LeftoverNumElts = RegNumElts % MainNumElts;
531     // If can unmerge to LeftoverTy, do it
532     if (MainNumElts % LeftoverNumElts == 0 &&
533         RegNumElts % LeftoverNumElts == 0 &&
534         RegTy.getScalarSizeInBits() == MainTy.getScalarSizeInBits() &&
535         LeftoverNumElts > 1) {
536       LeftoverTy =
537           LLT::fixed_vector(LeftoverNumElts, RegTy.getScalarSizeInBits());
538 
539       // Unmerge the SrcReg to LeftoverTy vectors
540       SmallVector<Register, 4> UnmergeValues;
541       extractParts(Reg, LeftoverTy, RegNumElts / LeftoverNumElts, UnmergeValues,
542                    MIRBuilder, MRI);
543 
544       // Find how many LeftoverTy makes one MainTy
545       unsigned LeftoverPerMain = MainNumElts / LeftoverNumElts;
546       unsigned NumOfLeftoverVal =
547           ((RegNumElts % MainNumElts) / LeftoverNumElts);
548 
549       // Create as many MainTy as possible using unmerged value
550       SmallVector<Register, 4> MergeValues;
551       for (unsigned I = 0; I < UnmergeValues.size() - NumOfLeftoverVal; I++) {
552         MergeValues.push_back(UnmergeValues[I]);
553         if (MergeValues.size() == LeftoverPerMain) {
554           VRegs.push_back(
555               MIRBuilder.buildMergeLikeInstr(MainTy, MergeValues).getReg(0));
556           MergeValues.clear();
557         }
558       }
559       // Populate LeftoverRegs with the leftovers
560       for (unsigned I = UnmergeValues.size() - NumOfLeftoverVal;
561            I < UnmergeValues.size(); I++) {
562         LeftoverRegs.push_back(UnmergeValues[I]);
563       }
564       return true;
565     }
566   }
567   // Perform irregular split. Leftover is last element of RegPieces.
568   if (MainTy.isVector()) {
569     SmallVector<Register, 8> RegPieces;
570     extractVectorParts(Reg, MainTy.getNumElements(), RegPieces, MIRBuilder,
571                        MRI);
572     for (unsigned i = 0; i < RegPieces.size() - 1; ++i)
573       VRegs.push_back(RegPieces[i]);
574     LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]);
575     LeftoverTy = MRI.getType(LeftoverRegs[0]);
576     return true;
577   }
578 
579   LeftoverTy = LLT::scalar(LeftoverSize);
580   // For irregular sizes, extract the individual parts.
581   for (unsigned I = 0; I != NumParts; ++I) {
582     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
583     VRegs.push_back(NewReg);
584     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
585   }
586 
587   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
588        Offset += LeftoverSize) {
589     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
590     LeftoverRegs.push_back(NewReg);
591     MIRBuilder.buildExtract(NewReg, Reg, Offset);
592   }
593 
594   return true;
595 }
596 
597 void llvm::extractVectorParts(Register Reg, unsigned NumElts,
598                               SmallVectorImpl<Register> &VRegs,
599                               MachineIRBuilder &MIRBuilder,
600                               MachineRegisterInfo &MRI) {
601   LLT RegTy = MRI.getType(Reg);
602   assert(RegTy.isVector() && "Expected a vector type");
603 
604   LLT EltTy = RegTy.getElementType();
605   LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy);
606   unsigned RegNumElts = RegTy.getNumElements();
607   unsigned LeftoverNumElts = RegNumElts % NumElts;
608   unsigned NumNarrowTyPieces = RegNumElts / NumElts;
609 
610   // Perfect split without leftover
611   if (LeftoverNumElts == 0)
612     return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs, MIRBuilder,
613                         MRI);
614 
615   // Irregular split. Provide direct access to all elements for artifact
616   // combiner using unmerge to elements. Then build vectors with NumElts
617   // elements. Remaining element(s) will be (used to build vector) Leftover.
618   SmallVector<Register, 8> Elts;
619   extractParts(Reg, EltTy, RegNumElts, Elts, MIRBuilder, MRI);
620 
621   unsigned Offset = 0;
622   // Requested sub-vectors of NarrowTy.
623   for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) {
624     ArrayRef<Register> Pieces(&Elts[Offset], NumElts);
625     VRegs.push_back(MIRBuilder.buildMergeLikeInstr(NarrowTy, Pieces).getReg(0));
626   }
627 
628   // Leftover element(s).
629   if (LeftoverNumElts == 1) {
630     VRegs.push_back(Elts[Offset]);
631   } else {
632     LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy);
633     ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts);
634     VRegs.push_back(
635         MIRBuilder.buildMergeLikeInstr(LeftoverTy, Pieces).getReg(0));
636   }
637 }
638 
639 MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg,
640                                  const MachineRegisterInfo &MRI) {
641   MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI);
642   return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr;
643 }
644 
645 APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) {
646   if (Size == 32)
647     return APFloat(float(Val));
648   if (Size == 64)
649     return APFloat(Val);
650   if (Size != 16)
651     llvm_unreachable("Unsupported FPConstant size");
652   bool Ignored;
653   APFloat APF(Val);
654   APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
655   return APF;
656 }
657 
658 std::optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode,
659                                              const Register Op1,
660                                              const Register Op2,
661                                              const MachineRegisterInfo &MRI) {
662   auto MaybeOp2Cst = getAnyConstantVRegValWithLookThrough(Op2, MRI, false);
663   if (!MaybeOp2Cst)
664     return std::nullopt;
665 
666   auto MaybeOp1Cst = getAnyConstantVRegValWithLookThrough(Op1, MRI, false);
667   if (!MaybeOp1Cst)
668     return std::nullopt;
669 
670   const APInt &C1 = MaybeOp1Cst->Value;
671   const APInt &C2 = MaybeOp2Cst->Value;
672   switch (Opcode) {
673   default:
674     break;
675   case TargetOpcode::G_ADD:
676     return C1 + C2;
677   case TargetOpcode::G_PTR_ADD:
678     // Types can be of different width here.
679     // Result needs to be the same width as C1, so trunc or sext C2.
680     return C1 + C2.sextOrTrunc(C1.getBitWidth());
681   case TargetOpcode::G_AND:
682     return C1 & C2;
683   case TargetOpcode::G_ASHR:
684     return C1.ashr(C2);
685   case TargetOpcode::G_LSHR:
686     return C1.lshr(C2);
687   case TargetOpcode::G_MUL:
688     return C1 * C2;
689   case TargetOpcode::G_OR:
690     return C1 | C2;
691   case TargetOpcode::G_SHL:
692     return C1 << C2;
693   case TargetOpcode::G_SUB:
694     return C1 - C2;
695   case TargetOpcode::G_XOR:
696     return C1 ^ C2;
697   case TargetOpcode::G_UDIV:
698     if (!C2.getBoolValue())
699       break;
700     return C1.udiv(C2);
701   case TargetOpcode::G_SDIV:
702     if (!C2.getBoolValue())
703       break;
704     return C1.sdiv(C2);
705   case TargetOpcode::G_UREM:
706     if (!C2.getBoolValue())
707       break;
708     return C1.urem(C2);
709   case TargetOpcode::G_SREM:
710     if (!C2.getBoolValue())
711       break;
712     return C1.srem(C2);
713   case TargetOpcode::G_SMIN:
714     return APIntOps::smin(C1, C2);
715   case TargetOpcode::G_SMAX:
716     return APIntOps::smax(C1, C2);
717   case TargetOpcode::G_UMIN:
718     return APIntOps::umin(C1, C2);
719   case TargetOpcode::G_UMAX:
720     return APIntOps::umax(C1, C2);
721   }
722 
723   return std::nullopt;
724 }
725 
726 std::optional<APFloat>
727 llvm::ConstantFoldFPBinOp(unsigned Opcode, const Register Op1,
728                           const Register Op2, const MachineRegisterInfo &MRI) {
729   const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI);
730   if (!Op2Cst)
731     return std::nullopt;
732 
733   const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI);
734   if (!Op1Cst)
735     return std::nullopt;
736 
737   APFloat C1 = Op1Cst->getValueAPF();
738   const APFloat &C2 = Op2Cst->getValueAPF();
739   switch (Opcode) {
740   case TargetOpcode::G_FADD:
741     C1.add(C2, APFloat::rmNearestTiesToEven);
742     return C1;
743   case TargetOpcode::G_FSUB:
744     C1.subtract(C2, APFloat::rmNearestTiesToEven);
745     return C1;
746   case TargetOpcode::G_FMUL:
747     C1.multiply(C2, APFloat::rmNearestTiesToEven);
748     return C1;
749   case TargetOpcode::G_FDIV:
750     C1.divide(C2, APFloat::rmNearestTiesToEven);
751     return C1;
752   case TargetOpcode::G_FREM:
753     C1.mod(C2);
754     return C1;
755   case TargetOpcode::G_FCOPYSIGN:
756     C1.copySign(C2);
757     return C1;
758   case TargetOpcode::G_FMINNUM:
759     return minnum(C1, C2);
760   case TargetOpcode::G_FMAXNUM:
761     return maxnum(C1, C2);
762   case TargetOpcode::G_FMINIMUM:
763     return minimum(C1, C2);
764   case TargetOpcode::G_FMAXIMUM:
765     return maximum(C1, C2);
766   case TargetOpcode::G_FMINNUM_IEEE:
767   case TargetOpcode::G_FMAXNUM_IEEE:
768     // FIXME: These operations were unfortunately named. fminnum/fmaxnum do not
769     // follow the IEEE behavior for signaling nans and follow libm's fmin/fmax,
770     // and currently there isn't a nice wrapper in APFloat for the version with
771     // correct snan handling.
