xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/Utils.cpp (revision 6be3386466ab79a84b48429ae66244f21526d3df)
1 //===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file This file implements the utility functions used by the GlobalISel
9 /// pipeline.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/Utils.h"
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/Twine.h"
15 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
16 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
17 #include "llvm/CodeGen/MachineInstr.h"
18 #include "llvm/CodeGen/MachineInstrBuilder.h"
19 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/StackProtector.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/IR/Constants.h"
26 
27 #define DEBUG_TYPE "globalisel-utils"
28 
29 using namespace llvm;
30 
31 Register llvm::constrainRegToClass(MachineRegisterInfo &MRI,
32                                    const TargetInstrInfo &TII,
33                                    const RegisterBankInfo &RBI, Register Reg,
34                                    const TargetRegisterClass &RegClass) {
35   if (!RBI.constrainGenericRegister(Reg, RegClass, MRI))
36     return MRI.createVirtualRegister(&RegClass);
37 
38   return Reg;
39 }
40 
41 Register llvm::constrainOperandRegClass(
42     const MachineFunction &MF, const TargetRegisterInfo &TRI,
43     MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
44     const RegisterBankInfo &RBI, MachineInstr &InsertPt,
45     const TargetRegisterClass &RegClass, const MachineOperand &RegMO) {
46   Register Reg = RegMO.getReg();
47   // Assume physical registers are properly constrained.
48   assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented");
49 
50   Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass);
51   // If we created a new virtual register because the class is not compatible
52   // then create a copy between the new and the old register.
53   if (ConstrainedReg != Reg) {
54     MachineBasicBlock::iterator InsertIt(&InsertPt);
55     MachineBasicBlock &MBB = *InsertPt.getParent();
56     if (RegMO.isUse()) {
57       BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(),
58               TII.get(TargetOpcode::COPY), ConstrainedReg)
59           .addReg(Reg);
60     } else {
61       assert(RegMO.isDef() && "Must be a definition");
62       BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(),
63               TII.get(TargetOpcode::COPY), Reg)
64           .addReg(ConstrainedReg);
65     }
66   } else {
67     if (GISelChangeObserver *Observer = MF.getObserver()) {
68       if (!RegMO.isDef()) {
69         MachineInstr *RegDef = MRI.getVRegDef(Reg);
70         Observer->changedInstr(*RegDef);
71       }
72       Observer->changingAllUsesOfReg(MRI, Reg);
73       Observer->finishedChangingAllUsesOfReg();
74     }
75   }
76   return ConstrainedReg;
77 }
78 
79 Register llvm::constrainOperandRegClass(
80     const MachineFunction &MF, const TargetRegisterInfo &TRI,
81     MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
82     const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II,
83     const MachineOperand &RegMO, unsigned OpIdx) {
84   Register Reg = RegMO.getReg();
85   // Assume physical registers are properly constrained.
86   assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented");
87 
88   const TargetRegisterClass *RegClass = TII.getRegClass(II, OpIdx, &TRI, MF);
89   // Some of the target independent instructions, like COPY, may not impose any
90   // register class constraints on some of their operands: If it's a use, we can
91   // skip constraining as the instruction defining the register would constrain
92   // it.
93 
94   // We can't constrain unallocatable register classes, because we can't create
95   // virtual registers for these classes, so we need to let targets handled this
96   // case.
97   if (RegClass && !RegClass->isAllocatable())
98     RegClass = TRI.getConstrainedRegClassForOperand(RegMO, MRI);
99 
100   if (!RegClass) {
101     assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) &&
102            "Register class constraint is required unless either the "
103            "instruction is target independent or the operand is a use");
104     // FIXME: Just bailing out like this here could be not enough, unless we
105     // expect the users of this function to do the right thing for PHIs and
106     // COPY:
107     //   v1 = COPY v0
108     //   v2 = COPY v1
109     // v1 here may end up not being constrained at all. Please notice that to
110     // reproduce the issue we likely need a destination pattern of a selection
111     // rule producing such extra copies, not just an input GMIR with them as
112     // every existing target using selectImpl handles copies before calling it
113     // and they never reach this function.
