1 //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the RegBankSelect class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 17 #include "llvm/CodeGen/GlobalISel/Utils.h" 18 #include "llvm/CodeGen/MachineBasicBlock.h" 19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 20 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineOperand.h" 24 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/RegisterBank.h" 27 #include "llvm/CodeGen/RegisterBankInfo.h" 28 #include "llvm/CodeGen/TargetOpcodes.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "llvm/CodeGen/TargetRegisterInfo.h" 31 #include "llvm/CodeGen/TargetSubtargetInfo.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/InitializePasses.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/BlockFrequency.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Compiler.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <algorithm> 43 #include <cassert> 44 #include <cstdint> 45 #include <limits> 46 #include <memory> 47 #include <utility> 48 49 #define DEBUG_TYPE "regbankselect" 50 51 using namespace llvm; 52 53 static cl::opt<RegBankSelect::Mode> RegBankSelectMode( 54 cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional, 55 cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast", 56 "Run the Fast mode (default mapping)"), 57 clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy", 58 "Use the Greedy mode (best local mapping)"))); 59 60 char RegBankSelect::ID = 0; 61 62 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE, 63 "Assign register bank of generic virtual registers", 64 false, false); 65 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 66 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 67 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 68 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, 69 "Assign register bank of generic virtual registers", false, 70 false) 71 72 RegBankSelect::RegBankSelect(char &PassID, Mode RunningMode) 73 : MachineFunctionPass(PassID), OptMode(RunningMode) { 74 if (RegBankSelectMode.getNumOccurrences() != 0) { 75 OptMode = RegBankSelectMode; 76 if (RegBankSelectMode != RunningMode) 77 LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n"); 78 } 79 } 80 81 void RegBankSelect::init(MachineFunction &MF) { 82 RBI = MF.getSubtarget().getRegBankInfo(); 83 assert(RBI && "Cannot work without RegisterBankInfo"); 84 MRI = &MF.getRegInfo(); 85 TRI = MF.getSubtarget().getRegisterInfo(); 86 TPC = &getAnalysis<TargetPassConfig>(); 87 if (OptMode != Mode::Fast) { 88 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 89 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 90 } else { 91 MBFI = nullptr; 92 MBPI = nullptr; 93 } 94 MIRBuilder.setMF(MF); 95 MORE = std::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI); 96 } 97 98 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const { 99 if (OptMode != Mode::Fast) { 100 // We could preserve the information from these two analysis but 101 // the APIs do not allow to do so yet. 102 AU.addRequired<MachineBlockFrequencyInfo>(); 103 AU.addRequired<MachineBranchProbabilityInfo>(); 104 } 105 AU.addRequired<TargetPassConfig>(); 106 getSelectionDAGFallbackAnalysisUsage(AU); 107 MachineFunctionPass::getAnalysisUsage(AU); 108 } 109 110 bool RegBankSelect::assignmentMatch( 111 Register Reg, const RegisterBankInfo::ValueMapping &ValMapping, 112 bool &OnlyAssign) const { 113 // By default we assume we will have to repair something. 114 OnlyAssign = false; 115 // Each part of a break down needs to end up in a different register. 116 // In other word, Reg assignment does not match. 117 if (ValMapping.NumBreakDowns != 1) 118 return false; 119 120 const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI); 121 const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank; 122 // Reg is free of assignment, a simple assignment will make the 123 // register bank to match. 124 OnlyAssign = CurRegBank == nullptr; 125 LLVM_DEBUG(dbgs() << "Does assignment already match: "; 126 if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none"; 127 dbgs() << " against "; 128 assert(DesiredRegBank && "The mapping must be valid"); 129 dbgs() << *DesiredRegBank << '\n';); 130 return CurRegBank == DesiredRegBank; 131 } 132 133 bool RegBankSelect::repairReg( 134 MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping, 135 RegBankSelect::RepairingPlacement &RepairPt, 136 const iterator_range<SmallVectorImpl<Register>::const_iterator> &NewVRegs) { 137 138 assert(ValMapping.NumBreakDowns == (unsigned)size(NewVRegs) && 139 "need new vreg for each breakdown"); 140 141 // An empty range of new register means no repairing. 142 assert(!NewVRegs.empty() && "We should not have to repair"); 143 144 MachineInstr *MI; 145 if (ValMapping.NumBreakDowns == 1) { 146 // Assume we are repairing a use and thus, the original reg will be 147 // the source of the repairing. 148 Register Src = MO.getReg(); 149 Register Dst = *NewVRegs.begin(); 150 151 // If we repair a definition, swap the source and destination for 152 // the repairing. 