772     break;
773   default:
774     break;
775   }
776 
777   return std::nullopt;
778 }
779 
780 SmallVector<APInt>
781 llvm::ConstantFoldVectorBinop(unsigned Opcode, const Register Op1,
782                               const Register Op2,
783                               const MachineRegisterInfo &MRI) {
784   auto *SrcVec2 = getOpcodeDef<GBuildVector>(Op2, MRI);
785   if (!SrcVec2)
786     return SmallVector<APInt>();
787 
788   auto *SrcVec1 = getOpcodeDef<GBuildVector>(Op1, MRI);
789   if (!SrcVec1)
790     return SmallVector<APInt>();
791 
792   SmallVector<APInt> FoldedElements;
793   for (unsigned Idx = 0, E = SrcVec1->getNumSources(); Idx < E; ++Idx) {
794     auto MaybeCst = ConstantFoldBinOp(Opcode, SrcVec1->getSourceReg(Idx),
795                                       SrcVec2->getSourceReg(Idx), MRI);
796     if (!MaybeCst)
797       return SmallVector<APInt>();
798     FoldedElements.push_back(*MaybeCst);
799   }
800   return FoldedElements;
801 }
802 
803 bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI,
804                            bool SNaN) {
805   const MachineInstr *DefMI = MRI.getVRegDef(Val);
806   if (!DefMI)
807     return false;
808 
809   const TargetMachine& TM = DefMI->getMF()->getTarget();
810   if (DefMI->getFlag(MachineInstr::FmNoNans) || TM.Options.NoNaNsFPMath)
811     return true;
812 
813   // If the value is a constant, we can obviously see if it is a NaN or not.
814   if (const ConstantFP *FPVal = getConstantFPVRegVal(Val, MRI)) {
815     return !FPVal->getValueAPF().isNaN() ||
816            (SNaN && !FPVal->getValueAPF().isSignaling());
817   }
818 
819   if (DefMI->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
820     for (const auto &Op : DefMI->uses())
821       if (!isKnownNeverNaN(Op.getReg(), MRI, SNaN))
822         return false;
823     return true;
824   }
825 
826   switch (DefMI->getOpcode()) {
827   default:
828     break;
829   case TargetOpcode::G_FADD:
830   case TargetOpcode::G_FSUB:
831   case TargetOpcode::G_FMUL:
832   case TargetOpcode::G_FDIV:
833   case TargetOpcode::G_FREM:
834   case TargetOpcode::G_FSIN:
835   case TargetOpcode::G_FCOS:
836   case TargetOpcode::G_FTAN:
837   case TargetOpcode::G_FACOS:
838   case TargetOpcode::G_FASIN:
839   case TargetOpcode::G_FATAN:
840   case TargetOpcode::G_FCOSH:
841   case TargetOpcode::G_FSINH:
842   case TargetOpcode::G_FTANH:
843   case TargetOpcode::G_FMA:
844   case TargetOpcode::G_FMAD:
845     if (SNaN)
846       return true;
847 
848     // TODO: Need isKnownNeverInfinity
849     return false;
850   case TargetOpcode::G_FMINNUM_IEEE:
851   case TargetOpcode::G_FMAXNUM_IEEE: {
852     if (SNaN)
853       return true;
854     // This can return a NaN if either operand is an sNaN, or if both operands
855     // are NaN.
856     return (isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI) &&
857             isKnownNeverSNaN(DefMI->getOperand(2).getReg(), MRI)) ||
858            (isKnownNeverSNaN(DefMI->getOperand(1).getReg(), MRI) &&
859             isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI));
860   }
861   case TargetOpcode::G_FMINNUM:
862   case TargetOpcode::G_FMAXNUM: {
863     // Only one needs to be known not-nan, since it will be returned if the
864     // other ends up being one.
865     return isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI, SNaN) ||
866            isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI, SNaN);
867   }
868   }
869 
870   if (SNaN) {
871     // FP operations quiet. For now, just handle the ones inserted during
872     // legalization.
873     switch (DefMI->getOpcode()) {
874     case TargetOpcode::G_FPEXT:
875     case TargetOpcode::G_FPTRUNC:
876     case TargetOpcode::G_FCANONICALIZE:
877       return true;
878     default:
879       return false;
880     }
881   }
882 
883   return false;
884 }
885 
886 Align llvm::inferAlignFromPtrInfo(MachineFunction &MF,
887                                   const MachinePointerInfo &MPO) {
888   auto PSV = dyn_cast_if_present<const PseudoSourceValue *>(MPO.V);
889   if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(PSV)) {
890     MachineFrameInfo &MFI = MF.getFrameInfo();
891     return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()),
892                            MPO.Offset);
893   }
894 
895   if (const Value *V = dyn_cast_if_present<const Value *>(MPO.V)) {
896     const Module *M = MF.getFunction().getParent();
897     return V->getPointerAlignment(M->getDataLayout());
898   }
899 
900   return Align(1);
901 }
902 
903 Register llvm::getFunctionLiveInPhysReg(MachineFunction &MF,
904                                         const TargetInstrInfo &TII,
905                                         MCRegister PhysReg,
906                                         const TargetRegisterClass &RC,
907                                         const DebugLoc &DL, LLT RegTy) {
908   MachineBasicBlock &EntryMBB = MF.front();
909   MachineRegisterInfo &MRI = MF.getRegInfo();
910   Register LiveIn = MRI.getLiveInVirtReg(PhysReg);
911   if (LiveIn) {
912     MachineInstr *Def = MRI.getVRegDef(LiveIn);
913     if (Def) {
914       // FIXME: Should the verifier check this is in the entry block?
915       assert(Def->getParent() == &EntryMBB && "live-in copy not in entry block");
916       return LiveIn;
917     }
918 
919     // It's possible the incoming argument register and copy was added during
920     // lowering, but later deleted due to being/becoming dead. If this happens,
921     // re-insert the copy.
922   } else {
923     // The live in register was not present, so add it.
