1 //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the RegBankSelect class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 17 #include "llvm/CodeGen/GlobalISel/Utils.h" 18 #include "llvm/CodeGen/MachineBasicBlock.h" 19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 20 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineOperand.h" 24 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/RegisterBank.h" 27 #include "llvm/CodeGen/RegisterBankInfo.h" 28 #include "llvm/CodeGen/TargetOpcodes.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "llvm/CodeGen/TargetRegisterInfo.h" 31 #include "llvm/CodeGen/TargetSubtargetInfo.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/InitializePasses.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/BlockFrequency.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Compiler.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <algorithm> 43 #include <cassert> 44 #include <cstdint> 45 #include <limits> 46 #include <memory> 47 #include <utility> 48 49 #define DEBUG_TYPE "regbankselect" 50 51 using namespace llvm; 52 53 static cl::opt<RegBankSelect::Mode> RegBankSelectMode( 54 cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional, 55 cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast", 56 "Run the Fast mode (default mapping)"), 57 clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy", 58 "Use the Greedy mode (best local mapping)"))); 59 60 char RegBankSelect::ID = 0; 61 62 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE, 63 "Assign register bank of generic virtual registers", 64 false, false); 65 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 66 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 67 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 68 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, 69 "Assign register bank of generic virtual registers", false, 70 false) 71 72 RegBankSelect::RegBankSelect(Mode RunningMode) 73 : MachineFunctionPass(ID), OptMode(RunningMode) { 74 if (RegBankSelectMode.getNumOccurrences() != 0) { 75 OptMode = RegBankSelectMode; 76 if (RegBankSelectMode != RunningMode) 77 LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n"); 78 } 79 } 80 81 void RegBankSelect::init(MachineFunction &MF) { 82 RBI = MF.getSubtarget().getRegBankInfo(); 83 assert(RBI && "Cannot work without RegisterBankInfo"); 84 MRI = &MF.getRegInfo(); 85 TRI = MF.getSubtarget().getRegisterInfo(); 86 TPC = &getAnalysis<TargetPassConfig>(); 87 if (OptMode != Mode::Fast) { 88 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 89 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 90 } else { 91 MBFI = nullptr; 92 MBPI = nullptr; 93 } 94 MIRBuilder.setMF(MF); 95 MORE = std::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI); 96 } 97 98 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const { 99 if (OptMode != Mode::Fast) { 100 // We could preserve the information from these two analysis but 101 // the APIs do not allow to do so yet. 102 AU.addRequired<MachineBlockFrequencyInfo>(); 103 AU.addRequired<MachineBranchProbabilityInfo>(); 104 } 105 AU.addRequired<TargetPassConfig>(); 106 getSelectionDAGFallbackAnalysisUsage(AU); 107 MachineFunctionPass::getAnalysisUsage(AU); 108 } 109 110 bool RegBankSelect::assignmentMatch( 111 Register Reg, const RegisterBankInfo::ValueMapping &ValMapping, 112 bool &OnlyAssign) const { 113 // By default we assume we will have to repair something. 114 OnlyAssign = false; 115 // Each part of a break down needs to end up in a different register. 116 // In other word, Reg assignment does not match. 117 if (ValMapping.NumBreakDowns != 1) 118 return false; 119 120 const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI); 121 const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank; 122 // Reg is free of assignment, a simple assignment will make the 123 // register bank to match. 124 OnlyAssign = CurRegBank == nullptr; 125 LLVM_DEBUG(dbgs() << "Does assignment already match: "; 126 if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none"; 127 dbgs() << " against "; 128 assert(DesiredRegBank && "The mapping must be valid"); 129 dbgs() << *DesiredRegBank << '\n';); 130 return CurRegBank == DesiredRegBank; 131 } 132 133 bool RegBankSelect::repairReg( 134 MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping, 135 RegBankSelect::RepairingPlacement &RepairPt, 136 const iterator_range<SmallVectorImpl<Register>::const_iterator> &NewVRegs) { 137 138 assert(ValMapping.NumBreakDowns == (unsigned)size(NewVRegs) && 139 "need new vreg for each breakdown"); 140 141 // An empty range of new register means no repairing. 142 assert(!NewVRegs.empty() && "We should not have to repair"); 143 144 MachineInstr *MI; 145 if (ValMapping.NumBreakDowns == 1) { 146 // Assume we are repairing a use and thus, the original reg will be 147 // the source of the repairing. 148 Register Src = MO.getReg(); 149 Register Dst = *NewVRegs.begin(); 150 151 // If we repair a definition, swap the source and destination for 152 // the repairing. 