153 if (MO.isDef()) 154 std::swap(Src, Dst); 155 156 assert((RepairPt.getNumInsertPoints() == 1 || Dst.isPhysical()) && 157 "We are about to create several defs for Dst"); 158 159 // Build the instruction used to repair, then clone it at the right 160 // places. Avoiding buildCopy bypasses the check that Src and Dst have the 161 // same types because the type is a placeholder when this function is called. 162 MI = MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY) 163 .addDef(Dst) 164 .addUse(Src); 165 LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << ':' 166 << printRegClassOrBank(Src, *MRI, TRI) 167 << " to: " << printReg(Dst) << ':' 168 << printRegClassOrBank(Dst, *MRI, TRI) << '\n'); 169 } else { 170 // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT 171 // sequence. 172 assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported"); 173 174 LLT RegTy = MRI->getType(MO.getReg()); 175 if (MO.isDef()) { 176 unsigned MergeOp; 177 if (RegTy.isVector()) { 178 if (ValMapping.NumBreakDowns == RegTy.getNumElements()) 179 MergeOp = TargetOpcode::G_BUILD_VECTOR; 180 else { 181 assert( 182 (ValMapping.BreakDown[0].Length * ValMapping.NumBreakDowns == 183 RegTy.getSizeInBits()) && 184 (ValMapping.BreakDown[0].Length % RegTy.getScalarSizeInBits() == 185 0) && 186 "don't understand this value breakdown"); 187 188 MergeOp = TargetOpcode::G_CONCAT_VECTORS; 189 } 190 } else 191 MergeOp = TargetOpcode::G_MERGE_VALUES; 192 193 auto MergeBuilder = 194 MIRBuilder.buildInstrNoInsert(MergeOp) 195 .addDef(MO.getReg()); 196 197 for (Register SrcReg : NewVRegs) 198 MergeBuilder.addUse(SrcReg); 199 200 MI = MergeBuilder; 201 } else { 202 MachineInstrBuilder UnMergeBuilder = 203 MIRBuilder.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES); 204 for (Register DefReg : NewVRegs) 205 UnMergeBuilder.addDef(DefReg); 206 207 UnMergeBuilder.addUse(MO.getReg()); 208 MI = UnMergeBuilder; 209 } 210 } 211 212 if (RepairPt.getNumInsertPoints() != 1) 213 report_fatal_error("need testcase to support multiple insertion points"); 214 215 // TODO: 216 // Check if MI is legal. if not, we need to legalize all the 217 // instructions we are going to insert. 218 std::unique_ptr<MachineInstr *[]> NewInstrs( 219 new MachineInstr *[RepairPt.getNumInsertPoints()]); 220 bool IsFirst = true; 221 unsigned Idx = 0; 222 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 223 MachineInstr *CurMI; 224 if (IsFirst) 225 CurMI = MI; 226 else 227 CurMI = MIRBuilder.getMF().CloneMachineInstr(MI); 228 InsertPt->insert(*CurMI); 229 NewInstrs[Idx++] = CurMI; 230 IsFirst = false; 231 } 232 // TODO: 233 // Legalize NewInstrs if need be. 234 return true; 235 } 236 237 uint64_t RegBankSelect::getRepairCost( 238 const MachineOperand &MO, 239 const RegisterBankInfo::ValueMapping &ValMapping) const { 240 assert(MO.isReg() && "We should only repair register operand"); 241 assert(ValMapping.NumBreakDowns && "Nothing to map??"); 242 243 bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1; 244 const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI); 245 // If MO does not have a register bank, we should have just been 246 // able to set one unless we have to break the value down. 247 assert(CurRegBank || MO.isDef()); 248 249 // Def: Val <- NewDefs 250 // Same number of values: copy 251 // Different number: Val = build_sequence Defs1, Defs2, ... 252 // Use: NewSources <- Val. 253 // Same number of values: copy. 254 // Different number: Src1, Src2, ... = 255 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ... 256 // We should remember that this value is available somewhere else to 257 // coalesce the value. 258 259 if (ValMapping.NumBreakDowns != 1) 260 return RBI->getBreakDownCost(ValMapping, CurRegBank); 261 262 if (IsSameNumOfValues) { 263 const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank; 264 // If we repair a definition, swap the source and destination for 265 // the repairing. 266 if (MO.isDef()) 267 std::swap(CurRegBank, DesiredRegBank); 268 // TODO: It may be possible to actually avoid the copy. 269 // If we repair something where the source is defined by a copy 270 // and the source of that copy is on the right bank, we can reuse 271 // it for free. 272 // E.g., 273 // RegToRepair<BankA> = copy AlternativeSrc<BankB> 274 // = op RegToRepair<BankA> 275 // We can simply propagate AlternativeSrc instead of copying RegToRepair 276 // into a new virtual register. 277 // We would also need to propagate this information in the 278 // repairing placement. 279 unsigned Cost = RBI->copyCost(*DesiredRegBank, *CurRegBank, 280 RBI->getSizeInBits(MO.getReg(), *MRI, *TRI)); 281 // TODO: use a dedicated constant for ImpossibleCost. 282 if (Cost != std::numeric_limits<unsigned>::max()) 283 return Cost; 284 // Return the legalization cost of that repairing. 285 } 286 return std::numeric_limits<unsigned>::max(); 287 } 288 289 const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping( 290 MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings, 291 SmallVectorImpl<RepairingPlacement> &RepairPts) { 292 assert(!PossibleMappings.empty() && 293 "Do not know how to map this instruction"); 294 295 const RegisterBankInfo::InstructionMapping *BestMapping = nullptr; 296 MappingCost Cost = MappingCost::ImpossibleCost(); 297 SmallVector<RepairingPlacement, 4> LocalRepairPts; 298 for (const RegisterBankInfo::InstructionMapping *CurMapping : 299 PossibleMappings) { 300 MappingCost CurCost = 301 computeMapping(MI, *CurMapping, LocalRepairPts, &Cost); 302 if (CurCost < Cost) { 303 LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n'); 304 Cost = CurCost; 305 BestMapping = CurMapping; 306 RepairPts.clear(); 307 for (RepairingPlacement &RepairPt : LocalRepairPts) 308 RepairPts.emplace_back(std::move(RepairPt)); 309 } 310 } 311 if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) { 312 // If none of the mapping worked that means they are all impossible. 