114     return Reg;
115   }
116   return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *RegClass,
117                                   RegMO);
118 }
119 
120 bool llvm::constrainSelectedInstRegOperands(MachineInstr &I,
121                                             const TargetInstrInfo &TII,
122                                             const TargetRegisterInfo &TRI,
123                                             const RegisterBankInfo &RBI) {
124   assert(!isPreISelGenericOpcode(I.getOpcode()) &&
125          "A selected instruction is expected");
126   MachineBasicBlock &MBB = *I.getParent();
127   MachineFunction &MF = *MBB.getParent();
128   MachineRegisterInfo &MRI = MF.getRegInfo();
129 
130   for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) {
131     MachineOperand &MO = I.getOperand(OpI);
132 
133     // There's nothing to be done on non-register operands.
134     if (!MO.isReg())
135       continue;
136 
137     LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n');
138     assert(MO.isReg() && "Unsupported non-reg operand");
139 
140     Register Reg = MO.getReg();
141     // Physical registers don't need to be constrained.
142     if (Register::isPhysicalRegister(Reg))
143       continue;
144 
145     // Register operands with a value of 0 (e.g. predicate operands) don't need
146     // to be constrained.
147     if (Reg == 0)
148       continue;
149 
150     // If the operand is a vreg, we should constrain its regclass, and only
151     // insert COPYs if that's impossible.
152     // constrainOperandRegClass does that for us.
153     MO.setReg(constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(),
154                                        MO, OpI));
155 
156     // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been
157     // done.
158     if (MO.isUse()) {
159       int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO);
160       if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx))
161         I.tieOperands(DefIdx, OpI);
162     }
163   }
164   return true;
165 }
166 
167 bool llvm::canReplaceReg(Register DstReg, Register SrcReg,
168                          MachineRegisterInfo &MRI) {
169   // Give up if either DstReg or SrcReg  is a physical register.
170   if (DstReg.isPhysical() || SrcReg.isPhysical())
171     return false;
172   // Give up if the types don't match.
173   if (MRI.getType(DstReg) != MRI.getType(SrcReg))
174     return false;
175   // Replace if either DstReg has no constraints or the register
176   // constraints match.
177   return !MRI.getRegClassOrRegBank(DstReg) ||
178          MRI.getRegClassOrRegBank(DstReg) == MRI.getRegClassOrRegBank(SrcReg);
179 }
180 
181 bool llvm::isTriviallyDead(const MachineInstr &MI,
182                            const MachineRegisterInfo &MRI) {
183   // If we can move an instruction, we can remove it.  Otherwise, it has
184   // a side-effect of some sort.
185   bool SawStore = false;
186   if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI())
187     return false;
188 
189   // Instructions without side-effects are dead iff they only define dead vregs.
190   for (auto &MO : MI.operands()) {
191     if (!MO.isReg() || !MO.isDef())
192       continue;
193 
194     Register Reg = MO.getReg();
195     if (Register::isPhysicalRegister(Reg) || !MRI.use_nodbg_empty(Reg))
196       return false;
197   }
198   return true;
199 }
200 
201 static void reportGISelDiagnostic(DiagnosticSeverity Severity,
202                                   MachineFunction &MF,
203                                   const TargetPassConfig &TPC,
204                                   MachineOptimizationRemarkEmitter &MORE,
205                                   MachineOptimizationRemarkMissed &R) {
206   bool IsFatal = Severity == DS_Error &&
207                  TPC.isGlobalISelAbortEnabled();
208   // Print the function name explicitly if we don't have a debug location (which
209   // makes the diagnostic less useful) or if we're going to emit a raw error.
210   if (!R.getLocation().isValid() || IsFatal)
211     R << (" (in function: " + MF.getName() + ")").str();
212 
213   if (IsFatal)
214     report_fatal_error(R.getMsg());
215   else
216     MORE.emit(R);
217 }
218 
219 void llvm::reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC,
220                               MachineOptimizationRemarkEmitter &MORE,
221                               MachineOptimizationRemarkMissed &R) {
222   reportGISelDiagnostic(DS_Warning, MF, TPC, MORE, R);
223 }
224 
225 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
226                               MachineOptimizationRemarkEmitter &MORE,
227                               MachineOptimizationRemarkMissed &R) {
228   MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
229   reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R);
230 }
231 
232 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
233                               MachineOptimizationRemarkEmitter &MORE,
234                               const char *PassName, StringRef Msg,
235                               const MachineInstr &MI) {
236   MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ",
237                                     MI.getDebugLoc(), MI.getParent());
238   R << Msg;
239   // Printing MI is expensive;  only do it if expensive remarks are enabled.