924     LiveIn = MF.addLiveIn(PhysReg, &RC);
925     if (RegTy.isValid())
926       MRI.setType(LiveIn, RegTy);
927   }
928 
929   BuildMI(EntryMBB, EntryMBB.begin(), DL, TII.get(TargetOpcode::COPY), LiveIn)
930     .addReg(PhysReg);
931   if (!EntryMBB.isLiveIn(PhysReg))
932     EntryMBB.addLiveIn(PhysReg);
933   return LiveIn;
934 }
935 
936 std::optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode,
937                                              const Register Op1, uint64_t Imm,
938                                              const MachineRegisterInfo &MRI) {
939   auto MaybeOp1Cst = getIConstantVRegVal(Op1, MRI);
940   if (MaybeOp1Cst) {
941     switch (Opcode) {
942     default:
943       break;
944     case TargetOpcode::G_SEXT_INREG: {
945       LLT Ty = MRI.getType(Op1);
946       return MaybeOp1Cst->trunc(Imm).sext(Ty.getScalarSizeInBits());
947     }
948     }
949   }
950   return std::nullopt;
951 }
952 
953 std::optional<APInt> llvm::ConstantFoldCastOp(unsigned Opcode, LLT DstTy,
954                                               const Register Op0,
955                                               const MachineRegisterInfo &MRI) {
956   std::optional<APInt> Val = getIConstantVRegVal(Op0, MRI);
957   if (!Val)
958     return Val;
959 
960   const unsigned DstSize = DstTy.getScalarSizeInBits();
961 
962   switch (Opcode) {
963   case TargetOpcode::G_SEXT:
964     return Val->sext(DstSize);
965   case TargetOpcode::G_ZEXT:
966   case TargetOpcode::G_ANYEXT:
967     // TODO: DAG considers target preference when constant folding any_extend.
968     return Val->zext(DstSize);
969   default:
970     break;
971   }
972 
973   llvm_unreachable("unexpected cast opcode to constant fold");
974 }
975 
976 std::optional<APFloat>
977 llvm::ConstantFoldIntToFloat(unsigned Opcode, LLT DstTy, Register Src,
978                              const MachineRegisterInfo &MRI) {
979   assert(Opcode == TargetOpcode::G_SITOFP || Opcode == TargetOpcode::G_UITOFP);
980   if (auto MaybeSrcVal = getIConstantVRegVal(Src, MRI)) {
981     APFloat DstVal(getFltSemanticForLLT(DstTy));
982     DstVal.convertFromAPInt(*MaybeSrcVal, Opcode == TargetOpcode::G_SITOFP,
983                             APFloat::rmNearestTiesToEven);
984     return DstVal;
985   }
986   return std::nullopt;
987 }
988 
989 std::optional<SmallVector<unsigned>>
990 llvm::ConstantFoldCountZeros(Register Src, const MachineRegisterInfo &MRI,
991                              std::function<unsigned(APInt)> CB) {
992   LLT Ty = MRI.getType(Src);
993   SmallVector<unsigned> FoldedCTLZs;
994   auto tryFoldScalar = [&](Register R) -> std::optional<unsigned> {
995     auto MaybeCst = getIConstantVRegVal(R, MRI);
996     if (!MaybeCst)
997       return std::nullopt;
998     return CB(*MaybeCst);
999   };
1000   if (Ty.isVector()) {
1001     // Try to constant fold each element.
1002     auto *BV = getOpcodeDef<GBuildVector>(Src, MRI);
1003     if (!BV)
1004       return std::nullopt;
1005     for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) {
1006       if (auto MaybeFold = tryFoldScalar(BV->getSourceReg(SrcIdx))) {
1007         FoldedCTLZs.emplace_back(*MaybeFold);
1008         continue;
1009       }
1010       return std::nullopt;
1011     }
1012     return FoldedCTLZs;
1013   }
1014   if (auto MaybeCst = tryFoldScalar(Src)) {
1015     FoldedCTLZs.emplace_back(*MaybeCst);
1016     return FoldedCTLZs;
1017   }
1018   return std::nullopt;
1019 }
1020 
1021 std::optional<SmallVector<APInt>>
1022 llvm::ConstantFoldICmp(unsigned Pred, const Register Op1, const Register Op2,
1023                        const MachineRegisterInfo &MRI) {
1024   LLT Ty = MRI.getType(Op1);
1025   if (Ty != MRI.getType(Op2))
1026     return std::nullopt;
1027 
1028   auto TryFoldScalar = [&MRI, Pred](Register LHS,
1029                                     Register RHS) -> std::optional<APInt> {
1030     auto LHSCst = getIConstantVRegVal(LHS, MRI);
1031     auto RHSCst = getIConstantVRegVal(RHS, MRI);
1032     if (!LHSCst || !RHSCst)
1033       return std::nullopt;
1034 
1035     switch (Pred) {
1036     case CmpInst::Predicate::ICMP_EQ:
1037       return APInt(/*numBits=*/1, LHSCst->eq(*RHSCst));
1038     case CmpInst::Predicate::ICMP_NE:
1039       return APInt(/*numBits=*/1, LHSCst->ne(*RHSCst));
1040     case CmpInst::Predicate::ICMP_UGT:
1041       return APInt(/*numBits=*/1, LHSCst->ugt(*RHSCst));
1042     case CmpInst::Predicate::ICMP_UGE:
1043       return APInt(/*numBits=*/1, LHSCst->uge(*RHSCst));
1044     case CmpInst::Predicate::ICMP_ULT:
1045       return APInt(/*numBits=*/1, LHSCst->ult(*RHSCst));
1046     case CmpInst::Predicate::ICMP_ULE:
1047       return APInt(/*numBits=*/1, LHSCst->ule(*RHSCst));
1048     case CmpInst::Predicate::ICMP_SGT:
1049       return APInt(/*numBits=*/1, LHSCst->sgt(*RHSCst));
1050     case CmpInst::Predicate::ICMP_SGE:
1051       return APInt(/*numBits=*/1, LHSCst->sge(*RHSCst));
1052     case CmpInst::Predicate::ICMP_SLT:
1053       return APInt(/*numBits=*/1, LHSCst->slt(*RHSCst));
1054     case CmpInst::Predicate::ICMP_SLE:
1055       return APInt(/*numBits=*/1, LHSCst->sle(*RHSCst));
1056     default:
1057       return std::nullopt;
1058     }
1059   };
1060 
1061   SmallVector<APInt> FoldedICmps;
1062 
1063   if (Ty.isVector()) {
1064     // Try to constant fold each element.
1065     auto *BV1 = getOpcodeDef<GBuildVector>(Op1, MRI);
1066     auto *BV2 = getOpcodeDef<GBuildVector>(Op2, MRI);
1067     if (!BV1 || !BV2)
1068       return std::nullopt;
1069     assert(BV1->getNumSources() == BV2->getNumSources() && "Invalid vectors");
1070     for (unsigned I = 0; I < BV1->getNumSources(); ++I) {
1071       if (auto MaybeFold =
1072               TryFoldScalar(BV1->getSourceReg(I), BV2->getSourceReg(I))) {
1073         FoldedICmps.emplace_back(*MaybeFold);
1074         continue;
1075       }
1076       return std::nullopt;
1077     }
1078     return FoldedICmps;
1079   }
1080 
1081   if (auto MaybeCst = TryFoldScalar(Op1, Op2)) {
1082     FoldedICmps.emplace_back(*MaybeCst);
1083     return FoldedICmps;
1084   }
1085 
1086   return std::nullopt;
1087 }
1088 
1089 bool llvm::isKnownToBeAPowerOfTwo(Register Reg, const MachineRegisterInfo &MRI,
1090                                   GISelKnownBits *KB) {
1091   std::optional<DefinitionAndSourceRegister> DefSrcReg =
1092       getDefSrcRegIgnoringCopies(Reg, MRI);
1093   if (!DefSrcReg)
1094     return false;
1095 
1096   const MachineInstr &MI = *DefSrcReg->MI;
1097   const LLT Ty = MRI.getType(Reg);
1098 
1099   switch (MI.getOpcode()) {
1100   case TargetOpcode::G_CONSTANT: {
1101     unsigned BitWidth = Ty.getScalarSizeInBits();
1102     const ConstantInt *CI = MI.getOperand(1).getCImm();
1103     return CI->getValue().zextOrTrunc(BitWidth).isPowerOf2();
1104   }
1105   case TargetOpcode::G_SHL: {
1106     // A left-shift of a constant one will have exactly one bit set because
1107     // shifting the bit off the end is undefined.