313 // Thus, pick the first one and set an impossible repairing point. 314 // It will trigger the failed isel mode. 315 BestMapping = *PossibleMappings.begin(); 316 RepairPts.emplace_back( 317 RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible)); 318 } else 319 assert(BestMapping && "No suitable mapping for instruction"); 320 return *BestMapping; 321 } 322 323 void RegBankSelect::tryAvoidingSplit( 324 RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO, 325 const RegisterBankInfo::ValueMapping &ValMapping) const { 326 const MachineInstr &MI = *MO.getParent(); 327 assert(RepairPt.hasSplit() && "We should not have to adjust for split"); 328 // Splitting should only occur for PHIs or between terminators, 329 // because we only do local repairing. 330 assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?"); 331 332 assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO && 333 "Repairing placement does not match operand"); 334 335 // If we need splitting for phis, that means it is because we 336 // could not find an insertion point before the terminators of 337 // the predecessor block for this argument. In other words, 338 // the input value is defined by one of the terminators. 339 assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?"); 340 341 // We split to repair the use of a phi or a terminator. 342 if (!MO.isDef()) { 343 if (MI.isTerminator()) { 344 assert(&MI != &(*MI.getParent()->getFirstTerminator()) && 345 "Need to split for the first terminator?!"); 346 } else { 347 // For the PHI case, the split may not be actually required. 348 // In the copy case, a phi is already a copy on the incoming edge, 349 // therefore there is no need to split. 350 if (ValMapping.NumBreakDowns == 1) 351 // This is a already a copy, there is nothing to do. 352 RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign); 353 } 354 return; 355 } 356 357 // At this point, we need to repair a defintion of a terminator. 358 359 // Technically we need to fix the def of MI on all outgoing 360 // edges of MI to keep the repairing local. In other words, we 361 // will create several definitions of the same register. This 362 // does not work for SSA unless that definition is a physical 363 // register. 364 // However, there are other cases where we can get away with 365 // that while still keeping the repairing local. 366 assert(MI.isTerminator() && MO.isDef() && 367 "This code is for the def of a terminator"); 368 369 // Since we use RPO traversal, if we need to repair a definition 370 // this means this definition could be: 371 // 1. Used by PHIs (i.e., this VReg has been visited as part of the 372 // uses of a phi.), or 373 // 2. Part of a target specific instruction (i.e., the target applied 374 // some register class constraints when creating the instruction.) 375 // If the constraints come for #2, the target said that another mapping 376 // is supported so we may just drop them. Indeed, if we do not change 377 // the number of registers holding that value, the uses will get fixed 378 // when we get to them. 379 // Uses in PHIs may have already been proceeded though. 380 // If the constraints come for #1, then, those are weak constraints and 381 // no actual uses may rely on them. However, the problem remains mainly 382 // the same as for #2. If the value stays in one register, we could 383 // just switch the register bank of the definition, but we would need to 384 // account for a repairing cost for each phi we silently change. 385 // 386 // In any case, if the value needs to be broken down into several 387 // registers, the repairing is not local anymore as we need to patch 388 // every uses to rebuild the value in just one register. 389 // 390 // To summarize: 391 // - If the value is in a physical register, we can do the split and 392 // fix locally. 393 // Otherwise if the value is in a virtual register: 394 // - If the value remains in one register, we do not have to split 395 // just switching the register bank would do, but we need to account 396 // in the repairing cost all the phi we changed. 397 // - If the value spans several registers, then we cannot do a local 398 // repairing. 399 400 // Check if this is a physical or virtual register. 401 Register Reg = MO.getReg(); 402 if (Reg.isPhysical()) { 403 // We are going to split every outgoing edges. 404 // Check that this is possible. 405 // FIXME: The machine representation is currently broken 406 // since it also several terminators in one basic block. 407 // Because of that we would technically need a way to get 408 // the targets of just one terminator to know which edges 409 // we have to split. 410 // Assert that we do not hit the ill-formed representation. 