153 if (MO.isDef()) 154 std::swap(Src, Dst); 155 156 assert((RepairPt.getNumInsertPoints() == 1 || Dst.isPhysical()) && 157 "We are about to create several defs for Dst"); 158 159 // Build the instruction used to repair, then clone it at the right 160 // places. Avoiding buildCopy bypasses the check that Src and Dst have the 161 // same types because the type is a placeholder when this function is called. 162 MI = MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY) 163 .addDef(Dst) 164 .addUse(Src); 165 LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst) 166 << '\n'); 167 } else { 168 // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT 169 // sequence. 170 assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported"); 171 172 LLT RegTy = MRI->getType(MO.getReg()); 173 if (MO.isDef()) { 174 unsigned MergeOp; 175 if (RegTy.isVector()) { 176 if (ValMapping.NumBreakDowns == RegTy.getNumElements()) 177 MergeOp = TargetOpcode::G_BUILD_VECTOR; 178 else { 179 assert( 180 (ValMapping.BreakDown[0].Length * ValMapping.NumBreakDowns == 181 RegTy.getSizeInBits()) && 182 (ValMapping.BreakDown[0].Length % RegTy.getScalarSizeInBits() == 183 0) && 184 "don't understand this value breakdown"); 185 186 MergeOp = TargetOpcode::G_CONCAT_VECTORS; 187 } 188 } else 189 MergeOp = TargetOpcode::G_MERGE_VALUES; 190 191 auto MergeBuilder = 192 MIRBuilder.buildInstrNoInsert(MergeOp) 193 .addDef(MO.getReg()); 194 195 for (Register SrcReg : NewVRegs) 196 MergeBuilder.addUse(SrcReg); 197 198 MI = MergeBuilder; 199 } else { 200 MachineInstrBuilder UnMergeBuilder = 201 MIRBuilder.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES); 202 for (Register DefReg : NewVRegs) 203 UnMergeBuilder.addDef(DefReg); 204 205 UnMergeBuilder.addUse(MO.getReg()); 206 MI = UnMergeBuilder; 207 } 208 } 209 210 if (RepairPt.getNumInsertPoints() != 1) 211 report_fatal_error("need testcase to support multiple insertion points"); 212 213 // TODO: 214 // Check if MI is legal. if not, we need to legalize all the 215 // instructions we are going to insert. 216 std::unique_ptr<MachineInstr *[]> NewInstrs( 217 new MachineInstr *[RepairPt.getNumInsertPoints()]); 218 bool IsFirst = true; 219 unsigned Idx = 0; 220 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 221 MachineInstr *CurMI; 222 if (IsFirst) 223 CurMI = MI; 224 else 225 CurMI = MIRBuilder.getMF().CloneMachineInstr(MI); 226 InsertPt->insert(*CurMI); 227 NewInstrs[Idx++] = CurMI; 228 IsFirst = false; 229 } 230 // TODO: 231 // Legalize NewInstrs if need be. 232 return true; 233 } 234 235 uint64_t RegBankSelect::getRepairCost( 236 const MachineOperand &MO, 237 const RegisterBankInfo::ValueMapping &ValMapping) const { 238 assert(MO.isReg() && "We should only repair register operand"); 239 assert(ValMapping.NumBreakDowns && "Nothing to map??"); 240 241 bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1; 242 const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI); 243 // If MO does not have a register bank, we should have just been 244 // able to set one unless we have to break the value down. 245 assert(CurRegBank || MO.isDef()); 246 247 // Def: Val <- NewDefs 248 // Same number of values: copy 249 // Different number: Val = build_sequence Defs1, Defs2, ... 250 // Use: NewSources <- Val. 251 // Same number of values: copy. 252 // Different number: Src1, Src2, ... = 253 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ... 254 // We should remember that this value is available somewhere else to 255 // coalesce the value. 256 257 if (ValMapping.NumBreakDowns != 1) 258 return RBI->getBreakDownCost(ValMapping, CurRegBank); 259 260 if (IsSameNumOfValues) { 261 const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank; 262 // If we repair a definition, swap the source and destination for 263 // the repairing. 264 if (MO.isDef()) 265 std::swap(CurRegBank, DesiredRegBank); 266 // TODO: It may be possible to actually avoid the copy. 267 // If we repair something where the source is defined by a copy 268 // and the source of that copy is on the right bank, we can reuse 269 // it for free. 270 // E.g., 271 // RegToRepair<BankA> = copy AlternativeSrc<BankB> 272 // = op RegToRepair<BankA> 273 // We can simply propagate AlternativeSrc instead of copying RegToRepair 274 // into a new virtual register. 275 // We would also need to propagate this information in the 276 // repairing placement. 277 unsigned Cost = RBI->copyCost(*DesiredRegBank, *CurRegBank, 278 RBI->getSizeInBits(MO.getReg(), *MRI, *TRI)); 279 // TODO: use a dedicated constant for ImpossibleCost. 280 if (Cost != std::numeric_limits<unsigned>::max()) 281 return Cost; 282 // Return the legalization cost of that repairing. 283 } 284 return std::numeric_limits<unsigned>::max(); 285 } 286 287 const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping( 288 MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings, 289 SmallVectorImpl<RepairingPlacement> &RepairPts) { 290 assert(!PossibleMappings.empty() && 291 "Do not know how to map this instruction"); 292 293 const RegisterBankInfo::InstructionMapping *BestMapping = nullptr; 294 MappingCost Cost = MappingCost::ImpossibleCost(); 295 SmallVector<RepairingPlacement, 4> LocalRepairPts; 296 for (const RegisterBankInfo::InstructionMapping *CurMapping : 297 PossibleMappings) { 298 MappingCost CurCost = 299 computeMapping(MI, *CurMapping, LocalRepairPts, &Cost); 300 if (CurCost < Cost) { 301 LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n'); 302 Cost = CurCost; 303 BestMapping = CurMapping; 304 RepairPts.clear(); 305 for (RepairingPlacement &RepairPt : LocalRepairPts) 306 RepairPts.emplace_back(std::move(RepairPt)); 307 } 308 } 309 if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) { 310 // If none of the mapping worked that means they are all impossible. 