1 //===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file This file implements the utility functions used by the GlobalISel 9 /// pipeline. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/Utils.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/CodeGen/CodeGenCommonISel.h" 16 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 17 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 18 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 21 #include "llvm/CodeGen/MachineInstr.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/MachineSizeOpts.h" 26 #include "llvm/CodeGen/RegisterBankInfo.h" 27 #include "llvm/CodeGen/StackProtector.h" 28 #include "llvm/CodeGen/TargetInstrInfo.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetPassConfig.h" 31 #include "llvm/CodeGen/TargetRegisterInfo.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Transforms/Utils/SizeOpts.h" 35 #include <numeric> 36 #include <optional> 37 38 #define DEBUG_TYPE "globalisel-utils" 39 40 using namespace llvm; 41 using namespace MIPatternMatch; 42 43 Register llvm::constrainRegToClass(MachineRegisterInfo &MRI, 44 const TargetInstrInfo &TII, 45 const RegisterBankInfo &RBI, Register Reg, 46 const TargetRegisterClass &RegClass) { 47 if (!RBI.constrainGenericRegister(Reg, RegClass, MRI)) 48 return MRI.createVirtualRegister(&RegClass); 49 50 return Reg; 51 } 52 53 Register llvm::constrainOperandRegClass( 54 const MachineFunction &MF, const TargetRegisterInfo &TRI, 55 MachineRegisterInfo &MRI, const TargetInstrInfo &TII, 56 const RegisterBankInfo &RBI, MachineInstr &InsertPt, 57 const TargetRegisterClass &RegClass, MachineOperand &RegMO) { 58 Register Reg = RegMO.getReg(); 59 // Assume physical registers are properly constrained. 60 assert(Reg.isVirtual() && "PhysReg not implemented"); 61 62 // Save the old register class to check whether 63 // the change notifications will be required. 64 // TODO: A better approach would be to pass 65 // the observers to constrainRegToClass(). 66 auto *OldRegClass = MRI.getRegClassOrNull(Reg); 67 Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass); 68 // If we created a new virtual register because the class is not compatible 69 // then create a copy between the new and the old register. 70 if (ConstrainedReg != Reg) { 71 MachineBasicBlock::iterator InsertIt(&InsertPt); 72 MachineBasicBlock &MBB = *InsertPt.getParent(); 73 // FIXME: The copy needs to have the classes constrained for its operands. 74 // Use operand's regbank to get the class for old register (Reg). 75 if (RegMO.isUse()) { 76 BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(), 77 TII.get(TargetOpcode::COPY), ConstrainedReg) 78 .addReg(Reg); 79 } else { 80 assert(RegMO.isDef() && "Must be a definition"); 81 BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(), 82 TII.get(TargetOpcode::COPY), Reg) 83 .addReg(ConstrainedReg); 84 } 85 if (GISelChangeObserver *Observer = MF.getObserver()) { 86 Observer->changingInstr(*RegMO.getParent()); 87 } 88 RegMO.setReg(ConstrainedReg); 89 if (GISelChangeObserver *Observer = MF.getObserver()) { 90 Observer->changedInstr(*RegMO.getParent()); 91 } 92 } else if (OldRegClass != MRI.getRegClassOrNull(Reg)) { 93 if (GISelChangeObserver *Observer = MF.getObserver()) { 94 if (!RegMO.isDef()) { 95 MachineInstr *RegDef = MRI.getVRegDef(Reg); 96 Observer->changedInstr(*RegDef); 97 } 98 Observer->changingAllUsesOfReg(MRI, Reg); 99 Observer->finishedChangingAllUsesOfReg(); 100 } 101 } 102 return ConstrainedReg; 103 } 104 105 Register llvm::constrainOperandRegClass( 106 const MachineFunction &MF, const TargetRegisterInfo &TRI, 107 MachineRegisterInfo &MRI, const TargetInstrInfo &TII, 108 const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II, 109 MachineOperand &RegMO, unsigned OpIdx) { 110 Register Reg = RegMO.getReg(); 111 // Assume physical registers are properly constrained. 112 assert(Reg.isVirtual() && "PhysReg not implemented"); 113 114 const TargetRegisterClass *OpRC = TII.getRegClass(II, OpIdx, &TRI, MF); 115 // Some of the target independent instructions, like COPY, may not impose any 116 // register class constraints on some of their operands: If it's a use, we can 117 // skip constraining as the instruction defining the register would constrain 118 // it. 119 120 if (OpRC) { 121 // Obtain the RC from incoming regbank if it is a proper sub-class. Operands 122 // can have multiple regbanks for a superclass that combine different 123 // register types (E.g., AMDGPU's VGPR and AGPR). The regbank ambiguity 124 // resolved by targets during regbankselect should not be overridden. 125 if (const auto *SubRC = TRI.getCommonSubClass( 126 OpRC, TRI.getConstrainedRegClassForOperand(RegMO, MRI))) 127 OpRC = SubRC; 128 129 OpRC = TRI.getAllocatableClass(OpRC); 130 } 131 132 if (!OpRC) { 133 assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) && 134 "Register class constraint is required unless either the " 135 "instruction is target independent or the operand is a use"); 136 // FIXME: Just bailing out like this here could be not enough, unless we 137 // expect the users of this function to do the right thing for PHIs and 138 // COPY: 139 // v1 = COPY v0 140 // v2 = COPY v1 141 // v1 here may end up not being constrained at all. Please notice that to 142 // reproduce the issue we likely need a destination pattern of a selection 143 // rule producing such extra copies, not just an input GMIR with them as 144 // every existing target using selectImpl handles copies before calling it 145 // and they never reach this function. 