411 412 // If there are other terminators before that one, some of 413 // the outgoing edges may not be dominated by this definition. 414 assert(&MI == &(*MI.getParent()->getFirstTerminator()) && 415 "Do not know which outgoing edges are relevant"); 416 const MachineInstr *Next = MI.getNextNode(); 417 assert((!Next || Next->isUnconditionalBranch()) && 418 "Do not know where each terminator ends up"); 419 if (Next) 420 // If the next terminator uses Reg, this means we have 421 // to split right after MI and thus we need a way to ask 422 // which outgoing edges are affected. 423 assert(!Next->readsRegister(Reg) && "Need to split between terminators"); 424 // We will split all the edges and repair there. 425 } else { 426 // This is a virtual register defined by a terminator. 427 if (ValMapping.NumBreakDowns == 1) { 428 // There is nothing to repair, but we may actually lie on 429 // the repairing cost because of the PHIs already proceeded 430 // as already stated. 431 // Though the code will be correct. 432 assert(false && "Repairing cost may not be accurate"); 433 } else { 434 // We need to do non-local repairing. Basically, patch all 435 // the uses (i.e., phis) that we already proceeded. 436 // For now, just say this mapping is not possible. 437 RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible); 438 } 439 } 440 } 441 442 RegBankSelect::MappingCost RegBankSelect::computeMapping( 443 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 444 SmallVectorImpl<RepairingPlacement> &RepairPts, 445 const RegBankSelect::MappingCost *BestCost) { 446 assert((MBFI || !BestCost) && "Costs comparison require MBFI"); 447 448 if (!InstrMapping.isValid()) 449 return MappingCost::ImpossibleCost(); 450 451 // If mapped with InstrMapping, MI will have the recorded cost. 452 MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1); 453 bool Saturated = Cost.addLocalCost(InstrMapping.getCost()); 454 assert(!Saturated && "Possible mapping saturated the cost"); 455 LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI); 456 LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n'); 457 RepairPts.clear(); 458 if (BestCost && Cost > *BestCost) { 459 LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n"); 460 return Cost; 461 } 462 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 463 464 // Moreover, to realize this mapping, the register bank of each operand must 465 // match this mapping. In other words, we may need to locally reassign the 466 // register banks. Account for that repairing cost as well. 467 // In this context, local means in the surrounding of MI. 468 for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands(); 469 OpIdx != EndOpIdx; ++OpIdx) { 470 const MachineOperand &MO = MI.getOperand(OpIdx); 471 if (!MO.isReg()) 472 continue; 473 Register Reg = MO.getReg(); 474 if (!Reg) 475 continue; 476 LLT Ty = MRI.getType(Reg); 477 if (!Ty.isValid()) 478 continue; 479 480 LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n'); 481 const RegisterBankInfo::ValueMapping &ValMapping = 482 InstrMapping.getOperandMapping(OpIdx); 483 // If Reg is already properly mapped, this is free. 484 bool Assign; 485 if (assignmentMatch(Reg, ValMapping, Assign)) { 486 LLVM_DEBUG(dbgs() << "=> is free (match).\n"); 487 continue; 488 } 489 if (Assign) { 490 LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n"); 491 RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this, 492 RepairingPlacement::Reassign)); 493 continue; 494 } 495 496 // Find the insertion point for the repairing code. 497 RepairPts.emplace_back( 498 RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert)); 499 RepairingPlacement &RepairPt = RepairPts.back(); 500 501 // If we need to split a basic block to materialize this insertion point, 502 // we may give a higher cost to this mapping. 503 // Nevertheless, we may get away with the split, so try that first. 504 if (RepairPt.hasSplit()) 505 tryAvoidingSplit(RepairPt, MO, ValMapping); 506 507 // Check that the materialization of the repairing is possible. 508 if (!RepairPt.canMaterialize()) { 509 LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n"); 510 return MappingCost::ImpossibleCost(); 511 } 512 513 // Account for the split cost and repair cost. 514 // Unless the cost is already saturated or we do not care about the cost. 515 if (!BestCost || Saturated) 516 continue; 517 518 // To get accurate information we need MBFI and MBPI. 519 // Thus, if we end up here this information should be here. 520 assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI"); 521 522 // FIXME: We will have to rework the repairing cost model. 523 // The repairing cost depends on the register bank that MO has. 524 // However, when we break down the value into different values, 525 // MO may not have a register bank while still needing repairing. 526 // For the fast mode, we don't compute the cost so that is fine, 527 // but still for the repairing code, we will have to make a choice. 528 // For the greedy mode, we should choose greedily what is the best 529 // choice based on the next use of MO. 530 531 // Sums up the repairing cost of MO at each insertion point. 532 uint64_t RepairCost = getRepairCost(MO, ValMapping); 533 534 // This is an impossible to repair cost. 535 if (RepairCost == std::numeric_limits<unsigned>::max()) 536 return MappingCost::ImpossibleCost(); 537 538 // Bias used for splitting: 5%. 