1108 
1109     // TODO: Constant splat
1110     if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) {
1111       if (*ConstLHS == 1)
1112         return true;
1113     }
1114 
1115     break;
1116   }
1117   case TargetOpcode::G_LSHR: {
1118     if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) {
1119       if (ConstLHS->isSignMask())
1120         return true;
1121     }
1122 
1123     break;
1124   }
1125   case TargetOpcode::G_BUILD_VECTOR: {
1126     // TODO: Probably should have a recursion depth guard since you could have
1127     // bitcasted vector elements.
1128     for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
1129       if (!isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB))
1130         return false;
1131 
1132     return true;
1133   }
1134   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1135     // Only handle constants since we would need to know if number of leading
1136     // zeros is greater than the truncation amount.
1137     const unsigned BitWidth = Ty.getScalarSizeInBits();
1138     for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
1139       auto Const = getIConstantVRegVal(MO.getReg(), MRI);
1140       if (!Const || !Const->zextOrTrunc(BitWidth).isPowerOf2())
1141         return false;
1142     }
1143 
1144     return true;
1145   }
1146   default:
1147     break;
1148   }
1149 
1150   if (!KB)
1151     return false;
1152 
1153   // More could be done here, though the above checks are enough
1154   // to handle some common cases.
1155 
1156   // Fall back to computeKnownBits to catch other known cases.
1157   KnownBits Known = KB->getKnownBits(Reg);
1158   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
1159 }
1160 
1161 void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) {
1162   AU.addPreserved<StackProtector>();
1163 }
1164 
1165 LLT llvm::getLCMType(LLT OrigTy, LLT TargetTy) {
1166   if (OrigTy.getSizeInBits() == TargetTy.getSizeInBits())
1167     return OrigTy;
1168 
1169   if (OrigTy.isVector() && TargetTy.isVector()) {
1170     LLT OrigElt = OrigTy.getElementType();
1171     LLT TargetElt = TargetTy.getElementType();
1172 
1173     // TODO: The docstring for this function says the intention is to use this
1174     // function to build MERGE/UNMERGE instructions. It won't be the case that
1175     // we generate a MERGE/UNMERGE between fixed and scalable vector types. We
1176     // could implement getLCMType between the two in the future if there was a
1177     // need, but it is not worth it now as this function should not be used in
1178     // that way.
1179     assert(((OrigTy.isScalableVector() && !TargetTy.isFixedVector()) ||
1180             (OrigTy.isFixedVector() && !TargetTy.isScalableVector())) &&
1181            "getLCMType not implemented between fixed and scalable vectors.");
1182 
1183     if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) {
1184       int GCDMinElts = std::gcd(OrigTy.getElementCount().getKnownMinValue(),
1185                                 TargetTy.getElementCount().getKnownMinValue());
1186       // Prefer the original element type.
1187       ElementCount Mul = OrigTy.getElementCount().multiplyCoefficientBy(
1188           TargetTy.getElementCount().getKnownMinValue());
1189       return LLT::vector(Mul.divideCoefficientBy(GCDMinElts),
1190                          OrigTy.getElementType());
1191     }
1192     unsigned LCM = std::lcm(OrigTy.getSizeInBits().getKnownMinValue(),
1193                             TargetTy.getSizeInBits().getKnownMinValue());
1194     return LLT::vector(
1195         ElementCount::get(LCM / OrigElt.getSizeInBits(), OrigTy.isScalable()),
1196         OrigElt);
1197   }
1198 
1199   // One type is scalar, one type is vector
1200   if (OrigTy.isVector() || TargetTy.isVector()) {
1201     LLT VecTy = OrigTy.isVector() ? OrigTy : TargetTy;
1202     LLT ScalarTy = OrigTy.isVector() ? TargetTy : OrigTy;
1203     LLT EltTy = VecTy.getElementType();
1204     LLT OrigEltTy = OrigTy.isVector() ? OrigTy.getElementType() : OrigTy;
1205 
1206     // Prefer scalar type from OrigTy.
1207     if (EltTy.getSizeInBits() == ScalarTy.getSizeInBits())
1208       return LLT::vector(VecTy.getElementCount(), OrigEltTy);
1209 
1210     // Different size scalars. Create vector with the same total size.
1211     // LCM will take fixed/scalable from VecTy.
1212     unsigned LCM = std::lcm(EltTy.getSizeInBits().getFixedValue() *
1213                                 VecTy.getElementCount().getKnownMinValue(),
1214                             ScalarTy.getSizeInBits().getFixedValue());
1215     // Prefer type from OrigTy
1216     return LLT::vector(ElementCount::get(LCM / OrigEltTy.getSizeInBits(),
1217                                          VecTy.getElementCount().isScalable()),
1218                        OrigEltTy);
1219   }
1220 
1221   // At this point, both types are scalars of different size
1222   unsigned LCM = std::lcm(OrigTy.getSizeInBits().getFixedValue(),
1223                           TargetTy.getSizeInBits().getFixedValue());
1224   // Preserve pointer types.
1225   if (LCM == OrigTy.getSizeInBits())
1226     return OrigTy;
1227   if (LCM == TargetTy.getSizeInBits())
1228     return TargetTy;
1229   return LLT::scalar(LCM);
1230 }
1231 
1232 LLT llvm::getCoverTy(LLT OrigTy, LLT TargetTy) {
1233 
1234   if ((OrigTy.isScalableVector() && TargetTy.isFixedVector()) ||
1235       (OrigTy.isFixedVector() && TargetTy.isScalableVector()))
1236     llvm_unreachable(
1237         "getCoverTy not implemented between fixed and scalable vectors.");
1238 
1239   if (!OrigTy.isVector() || !TargetTy.isVector() || OrigTy == TargetTy ||
1240       (OrigTy.getScalarSizeInBits() != TargetTy.getScalarSizeInBits()))
1241     return getLCMType(OrigTy, TargetTy);
1242 
1243   unsigned OrigTyNumElts = OrigTy.getElementCount().getKnownMinValue();
1244   unsigned TargetTyNumElts = TargetTy.getElementCount().getKnownMinValue();
1245   if (OrigTyNumElts % TargetTyNumElts == 0)
1246     return OrigTy;
1247 
1248   unsigned NumElts = alignTo(OrigTyNumElts, TargetTyNumElts);
1249   return LLT::scalarOrVector(ElementCount::getFixed(NumElts),
1250                              OrigTy.getElementType());
1251 }
1252 
1253 LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) {
1254   if (OrigTy.getSizeInBits() == TargetTy.getSizeInBits())
1255     return OrigTy;
1256 
1257   if (OrigTy.isVector() && TargetTy.isVector()) {
1258     LLT OrigElt = OrigTy.getElementType();
1259 
1260     // TODO: The docstring for this function says the intention is to use this
1261     // function to build MERGE/UNMERGE instructions. It won't be the case that
1262     // we generate a MERGE/UNMERGE between fixed and scalable vector types. We
1263     // could implement getGCDType between the two in the future if there was a
1264     // need, but it is not worth it now as this function should not be used in
1265     // that way.
1266     assert(((OrigTy.isScalableVector() && !TargetTy.isFixedVector()) ||
1267             (OrigTy.isFixedVector() && !TargetTy.isScalableVector())) &&
1268            "getGCDType not implemented between fixed and scalable vectors.");
1269 
1270     unsigned GCD = std::gcd(OrigTy.getSizeInBits().getKnownMinValue(),
1271                             TargetTy.getSizeInBits().getKnownMinValue());
1272     if (GCD == OrigElt.getSizeInBits())
1273       return LLT::scalarOrVector(ElementCount::get(1, OrigTy.isScalable()),
1274                                  OrigElt);
1275 
1276     // Cannot produce original element type, but both have vscale in common.