240   if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName))
241     R << ": " << ore::MNV("Inst", MI);
242   reportGISelFailure(MF, TPC, MORE, R);
243 }
244 
245 Optional<int64_t> llvm::getConstantVRegVal(Register VReg,
246                                            const MachineRegisterInfo &MRI) {
247   Optional<ValueAndVReg> ValAndVReg =
248       getConstantVRegValWithLookThrough(VReg, MRI, /*LookThroughInstrs*/ false);
249   assert((!ValAndVReg || ValAndVReg->VReg == VReg) &&
250          "Value found while looking through instrs");
251   if (!ValAndVReg)
252     return None;
253   return ValAndVReg->Value;
254 }
255 
256 Optional<ValueAndVReg> llvm::getConstantVRegValWithLookThrough(
257     Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs,
258     bool HandleFConstant) {
259   SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes;
260   MachineInstr *MI;
261   auto IsConstantOpcode = [HandleFConstant](unsigned Opcode) {
262     return Opcode == TargetOpcode::G_CONSTANT ||
263            (HandleFConstant && Opcode == TargetOpcode::G_FCONSTANT);
264   };
265   auto GetImmediateValue = [HandleFConstant,
266                             &MRI](const MachineInstr &MI) -> Optional<APInt> {
267     const MachineOperand &CstVal = MI.getOperand(1);
268     if (!CstVal.isImm() && !CstVal.isCImm() &&
269         (!HandleFConstant || !CstVal.isFPImm()))
270       return None;
271     if (!CstVal.isFPImm()) {
272       unsigned BitWidth =
273           MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
274       APInt Val = CstVal.isImm() ? APInt(BitWidth, CstVal.getImm())
275                                  : CstVal.getCImm()->getValue();
276       assert(Val.getBitWidth() == BitWidth &&
277              "Value bitwidth doesn't match definition type");
278       return Val;
279     }
280     return CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
281   };
282   while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI->getOpcode()) &&
283          LookThroughInstrs) {
284     switch (MI->getOpcode()) {
285     case TargetOpcode::G_TRUNC:
286     case TargetOpcode::G_SEXT:
287     case TargetOpcode::G_ZEXT:
288       SeenOpcodes.push_back(std::make_pair(
289           MI->getOpcode(),
290           MRI.getType(MI->getOperand(0).getReg()).getSizeInBits()));
291       VReg = MI->getOperand(1).getReg();
292       break;
293     case TargetOpcode::COPY:
294       VReg = MI->getOperand(1).getReg();
295       if (Register::isPhysicalRegister(VReg))
296         return None;
297       break;
298     case TargetOpcode::G_INTTOPTR:
299       VReg = MI->getOperand(1).getReg();
300       break;
301     default:
302       return None;
303     }
304   }
305   if (!MI || !IsConstantOpcode(MI->getOpcode()))
306     return None;
307 
308   Optional<APInt> MaybeVal = GetImmediateValue(*MI);
309   if (!MaybeVal)
310     return None;
311   APInt &Val = *MaybeVal;
312   while (!SeenOpcodes.empty()) {
313     std::pair<unsigned, unsigned> OpcodeAndSize = SeenOpcodes.pop_back_val();
314     switch (OpcodeAndSize.first) {
315     case TargetOpcode::G_TRUNC:
316       Val = Val.trunc(OpcodeAndSize.second);
317       break;
318     case TargetOpcode::G_SEXT:
319       Val = Val.sext(OpcodeAndSize.second);
320       break;
321     case TargetOpcode::G_ZEXT:
322       Val = Val.zext(OpcodeAndSize.second);
323       break;
324     }
325   }
326 
327   if (Val.getBitWidth() > 64)
328     return None;
329 
330   return ValueAndVReg{Val.getSExtValue(), VReg};
331 }
332 
333 const llvm::ConstantFP *
334 llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) {
335   MachineInstr *MI = MRI.getVRegDef(VReg);
336   if (TargetOpcode::G_FCONSTANT != MI->getOpcode())
337     return nullptr;
338   return MI->getOperand(1).getFPImm();
339 }
340 
341 namespace {
342 struct DefinitionAndSourceRegister {
343   llvm::MachineInstr *MI;
344   Register Reg;
345 };
346 } // namespace
347 
348 static llvm::Optional<DefinitionAndSourceRegister>