311 // Thus, pick the first one and set an impossible repairing point. 312 // It will trigger the failed isel mode. 313 BestMapping = *PossibleMappings.begin(); 314 RepairPts.emplace_back( 315 RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible)); 316 } else 317 assert(BestMapping && "No suitable mapping for instruction"); 318 return *BestMapping; 319 } 320 321 void RegBankSelect::tryAvoidingSplit( 322 RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO, 323 const RegisterBankInfo::ValueMapping &ValMapping) const { 324 const MachineInstr &MI = *MO.getParent(); 325 assert(RepairPt.hasSplit() && "We should not have to adjust for split"); 326 // Splitting should only occur for PHIs or between terminators, 327 // because we only do local repairing. 328 assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?"); 329 330 assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO && 331 "Repairing placement does not match operand"); 332 333 // If we need splitting for phis, that means it is because we 334 // could not find an insertion point before the terminators of 335 // the predecessor block for this argument. In other words, 336 // the input value is defined by one of the terminators. 337 assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?"); 338 339 // We split to repair the use of a phi or a terminator. 340 if (!MO.isDef()) { 341 if (MI.isTerminator()) { 342 assert(&MI != &(*MI.getParent()->getFirstTerminator()) && 343 "Need to split for the first terminator?!"); 344 } else { 345 // For the PHI case, the split may not be actually required. 346 // In the copy case, a phi is already a copy on the incoming edge, 347 // therefore there is no need to split. 348 if (ValMapping.NumBreakDowns == 1) 349 // This is a already a copy, there is nothing to do. 350 RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign); 351 } 352 return; 353 } 354 355 // At this point, we need to repair a defintion of a terminator. 356 357 // Technically we need to fix the def of MI on all outgoing 358 // edges of MI to keep the repairing local. In other words, we 359 // will create several definitions of the same register. This 360 // does not work for SSA unless that definition is a physical 361 // register. 362 // However, there are other cases where we can get away with 363 // that while still keeping the repairing local. 364 assert(MI.isTerminator() && MO.isDef() && 365 "This code is for the def of a terminator"); 366 367 // Since we use RPO traversal, if we need to repair a definition 368 // this means this definition could be: 369 // 1. Used by PHIs (i.e., this VReg has been visited as part of the 370 // uses of a phi.), or 371 // 2. Part of a target specific instruction (i.e., the target applied 372 // some register class constraints when creating the instruction.) 373 // If the constraints come for #2, the target said that another mapping 374 // is supported so we may just drop them. Indeed, if we do not change 375 // the number of registers holding that value, the uses will get fixed 376 // when we get to them. 377 // Uses in PHIs may have already been proceeded though. 378 // If the constraints come for #1, then, those are weak constraints and 379 // no actual uses may rely on them. However, the problem remains mainly 380 // the same as for #2. If the value stays in one register, we could 381 // just switch the register bank of the definition, but we would need to 382 // account for a repairing cost for each phi we silently change. 383 // 384 // In any case, if the value needs to be broken down into several 385 // registers, the repairing is not local anymore as we need to patch 386 // every uses to rebuild the value in just one register. 387 // 388 // To summarize: 389 // - If the value is in a physical register, we can do the split and 390 // fix locally. 391 // Otherwise if the value is in a virtual register: 392 // - If the value remains in one register, we do not have to split 393 // just switching the register bank would do, but we need to account 394 // in the repairing cost all the phi we changed. 395 // - If the value spans several registers, then we cannot do a local 396 // repairing. 397 398 // Check if this is a physical or virtual register. 399 Register Reg = MO.getReg(); 400 if (Reg.isPhysical()) { 401 // We are going to split every outgoing edges. 402 // Check that this is possible. 403 // FIXME: The machine representation is currently broken 404 // since it also several terminators in one basic block. 405 // Because of that we would technically need a way to get 406 // the targets of just one terminator to know which edges 407 // we have to split. 408 // Assert that we do not hit the ill-formed representation. 409 410 // If there are other terminators before that one, some of 411 // the outgoing edges may not be dominated by this definition. 