1277     if (GCD < OrigElt.getSizeInBits())
1278       return LLT::scalarOrVector(ElementCount::get(1, OrigTy.isScalable()),
1279                                  GCD);
1280 
1281     return LLT::vector(
1282         ElementCount::get(GCD / OrigElt.getSizeInBits().getFixedValue(),
1283                           OrigTy.isScalable()),
1284         OrigElt);
1285   }
1286 
1287   // If one type is vector and the element size matches the scalar size, then
1288   // the gcd is the scalar type.
1289   if (OrigTy.isVector() &&
1290       OrigTy.getElementType().getSizeInBits() == TargetTy.getSizeInBits())
1291     return OrigTy.getElementType();
1292   if (TargetTy.isVector() &&
1293       TargetTy.getElementType().getSizeInBits() == OrigTy.getSizeInBits())
1294     return OrigTy;
1295 
1296   // At this point, both types are either scalars of different type or one is a
1297   // vector and one is a scalar. If both types are scalars, the GCD type is the
1298   // GCD between the two scalar sizes. If one is vector and one is scalar, then
1299   // the GCD type is the GCD between the scalar and the vector element size.
1300   LLT OrigScalar = OrigTy.getScalarType();
1301   LLT TargetScalar = TargetTy.getScalarType();
1302   unsigned GCD = std::gcd(OrigScalar.getSizeInBits().getFixedValue(),
1303                           TargetScalar.getSizeInBits().getFixedValue());
1304   return LLT::scalar(GCD);
1305 }
1306 
1307 std::optional<int> llvm::getSplatIndex(MachineInstr &MI) {
1308   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
1309          "Only G_SHUFFLE_VECTOR can have a splat index!");
1310   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
1311   auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; });
1312 
1313   // If all elements are undefined, this shuffle can be considered a splat.
1314   // Return 0 for better potential for callers to simplify.
1315   if (FirstDefinedIdx == Mask.end())
1316     return 0;
1317 
1318   // Make sure all remaining elements are either undef or the same
1319   // as the first non-undef value.
1320   int SplatValue = *FirstDefinedIdx;
1321   if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()),
1322              [&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; }))
1323     return std::nullopt;
1324 
1325   return SplatValue;
1326 }
1327 
1328 static bool isBuildVectorOp(unsigned Opcode) {
1329   return Opcode == TargetOpcode::G_BUILD_VECTOR ||
1330          Opcode == TargetOpcode::G_BUILD_VECTOR_TRUNC;
1331 }
1332 
1333 namespace {
1334 
1335 std::optional<ValueAndVReg> getAnyConstantSplat(Register VReg,
1336                                                 const MachineRegisterInfo &MRI,
1337                                                 bool AllowUndef) {
1338   MachineInstr *MI = getDefIgnoringCopies(VReg, MRI);
1339   if (!MI)
1340     return std::nullopt;
1341 
1342   bool isConcatVectorsOp = MI->getOpcode() == TargetOpcode::G_CONCAT_VECTORS;
1343   if (!isBuildVectorOp(MI->getOpcode()) && !isConcatVectorsOp)
1344     return std::nullopt;
1345 
1346   std::optional<ValueAndVReg> SplatValAndReg;
1347   for (MachineOperand &Op : MI->uses()) {
1348     Register Element = Op.getReg();
1349     // If we have a G_CONCAT_VECTOR, we recursively look into the
1350     // vectors that we're concatenating to see if they're splats.
1351     auto ElementValAndReg =
1352         isConcatVectorsOp
1353             ? getAnyConstantSplat(Element, MRI, AllowUndef)
1354             : getAnyConstantVRegValWithLookThrough(Element, MRI, true, true);
1355 
1356     // If AllowUndef, treat undef as value that will result in a constant splat.
1357     if (!ElementValAndReg) {
1358       if (AllowUndef && isa<GImplicitDef>(MRI.getVRegDef(Element)))
1359         continue;
1360       return std::nullopt;
1361     }
1362 
1363     // Record splat value
1364     if (!SplatValAndReg)
1365       SplatValAndReg = ElementValAndReg;
1366 
1367     // Different constant than the one already recorded, not a constant splat.
1368     if (SplatValAndReg->Value != ElementValAndReg->Value)
1369       return std::nullopt;
1370   }
1371 
1372   return SplatValAndReg;
1373 }
1374 
1375 } // end anonymous namespace
1376 
1377 bool llvm::isBuildVectorConstantSplat(const Register Reg,
1378                                       const MachineRegisterInfo &MRI,
1379                                       int64_t SplatValue, bool AllowUndef) {
1380   if (auto SplatValAndReg = getAnyConstantSplat(Reg, MRI, AllowUndef))
1381     return mi_match(SplatValAndReg->VReg, MRI, m_SpecificICst(SplatValue));
1382   return false;
1383 }
1384 
1385 bool llvm::isBuildVectorConstantSplat(const MachineInstr &MI,
1386                                       const MachineRegisterInfo &MRI,
1387                                       int64_t SplatValue, bool AllowUndef) {
1388   return isBuildVectorConstantSplat(MI.getOperand(0).getReg(), MRI, SplatValue,
1389                                     AllowUndef);
1390 }
1391 
1392 std::optional<APInt>
1393 llvm::getIConstantSplatVal(const Register Reg, const MachineRegisterInfo &MRI) {
1394   if (auto SplatValAndReg =
1395           getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false)) {
1396     if (std::optional<ValueAndVReg> ValAndVReg =
1397         getIConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI))
1398       return ValAndVReg->Value;
1399   }
1400 
1401   return std::nullopt;
1402 }
1403 
1404 std::optional<APInt>
1405 llvm::getIConstantSplatVal(const MachineInstr &MI,
1406                            const MachineRegisterInfo &MRI) {
1407   return getIConstantSplatVal(MI.getOperand(0).getReg(), MRI);
1408 }
1409 
1410 std::optional<int64_t>
1411 llvm::getIConstantSplatSExtVal(const Register Reg,
1412                                const MachineRegisterInfo &MRI) {
1413   if (auto SplatValAndReg =
1414           getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false))
1415     return getIConstantVRegSExtVal(SplatValAndReg->VReg, MRI);
1416   return std::nullopt;
1417 }
1418 
1419 std::optional<int64_t>
1420 llvm::getIConstantSplatSExtVal(const MachineInstr &MI,
1421                                const MachineRegisterInfo &MRI) {
1422   return getIConstantSplatSExtVal(MI.getOperand(0).getReg(), MRI);
1423 }
1424 
1425 std::optional<FPValueAndVReg>
1426 llvm::getFConstantSplat(Register VReg, const MachineRegisterInfo &MRI,
1427                         bool AllowUndef) {
1428   if (auto SplatValAndReg = getAnyConstantSplat(VReg, MRI, AllowUndef))
1429     return getFConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI);
1430   return std::nullopt;
1431 }
1432 
1433 bool llvm::isBuildVectorAllZeros(const MachineInstr &MI,
1434                                  const MachineRegisterInfo &MRI,
1435                                  bool AllowUndef) {
1436   return isBuildVectorConstantSplat(MI, MRI, 0, AllowUndef);
1437 }
1438 
1439 bool llvm::isBuildVectorAllOnes(const MachineInstr &MI,
1440                                 const MachineRegisterInfo &MRI,
1441                                 bool AllowUndef) {
1442   return isBuildVectorConstantSplat(MI, MRI, -1, AllowUndef);
1443 }
1444 
1445 std::optional<RegOrConstant>
1446 llvm::getVectorSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI) {
1447   unsigned Opc = MI.getOpcode();
1448   if (!isBuildVectorOp(Opc))
1449     return std::nullopt;
1450   if (auto Splat = getIConstantSplatSExtVal(MI, MRI))
1451     return RegOrConstant(*Splat);
1452   auto Reg = MI.getOperand(1).getReg();
1453   if (any_of(drop_begin(MI.operands(), 2),
1454              [&Reg](const MachineOperand &Op) { return Op.getReg() != Reg; }))
1455     return std::nullopt;
1456   return RegOrConstant(Reg);
1457 }
1458 
1459 static bool isConstantScalar(const MachineInstr &MI,
1460                              const MachineRegisterInfo &MRI,
1461                              bool AllowFP = true,
1462                              bool AllowOpaqueConstants = true) {
1463   switch (MI.getOpcode()) {
1464   case TargetOpcode::G_CONSTANT:
1465   case TargetOpcode::G_IMPLICIT_DEF:
1466     return true;
1467   case TargetOpcode::G_FCONSTANT:
1468     return AllowFP;
1469   case TargetOpcode::G_GLOBAL_VALUE:
1470   case TargetOpcode::G_FRAME_INDEX:
1471   case TargetOpcode::G_BLOCK_ADDR:
1472   case TargetOpcode::G_JUMP_TABLE:
1473     return AllowOpaqueConstants;
1474   default:
1475     return false;
1476   }
1477 }
1478 
1479 bool llvm::isConstantOrConstantVector(MachineInstr &MI,
1480                                       const MachineRegisterInfo &MRI) {
1481   Register Def = MI.getOperand(0).getReg();
1482   if (auto C = getIConstantVRegValWithLookThrough(Def, MRI))
1483     return true;
1484   GBuildVector *BV = dyn_cast<GBuildVector>(&MI);
1485   if (!BV)
1486     return false;
1487   for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) {
1488     if (getIConstantVRegValWithLookThrough(BV->getSourceReg(SrcIdx), MRI) ||
1489         getOpcodeDef<GImplicitDef>(BV->getSourceReg(SrcIdx), MRI))
1490       continue;
1491     return false;
1492   }
1493   return true;
1494 }
1495 
1496 bool llvm::isConstantOrConstantVector(const MachineInstr &MI,
1497                                       const MachineRegisterInfo &MRI,
1498                                       bool AllowFP, bool AllowOpaqueConstants) {
1499   if (isConstantScalar(MI, MRI, AllowFP, AllowOpaqueConstants))
1500     return true;
1501 
1502   if (!isBuildVectorOp(MI.getOpcode()))
1503     return false;
1504 
1505   const unsigned NumOps = MI.getNumOperands();
1506   for (unsigned I = 1; I != NumOps; ++I) {
1507     const MachineInstr *ElementDef = MRI.getVRegDef(MI.getOperand(I).getReg());
1508     if (!isConstantScalar(*ElementDef, MRI, AllowFP, AllowOpaqueConstants))
1509       return false;
1510   }
1511 
1512   return true;
1513 }
1514 
1515 std::optional<APInt>
1516 llvm::isConstantOrConstantSplatVector(MachineInstr &MI,
1517                                       const MachineRegisterInfo &MRI) {
1518   Register Def = MI.getOperand(0).getReg();
1519   if (auto C = getIConstantVRegValWithLookThrough(Def, MRI))
1520     return C->Value;
1521   auto MaybeCst = getIConstantSplatSExtVal(MI, MRI);
1522   if (!MaybeCst)
1523     return std::nullopt;
1524   const unsigned ScalarSize = MRI.getType(Def).getScalarSizeInBits();
1525   return APInt(ScalarSize, *MaybeCst, true);
1526 }
1527 
1528 bool llvm::isNullOrNullSplat(const MachineInstr &MI,
1529                              const MachineRegisterInfo &MRI, bool AllowUndefs) {
1530   switch (MI.getOpcode()) {
1531   case TargetOpcode::G_IMPLICIT_DEF:
1532     return AllowUndefs;
1533   case TargetOpcode::G_CONSTANT:
1534     return MI.getOperand(1).getCImm()->isNullValue();
1535   case TargetOpcode::G_FCONSTANT: {
1536     const ConstantFP *FPImm = MI.getOperand(1).getFPImm();
1537     return FPImm->isZero() && !FPImm->isNegative();
1538   }
1539   default:
1540     if (!AllowUndefs) // TODO: isBuildVectorAllZeros assumes undef is OK already
1541       return false;
1542     return isBuildVectorAllZeros(MI, MRI);
1543   }
1544 }
1545 
1546 bool llvm::isAllOnesOrAllOnesSplat(const MachineInstr &MI,
1547                                    const MachineRegisterInfo &MRI,
1548                                    bool AllowUndefs) {
1549   switch (MI.getOpcode()) {
1550   case TargetOpcode::G_IMPLICIT_DEF:
1551     return AllowUndefs;
1552   case TargetOpcode::G_CONSTANT:
1553     return MI.getOperand(1).getCImm()->isAllOnesValue();
1554   default:
1555     if (!AllowUndefs) // TODO: isBuildVectorAllOnes assumes undef is OK already
1556       return false;
1557     return isBuildVectorAllOnes(MI, MRI);
1558   }
1559 }
1560 
1561 bool llvm::matchUnaryPredicate(
1562     const MachineRegisterInfo &MRI, Register Reg,
1563     std::function<bool(const Constant *ConstVal)> Match, bool AllowUndefs) {
1564 
1565   const MachineInstr *Def = getDefIgnoringCopies(Reg, MRI);
1566   if (AllowUndefs && Def->getOpcode() == TargetOpcode::G_IMPLICIT_DEF)
1567     return Match(nullptr);
1568 
1569   // TODO: Also handle fconstant
1570   if (Def->getOpcode() == TargetOpcode::G_CONSTANT)
1571     return Match(Def->getOperand(1).getCImm());
1572 
1573   if (Def->getOpcode() != TargetOpcode::G_BUILD_VECTOR)
1574     return false;
1575 
1576   for (unsigned I = 1, E = Def->getNumOperands(); I != E; ++I) {
1577     Register SrcElt = Def->getOperand(I).getReg();
1578     const MachineInstr *SrcDef = getDefIgnoringCopies(SrcElt, MRI);
1579     if (AllowUndefs && SrcDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) {
1580       if (!Match(nullptr))
1581         return false;
1582       continue;
1583     }
1584 
1585     if (SrcDef->getOpcode() != TargetOpcode::G_CONSTANT ||
1586         !Match(SrcDef->getOperand(1).getCImm()))
1587       return false;
1588   }
1589 
1590   return true;
1591 }
1592 
1593 bool llvm::isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector,
1594                           bool IsFP) {
1595   switch (TLI.getBooleanContents(IsVector, IsFP)) {
1596   case TargetLowering::UndefinedBooleanContent:
1597     return Val & 0x1;
1598   case TargetLowering::ZeroOrOneBooleanContent:
1599     return Val == 1;
1600   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1601     return Val == -1;
1602   }
1603   llvm_unreachable("Invalid boolean contents");
1604 }
1605 
1606 bool llvm::isConstFalseVal(const TargetLowering &TLI, int64_t Val,
1607                            bool IsVector, bool IsFP) {
1608   switch (TLI.getBooleanContents(IsVector, IsFP)) {
1609   case TargetLowering::UndefinedBooleanContent:
1610     return ~Val & 0x1;
1611   case TargetLowering::ZeroOrOneBooleanContent:
1612   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1613     return Val == 0;
1614   }
1615   llvm_unreachable("Invalid boolean contents");
1616 }
1617 
1618 int64_t llvm::getICmpTrueVal(const TargetLowering &TLI, bool IsVector,
1619                              bool IsFP) {
1620   switch (TLI.getBooleanContents(IsVector, IsFP)) {
1621   case TargetLowering::UndefinedBooleanContent:
1622   case TargetLowering::ZeroOrOneBooleanContent:
1623     return 1;
1624   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1625     return -1;
1626   }
1627   llvm_unreachable("Invalid boolean contents");
1628 }
1629 
1630 bool llvm::shouldOptForSize(const MachineBasicBlock &MBB,
1631                             ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
1632   const auto &F = MBB.getParent()->getFunction();
1633   return F.hasOptSize() || F.hasMinSize() ||
1634          llvm::shouldOptimizeForSize(MBB.getBasicBlock(), PSI, BFI);
1635 }
1636 
1637 void llvm::saveUsesAndErase(MachineInstr &MI, MachineRegisterInfo &MRI,
1638                             LostDebugLocObserver *LocObserver,
1639                             SmallInstListTy &DeadInstChain) {
1640   for (MachineOperand &Op : MI.uses()) {
1641     if (Op.isReg() && Op.getReg().isVirtual())
1642       DeadInstChain.insert(MRI.getVRegDef(Op.getReg()));
1643   }
1644   LLVM_DEBUG(dbgs() << MI << "Is dead; erasing.\n");
1645   DeadInstChain.remove(&MI);
1646   MI.eraseFromParent();
1647   if (LocObserver)
1648     LocObserver->checkpoint(false);
1649 }
1650 
1651 void llvm::eraseInstrs(ArrayRef<MachineInstr *> DeadInstrs,
1652                        MachineRegisterInfo &MRI,
1653                        LostDebugLocObserver *LocObserver) {
1654   SmallInstListTy DeadInstChain;
1655   for (MachineInstr *MI : DeadInstrs)
1656     saveUsesAndErase(*MI, MRI, LocObserver, DeadInstChain);
1657 
1658   while (!DeadInstChain.empty()) {
1659     MachineInstr *Inst = DeadInstChain.pop_back_val();
1660     if (!isTriviallyDead(*Inst, MRI))
1661       continue;
1662     saveUsesAndErase(*Inst, MRI, LocObserver, DeadInstChain);
1663   }
1664 }
1665 
1666 void llvm::eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI,
1667                       LostDebugLocObserver *LocObserver) {
1668   return eraseInstrs({&MI}, MRI, LocObserver);
1669 }
1670 
1671 void llvm::salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI) {
1672   for (auto &Def : MI.defs()) {
1673     assert(Def.isReg() && "Must be a reg");
1674 
1675     SmallVector<MachineOperand *, 16> DbgUsers;
1676     for (auto &MOUse : MRI.use_operands(Def.getReg())) {
1677       MachineInstr *DbgValue = MOUse.getParent();
1678       // Ignore partially formed DBG_VALUEs.