539 const uint64_t PercentageForBias = 5; 540 uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100; 541 // We should not need more than a couple of instructions to repair 542 // an assignment. In other words, the computation should not 543 // overflow because the repairing cost is free of basic block 544 // frequency. 545 assert(((RepairCost < RepairCost * PercentageForBias) && 546 (RepairCost * PercentageForBias < 547 RepairCost * PercentageForBias + 99)) && 548 "Repairing involves more than a billion of instructions?!"); 549 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 550 assert(InsertPt->canMaterialize() && "We should not have made it here"); 551 // We will applied some basic block frequency and those uses uint64_t. 552 if (!InsertPt->isSplit()) 553 Saturated = Cost.addLocalCost(RepairCost); 554 else { 555 uint64_t CostForInsertPt = RepairCost; 556 // Again we shouldn't overflow here givent that 557 // CostForInsertPt is frequency free at this point. 558 assert(CostForInsertPt + Bias > CostForInsertPt && 559 "Repairing + split bias overflows"); 560 CostForInsertPt += Bias; 561 uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt; 562 // Check if we just overflowed. 563 if ((Saturated = PtCost < CostForInsertPt)) 564 Cost.saturate(); 565 else 566 Saturated = Cost.addNonLocalCost(PtCost); 567 } 568 569 // Stop looking into what it takes to repair, this is already 570 // too expensive. 571 if (BestCost && Cost > *BestCost) { 572 LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n"); 573 return Cost; 574 } 575 576 // No need to accumulate more cost information. 577 // We need to still gather the repairing information though. 578 if (Saturated) 579 break; 580 } 581 } 582 LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n"); 583 return Cost; 584 } 585 586 bool RegBankSelect::applyMapping( 587 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 588 SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) { 589 // OpdMapper will hold all the information needed for the rewriting. 590 RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI); 591 592 // First, place the repairing code. 593 for (RepairingPlacement &RepairPt : RepairPts) { 594 if (!RepairPt.canMaterialize() || 595 RepairPt.getKind() == RepairingPlacement::Impossible) 596 return false; 597 assert(RepairPt.getKind() != RepairingPlacement::None && 598 "This should not make its way in the list"); 599 unsigned OpIdx = RepairPt.getOpIdx(); 600 MachineOperand &MO = MI.getOperand(OpIdx); 601 const RegisterBankInfo::ValueMapping &ValMapping = 602 InstrMapping.getOperandMapping(OpIdx); 603 Register Reg = MO.getReg(); 604 605 switch (RepairPt.getKind()) { 606 case RepairingPlacement::Reassign: 607 assert(ValMapping.NumBreakDowns == 1 && 608 "Reassignment should only be for simple mapping"); 609 MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank); 610 break; 611 case RepairingPlacement::Insert: 612 // Don't insert additional instruction for debug instruction. 613 if (MI.isDebugInstr()) 614 break; 615 OpdMapper.createVRegs(OpIdx); 616 if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx))) 617 return false; 618 break; 619 default: 620 llvm_unreachable("Other kind should not happen"); 621 } 622 } 623 624 // Second, rewrite the instruction. 625 LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n'); 626 RBI->applyMapping(OpdMapper); 627 628 return true; 629 } 630 631 bool RegBankSelect::assignInstr(MachineInstr &MI) { 632 LLVM_DEBUG(dbgs() << "Assign: " << MI); 633 634 unsigned Opc = MI.getOpcode(); 635 if (isPreISelGenericOptimizationHint(Opc)) { 636 assert((Opc == TargetOpcode::G_ASSERT_ZEXT || 637 Opc == TargetOpcode::G_ASSERT_SEXT || 638 Opc == TargetOpcode::G_ASSERT_ALIGN) && 639 "Unexpected hint opcode!"); 640 // The only correct mapping for these is to always use the source register 641 // bank. 642 const RegisterBank *RB = 643 RBI->getRegBank(MI.getOperand(1).getReg(), *MRI, *TRI); 644 // We can assume every instruction above this one has a selected register 645 // bank. 646 assert(RB && "Expected source register to have a register bank?"); 647 LLVM_DEBUG(dbgs() << "... Hint always uses source's register bank.\n"); 648 MRI->setRegBank(MI.getOperand(0).getReg(), *RB); 649 return true; 650 } 651 652 // Remember the repairing placement for all the operands. 653 SmallVector<RepairingPlacement, 4> RepairPts; 654 655 const RegisterBankInfo::InstructionMapping *BestMapping; 656 if (OptMode == RegBankSelect::Mode::Fast) { 657 BestMapping = &RBI->getInstrMapping(MI); 658 MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts); 659 (void)DefaultCost; 660 if (DefaultCost == MappingCost::ImpossibleCost()) 661 return false; 662 } else { 663 RegisterBankInfo::InstructionMappings PossibleMappings = 664 RBI->getInstrPossibleMappings(MI); 665 if (PossibleMappings.empty()) 666 return false; 667 BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts); 668 } 669 // Make sure the mapping is valid for MI. 670 assert(BestMapping->verify(MI) && "Invalid instruction mapping"); 671 672 LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n'); 673 674 // After this call, MI may not be valid anymore. 