412 assert(&MI == &(*MI.getParent()->getFirstTerminator()) && 413 "Do not know which outgoing edges are relevant"); 414 const MachineInstr *Next = MI.getNextNode(); 415 assert((!Next || Next->isUnconditionalBranch()) && 416 "Do not know where each terminator ends up"); 417 if (Next) 418 // If the next terminator uses Reg, this means we have 419 // to split right after MI and thus we need a way to ask 420 // which outgoing edges are affected. 421 assert(!Next->readsRegister(Reg) && "Need to split between terminators"); 422 // We will split all the edges and repair there. 423 } else { 424 // This is a virtual register defined by a terminator. 425 if (ValMapping.NumBreakDowns == 1) { 426 // There is nothing to repair, but we may actually lie on 427 // the repairing cost because of the PHIs already proceeded 428 // as already stated. 429 // Though the code will be correct. 430 assert(false && "Repairing cost may not be accurate"); 431 } else { 432 // We need to do non-local repairing. Basically, patch all 433 // the uses (i.e., phis) that we already proceeded. 434 // For now, just say this mapping is not possible. 435 RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible); 436 } 437 } 438 } 439 440 RegBankSelect::MappingCost RegBankSelect::computeMapping( 441 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 442 SmallVectorImpl<RepairingPlacement> &RepairPts, 443 const RegBankSelect::MappingCost *BestCost) { 444 assert((MBFI || !BestCost) && "Costs comparison require MBFI"); 445 446 if (!InstrMapping.isValid()) 447 return MappingCost::ImpossibleCost(); 448 449 // If mapped with InstrMapping, MI will have the recorded cost. 450 MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1); 451 bool Saturated = Cost.addLocalCost(InstrMapping.getCost()); 452 assert(!Saturated && "Possible mapping saturated the cost"); 453 LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI); 454 LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n'); 455 RepairPts.clear(); 456 if (BestCost && Cost > *BestCost) { 457 LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n"); 458 return Cost; 459 } 460 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 461 462 // Moreover, to realize this mapping, the register bank of each operand must 463 // match this mapping. In other words, we may need to locally reassign the 464 // register banks. Account for that repairing cost as well. 465 // In this context, local means in the surrounding of MI. 466 for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands(); 467 OpIdx != EndOpIdx; ++OpIdx) { 468 const MachineOperand &MO = MI.getOperand(OpIdx); 469 if (!MO.isReg()) 470 continue; 471 Register Reg = MO.getReg(); 472 if (!Reg) 473 continue; 474 LLT Ty = MRI.getType(Reg); 475 if (!Ty.isValid()) 476 continue; 477 478 LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n'); 479 const RegisterBankInfo::ValueMapping &ValMapping = 480 InstrMapping.getOperandMapping(OpIdx); 481 // If Reg is already properly mapped, this is free. 482 bool Assign; 483 if (assignmentMatch(Reg, ValMapping, Assign)) { 484 LLVM_DEBUG(dbgs() << "=> is free (match).\n"); 485 continue; 486 } 487 if (Assign) { 488 LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n"); 489 RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this, 490 RepairingPlacement::Reassign)); 491 continue; 492 } 493 494 // Find the insertion point for the repairing code. 495 RepairPts.emplace_back( 496 RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert)); 497 RepairingPlacement &RepairPt = RepairPts.back(); 498 499 // If we need to split a basic block to materialize this insertion point, 500 // we may give a higher cost to this mapping. 501 // Nevertheless, we may get away with the split, so try that first. 502 if (RepairPt.hasSplit()) 503 tryAvoidingSplit(RepairPt, MO, ValMapping); 504 505 // Check that the materialization of the repairing is possible. 506 if (!RepairPt.canMaterialize()) { 507 LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n"); 508 return MappingCost::ImpossibleCost(); 509 } 510 511 // Account for the split cost and repair cost. 512 // Unless the cost is already saturated or we do not care about the cost. 513 if (!BestCost || Saturated) 514 continue; 515 516 // To get accurate information we need MBFI and MBPI. 517 // Thus, if we end up here this information should be here. 518 assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI"); 519 520 // FIXME: We will have to rework the repairing cost model. 521 // The repairing cost depends on the register bank that MO has. 522 // However, when we break down the value into different values, 523 // MO may not have a register bank while still needing repairing. 524 // For the fast mode, we don't compute the cost so that is fine, 525 // but still for the repairing code, we will have to make a choice. 526 // For the greedy mode, we should choose greedily what is the best 527 // choice based on the next use of MO. 528 529 // Sums up the repairing cost of MO at each insertion point. 530 uint64_t RepairCost = getRepairCost(MO, ValMapping); 531 532 // This is an impossible to repair cost. 533 if (RepairCost == std::numeric_limits<unsigned>::max()) 534 return MappingCost::ImpossibleCost(); 535 536 // Bias used for splitting: 5%. 