1679       if (DbgValue->isNonListDebugValue() && DbgValue->getNumOperands() == 4) {
1680         DbgUsers.push_back(&MOUse);
1681       }
1682     }
1683 
1684     if (!DbgUsers.empty()) {
1685       salvageDebugInfoForDbgValue(MRI, MI, DbgUsers);
1686     }
1687   }
1688 }
1689 
1690 bool llvm::isPreISelGenericFloatingPointOpcode(unsigned Opc) {
1691   switch (Opc) {
1692   case TargetOpcode::G_FABS:
1693   case TargetOpcode::G_FADD:
1694   case TargetOpcode::G_FCANONICALIZE:
1695   case TargetOpcode::G_FCEIL:
1696   case TargetOpcode::G_FCONSTANT:
1697   case TargetOpcode::G_FCOPYSIGN:
1698   case TargetOpcode::G_FCOS:
1699   case TargetOpcode::G_FDIV:
1700   case TargetOpcode::G_FEXP2:
1701   case TargetOpcode::G_FEXP:
1702   case TargetOpcode::G_FFLOOR:
1703   case TargetOpcode::G_FLOG10:
1704   case TargetOpcode::G_FLOG2:
1705   case TargetOpcode::G_FLOG:
1706   case TargetOpcode::G_FMA:
1707   case TargetOpcode::G_FMAD:
1708   case TargetOpcode::G_FMAXIMUM:
1709   case TargetOpcode::G_FMAXNUM:
1710   case TargetOpcode::G_FMAXNUM_IEEE:
1711   case TargetOpcode::G_FMINIMUM:
1712   case TargetOpcode::G_FMINNUM:
1713   case TargetOpcode::G_FMINNUM_IEEE:
1714   case TargetOpcode::G_FMUL:
1715   case TargetOpcode::G_FNEARBYINT:
1716   case TargetOpcode::G_FNEG:
1717   case TargetOpcode::G_FPEXT:
1718   case TargetOpcode::G_FPOW:
1719   case TargetOpcode::G_FPTRUNC:
1720   case TargetOpcode::G_FREM:
1721   case TargetOpcode::G_FRINT:
1722   case TargetOpcode::G_FSIN:
1723   case TargetOpcode::G_FTAN:
1724   case TargetOpcode::G_FACOS:
1725   case TargetOpcode::G_FASIN:
1726   case TargetOpcode::G_FATAN:
1727   case TargetOpcode::G_FCOSH:
1728   case TargetOpcode::G_FSINH:
1729   case TargetOpcode::G_FTANH:
1730   case TargetOpcode::G_FSQRT:
1731   case TargetOpcode::G_FSUB:
1732   case TargetOpcode::G_INTRINSIC_ROUND:
1733   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
1734   case TargetOpcode::G_INTRINSIC_TRUNC:
1735     return true;
1736   default:
1737     return false;
1738   }
1739 }
1740 
1741 /// Shifts return poison if shiftwidth is larger than the bitwidth.
1742 static bool shiftAmountKnownInRange(Register ShiftAmount,
1743                                     const MachineRegisterInfo &MRI) {
1744   LLT Ty = MRI.getType(ShiftAmount);
1745 
1746   if (Ty.isScalableVector())
1747     return false; // Can't tell, just return false to be safe
1748 
1749   if (Ty.isScalar()) {
1750     std::optional<ValueAndVReg> Val =
1751         getIConstantVRegValWithLookThrough(ShiftAmount, MRI);
1752     if (!Val)
1753       return false;
1754     return Val->Value.ult(Ty.getScalarSizeInBits());
1755   }
1756 
1757   GBuildVector *BV = getOpcodeDef<GBuildVector>(ShiftAmount, MRI);
1758   if (!BV)
1759     return false;
1760 
1761   unsigned Sources = BV->getNumSources();
1762   for (unsigned I = 0; I < Sources; ++I) {
1763     std::optional<ValueAndVReg> Val =
1764         getIConstantVRegValWithLookThrough(BV->getSourceReg(I), MRI);
1765     if (!Val)
1766       return false;
1767     if (!Val->Value.ult(Ty.getScalarSizeInBits()))
1768       return false;
1769   }
1770 
1771   return true;
1772 }
1773 
1774 namespace {
1775 enum class UndefPoisonKind {
1776   PoisonOnly = (1 << 0),
1777   UndefOnly = (1 << 1),
1778   UndefOrPoison = PoisonOnly | UndefOnly,
1779 };
1780 }
1781 
1782 static bool includesPoison(UndefPoisonKind Kind) {
1783   return (unsigned(Kind) & unsigned(UndefPoisonKind::PoisonOnly)) != 0;
1784 }
1785 
1786 static bool includesUndef(UndefPoisonKind Kind) {
1787   return (unsigned(Kind) & unsigned(UndefPoisonKind::UndefOnly)) != 0;
1788 }
1789 
1790 static bool canCreateUndefOrPoison(Register Reg, const MachineRegisterInfo &MRI,
1791                                    bool ConsiderFlagsAndMetadata,
1792                                    UndefPoisonKind Kind) {
1793   MachineInstr *RegDef = MRI.getVRegDef(Reg);
1794 
1795   if (ConsiderFlagsAndMetadata && includesPoison(Kind))
1796     if (auto *GMI = dyn_cast<GenericMachineInstr>(RegDef))
1797       if (GMI->hasPoisonGeneratingFlags())
1798         return true;
1799 
1800   // Check whether opcode is a poison/undef-generating operation.
1801   switch (RegDef->getOpcode()) {
1802   case TargetOpcode::G_BUILD_VECTOR:
1803   case TargetOpcode::G_CONSTANT_FOLD_BARRIER:
1804     return false;
1805   case TargetOpcode::G_SHL:
1806   case TargetOpcode::G_ASHR:
1807   case TargetOpcode::G_LSHR:
1808     return includesPoison(Kind) &&
1809            !shiftAmountKnownInRange(RegDef->getOperand(2).getReg(), MRI);
1810   case TargetOpcode::G_FPTOSI:
1811   case TargetOpcode::G_FPTOUI:
1812     // fptosi/ui yields poison if the resulting value does not fit in the
1813     // destination type.