675 // Do not use it. 676 return applyMapping(MI, *BestMapping, RepairPts); 677 } 678 679 bool RegBankSelect::assignRegisterBanks(MachineFunction &MF) { 680 // Walk the function and assign register banks to all operands. 681 // Use a RPOT to make sure all registers are assigned before we choose 682 // the best mapping of the current instruction. 683 ReversePostOrderTraversal<MachineFunction*> RPOT(&MF); 684 for (MachineBasicBlock *MBB : RPOT) { 685 // Set a sensible insertion point so that subsequent calls to 686 // MIRBuilder. 687 MIRBuilder.setMBB(*MBB); 688 SmallVector<MachineInstr *> WorkList( 689 make_pointer_range(reverse(MBB->instrs()))); 690 691 while (!WorkList.empty()) { 692 MachineInstr &MI = *WorkList.pop_back_val(); 693 694 // Ignore target-specific post-isel instructions: they should use proper 695 // regclasses. 696 if (isTargetSpecificOpcode(MI.getOpcode()) && !MI.isPreISelOpcode()) 697 continue; 698 699 // Ignore inline asm instructions: they should use physical 700 // registers/regclasses 701 if (MI.isInlineAsm()) 702 continue; 703 704 // Ignore IMPLICIT_DEF which must have a regclass. 705 if (MI.isImplicitDef()) 706 continue; 707 708 if (!assignInstr(MI)) { 709 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", 710 "unable to map instruction", MI); 711 return false; 712 } 713 } 714 } 715 716 return true; 717 } 718 719 bool RegBankSelect::checkFunctionIsLegal(MachineFunction &MF) const { 720 #ifndef NDEBUG 721 if (!DisableGISelLegalityCheck) { 722 if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) { 723 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", 724 "instruction is not legal", *MI); 725 return false; 726 } 727 } 728 #endif 729 return true; 730 } 731 732 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) { 733 // If the ISel pipeline failed, do not bother running that pass. 734 if (MF.getProperties().hasProperty( 735 MachineFunctionProperties::Property::FailedISel)) 736 return false; 737 738 LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n'); 739 const Function &F = MF.getFunction(); 740 Mode SaveOptMode = OptMode; 741 if (F.hasOptNone()) 742 OptMode = Mode::Fast; 743 init(MF); 744 745 #ifndef NDEBUG 746 if (!checkFunctionIsLegal(MF)) 747 return false; 748 #endif 749 750 assignRegisterBanks(MF); 751 752 OptMode = SaveOptMode; 753 return false; 754 } 755 756 //------------------------------------------------------------------------------ 757 // Helper Classes Implementation 758 //------------------------------------------------------------------------------ 759 RegBankSelect::RepairingPlacement::RepairingPlacement( 760 MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P, 761 RepairingPlacement::RepairingKind Kind) 762 // Default is, we are going to insert code to repair OpIdx. 763 : Kind(Kind), OpIdx(OpIdx), 764 CanMaterialize(Kind != RepairingKind::Impossible), P(P) { 765 const MachineOperand &MO = MI.getOperand(OpIdx); 766 assert(MO.isReg() && "Trying to repair a non-reg operand"); 767 768 if (Kind != RepairingKind::Insert) 769 return; 770 771 // Repairings for definitions happen after MI, uses happen before. 772 bool Before = !MO.isDef(); 773 774 // Check if we are done with MI. 775 if (!MI.isPHI() && !MI.isTerminator()) { 776 addInsertPoint(MI, Before); 777 // We are done with the initialization. 778 return; 779 } 780 781 // Now, look for the special cases. 782 if (MI.isPHI()) { 783 // - PHI must be the first instructions: 784 // * Before, we have to split the related incoming edge. 785 // * After, move the insertion point past the last phi. 786 if (!Before) { 787 MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI(); 788 if (It != MI.getParent()->end()) 789 addInsertPoint(*It, /*Before*/ true); 790 else 791 addInsertPoint(*(--It), /*Before*/ false); 792 return; 793 } 794 // We repair a use of a phi, we may need to split the related edge. 795 MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB(); 796 // Check if we can move the insertion point prior to the 797 // terminators of the predecessor. 798 Register Reg = MO.getReg(); 799 MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr(); 800 for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It) 801 if (It->modifiesRegister(Reg, &TRI)) { 802 // We cannot hoist the repairing code in the predecessor. 803 // Split the edge. 804 addInsertPoint(Pred, *MI.getParent()); 805 return; 806 } 807 // At this point, we can insert in Pred. 808 809 // - If It is invalid, Pred is empty and we can insert in Pred 810 // wherever we want. 811 // - If It is valid, It is the first non-terminator, insert after It. 812 if (It == Pred.end()) 813 addInsertPoint(Pred, /*Beginning*/ false); 814 else 815 addInsertPoint(*It, /*Before*/ false); 816 } else { 817 // - Terminators must be the last instructions: 818 // * Before, move the insert point before the first terminator. 819 // * After, we have to split the outcoming edges. 820 if (Before) { 821 // Check whether Reg is defined by any terminator. 822 MachineBasicBlock::reverse_iterator It = MI; 823 auto REnd = MI.getParent()->rend(); 824 825 for (; It != REnd && It->isTerminator(); ++It) { 826 assert(!It->modifiesRegister(MO.getReg(), &TRI) && 827 "copy insertion in middle of terminators not handled"); 828 } 829 830 if (It == REnd) { 831 addInsertPoint(*MI.getParent()->begin(), true); 832 return; 833 } 834 835 // We are sure to be right before the first terminator. 