537 const uint64_t PercentageForBias = 5; 538 uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100; 539 // We should not need more than a couple of instructions to repair 540 // an assignment. In other words, the computation should not 541 // overflow because the repairing cost is free of basic block 542 // frequency. 543 assert(((RepairCost < RepairCost * PercentageForBias) && 544 (RepairCost * PercentageForBias < 545 RepairCost * PercentageForBias + 99)) && 546 "Repairing involves more than a billion of instructions?!"); 547 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 548 assert(InsertPt->canMaterialize() && "We should not have made it here"); 549 // We will applied some basic block frequency and those uses uint64_t. 550 if (!InsertPt->isSplit()) 551 Saturated = Cost.addLocalCost(RepairCost); 552 else { 553 uint64_t CostForInsertPt = RepairCost; 554 // Again we shouldn't overflow here givent that 555 // CostForInsertPt is frequency free at this point. 556 assert(CostForInsertPt + Bias > CostForInsertPt && 557 "Repairing + split bias overflows"); 558 CostForInsertPt += Bias; 559 uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt; 560 // Check if we just overflowed. 561 if ((Saturated = PtCost < CostForInsertPt)) 562 Cost.saturate(); 563 else 564 Saturated = Cost.addNonLocalCost(PtCost); 565 } 566 567 // Stop looking into what it takes to repair, this is already 568 // too expensive. 569 if (BestCost && Cost > *BestCost) { 570 LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n"); 571 return Cost; 572 } 573 574 // No need to accumulate more cost information. 575 // We need to still gather the repairing information though. 576 if (Saturated) 577 break; 578 } 579 } 580 LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n"); 581 return Cost; 582 } 583 584 bool RegBankSelect::applyMapping( 585 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 586 SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) { 587 // OpdMapper will hold all the information needed for the rewriting. 588 RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI); 589 590 // First, place the repairing code. 591 for (RepairingPlacement &RepairPt : RepairPts) { 592 if (!RepairPt.canMaterialize() || 593 RepairPt.getKind() == RepairingPlacement::Impossible) 594 return false; 595 assert(RepairPt.getKind() != RepairingPlacement::None && 596 "This should not make its way in the list"); 597 unsigned OpIdx = RepairPt.getOpIdx(); 598 MachineOperand &MO = MI.getOperand(OpIdx); 599 const RegisterBankInfo::ValueMapping &ValMapping = 600 InstrMapping.getOperandMapping(OpIdx); 601 Register Reg = MO.getReg(); 602 603 switch (RepairPt.getKind()) { 604 case RepairingPlacement::Reassign: 605 assert(ValMapping.NumBreakDowns == 1 && 606 "Reassignment should only be for simple mapping"); 607 MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank); 608 break; 609 case RepairingPlacement::Insert: 610 // Don't insert additional instruction for debug instruction. 611 if (MI.isDebugInstr()) 612 break; 613 OpdMapper.createVRegs(OpIdx); 614 if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx))) 615 return false; 616 break; 617 default: 618 llvm_unreachable("Other kind should not happen"); 619 } 620 } 621 622 // Second, rewrite the instruction. 623 LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n'); 624 RBI->applyMapping(OpdMapper); 625 626 return true; 627 } 628 629 bool RegBankSelect::assignInstr(MachineInstr &MI) { 630 LLVM_DEBUG(dbgs() << "Assign: " << MI); 631 632 unsigned Opc = MI.getOpcode(); 633 if (isPreISelGenericOptimizationHint(Opc)) { 634 assert((Opc == TargetOpcode::G_ASSERT_ZEXT || 635 Opc == TargetOpcode::G_ASSERT_SEXT || 636 Opc == TargetOpcode::G_ASSERT_ALIGN) && 637 "Unexpected hint opcode!"); 638 // The only correct mapping for these is to always use the source register 639 // bank. 640 const RegisterBank *RB = 641 RBI->getRegBank(MI.getOperand(1).getReg(), *MRI, *TRI); 642 // We can assume every instruction above this one has a selected register 643 // bank. 644 assert(RB && "Expected source register to have a register bank?"); 645 LLVM_DEBUG(dbgs() << "... Hint always uses source's register bank.\n"); 646 MRI->setRegBank(MI.getOperand(0).getReg(), *RB); 647 return true; 648 } 649 650 // Remember the repairing placement for all the operands. 651 SmallVector<RepairingPlacement, 4> RepairPts; 652 653 const RegisterBankInfo::InstructionMapping *BestMapping; 654 if (OptMode == RegBankSelect::Mode::Fast) { 655 BestMapping = &RBI->getInstrMapping(MI); 656 MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts); 657 (void)DefaultCost; 658 if (DefaultCost == MappingCost::ImpossibleCost()) 659 return false; 660 } else { 661 RegisterBankInfo::InstructionMappings PossibleMappings = 662 RBI->getInstrPossibleMappings(MI); 663 if (PossibleMappings.empty()) 664 return false; 665 BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts); 666 } 667 // Make sure the mapping is valid for MI. 668 assert(BestMapping->verify(MI) && "Invalid instruction mapping"); 669 670 LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n'); 671 672 // After this call, MI may not be valid anymore. 