349 getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) {
350   Register DefSrcReg = Reg;
351   auto *DefMI = MRI.getVRegDef(Reg);
352   auto DstTy = MRI.getType(DefMI->getOperand(0).getReg());
353   if (!DstTy.isValid())
354     return None;
355   while (DefMI->getOpcode() == TargetOpcode::COPY) {
356     Register SrcReg = DefMI->getOperand(1).getReg();
357     auto SrcTy = MRI.getType(SrcReg);
358     if (!SrcTy.isValid() || SrcTy != DstTy)
359       break;
360     DefMI = MRI.getVRegDef(SrcReg);
361     DefSrcReg = SrcReg;
362   }
363   return DefinitionAndSourceRegister{DefMI, DefSrcReg};
364 }
365 
366 llvm::MachineInstr *llvm::getDefIgnoringCopies(Register Reg,
367                                                const MachineRegisterInfo &MRI) {
368   Optional<DefinitionAndSourceRegister> DefSrcReg =
369       getDefSrcRegIgnoringCopies(Reg, MRI);
370   return DefSrcReg ? DefSrcReg->MI : nullptr;
371 }
372 
373 Register llvm::getSrcRegIgnoringCopies(Register Reg,
374                                        const MachineRegisterInfo &MRI) {
375   Optional<DefinitionAndSourceRegister> DefSrcReg =
376       getDefSrcRegIgnoringCopies(Reg, MRI);
377   return DefSrcReg ? DefSrcReg->Reg : Register();
378 }
379 
380 llvm::MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg,
381                                        const MachineRegisterInfo &MRI) {
382   MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI);
383   return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr;
384 }
385 
386 APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) {
387   if (Size == 32)
388     return APFloat(float(Val));
389   if (Size == 64)
390     return APFloat(Val);
391   if (Size != 16)
392     llvm_unreachable("Unsupported FPConstant size");
393   bool Ignored;
394   APFloat APF(Val);
395   APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
396   return APF;
397 }
398 
399 Optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, const Register Op1,
400                                         const Register Op2,
401                                         const MachineRegisterInfo &MRI) {
402   auto MaybeOp2Cst = getConstantVRegVal(Op2, MRI);
403   if (!MaybeOp2Cst)
404     return None;
405 
406   auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI);
407   if (!MaybeOp1Cst)
408     return None;
409 
410   LLT Ty = MRI.getType(Op1);
411   APInt C1(Ty.getSizeInBits(), *MaybeOp1Cst, true);
412   APInt C2(Ty.getSizeInBits(), *MaybeOp2Cst, true);
413   switch (Opcode) {
414   default:
415     break;
416   case TargetOpcode::G_ADD:
417     return C1 + C2;
418   case TargetOpcode::G_AND:
419     return C1 & C2;
420   case TargetOpcode::G_ASHR:
421     return C1.ashr(C2);
422   case TargetOpcode::G_LSHR:
423     return C1.lshr(C2);
424   case TargetOpcode::G_MUL:
425     return C1 * C2;
426   case TargetOpcode::G_OR:
427     return C1 | C2;
428   case TargetOpcode::G_SHL:
429     return C1 << C2;
430   case TargetOpcode::G_SUB:
431     return C1 - C2;
432   case TargetOpcode::G_XOR:
433     return C1 ^ C2;
434   case TargetOpcode::G_UDIV:
435     if (!C2.getBoolValue())
436       break;
437     return C1.udiv(C2);
438   case TargetOpcode::G_SDIV:
439     if (!C2.getBoolValue())
440       break;
441     return C1.sdiv(C2);
442   case TargetOpcode::G_UREM:
443     if (!C2.getBoolValue())
444       break;
445     return C1.urem(C2);
446   case TargetOpcode::G_SREM:
447     if (!C2.getBoolValue())
448       break;
449     return C1.srem(C2);
450   }
451 
452   return None;
453 }
454 
455 bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI,
456                            bool SNaN) {
457   const MachineInstr *DefMI = MRI.getVRegDef(Val);
458   if (!DefMI)
459     return false;
460 
461   if (DefMI->getFlag(MachineInstr::FmNoNans))
462     return true;
463 
464   if (SNaN) {
465     // FP operations quiet. For now, just handle the ones inserted during
466     // legalization.