146 return Reg; 147 } 148 return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *OpRC, 149 RegMO); 150 } 151 152 bool llvm::constrainSelectedInstRegOperands(MachineInstr &I, 153 const TargetInstrInfo &TII, 154 const TargetRegisterInfo &TRI, 155 const RegisterBankInfo &RBI) { 156 assert(!isPreISelGenericOpcode(I.getOpcode()) && 157 "A selected instruction is expected"); 158 MachineBasicBlock &MBB = *I.getParent(); 159 MachineFunction &MF = *MBB.getParent(); 160 MachineRegisterInfo &MRI = MF.getRegInfo(); 161 162 for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) { 163 MachineOperand &MO = I.getOperand(OpI); 164 165 // There's nothing to be done on non-register operands. 166 if (!MO.isReg()) 167 continue; 168 169 LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n'); 170 assert(MO.isReg() && "Unsupported non-reg operand"); 171 172 Register Reg = MO.getReg(); 173 // Physical registers don't need to be constrained. 174 if (Reg.isPhysical()) 175 continue; 176 177 // Register operands with a value of 0 (e.g. predicate operands) don't need 178 // to be constrained. 179 if (Reg == 0) 180 continue; 181 182 // If the operand is a vreg, we should constrain its regclass, and only 183 // insert COPYs if that's impossible. 184 // constrainOperandRegClass does that for us. 185 constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(), MO, OpI); 186 187 // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been 188 // done. 189 if (MO.isUse()) { 190 int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO); 191 if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx)) 192 I.tieOperands(DefIdx, OpI); 193 } 194 } 195 return true; 196 } 197 198 bool llvm::canReplaceReg(Register DstReg, Register SrcReg, 199 MachineRegisterInfo &MRI) { 200 // Give up if either DstReg or SrcReg is a physical register. 201 if (DstReg.isPhysical() || SrcReg.isPhysical()) 202 return false; 203 // Give up if the types don't match. 204 if (MRI.getType(DstReg) != MRI.getType(SrcReg)) 205 return false; 206 // Replace if either DstReg has no constraints or the register 207 // constraints match. 208 return !MRI.getRegClassOrRegBank(DstReg) || 209 MRI.getRegClassOrRegBank(DstReg) == MRI.getRegClassOrRegBank(SrcReg); 210 } 211 212 bool llvm::isTriviallyDead(const MachineInstr &MI, 213 const MachineRegisterInfo &MRI) { 214 // FIXME: This logical is mostly duplicated with 215 // DeadMachineInstructionElim::isDead. Why is LOCAL_ESCAPE not considered in 216 // MachineInstr::isLabel? 217 218 // Don't delete frame allocation labels. 219 if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE) 220 return false; 221 // LIFETIME markers should be preserved even if they seem dead. 222 if (MI.getOpcode() == TargetOpcode::LIFETIME_START || 223 MI.getOpcode() == TargetOpcode::LIFETIME_END) 224 return false; 225 226 // If we can move an instruction, we can remove it. Otherwise, it has 227 // a side-effect of some sort. 228 bool SawStore = false; 229 if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI()) 230 return false; 231 232 // Instructions without side-effects are dead iff they only define dead vregs. 233 for (const auto &MO : MI.all_defs()) { 234 Register Reg = MO.getReg(); 235 if (Reg.isPhysical() || !MRI.use_nodbg_empty(Reg)) 236 return false; 237 } 238 return true; 239 } 240 241 static void reportGISelDiagnostic(DiagnosticSeverity Severity, 242 MachineFunction &MF, 243 const TargetPassConfig &TPC, 244 MachineOptimizationRemarkEmitter &MORE, 245 MachineOptimizationRemarkMissed &R) { 246 bool IsFatal = Severity == DS_Error && 247 TPC.isGlobalISelAbortEnabled(); 248 // Print the function name explicitly if we don't have a debug location (which 249 // makes the diagnostic less useful) or if we're going to emit a raw error. 250 if (!R.getLocation().isValid() || IsFatal) 251 R << (" (in function: " + MF.getName() + ")").str(); 252 253 if (IsFatal) 254 report_fatal_error(Twine(R.getMsg())); 255 else 256 MORE.emit(R); 257 } 258 259 void llvm::reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC, 260 MachineOptimizationRemarkEmitter &MORE, 261 MachineOptimizationRemarkMissed &R) { 262 reportGISelDiagnostic(DS_Warning, MF, TPC, MORE, R); 263 } 264 265 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, 266 MachineOptimizationRemarkEmitter &MORE, 267 MachineOptimizationRemarkMissed &R) { 268 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 269 reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R); 270 } 271 272 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, 273 MachineOptimizationRemarkEmitter &MORE, 274 const char *PassName, StringRef Msg, 275 const MachineInstr &MI) { 276 MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ", 277 MI.getDebugLoc(), MI.getParent()); 278 R << Msg; 279 // Printing MI is expensive; only do it if expensive remarks are enabled. 280 if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName)) 281 R << ": " << ore::MNV("Inst", MI); 282 reportGISelFailure(MF, TPC, MORE, R); 283 } 284 285 std::optional<APInt> llvm::getIConstantVRegVal(Register VReg, 286 const MachineRegisterInfo &MRI) { 287 std::optional<ValueAndVReg> ValAndVReg = getIConstantVRegValWithLookThrough( 288 VReg, MRI, /*LookThroughInstrs*/ false); 289 assert((!ValAndVReg || ValAndVReg->VReg == VReg) && 290 "Value found while looking through instrs"); 291 if (!ValAndVReg) 292 return std::nullopt; 293 return ValAndVReg->Value; 294 } 295 296 std::optional<int64_t> 297 llvm::getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI) { 298 std::optional<APInt> Val = getIConstantVRegVal(VReg, MRI); 299 if (Val && Val->getBitWidth() <= 64) 300 return Val->getSExtValue(); 301 return std::nullopt; 302 } 303 304 namespace { 305 306 typedef std::function<bool(const MachineInstr *)> IsOpcodeFn; 307 typedef std::function<std::optional<APInt>(const MachineInstr *MI)> GetAPCstFn; 308 309 std::optional<ValueAndVReg> getConstantVRegValWithLookThrough( 310 Register VReg, const MachineRegisterInfo &MRI, IsOpcodeFn IsConstantOpcode, 311 GetAPCstFn getAPCstValue, bool LookThroughInstrs = true, 312 bool LookThroughAnyExt = false) { 313 SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes; 314 MachineInstr *MI; 315 316 while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI) && 317 LookThroughInstrs) { 318 switch (MI->getOpcode()) { 319 case TargetOpcode::G_ANYEXT: 320 if (!LookThroughAnyExt) 321 return std::nullopt; 322 [[fallthrough]]; 323 case TargetOpcode::G_TRUNC: 324 case TargetOpcode::G_SEXT: 325 case TargetOpcode::G_ZEXT: 326 SeenOpcodes.push_back(std::make_pair( 327 MI->getOpcode(), 328 MRI.getType(MI->getOperand(0).getReg()).getSizeInBits())); 329 VReg = MI->getOperand(1).getReg(); 330 break; 331 case TargetOpcode::COPY: 332 VReg = MI->getOperand(1).getReg(); 333 if (VReg.isPhysical()) 334 return std::nullopt; 335 break; 336 case TargetOpcode::G_INTTOPTR: 337 VReg = MI->getOperand(1).getReg(); 338 break; 339 default: 340 return std::nullopt; 341 } 342 } 343 if (!MI || !IsConstantOpcode(MI)) 344 return std::nullopt; 345 346 std::optional<APInt> MaybeVal = getAPCstValue(MI); 347 if (!MaybeVal) 348 return std::nullopt; 349 APInt &Val = *MaybeVal; 350 while (!SeenOpcodes.empty()) { 351 std::pair<unsigned, unsigned> OpcodeAndSize = SeenOpcodes.pop_back_val(); 352 switch (OpcodeAndSize.first) { 353 case TargetOpcode::G_TRUNC: 354 Val = Val.trunc(OpcodeAndSize.second); 355 break; 356 case TargetOpcode::G_ANYEXT: 357 case TargetOpcode::G_SEXT: 358 Val = Val.sext(OpcodeAndSize.second); 359 break; 360 case TargetOpcode::G_ZEXT: 361 Val = Val.zext(OpcodeAndSize.second); 362 break; 363 } 364 } 365 366 return ValueAndVReg{Val, VReg}; 367 } 368 369 bool isIConstant(const MachineInstr *MI) { 370 if (!MI) 371 return false; 372 return MI->getOpcode() == TargetOpcode::G_CONSTANT; 373 } 374 375 bool isFConstant(const MachineInstr *MI) { 376 if (!MI) 377 return false; 378 return MI->getOpcode() == TargetOpcode::G_FCONSTANT; 379 } 380 381 bool isAnyConstant(const MachineInstr *MI) { 382 if (!MI) 383 return false; 384 unsigned Opc = MI->getOpcode(); 385 return Opc == TargetOpcode::G_CONSTANT || Opc == TargetOpcode::G_FCONSTANT; 386 } 387 388 std::optional<APInt> getCImmAsAPInt(const MachineInstr *MI) { 389 const MachineOperand &CstVal = MI->getOperand(1); 390 if (CstVal.isCImm()) 391 return CstVal.getCImm()->getValue(); 392 return std::nullopt; 393 } 394 395 std::optional<APInt> getCImmOrFPImmAsAPInt(const MachineInstr *MI) { 396 const MachineOperand &CstVal = MI->getOperand(1); 397 if (CstVal.isCImm()) 398 return CstVal.getCImm()->getValue(); 399 if (CstVal.isFPImm()) 400 return CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 401 return std::nullopt; 402 } 403 404 } // end anonymous namespace 405 406 std::optional<ValueAndVReg> llvm::getIConstantVRegValWithLookThrough( 407 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) { 408 return getConstantVRegValWithLookThrough(VReg, MRI, isIConstant, 409 getCImmAsAPInt, LookThroughInstrs); 410 } 411 412 std::optional<ValueAndVReg> llvm::getAnyConstantVRegValWithLookThrough( 413 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs, 414 bool LookThroughAnyExt) { 415 return getConstantVRegValWithLookThrough( 416 VReg, MRI, isAnyConstant, getCImmOrFPImmAsAPInt, LookThroughInstrs, 417 LookThroughAnyExt); 418 } 419 420 std::optional<FPValueAndVReg> llvm::getFConstantVRegValWithLookThrough( 421 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) { 422 auto Reg = getConstantVRegValWithLookThrough( 423 VReg, MRI, isFConstant, getCImmOrFPImmAsAPInt, LookThroughInstrs); 424 if (!Reg) 425 return std::nullopt; 426 return FPValueAndVReg{getConstantFPVRegVal(Reg->VReg, MRI)->getValueAPF(), 427 Reg->VReg}; 428 } 429 430 const ConstantFP * 431 llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) { 432 MachineInstr *MI = MRI.getVRegDef(VReg); 433 if (TargetOpcode::G_FCONSTANT != MI->getOpcode()) 434 return nullptr; 435 return MI->getOperand(1).getFPImm(); 436 } 437 438 std::optional<DefinitionAndSourceRegister> 439 llvm::getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) { 440 Register DefSrcReg = Reg; 441 auto *DefMI = MRI.getVRegDef(Reg); 442 auto DstTy = MRI.getType(DefMI->getOperand(0).getReg()); 443 if (!DstTy.isValid()) 444 return std::nullopt; 445 unsigned Opc = DefMI->getOpcode(); 446 while (Opc == TargetOpcode::COPY || isPreISelGenericOptimizationHint(Opc)) { 447 Register SrcReg = DefMI->getOperand(1).getReg(); 448 auto SrcTy = MRI.getType(SrcReg); 449 if (!SrcTy.isValid()) 450 break; 451 DefMI = MRI.getVRegDef(SrcReg); 452 DefSrcReg = SrcReg; 453 Opc = DefMI->getOpcode(); 454 } 455 return DefinitionAndSourceRegister{DefMI, DefSrcReg}; 456 } 457 458 MachineInstr *llvm::getDefIgnoringCopies(Register Reg, 459 const MachineRegisterInfo &MRI) { 460 std::optional<DefinitionAndSourceRegister> DefSrcReg = 461 getDefSrcRegIgnoringCopies(Reg, MRI); 462 return DefSrcReg ? DefSrcReg->MI : nullptr; 463 } 464 465 Register llvm::getSrcRegIgnoringCopies(Register Reg, 466 const MachineRegisterInfo &MRI) { 467 std::optional<DefinitionAndSourceRegister> DefSrcReg = 468 getDefSrcRegIgnoringCopies(Reg, MRI); 469 return DefSrcReg ? DefSrcReg->Reg : Register(); 470 } 471 472 MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg, 473 const MachineRegisterInfo &MRI) { 474 MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI); 475 return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr; 476 } 477 478 APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) { 479 if (Size == 32) 480 return APFloat(float(Val)); 481 if (Size == 64) 482 return APFloat(Val); 483 if (Size != 16) 484 llvm_unreachable("Unsupported FPConstant size"); 485 bool Ignored; 486 APFloat APF(Val); 487 APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored); 488 return APF; 489 } 490 491 std::optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, 492 const Register Op1, 493 const Register Op2, 494 const MachineRegisterInfo &MRI) { 495 auto MaybeOp2Cst = getAnyConstantVRegValWithLookThrough(Op2, MRI, false); 496 if (!MaybeOp2Cst) 497 return std::nullopt; 498 499 auto MaybeOp1Cst = getAnyConstantVRegValWithLookThrough(Op1, MRI, false); 500 if (!MaybeOp1Cst) 501 return std::nullopt; 502 503 const APInt &C1 = MaybeOp1Cst->Value; 504 const APInt &C2 = MaybeOp2Cst->Value; 505 switch (Opcode) { 506 default: 507 break; 508 case TargetOpcode::G_ADD: 509 case TargetOpcode::G_PTR_ADD: 510 return C1 + C2; 511 case TargetOpcode::G_AND: 512 return C1 & C2; 513 case TargetOpcode::G_ASHR: 514 return C1.ashr(C2); 515 case TargetOpcode::G_LSHR: 516 return C1.lshr(C2); 517 case TargetOpcode::G_MUL: 518 return C1 * C2; 519 case TargetOpcode::G_OR: 520 return C1 | C2; 521 case TargetOpcode::G_SHL: 522 return C1 << C2; 523 case TargetOpcode::G_SUB: 524 return C1 - C2; 525 case TargetOpcode::G_XOR: 526 return C1 ^ C2; 527 case TargetOpcode::G_UDIV: 528 if (!C2.getBoolValue()) 529 break; 530 return C1.udiv(C2); 531 case TargetOpcode::G_SDIV: 532 if (!C2.getBoolValue()) 533 break; 534 return C1.sdiv(C2); 535 case TargetOpcode::G_UREM: 536 if (!C2.getBoolValue()) 537 break; 538 return C1.urem(C2); 539 case TargetOpcode::G_SREM: 540 if (!C2.getBoolValue()) 541 break; 542 return C1.srem(C2); 543 case TargetOpcode::G_SMIN: 544 return APIntOps::smin(C1, C2); 545 case TargetOpcode::G_SMAX: 546 return APIntOps::smax(C1, C2); 547 case TargetOpcode::G_UMIN: 548 return APIntOps::umin(C1, C2); 549 case TargetOpcode::G_UMAX: 550 return APIntOps::umax(C1, C2); 551 } 552 553 return std::nullopt; 554 } 555 556 std::optional<APFloat> 557 llvm::ConstantFoldFPBinOp(unsigned Opcode, const Register Op1, 558 const Register Op2, const MachineRegisterInfo &MRI) { 559 const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI); 560 if (!Op2Cst) 561 return std::nullopt; 562 563 const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI); 564 if (!Op1Cst) 565 return std::nullopt; 566 567 APFloat C1 = Op1Cst->getValueAPF(); 568 const APFloat &C2 = Op2Cst->getValueAPF(); 569 switch (Opcode) { 570 case TargetOpcode::G_FADD: 571 C1.add(C2, APFloat::rmNearestTiesToEven); 572 return C1; 573 case TargetOpcode::G_FSUB: 574 C1.subtract(C2, APFloat::rmNearestTiesToEven); 575 return C1; 576 case TargetOpcode::G_FMUL: 577 C1.multiply(C2, APFloat::rmNearestTiesToEven); 578 return C1; 579 case TargetOpcode::G_FDIV: 580 C1.divide(C2, APFloat::rmNearestTiesToEven); 581 return C1; 582 case TargetOpcode::G_FREM: 583 C1.mod(C2); 584 return C1; 585 case TargetOpcode::G_FCOPYSIGN: 586 C1.copySign(C2); 587 return C1; 588 case TargetOpcode::G_FMINNUM: 589 return minnum(C1, C2); 590 case TargetOpcode::G_FMAXNUM: 591 return maxnum(C1, C2); 592 case TargetOpcode::G_FMINIMUM: 593 return minimum(C1, C2); 594 case TargetOpcode::G_FMAXIMUM: 595 return maximum(C1, C2); 596 case TargetOpcode::G_FMINNUM_IEEE: 597 case TargetOpcode::G_FMAXNUM_IEEE: 598 // FIXME: These operations were unfortunately named. fminnum/fmaxnum do not 599 // follow the IEEE behavior for signaling nans and follow libm's fmin/fmax, 600 // and currently there isn't a nice wrapper in APFloat for the version with 601 // correct snan handling. 602 break; 603 default: 604 break; 605 } 606 607 return std::nullopt; 608 } 609 610 SmallVector<APInt> 611 llvm::ConstantFoldVectorBinop(unsigned Opcode, const Register Op1, 612 const Register Op2, 613 const MachineRegisterInfo &MRI) { 614 auto *SrcVec2 = getOpcodeDef<GBuildVector>(Op2, MRI); 615 if (!SrcVec2) 616 return SmallVector<APInt>(); 617 618 auto *SrcVec1 = getOpcodeDef<GBuildVector>(Op1, MRI); 619 if (!SrcVec1) 620 return SmallVector<APInt>(); 621 622 SmallVector<APInt> FoldedElements; 623 for (unsigned Idx = 0, E = SrcVec1->getNumSources(); Idx < E; ++Idx) { 624 auto MaybeCst = ConstantFoldBinOp(Opcode, SrcVec1->getSourceReg(Idx), 625 SrcVec2->getSourceReg(Idx), MRI); 626 if (!MaybeCst) 627 return SmallVector<APInt>(); 628 FoldedElements.push_back(*MaybeCst); 629 } 630 return FoldedElements; 631 } 632 633 bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI, 634 bool SNaN) { 635 const MachineInstr *DefMI = MRI.getVRegDef(Val); 636 if (!DefMI) 637 return false; 638 639 const TargetMachine& TM = DefMI->getMF()->getTarget(); 640 if (DefMI->getFlag(MachineInstr::FmNoNans) || TM.Options.NoNaNsFPMath) 641 return true; 642 643 // If the value is a constant, we can obviously see if it is a NaN or not. 644 if (const ConstantFP *FPVal = getConstantFPVRegVal(Val, MRI)) { 645 return !FPVal->getValueAPF().isNaN() || 646 (SNaN && !FPVal->getValueAPF().isSignaling()); 647 } 648 649 if (DefMI->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 650 for (const auto &Op : DefMI->uses()) 651 if (!isKnownNeverNaN(Op.getReg(), MRI, SNaN)) 652 return false; 653 return true; 654 } 655 656 switch (DefMI->getOpcode()) { 657 default: 658 break; 659 case TargetOpcode::G_FADD: 660 case TargetOpcode::G_FSUB: 661 case TargetOpcode::G_FMUL: 662 case TargetOpcode::G_FDIV: 663 case TargetOpcode::G_FREM: 664 case TargetOpcode::G_FSIN: 665 case TargetOpcode::G_FCOS: 666 case TargetOpcode::G_FMA: 667 case TargetOpcode::G_FMAD: 668 if (SNaN) 669 return true; 670 671 // TODO: Need isKnownNeverInfinity 672 return false; 673 case TargetOpcode::G_FMINNUM_IEEE: 674 case TargetOpcode::G_FMAXNUM_IEEE: { 675 if (SNaN) 676 return true; 677 // This can return a NaN if either operand is an sNaN, or if both operands 678 // are NaN. 679 return (isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI) && 680 isKnownNeverSNaN(DefMI->getOperand(2).getReg(), MRI)) || 681 (isKnownNeverSNaN(DefMI->getOperand(1).getReg(), MRI) && 682 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI)); 683 } 684 case TargetOpcode::G_FMINNUM: 685 case TargetOpcode::G_FMAXNUM: { 686 // Only one needs to be known not-nan, since it will be returned if the 687 // other ends up being one. 688 return isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI, SNaN) || 689 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI, SNaN); 690 } 691 } 692 693 if (SNaN) { 694 // FP operations quiet. For now, just handle the ones inserted during 695 // legalization. 