673 // Do not use it. 674 return applyMapping(MI, *BestMapping, RepairPts); 675 } 676 677 bool RegBankSelect::assignRegisterBanks(MachineFunction &MF) { 678 // Walk the function and assign register banks to all operands. 679 // Use a RPOT to make sure all registers are assigned before we choose 680 // the best mapping of the current instruction. 681 ReversePostOrderTraversal<MachineFunction*> RPOT(&MF); 682 for (MachineBasicBlock *MBB : RPOT) { 683 // Set a sensible insertion point so that subsequent calls to 684 // MIRBuilder. 685 MIRBuilder.setMBB(*MBB); 686 SmallVector<MachineInstr *> WorkList( 687 make_pointer_range(reverse(MBB->instrs()))); 688 689 while (!WorkList.empty()) { 690 MachineInstr &MI = *WorkList.pop_back_val(); 691 692 // Ignore target-specific post-isel instructions: they should use proper 693 // regclasses. 694 if (isTargetSpecificOpcode(MI.getOpcode()) && !MI.isPreISelOpcode()) 695 continue; 696 697 // Ignore inline asm instructions: they should use physical 698 // registers/regclasses 699 if (MI.isInlineAsm()) 700 continue; 701 702 // Ignore IMPLICIT_DEF which must have a regclass. 703 if (MI.isImplicitDef()) 704 continue; 705 706 if (!assignInstr(MI)) { 707 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", 708 "unable to map instruction", MI); 709 return false; 710 } 711 } 712 } 713 714 return true; 715 } 716 717 bool RegBankSelect::checkFunctionIsLegal(MachineFunction &MF) const { 718 #ifndef NDEBUG 719 if (!DisableGISelLegalityCheck) { 720 if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) { 721 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", 722 "instruction is not legal", *MI); 723 return false; 724 } 725 } 726 #endif 727 return true; 728 } 729 730 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) { 731 // If the ISel pipeline failed, do not bother running that pass. 732 if (MF.getProperties().hasProperty( 733 MachineFunctionProperties::Property::FailedISel)) 734 return false; 735 736 LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n'); 737 const Function &F = MF.getFunction(); 738 Mode SaveOptMode = OptMode; 739 if (F.hasOptNone()) 740 OptMode = Mode::Fast; 741 init(MF); 742 743 #ifndef NDEBUG 744 if (!checkFunctionIsLegal(MF)) 745 return false; 746 #endif 747 748 assignRegisterBanks(MF); 749 750 OptMode = SaveOptMode; 751 return false; 752 } 753 754 //------------------------------------------------------------------------------ 755 // Helper Classes Implementation 756 //------------------------------------------------------------------------------ 757 RegBankSelect::RepairingPlacement::RepairingPlacement( 758 MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P, 759 RepairingPlacement::RepairingKind Kind) 760 // Default is, we are going to insert code to repair OpIdx. 761 : Kind(Kind), OpIdx(OpIdx), 762 CanMaterialize(Kind != RepairingKind::Impossible), P(P) { 763 const MachineOperand &MO = MI.getOperand(OpIdx); 764 assert(MO.isReg() && "Trying to repair a non-reg operand"); 765 766 if (Kind != RepairingKind::Insert) 767 return; 768 769 // Repairings for definitions happen after MI, uses happen before. 770 bool Before = !MO.isDef(); 771 772 // Check if we are done with MI. 773 if (!MI.isPHI() && !MI.isTerminator()) { 774 addInsertPoint(MI, Before); 775 // We are done with the initialization. 776 return; 777 } 778 779 // Now, look for the special cases. 780 if (MI.isPHI()) { 781 // - PHI must be the first instructions: 782 // * Before, we have to split the related incoming edge. 783 // * After, move the insertion point past the last phi. 784 if (!Before) { 785 MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI(); 786 if (It != MI.getParent()->end()) 787 addInsertPoint(*It, /*Before*/ true); 788 else 789 addInsertPoint(*(--It), /*Before*/ false); 790 return; 791 } 792 // We repair a use of a phi, we may need to split the related edge. 793 MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB(); 794 // Check if we can move the insertion point prior to the 795 // terminators of the predecessor. 796 Register Reg = MO.getReg(); 797 MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr(); 798 for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It) 799 if (It->modifiesRegister(Reg, &TRI)) { 800 // We cannot hoist the repairing code in the predecessor. 801 // Split the edge. 802 addInsertPoint(Pred, *MI.getParent()); 803 return; 804 } 805 // At this point, we can insert in Pred. 806 807 // - If It is invalid, Pred is empty and we can insert in Pred 808 // wherever we want. 809 // - If It is valid, It is the first non-terminator, insert after It. 810 if (It == Pred.end()) 811 addInsertPoint(Pred, /*Beginning*/ false); 812 else 813 addInsertPoint(*It, /*Before*/ false); 814 } else { 815 // - Terminators must be the last instructions: 816 // * Before, move the insert point before the first terminator. 817 // * After, we have to split the outcoming edges. 818 if (Before) { 819 // Check whether Reg is defined by any terminator. 