1814     return true;
1815   case TargetOpcode::G_CTLZ:
1816   case TargetOpcode::G_CTTZ:
1817   case TargetOpcode::G_ABS:
1818   case TargetOpcode::G_CTPOP:
1819   case TargetOpcode::G_BSWAP:
1820   case TargetOpcode::G_BITREVERSE:
1821   case TargetOpcode::G_FSHL:
1822   case TargetOpcode::G_FSHR:
1823   case TargetOpcode::G_SMAX:
1824   case TargetOpcode::G_SMIN:
1825   case TargetOpcode::G_UMAX:
1826   case TargetOpcode::G_UMIN:
1827   case TargetOpcode::G_PTRMASK:
1828   case TargetOpcode::G_SADDO:
1829   case TargetOpcode::G_SSUBO:
1830   case TargetOpcode::G_UADDO:
1831   case TargetOpcode::G_USUBO:
1832   case TargetOpcode::G_SMULO:
1833   case TargetOpcode::G_UMULO:
1834   case TargetOpcode::G_SADDSAT:
1835   case TargetOpcode::G_UADDSAT:
1836   case TargetOpcode::G_SSUBSAT:
1837   case TargetOpcode::G_USUBSAT:
1838     return false;
1839   case TargetOpcode::G_SSHLSAT:
1840   case TargetOpcode::G_USHLSAT:
1841     return includesPoison(Kind) &&
1842            !shiftAmountKnownInRange(RegDef->getOperand(2).getReg(), MRI);
1843   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1844     GInsertVectorElement *Insert = cast<GInsertVectorElement>(RegDef);
1845     if (includesPoison(Kind)) {
1846       std::optional<ValueAndVReg> Index =
1847           getIConstantVRegValWithLookThrough(Insert->getIndexReg(), MRI);
1848       if (!Index)
1849         return true;
1850       LLT VecTy = MRI.getType(Insert->getVectorReg());
1851       return Index->Value.uge(VecTy.getElementCount().getKnownMinValue());
1852     }
1853     return false;
1854   }
1855   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
1856     GExtractVectorElement *Extract = cast<GExtractVectorElement>(RegDef);
1857     if (includesPoison(Kind)) {
1858       std::optional<ValueAndVReg> Index =
1859           getIConstantVRegValWithLookThrough(Extract->getIndexReg(), MRI);
1860       if (!Index)
1861         return true;
1862       LLT VecTy = MRI.getType(Extract->getVectorReg());
1863       return Index->Value.uge(VecTy.getElementCount().getKnownMinValue());
1864     }
1865     return false;
1866   }
1867   case TargetOpcode::G_SHUFFLE_VECTOR: {
1868     GShuffleVector *Shuffle = cast<GShuffleVector>(RegDef);
1869     ArrayRef<int> Mask = Shuffle->getMask();
1870     return includesPoison(Kind) && is_contained(Mask, -1);
1871   }
1872   case TargetOpcode::G_FNEG:
1873   case TargetOpcode::G_PHI:
1874   case TargetOpcode::G_SELECT:
1875   case TargetOpcode::G_UREM:
1876   case TargetOpcode::G_SREM:
1877   case TargetOpcode::G_FREEZE:
1878   case TargetOpcode::G_ICMP:
1879   case TargetOpcode::G_FCMP:
1880   case TargetOpcode::G_FADD:
1881   case TargetOpcode::G_FSUB:
1882   case TargetOpcode::G_FMUL:
1883   case TargetOpcode::G_FDIV:
1884   case TargetOpcode::G_FREM:
1885   case TargetOpcode::G_PTR_ADD:
1886     return false;
1887   default:
1888     return !isa<GCastOp>(RegDef) && !isa<GBinOp>(RegDef);
1889   }
1890 }
1891 
1892 static bool isGuaranteedNotToBeUndefOrPoison(Register Reg,
1893                                              const MachineRegisterInfo &MRI,
1894                                              unsigned Depth,
1895                                              UndefPoisonKind Kind) {
1896   if (Depth >= MaxAnalysisRecursionDepth)
1897     return false;
1898 
1899   MachineInstr *RegDef = MRI.getVRegDef(Reg);
1900 
1901   switch (RegDef->getOpcode()) {
1902   case TargetOpcode::G_FREEZE:
1903     return true;
1904   case TargetOpcode::G_IMPLICIT_DEF:
1905     return !includesUndef(Kind);
1906   case TargetOpcode::G_CONSTANT:
1907   case TargetOpcode::G_FCONSTANT:
1908     return true;
1909   case TargetOpcode::G_BUILD_VECTOR: {
1910     GBuildVector *BV = cast<GBuildVector>(RegDef);
1911     unsigned NumSources = BV->getNumSources();
1912     for (unsigned I = 0; I < NumSources; ++I)
1913       if (!::isGuaranteedNotToBeUndefOrPoison(BV->getSourceReg(I), MRI,
1914                                               Depth + 1, Kind))
1915         return false;
1916     return true;
1917   }
1918   case TargetOpcode::G_PHI: {
1919     GPhi *Phi = cast<GPhi>(RegDef);
1920     unsigned NumIncoming = Phi->getNumIncomingValues();
1921     for (unsigned I = 0; I < NumIncoming; ++I)
1922       if (!::isGuaranteedNotToBeUndefOrPoison(Phi->getIncomingValue(I), MRI,
1923                                               Depth + 1, Kind))
1924         return false;
1925     return true;
1926   }
1927   default: {
1928     auto MOCheck = [&](const MachineOperand &MO) {
1929       if (!MO.isReg())
1930         return true;
1931       return ::isGuaranteedNotToBeUndefOrPoison(MO.getReg(), MRI, Depth + 1,
1932                                                 Kind);
1933     };
1934     return !::canCreateUndefOrPoison(Reg, MRI,
1935                                      /*ConsiderFlagsAndMetadata=*/true, Kind) &&
1936            all_of(RegDef->uses(), MOCheck);
1937   }
1938   }
1939 }
1940 
1941 bool llvm::canCreateUndefOrPoison(Register Reg, const MachineRegisterInfo &MRI,
1942                                   bool ConsiderFlagsAndMetadata) {
1943   return ::canCreateUndefOrPoison(Reg, MRI, ConsiderFlagsAndMetadata,
1944                                   UndefPoisonKind::UndefOrPoison);
1945 }
1946 
1947 bool canCreatePoison(Register Reg, const MachineRegisterInfo &MRI,
1948                      bool ConsiderFlagsAndMetadata = true) {
1949   return ::canCreateUndefOrPoison(Reg, MRI, ConsiderFlagsAndMetadata,
1950                                   UndefPoisonKind::PoisonOnly);
1951 }
1952 
1953 bool llvm::isGuaranteedNotToBeUndefOrPoison(Register Reg,
1954                                             const MachineRegisterInfo &MRI,
1955                                             unsigned Depth) {
1956   return ::isGuaranteedNotToBeUndefOrPoison(Reg, MRI, Depth,
1957                                             UndefPoisonKind::UndefOrPoison);
1958 }
1959 
1960 bool llvm::isGuaranteedNotToBePoison(Register Reg,
1961                                      const MachineRegisterInfo &MRI,
1962                                      unsigned Depth) {
1963   return ::isGuaranteedNotToBeUndefOrPoison(Reg, MRI, Depth,
1964                                             UndefPoisonKind::PoisonOnly);
1965 }
1966 
1967 bool llvm::isGuaranteedNotToBeUndef(Register Reg,
1968                                     const MachineRegisterInfo &MRI,
1969                                     unsigned Depth) {
1970   return ::isGuaranteedNotToBeUndefOrPoison(Reg, MRI, Depth,
1971                                             UndefPoisonKind::UndefOnly);
1972 }
1973 
1974 Type *llvm::getTypeForLLT(LLT Ty, LLVMContext &C) {
1975   if (Ty.isVector())
1976     return VectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
1977                            Ty.getElementCount());
1978   return IntegerType::get(C, Ty.getSizeInBits());
1979 }
1980