696 switch (DefMI->getOpcode()) { 697 case TargetOpcode::G_FPEXT: 698 case TargetOpcode::G_FPTRUNC: 699 case TargetOpcode::G_FCANONICALIZE: 700 return true; 701 default: 702 return false; 703 } 704 } 705 706 return false; 707 } 708 709 Align llvm::inferAlignFromPtrInfo(MachineFunction &MF, 710 const MachinePointerInfo &MPO) { 711 auto PSV = dyn_cast_if_present<const PseudoSourceValue *>(MPO.V); 712 if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(PSV)) { 713 MachineFrameInfo &MFI = MF.getFrameInfo(); 714 return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()), 715 MPO.Offset); 716 } 717 718 if (const Value *V = dyn_cast_if_present<const Value *>(MPO.V)) { 719 const Module *M = MF.getFunction().getParent(); 720 return V->getPointerAlignment(M->getDataLayout()); 721 } 722 723 return Align(1); 724 } 725 726 Register llvm::getFunctionLiveInPhysReg(MachineFunction &MF, 727 const TargetInstrInfo &TII, 728 MCRegister PhysReg, 729 const TargetRegisterClass &RC, 730 const DebugLoc &DL, LLT RegTy) { 731 MachineBasicBlock &EntryMBB = MF.front(); 732 MachineRegisterInfo &MRI = MF.getRegInfo(); 733 Register LiveIn = MRI.getLiveInVirtReg(PhysReg); 734 if (LiveIn) { 735 MachineInstr *Def = MRI.getVRegDef(LiveIn); 736 if (Def) { 737 // FIXME: Should the verifier check this is in the entry block? 738 assert(Def->getParent() == &EntryMBB && "live-in copy not in entry block"); 739 return LiveIn; 740 } 741 742 // It's possible the incoming argument register and copy was added during 743 // lowering, but later deleted due to being/becoming dead. If this happens, 744 // re-insert the copy. 745 } else { 746 // The live in register was not present, so add it. 747 LiveIn = MF.addLiveIn(PhysReg, &RC); 748 if (RegTy.isValid()) 749 MRI.setType(LiveIn, RegTy); 750 } 751 752 BuildMI(EntryMBB, EntryMBB.begin(), DL, TII.get(TargetOpcode::COPY), LiveIn) 753 .addReg(PhysReg); 754 if (!EntryMBB.isLiveIn(PhysReg)) 755 EntryMBB.addLiveIn(PhysReg); 756 return LiveIn; 757 } 758 759 std::optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode, 760 const Register Op1, uint64_t Imm, 761 const MachineRegisterInfo &MRI) { 762 auto MaybeOp1Cst = getIConstantVRegVal(Op1, MRI); 763 if (MaybeOp1Cst) { 764 switch (Opcode) { 765 default: 766 break; 767 case TargetOpcode::G_SEXT_INREG: { 768 LLT Ty = MRI.getType(Op1); 769 return MaybeOp1Cst->trunc(Imm).sext(Ty.getScalarSizeInBits()); 770 } 771 } 772 } 773 return std::nullopt; 774 } 775 776 std::optional<APFloat> 777 llvm::ConstantFoldIntToFloat(unsigned Opcode, LLT DstTy, Register Src, 778 const MachineRegisterInfo &MRI) { 779 assert(Opcode == TargetOpcode::G_SITOFP || Opcode == TargetOpcode::G_UITOFP); 780 if (auto MaybeSrcVal = getIConstantVRegVal(Src, MRI)) { 781 APFloat DstVal(getFltSemanticForLLT(DstTy)); 782 DstVal.convertFromAPInt(*MaybeSrcVal, Opcode == TargetOpcode::G_SITOFP, 783 APFloat::rmNearestTiesToEven); 784 return DstVal; 785 } 786 return std::nullopt; 787 } 788 789 std::optional<SmallVector<unsigned>> 790 llvm::ConstantFoldCTLZ(Register Src, const MachineRegisterInfo &MRI) { 791 LLT Ty = MRI.getType(Src); 792 SmallVector<unsigned> FoldedCTLZs; 793 auto tryFoldScalar = [&](Register R) -> std::optional<unsigned> { 794 auto MaybeCst = getIConstantVRegVal(R, MRI); 795 if (!MaybeCst) 796 return std::nullopt; 797 return MaybeCst->countl_zero(); 798 }; 799 if (Ty.isVector()) { 800 // Try to constant fold each element. 801 auto *BV = getOpcodeDef<GBuildVector>(Src, MRI); 802 if (!BV) 803 return std::nullopt; 804 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) { 805 if (auto MaybeFold = tryFoldScalar(BV->getSourceReg(SrcIdx))) { 806 FoldedCTLZs.emplace_back(*MaybeFold); 807 continue; 808 } 809 return std::nullopt; 810 } 811 return FoldedCTLZs; 812 } 813 if (auto MaybeCst = tryFoldScalar(Src)) { 814 FoldedCTLZs.emplace_back(*MaybeCst); 815 return FoldedCTLZs; 816 } 817 return std::nullopt; 818 } 819 820 bool llvm::isKnownToBeAPowerOfTwo(Register Reg, const MachineRegisterInfo &MRI, 821 GISelKnownBits *KB) { 822 std::optional<DefinitionAndSourceRegister> DefSrcReg = 823 getDefSrcRegIgnoringCopies(Reg, MRI); 824 if (!DefSrcReg) 825 return false; 826 827 const MachineInstr &MI = *DefSrcReg->MI; 828 const LLT Ty = MRI.getType(Reg); 829 830 switch (MI.getOpcode()) { 831 case TargetOpcode::G_CONSTANT: { 832 unsigned BitWidth = Ty.getScalarSizeInBits(); 833 const ConstantInt *CI = MI.getOperand(1).getCImm(); 834 return CI->getValue().zextOrTrunc(BitWidth).isPowerOf2(); 835 } 836 case TargetOpcode::G_SHL: { 837 // A left-shift of a constant one will have exactly one bit set because 838 // shifting the bit off the end is undefined. 839 840 // TODO: Constant splat 841 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) { 842 if (*ConstLHS == 1) 843 return true; 844 } 845 846 break; 847 } 848 case TargetOpcode::G_LSHR: { 849 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) { 850 if (ConstLHS->isSignMask()) 851 return true; 852 } 853 854 break; 855 } 856 case TargetOpcode::G_BUILD_VECTOR: { 857 // TODO: Probably should have a recursion depth guard since you could have 858 // bitcasted vector elements. 859 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) 860 if (!isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB)) 861 return false; 862 863 return true; 864 } 865 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 866 // Only handle constants since we would need to know if number of leading 867 // zeros is greater than the truncation amount. 