820 MachineBasicBlock::reverse_iterator It = MI; 821 auto REnd = MI.getParent()->rend(); 822 823 for (; It != REnd && It->isTerminator(); ++It) { 824 assert(!It->modifiesRegister(MO.getReg(), &TRI) && 825 "copy insertion in middle of terminators not handled"); 826 } 827 828 if (It == REnd) { 829 addInsertPoint(*MI.getParent()->begin(), true); 830 return; 831 } 832 833 // We are sure to be right before the first terminator. 834 addInsertPoint(*It, /*Before*/ false); 835 return; 836 } 837 // Make sure Reg is not redefined by other terminators, otherwise 838 // we do not know how to split. 839 for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end(); 840 ++It != End;) 841 // The machine verifier should reject this kind of code. 842 assert(It->modifiesRegister(MO.getReg(), &TRI) && 843 "Do not know where to split"); 844 // Split each outcoming edges. 845 MachineBasicBlock &Src = *MI.getParent(); 846 for (auto &Succ : Src.successors()) 847 addInsertPoint(Src, Succ); 848 } 849 } 850 851 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI, 852 bool Before) { 853 addInsertPoint(*new InstrInsertPoint(MI, Before)); 854 } 855 856 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB, 857 bool Beginning) { 858 addInsertPoint(*new MBBInsertPoint(MBB, Beginning)); 859 } 860 861 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src, 862 MachineBasicBlock &Dst) { 863 addInsertPoint(*new EdgeInsertPoint(Src, Dst, P)); 864 } 865 866 void RegBankSelect::RepairingPlacement::addInsertPoint( 867 RegBankSelect::InsertPoint &Point) { 868 CanMaterialize &= Point.canMaterialize(); 869 HasSplit |= Point.isSplit(); 870 InsertPoints.emplace_back(&Point); 871 } 872 873 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr, 874 bool Before) 875 : Instr(Instr), Before(Before) { 876 // Since we do not support splitting, we do not need to update 877 // liveness and such, so do not do anything with P. 878 assert((!Before || !Instr.isPHI()) && 879 "Splitting before phis requires more points"); 880 assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) && 881 "Splitting between phis does not make sense"); 882 } 883 884 void RegBankSelect::InstrInsertPoint::materialize() { 885 if (isSplit()) { 886 // Slice and return the beginning of the new block. 887 // If we need to split between the terminators, we theoritically 888 // need to know where the first and second set of terminators end 889 // to update the successors properly. 890 // Now, in pratice, we should have a maximum of 2 branch 891 // instructions; one conditional and one unconditional. Therefore 892 // we know how to update the successor by looking at the target of 893 // the unconditional branch. 894 // If we end up splitting at some point, then, we should update 895 // the liveness information and such. I.e., we would need to 896 // access P here. 897 // The machine verifier should actually make sure such cases 898 // cannot happen. 899 llvm_unreachable("Not yet implemented"); 900 } 901 // Otherwise the insertion point is just the current or next 902 // instruction depending on Before. I.e., there is nothing to do 903 // here. 904 } 905 906 bool RegBankSelect::InstrInsertPoint::isSplit() const { 907 // If the insertion point is after a terminator, we need to split. 908 if (!Before) 909 return Instr.isTerminator(); 910 // If we insert before an instruction that is after a terminator, 911 // we are still after a terminator. 912 return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator(); 913 } 914 915 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const { 916 // Even if we need to split, because we insert between terminators, 917 // this split has actually the same frequency as the instruction. 918 const MachineBlockFrequencyInfo *MBFI = 919 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 920 if (!MBFI) 921 return 1; 922 return MBFI->getBlockFreq(Instr.getParent()).getFrequency(); 923 } 924 925 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const { 926 const MachineBlockFrequencyInfo *MBFI = 927 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 928 if (!MBFI) 929 return 1; 930 return MBFI->getBlockFreq(&MBB).getFrequency(); 931 } 932 933 void RegBankSelect::EdgeInsertPoint::materialize() { 934 // If we end up repairing twice at the same place before materializing the 935 // insertion point, we may think we have to split an edge twice. 936 // We should have a factory for the insert point such that identical points 937 // are the same instance. 938 assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) && 939 "This point has already been split"); 940 MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P); 941 assert(NewBB && "Invalid call to materialize"); 942 // We reuse the destination block to hold the information of the new block. 