836 addInsertPoint(*It, /*Before*/ false); 837 return; 838 } 839 // Make sure Reg is not redefined by other terminators, otherwise 840 // we do not know how to split. 841 for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end(); 842 ++It != End;) 843 // The machine verifier should reject this kind of code. 844 assert(It->modifiesRegister(MO.getReg(), &TRI) && 845 "Do not know where to split"); 846 // Split each outcoming edges. 847 MachineBasicBlock &Src = *MI.getParent(); 848 for (auto &Succ : Src.successors()) 849 addInsertPoint(Src, Succ); 850 } 851 } 852 853 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI, 854 bool Before) { 855 addInsertPoint(*new InstrInsertPoint(MI, Before)); 856 } 857 858 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB, 859 bool Beginning) { 860 addInsertPoint(*new MBBInsertPoint(MBB, Beginning)); 861 } 862 863 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src, 864 MachineBasicBlock &Dst) { 865 addInsertPoint(*new EdgeInsertPoint(Src, Dst, P)); 866 } 867 868 void RegBankSelect::RepairingPlacement::addInsertPoint( 869 RegBankSelect::InsertPoint &Point) { 870 CanMaterialize &= Point.canMaterialize(); 871 HasSplit |= Point.isSplit(); 872 InsertPoints.emplace_back(&Point); 873 } 874 875 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr, 876 bool Before) 877 : Instr(Instr), Before(Before) { 878 // Since we do not support splitting, we do not need to update 879 // liveness and such, so do not do anything with P. 880 assert((!Before || !Instr.isPHI()) && 881 "Splitting before phis requires more points"); 882 assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) && 883 "Splitting between phis does not make sense"); 884 } 885 886 void RegBankSelect::InstrInsertPoint::materialize() { 887 if (isSplit()) { 888 // Slice and return the beginning of the new block. 889 // If we need to split between the terminators, we theoritically 890 // need to know where the first and second set of terminators end 891 // to update the successors properly. 892 // Now, in pratice, we should have a maximum of 2 branch 893 // instructions; one conditional and one unconditional. Therefore 894 // we know how to update the successor by looking at the target of 895 // the unconditional branch. 896 // If we end up splitting at some point, then, we should update 897 // the liveness information and such. I.e., we would need to 898 // access P here. 899 // The machine verifier should actually make sure such cases 900 // cannot happen. 901 llvm_unreachable("Not yet implemented"); 902 } 903 // Otherwise the insertion point is just the current or next 904 // instruction depending on Before. I.e., there is nothing to do 905 // here. 906 } 907 908 bool RegBankSelect::InstrInsertPoint::isSplit() const { 909 // If the insertion point is after a terminator, we need to split. 910 if (!Before) 911 return Instr.isTerminator(); 912 // If we insert before an instruction that is after a terminator, 913 // we are still after a terminator. 914 return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator(); 915 } 916 917 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const { 918 // Even if we need to split, because we insert between terminators, 919 // this split has actually the same frequency as the instruction. 920 const MachineBlockFrequencyInfo *MBFI = 921 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 922 if (!MBFI) 923 return 1; 924 return MBFI->getBlockFreq(Instr.getParent()).getFrequency(); 925 } 926 927 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const { 928 const MachineBlockFrequencyInfo *MBFI = 929 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 930 if (!MBFI) 931 return 1; 932 return MBFI->getBlockFreq(&MBB).getFrequency(); 933 } 934 935 void RegBankSelect::EdgeInsertPoint::materialize() { 936 // If we end up repairing twice at the same place before materializing the 937 // insertion point, we may think we have to split an edge twice. 938 // We should have a factory for the insert point such that identical points 939 // are the same instance. 940 assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) && 941 "This point has already been split"); 942 MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P); 943 assert(NewBB && "Invalid call to materialize"); 944 // We reuse the destination block to hold the information of the new block. 945 DstOrSplit = NewBB; 946 } 947 948 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const { 949 const MachineBlockFrequencyInfo *MBFI = 950 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 951 if (!MBFI) 952 return 1; 953 if (WasMaterialized) 954 return MBFI->getBlockFreq(DstOrSplit).getFrequency(); 955 956 const MachineBranchProbabilityInfo *MBPI = 957 P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>(); 958 if (!MBPI) 959 return 1; 960 // The basic block will be on the edge. 961 return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit)) 962 .getFrequency(); 963 } 964 965 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const { 966 // If this is not a critical edge, we should not have used this insert 967 // point. Indeed, either the successor or the predecessor should 968 // have do. 969 assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 && 970 "Edge is not critical"); 971 return Src.canSplitCriticalEdge(DstOrSplit); 972 } 973 974 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq) 975 : LocalFreq(LocalFreq.getFrequency()) {} 976 977 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) { 978 // Check if this overflows. 