868 const unsigned BitWidth = Ty.getScalarSizeInBits(); 869 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 870 auto Const = getIConstantVRegVal(MO.getReg(), MRI); 871 if (!Const || !Const->zextOrTrunc(BitWidth).isPowerOf2()) 872 return false; 873 } 874 875 return true; 876 } 877 default: 878 break; 879 } 880 881 if (!KB) 882 return false; 883 884 // More could be done here, though the above checks are enough 885 // to handle some common cases. 886 887 // Fall back to computeKnownBits to catch other known cases. 888 KnownBits Known = KB->getKnownBits(Reg); 889 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 890 } 891 892 void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) { 893 AU.addPreserved<StackProtector>(); 894 } 895 896 LLT llvm::getLCMType(LLT OrigTy, LLT TargetTy) { 897 const unsigned OrigSize = OrigTy.getSizeInBits(); 898 const unsigned TargetSize = TargetTy.getSizeInBits(); 899 900 if (OrigSize == TargetSize) 901 return OrigTy; 902 903 if (OrigTy.isVector()) { 904 const LLT OrigElt = OrigTy.getElementType(); 905 906 if (TargetTy.isVector()) { 907 const LLT TargetElt = TargetTy.getElementType(); 908 909 if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) { 910 int GCDElts = 911 std::gcd(OrigTy.getNumElements(), TargetTy.getNumElements()); 912 // Prefer the original element type. 913 ElementCount Mul = OrigTy.getElementCount() * TargetTy.getNumElements(); 914 return LLT::vector(Mul.divideCoefficientBy(GCDElts), 915 OrigTy.getElementType()); 916 } 917 } else { 918 if (OrigElt.getSizeInBits() == TargetSize) 919 return OrigTy; 920 } 921 922 unsigned LCMSize = std::lcm(OrigSize, TargetSize); 923 return LLT::fixed_vector(LCMSize / OrigElt.getSizeInBits(), OrigElt); 924 } 925 926 if (TargetTy.isVector()) { 927 unsigned LCMSize = std::lcm(OrigSize, TargetSize); 928 return LLT::fixed_vector(LCMSize / OrigSize, OrigTy); 929 } 930 931 unsigned LCMSize = std::lcm(OrigSize, TargetSize); 932 933 // Preserve pointer types. 934 if (LCMSize == OrigSize) 935 return OrigTy; 936 if (LCMSize == TargetSize) 937 return TargetTy; 938 939 return LLT::scalar(LCMSize); 940 } 941 942 LLT llvm::getCoverTy(LLT OrigTy, LLT TargetTy) { 943 if (!OrigTy.isVector() || !TargetTy.isVector() || OrigTy == TargetTy || 944 (OrigTy.getScalarSizeInBits() != TargetTy.getScalarSizeInBits())) 945 return getLCMType(OrigTy, TargetTy); 946 947 unsigned OrigTyNumElts = OrigTy.getNumElements(); 948 unsigned TargetTyNumElts = TargetTy.getNumElements(); 949 if (OrigTyNumElts % TargetTyNumElts == 0) 950 return OrigTy; 951 952 unsigned NumElts = alignTo(OrigTyNumElts, TargetTyNumElts); 953 return LLT::scalarOrVector(ElementCount::getFixed(NumElts), 954 OrigTy.getElementType()); 955 } 956 957 LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) { 958 const unsigned OrigSize = OrigTy.getSizeInBits(); 959 const unsigned TargetSize = TargetTy.getSizeInBits(); 960 961 if (OrigSize == TargetSize) 962 return OrigTy; 963 964 if (OrigTy.isVector()) { 965 LLT OrigElt = OrigTy.getElementType(); 966 if (TargetTy.isVector()) { 967 LLT TargetElt = TargetTy.getElementType(); 968 if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) { 969 int GCD = std::gcd(OrigTy.getNumElements(), TargetTy.getNumElements()); 970 return LLT::scalarOrVector(ElementCount::getFixed(GCD), OrigElt); 971 } 972 } else { 973 // If the source is a vector of pointers, return a pointer element. 974 if (OrigElt.getSizeInBits() == TargetSize) 975 return OrigElt; 976 } 977 978 unsigned GCD = std::gcd(OrigSize, TargetSize); 979 if (GCD == OrigElt.getSizeInBits()) 980 return OrigElt; 981 982 // If we can't produce the original element type, we have to use a smaller 983 // scalar. 984 if (GCD < OrigElt.getSizeInBits()) 985 return LLT::scalar(GCD); 986 return LLT::fixed_vector(GCD / OrigElt.getSizeInBits(), OrigElt); 987 } 988 989 if (TargetTy.isVector()) { 990 // Try to preserve the original element type. 991 LLT TargetElt = TargetTy.getElementType(); 992 if (TargetElt.getSizeInBits() == OrigSize) 993 return OrigTy; 994 } 995 996 unsigned GCD = std::gcd(OrigSize, TargetSize); 997 return LLT::scalar(GCD); 998 } 999 1000 std::optional<int> llvm::getSplatIndex(MachineInstr &MI) { 1001 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 1002 "Only G_SHUFFLE_VECTOR can have a splat index!"); 1003 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 1004 auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; }); 1005 1006 // If all elements are undefined, this shuffle can be considered a splat. 1007 // Return 0 for better potential for callers to simplify. 1008 if (FirstDefinedIdx == Mask.end()) 1009 return 0; 1010 1011 // Make sure all remaining elements are either undef or the same 1012 // as the first non-undef value. 1013 int SplatValue = *FirstDefinedIdx; 1014 if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()), 1015 [&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; })) 1016 return std::nullopt; 1017 1018 return SplatValue; 1019 } 1020 1021 static bool isBuildVectorOp(unsigned Opcode) { 1022 return Opcode == TargetOpcode::G_BUILD_VECTOR || 1023 Opcode == TargetOpcode::G_BUILD_VECTOR_TRUNC; 1024 } 1025 1026 namespace { 1027 1028 std::optional<ValueAndVReg> getAnyConstantSplat(Register VReg, 1029 const MachineRegisterInfo &MRI, 1030 bool AllowUndef) { 1031 MachineInstr *MI = getDefIgnoringCopies(VReg, MRI); 1032 if (!MI) 1033 return std::nullopt; 1034 1035 bool isConcatVectorsOp = MI->getOpcode() == TargetOpcode::G_CONCAT_VECTORS; 1036 if (!isBuildVectorOp(MI->getOpcode()) && !isConcatVectorsOp) 1037 return std::nullopt; 1038 1039 std::optional<ValueAndVReg> SplatValAndReg; 1040 for (MachineOperand &Op : MI->uses()) { 1041 Register Element = Op.getReg(); 1042 // If we have a G_CONCAT_VECTOR, we recursively look into the 1043 // vectors that we're concatenating to see if they're splats. 