467     switch (DefMI->getOpcode()) {
468     case TargetOpcode::G_FPEXT:
469     case TargetOpcode::G_FPTRUNC:
470     case TargetOpcode::G_FCANONICALIZE:
471       return true;
472     default:
473       return false;
474     }
475   }
476 
477   return false;
478 }
479 
480 Align llvm::inferAlignFromPtrInfo(MachineFunction &MF,
481                                   const MachinePointerInfo &MPO) {
482   auto PSV = MPO.V.dyn_cast<const PseudoSourceValue *>();
483   if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(PSV)) {
484     MachineFrameInfo &MFI = MF.getFrameInfo();
485     return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()),
486                            MPO.Offset);
487   }
488 
489   return Align(1);
490 }
491 
492 Optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode, const Register Op1,
493                                         uint64_t Imm,
494                                         const MachineRegisterInfo &MRI) {
495   auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI);
496   if (MaybeOp1Cst) {
497     LLT Ty = MRI.getType(Op1);
498     APInt C1(Ty.getSizeInBits(), *MaybeOp1Cst, true);
499     switch (Opcode) {
500     default:
501       break;
502     case TargetOpcode::G_SEXT_INREG:
503       return C1.trunc(Imm).sext(C1.getBitWidth());
504     }
505   }
506   return None;
507 }
508 
509 void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) {
510   AU.addPreserved<StackProtector>();
511 }
512 
513 LLT llvm::getLCMType(LLT Ty0, LLT Ty1) {
514   if (!Ty0.isVector() && !Ty1.isVector()) {
515     unsigned Mul = Ty0.getSizeInBits() * Ty1.getSizeInBits();
516     int GCDSize = greatestCommonDivisor(Ty0.getSizeInBits(),
517                                         Ty1.getSizeInBits());
518     return LLT::scalar(Mul / GCDSize);
519   }
520 
521   if (Ty0.isVector() && !Ty1.isVector()) {
522     assert(Ty0.getElementType() == Ty1 && "not yet handled");
523     return Ty0;
524   }
525 
526   if (Ty1.isVector() && !Ty0.isVector()) {
527     assert(Ty1.getElementType() == Ty0 && "not yet handled");
528     return Ty1;
529   }
530 
531   if (Ty0.isVector() && Ty1.isVector()) {
532     assert(Ty0.getElementType() == Ty1.getElementType() && "not yet handled");
533 
534     int GCDElts = greatestCommonDivisor(Ty0.getNumElements(),
535                                         Ty1.getNumElements());
536 
537     int Mul = Ty0.getNumElements() * Ty1.getNumElements();
538     return LLT::vector(Mul / GCDElts, Ty0.getElementType());
539   }
540 
541   llvm_unreachable("not yet handled");
542 }
543 
544 LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) {
545   if (OrigTy.isVector() && TargetTy.isVector()) {
546     assert(OrigTy.getElementType() == TargetTy.getElementType());
547     int GCD = greatestCommonDivisor(OrigTy.getNumElements(),
548                                     TargetTy.getNumElements());
549     return LLT::scalarOrVector(GCD, OrigTy.getElementType());
550   }
551 
552   if (OrigTy.isVector() && !TargetTy.isVector()) {
553     assert(OrigTy.getElementType() == TargetTy);
554     return TargetTy;
555   }
556 
557   assert(!OrigTy.isVector() && !TargetTy.isVector() &&
558          "GCD type of vector and scalar not implemented");
559 
560   int GCD = greatestCommonDivisor(OrigTy.getSizeInBits(),
561                                   TargetTy.getSizeInBits());
562   return LLT::scalar(GCD);
563 }
564