979 if (LocalCost + Cost < LocalCost) { 980 saturate(); 981 return true; 982 } 983 LocalCost += Cost; 984 return isSaturated(); 985 } 986 987 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) { 988 // Check if this overflows. 989 if (NonLocalCost + Cost < NonLocalCost) { 990 saturate(); 991 return true; 992 } 993 NonLocalCost += Cost; 994 return isSaturated(); 995 } 996 997 bool RegBankSelect::MappingCost::isSaturated() const { 998 return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX && 999 LocalFreq == UINT64_MAX; 1000 } 1001 1002 void RegBankSelect::MappingCost::saturate() { 1003 *this = ImpossibleCost(); 1004 --LocalCost; 1005 } 1006 1007 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() { 1008 return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX); 1009 } 1010 1011 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const { 1012 // Sort out the easy cases. 1013 if (*this == Cost) 1014 return false; 1015 // If one is impossible to realize the other is cheaper unless it is 1016 // impossible as well. 1017 if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost())) 1018 return (*this == ImpossibleCost()) < (Cost == ImpossibleCost()); 1019 // If one is saturated the other is cheaper, unless it is saturated 1020 // as well. 1021 if (isSaturated() || Cost.isSaturated()) 1022 return isSaturated() < Cost.isSaturated(); 1023 // At this point we know both costs hold sensible values. 1024 1025 // If both values have a different base frequency, there is no much 1026 // we can do but to scale everything. 1027 // However, if they have the same base frequency we can avoid making 1028 // complicated computation. 1029 uint64_t ThisLocalAdjust; 1030 uint64_t OtherLocalAdjust; 1031 if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) { 1032 1033 // At this point, we know the local costs are comparable. 1034 // Do the case that do not involve potential overflow first. 1035 if (NonLocalCost == Cost.NonLocalCost) 1036 // Since the non-local costs do not discriminate on the result, 1037 // just compare the local costs. 1038 return LocalCost < Cost.LocalCost; 1039 1040 // The base costs are comparable so we may only keep the relative 1041 // value to increase our chances of avoiding overflows. 1042 ThisLocalAdjust = 0; 1043 OtherLocalAdjust = 0; 1044 if (LocalCost < Cost.LocalCost) 1045 OtherLocalAdjust = Cost.LocalCost - LocalCost; 1046 else 1047 ThisLocalAdjust = LocalCost - Cost.LocalCost; 1048 } else { 1049 ThisLocalAdjust = LocalCost; 1050 OtherLocalAdjust = Cost.LocalCost; 1051 } 1052 1053 // The non-local costs are comparable, just keep the relative value. 1054 uint64_t ThisNonLocalAdjust = 0; 1055 uint64_t OtherNonLocalAdjust = 0; 1056 if (NonLocalCost < Cost.NonLocalCost) 1057 OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost; 1058 else 1059 ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost; 1060 // Scale everything to make them comparable. 1061 uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq; 1062 // Check for overflow on that operation. 1063 bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust || 1064 ThisScaledCost < LocalFreq); 1065 uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq; 1066 // Check for overflow on the last operation. 1067 bool OtherOverflows = 1068 OtherLocalAdjust && 1069 (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq); 1070 // Add the non-local costs. 1071 ThisOverflows |= ThisNonLocalAdjust && 1072 ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust; 1073 ThisScaledCost += ThisNonLocalAdjust; 1074 OtherOverflows |= OtherNonLocalAdjust && 1075 OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust; 1076 OtherScaledCost += OtherNonLocalAdjust; 1077 // If both overflows, we cannot compare without additional 1078 // precision, e.g., APInt. Just give up on that case. 1079 if (ThisOverflows && OtherOverflows) 1080 return false; 1081 // If one overflows but not the other, we can still compare. 1082 if (ThisOverflows || OtherOverflows) 1083 return ThisOverflows < OtherOverflows; 1084 // Otherwise, just compare the values. 1085 return ThisScaledCost < OtherScaledCost; 1086 } 1087 1088 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const { 1089 return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost && 1090 LocalFreq == Cost.LocalFreq; 1091 } 1092 1093 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1094 LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const { 1095 print(dbgs()); 1096 dbgs() << '\n'; 1097 } 1098 #endif 1099 1100 void RegBankSelect::MappingCost::print(raw_ostream &OS) const { 1101 if (*this == ImpossibleCost()) { 1102 OS << "impossible"; 1103 return; 1104 } 1105 if (isSaturated()) { 1106 OS << "saturated"; 1107 return; 1108 } 1109 OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost; 1110 } 1111