1044 auto ElementValAndReg = 1045 isConcatVectorsOp 1046 ? getAnyConstantSplat(Element, MRI, AllowUndef) 1047 : getAnyConstantVRegValWithLookThrough(Element, MRI, true, true); 1048 1049 // If AllowUndef, treat undef as value that will result in a constant splat. 1050 if (!ElementValAndReg) { 1051 if (AllowUndef && isa<GImplicitDef>(MRI.getVRegDef(Element))) 1052 continue; 1053 return std::nullopt; 1054 } 1055 1056 // Record splat value 1057 if (!SplatValAndReg) 1058 SplatValAndReg = ElementValAndReg; 1059 1060 // Different constant than the one already recorded, not a constant splat. 1061 if (SplatValAndReg->Value != ElementValAndReg->Value) 1062 return std::nullopt; 1063 } 1064 1065 return SplatValAndReg; 1066 } 1067 1068 } // end anonymous namespace 1069 1070 bool llvm::isBuildVectorConstantSplat(const Register Reg, 1071 const MachineRegisterInfo &MRI, 1072 int64_t SplatValue, bool AllowUndef) { 1073 if (auto SplatValAndReg = getAnyConstantSplat(Reg, MRI, AllowUndef)) 1074 return mi_match(SplatValAndReg->VReg, MRI, m_SpecificICst(SplatValue)); 1075 return false; 1076 } 1077 1078 bool llvm::isBuildVectorConstantSplat(const MachineInstr &MI, 1079 const MachineRegisterInfo &MRI, 1080 int64_t SplatValue, bool AllowUndef) { 1081 return isBuildVectorConstantSplat(MI.getOperand(0).getReg(), MRI, SplatValue, 1082 AllowUndef); 1083 } 1084 1085 std::optional<APInt> 1086 llvm::getIConstantSplatVal(const Register Reg, const MachineRegisterInfo &MRI) { 1087 if (auto SplatValAndReg = 1088 getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false)) { 1089 std::optional<ValueAndVReg> ValAndVReg = 1090 getIConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI); 1091 return ValAndVReg->Value; 1092 } 1093 1094 return std::nullopt; 1095 } 1096 1097 std::optional<APInt> 1098 llvm::getIConstantSplatVal(const MachineInstr &MI, 1099 const MachineRegisterInfo &MRI) { 1100 return getIConstantSplatVal(MI.getOperand(0).getReg(), MRI); 1101 } 1102 1103 std::optional<int64_t> 1104 llvm::getIConstantSplatSExtVal(const Register Reg, 1105 const MachineRegisterInfo &MRI) { 1106 if (auto SplatValAndReg = 1107 getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false)) 1108 return getIConstantVRegSExtVal(SplatValAndReg->VReg, MRI); 1109 return std::nullopt; 1110 } 1111 1112 std::optional<int64_t> 1113 llvm::getIConstantSplatSExtVal(const MachineInstr &MI, 1114 const MachineRegisterInfo &MRI) { 1115 return getIConstantSplatSExtVal(MI.getOperand(0).getReg(), MRI); 1116 } 1117 1118 std::optional<FPValueAndVReg> 1119 llvm::getFConstantSplat(Register VReg, const MachineRegisterInfo &MRI, 1120 bool AllowUndef) { 1121 if (auto SplatValAndReg = getAnyConstantSplat(VReg, MRI, AllowUndef)) 1122 return getFConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI); 1123 return std::nullopt; 1124 } 1125 1126 bool llvm::isBuildVectorAllZeros(const MachineInstr &MI, 1127 const MachineRegisterInfo &MRI, 1128 bool AllowUndef) { 1129 return isBuildVectorConstantSplat(MI, MRI, 0, AllowUndef); 1130 } 1131 1132 bool llvm::isBuildVectorAllOnes(const MachineInstr &MI, 1133 const MachineRegisterInfo &MRI, 1134 bool AllowUndef) { 1135 return isBuildVectorConstantSplat(MI, MRI, -1, AllowUndef); 1136 } 1137 1138 std::optional<RegOrConstant> 1139 llvm::getVectorSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI) { 1140 unsigned Opc = MI.getOpcode(); 1141 if (!isBuildVectorOp(Opc)) 1142 return std::nullopt; 1143 if (auto Splat = getIConstantSplatSExtVal(MI, MRI)) 1144 return RegOrConstant(*Splat); 1145 auto Reg = MI.getOperand(1).getReg(); 1146 if (any_of(make_range(MI.operands_begin() + 2, MI.operands_end()), 1147 [&Reg](const MachineOperand &Op) { return Op.getReg() != Reg; })) 1148 return std::nullopt; 1149 return RegOrConstant(Reg); 1150 } 1151 1152 static bool isConstantScalar(const MachineInstr &MI, 1153 const MachineRegisterInfo &MRI, 1154 bool AllowFP = true, 1155 bool AllowOpaqueConstants = true) { 1156 switch (MI.getOpcode()) { 1157 case TargetOpcode::G_CONSTANT: 1158 case TargetOpcode::G_IMPLICIT_DEF: 1159 return true; 1160 case TargetOpcode::G_FCONSTANT: 1161 return AllowFP; 1162 case TargetOpcode::G_GLOBAL_VALUE: 1163 case TargetOpcode::G_FRAME_INDEX: 1164 case TargetOpcode::G_BLOCK_ADDR: 1165 case TargetOpcode::G_JUMP_TABLE: 1166 return AllowOpaqueConstants; 1167 default: 1168 return false; 1169 } 1170 } 1171 1172 bool llvm::isConstantOrConstantVector(MachineInstr &MI, 1173 const MachineRegisterInfo &MRI) { 1174 Register Def = MI.getOperand(0).getReg(); 1175 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI)) 1176 return true; 1177 GBuildVector *BV = dyn_cast<GBuildVector>(&MI); 1178 if (!BV) 1179 return false; 1180 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) { 1181 if (getIConstantVRegValWithLookThrough(BV->getSourceReg(SrcIdx), MRI) || 1182 getOpcodeDef<GImplicitDef>(BV->getSourceReg(SrcIdx), MRI)) 1183 continue; 1184 return false; 1185 } 1186 return true; 1187 } 1188 1189 bool llvm::isConstantOrConstantVector(const MachineInstr &MI, 1190 const MachineRegisterInfo &MRI, 1191 bool AllowFP, bool AllowOpaqueConstants) { 1192 if (isConstantScalar(MI, MRI, AllowFP, AllowOpaqueConstants)) 1193 return true; 1194 1195 if (!isBuildVectorOp(MI.getOpcode())) 1196 return false; 1197 1198 const unsigned NumOps = MI.getNumOperands(); 1199 for (unsigned I = 1; I != NumOps; ++I) { 1200 const MachineInstr *ElementDef = MRI.getVRegDef(MI.getOperand(I).getReg()); 1201 if (!isConstantScalar(*ElementDef, MRI, AllowFP, AllowOpaqueConstants)) 1202 return false; 1203 } 1204 1205 return true; 1206 } 1207 1208 std::optional<APInt> 1209 llvm::isConstantOrConstantSplatVector(MachineInstr &MI, 1210 const MachineRegisterInfo &MRI) { 1211 Register Def = MI.getOperand(0).getReg(); 1212 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI)) 1213 return C->Value; 1214 auto MaybeCst = getIConstantSplatSExtVal(MI, MRI); 1215 if (!MaybeCst) 1216 return std::nullopt; 1217 const unsigned ScalarSize = MRI.getType(Def).getScalarSizeInBits(); 1218 return APInt(ScalarSize, *MaybeCst, true); 1219 } 1220 1221 bool llvm::isNullOrNullSplat(const MachineInstr &MI, 1222 const MachineRegisterInfo &MRI, bool AllowUndefs) { 1223 switch (MI.getOpcode()) { 1224 case TargetOpcode::G_IMPLICIT_DEF: 1225 return AllowUndefs; 1226 case TargetOpcode::G_CONSTANT: 1227 return MI.getOperand(1).getCImm()->isNullValue(); 1228 case TargetOpcode::G_FCONSTANT: { 1229 const ConstantFP *FPImm = MI.getOperand(1).getFPImm(); 1230 return FPImm->isZero() && !FPImm->isNegative(); 1231 } 1232 default: 1233 if (!AllowUndefs) // TODO: isBuildVectorAllZeros assumes undef is OK already 1234 return false; 1235 return isBuildVectorAllZeros(MI, MRI); 1236 } 1237 } 1238 1239 bool llvm::isAllOnesOrAllOnesSplat(const MachineInstr &MI, 1240 const MachineRegisterInfo &MRI, 1241 bool AllowUndefs) { 1242 switch (MI.getOpcode()) { 1243 case TargetOpcode::G_IMPLICIT_DEF: 1244 return AllowUndefs; 1245 case TargetOpcode::G_CONSTANT: 1246 return MI.getOperand(1).getCImm()->isAllOnesValue(); 1247 default: 1248 if (!AllowUndefs) // TODO: isBuildVectorAllOnes assumes undef is OK already 1249 return false; 1250 return isBuildVectorAllOnes(MI, MRI); 1251 } 1252 } 1253 1254 bool llvm::matchUnaryPredicate( 1255 const MachineRegisterInfo &MRI, Register Reg, 1256 std::function<bool(const Constant *ConstVal)> Match, bool AllowUndefs) { 1257 1258 const MachineInstr *Def = getDefIgnoringCopies(Reg, MRI); 1259 if (AllowUndefs && Def->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) 1260 return Match(nullptr); 1261 1262 // TODO: Also handle fconstant 1263 if (Def->getOpcode() == TargetOpcode::G_CONSTANT) 1264 return Match(Def->getOperand(1).getCImm()); 1265 1266 if (Def->getOpcode() != TargetOpcode::G_BUILD_VECTOR) 1267 return false; 1268 1269 for (unsigned I = 1, E = Def->getNumOperands(); I != E; ++I) { 1270 Register SrcElt = Def->getOperand(I).getReg(); 1271 const MachineInstr *SrcDef = getDefIgnoringCopies(SrcElt, MRI); 1272 if (AllowUndefs && SrcDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) { 1273 if (!Match(nullptr)) 1274 return false; 1275 continue; 1276 } 1277 1278 if (SrcDef->getOpcode() != TargetOpcode::G_CONSTANT || 1279 !Match(SrcDef->getOperand(1).getCImm())) 1280 return false; 1281 } 1282 1283 return true; 1284 } 1285 1286 bool llvm::isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector, 1287 bool IsFP) { 1288 switch (TLI.getBooleanContents(IsVector, IsFP)) { 1289 case TargetLowering::UndefinedBooleanContent: 1290 return Val & 0x1; 1291 case TargetLowering::ZeroOrOneBooleanContent: 1292 return Val == 1; 1293 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1294 return Val == -1; 1295 } 1296 llvm_unreachable("Invalid boolean contents"); 1297 } 1298 1299 bool llvm::isConstFalseVal(const TargetLowering &TLI, int64_t Val, 1300 bool IsVector, bool IsFP) { 1301 switch (TLI.getBooleanContents(IsVector, IsFP)) { 1302 case TargetLowering::UndefinedBooleanContent: 1303 return ~Val & 0x1; 1304 case TargetLowering::ZeroOrOneBooleanContent: 1305 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1306 return Val == 0; 1307 } 1308 llvm_unreachable("Invalid boolean contents"); 1309 } 1310 1311 int64_t llvm::getICmpTrueVal(const TargetLowering &TLI, bool IsVector, 1312 bool IsFP) { 1313 switch (TLI.getBooleanContents(IsVector, IsFP)) { 1314 case TargetLowering::UndefinedBooleanContent: 1315 case TargetLowering::ZeroOrOneBooleanContent: 1316 return 1; 1317 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1318 return -1; 1319 } 1320 llvm_unreachable("Invalid boolean contents"); 1321 } 1322 1323 bool llvm::shouldOptForSize(const MachineBasicBlock &MBB, 1324 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 1325 const auto &F = MBB.getParent()->getFunction(); 1326 return F.hasOptSize() || F.hasMinSize() || 1327 llvm::shouldOptimizeForSize(MBB.getBasicBlock(), PSI, BFI); 1328 } 1329 1330 void llvm::saveUsesAndErase(MachineInstr &MI, MachineRegisterInfo &MRI, 1331 LostDebugLocObserver *LocObserver, 1332 SmallInstListTy &DeadInstChain) { 1333 for (MachineOperand &Op : MI.uses()) { 1334 if (Op.isReg() && Op.getReg().isVirtual()) 1335 DeadInstChain.insert(MRI.getVRegDef(Op.getReg())); 1336 } 1337 LLVM_DEBUG(dbgs() << MI << "Is dead; erasing.\n"); 1338 DeadInstChain.remove(&MI); 1339 MI.eraseFromParent(); 1340 if (LocObserver) 1341 LocObserver->checkpoint(false); 1342 } 1343 1344 void llvm::eraseInstrs(ArrayRef<MachineInstr *> DeadInstrs, 1345 MachineRegisterInfo &MRI, 1346 LostDebugLocObserver *LocObserver) { 1347 SmallInstListTy DeadInstChain; 1348 for (MachineInstr *MI : DeadInstrs) 1349 saveUsesAndErase(*MI, MRI, LocObserver, DeadInstChain); 1350 1351 while (!DeadInstChain.empty()) { 1352 MachineInstr *Inst = DeadInstChain.pop_back_val(); 1353 if (!isTriviallyDead(*Inst, MRI)) 1354 continue; 1355 saveUsesAndErase(*Inst, MRI, LocObserver, DeadInstChain); 1356 } 1357 } 1358 1359 void llvm::eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI, 1360 LostDebugLocObserver *LocObserver) { 1361 return eraseInstrs({&MI}, MRI, LocObserver); 1362 } 1363 1364 void llvm::salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI) { 1365 for (auto &Def : MI.defs()) { 1366 assert(Def.isReg() && "Must be a reg"); 1367 1368 SmallVector<MachineOperand *, 16> DbgUsers; 1369 for (auto &MOUse : MRI.use_operands(Def.getReg())) { 1370 MachineInstr *DbgValue = MOUse.getParent(); 1371 // Ignore partially formed DBG_VALUEs. 1372 if (DbgValue->isNonListDebugValue() && DbgValue->getNumOperands() == 4) { 1373 DbgUsers.push_back(&MOUse); 1374 } 1375 } 1376 1377 if (!DbgUsers.empty()) { 1378 salvageDebugInfoForDbgValue(MRI, MI, DbgUsers); 1379 } 1380 } 1381 } 1382