943 DstOrSplit = NewBB; 944 } 945 946 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const { 947 const MachineBlockFrequencyInfo *MBFI = 948 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 949 if (!MBFI) 950 return 1; 951 if (WasMaterialized) 952 return MBFI->getBlockFreq(DstOrSplit).getFrequency(); 953 954 const MachineBranchProbabilityInfo *MBPI = 955 P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>(); 956 if (!MBPI) 957 return 1; 958 // The basic block will be on the edge. 959 return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit)) 960 .getFrequency(); 961 } 962 963 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const { 964 // If this is not a critical edge, we should not have used this insert 965 // point. Indeed, either the successor or the predecessor should 966 // have do. 967 assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 && 968 "Edge is not critical"); 969 return Src.canSplitCriticalEdge(DstOrSplit); 970 } 971 972 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq) 973 : LocalFreq(LocalFreq.getFrequency()) {} 974 975 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) { 976 // Check if this overflows. 977 if (LocalCost + Cost < LocalCost) { 978 saturate(); 979 return true; 980 } 981 LocalCost += Cost; 982 return isSaturated(); 983 } 984 985 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) { 986 // Check if this overflows. 987 if (NonLocalCost + Cost < NonLocalCost) { 988 saturate(); 989 return true; 990 } 991 NonLocalCost += Cost; 992 return isSaturated(); 993 } 994 995 bool RegBankSelect::MappingCost::isSaturated() const { 996 return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX && 997 LocalFreq == UINT64_MAX; 998 } 999 1000 void RegBankSelect::MappingCost::saturate() { 1001 *this = ImpossibleCost(); 1002 --LocalCost; 1003 } 1004 1005 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() { 1006 return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX); 1007 } 1008 1009 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const { 1010 // Sort out the easy cases. 1011 if (*this == Cost) 1012 return false; 1013 // If one is impossible to realize the other is cheaper unless it is 1014 // impossible as well. 1015 if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost())) 1016 return (*this == ImpossibleCost()) < (Cost == ImpossibleCost()); 1017 // If one is saturated the other is cheaper, unless it is saturated 1018 // as well. 1019 if (isSaturated() || Cost.isSaturated()) 1020 return isSaturated() < Cost.isSaturated(); 1021 // At this point we know both costs hold sensible values. 1022 1023 // If both values have a different base frequency, there is no much 1024 // we can do but to scale everything. 1025 // However, if they have the same base frequency we can avoid making 1026 // complicated computation. 1027 uint64_t ThisLocalAdjust; 1028 uint64_t OtherLocalAdjust; 1029 if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) { 1030 1031 // At this point, we know the local costs are comparable. 1032 // Do the case that do not involve potential overflow first. 1033 if (NonLocalCost == Cost.NonLocalCost) 1034 // Since the non-local costs do not discriminate on the result, 1035 // just compare the local costs. 1036 return LocalCost < Cost.LocalCost; 1037 1038 // The base costs are comparable so we may only keep the relative 1039 // value to increase our chances of avoiding overflows. 1040 ThisLocalAdjust = 0; 1041 OtherLocalAdjust = 0; 1042 if (LocalCost < Cost.LocalCost) 1043 OtherLocalAdjust = Cost.LocalCost - LocalCost; 1044 else 1045 ThisLocalAdjust = LocalCost - Cost.LocalCost; 1046 } else { 1047 ThisLocalAdjust = LocalCost; 1048 OtherLocalAdjust = Cost.LocalCost; 1049 } 1050 1051 // The non-local costs are comparable, just keep the relative value. 1052 uint64_t ThisNonLocalAdjust = 0; 1053 uint64_t OtherNonLocalAdjust = 0; 1054 if (NonLocalCost < Cost.NonLocalCost) 1055 OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost; 1056 else 1057 ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost; 1058 // Scale everything to make them comparable. 1059 uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq; 1060 // Check for overflow on that operation. 1061 bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust || 1062 ThisScaledCost < LocalFreq); 1063 uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq; 1064 // Check for overflow on the last operation. 1065 bool OtherOverflows = 1066 OtherLocalAdjust && 1067 (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq); 1068 // Add the non-local costs. 1069 ThisOverflows |= ThisNonLocalAdjust && 1070 ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust; 1071 ThisScaledCost += ThisNonLocalAdjust; 1072 OtherOverflows |= OtherNonLocalAdjust && 1073 OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust; 1074 OtherScaledCost += OtherNonLocalAdjust; 1075 // If both overflows, we cannot compare without additional 1076 // precision, e.g., APInt. Just give up on that case. 1077 if (ThisOverflows && OtherOverflows) 1078 return false; 1079 // If one overflows but not the other, we can still compare. 1080 if (ThisOverflows || OtherOverflows) 1081 return ThisOverflows < OtherOverflows; 1082 // Otherwise, just compare the values. 1083 return ThisScaledCost < OtherScaledCost; 1084 } 1085 1086 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const { 1087 return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost && 1088 LocalFreq == Cost.LocalFreq; 1089 } 1090 1091 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1092 LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const { 1093 print(dbgs()); 1094 dbgs() << '\n'; 1095 } 1096 #endif 1097 1098 void RegBankSelect::MappingCost::print(raw_ostream &OS) const { 1099 if (*this == ImpossibleCost()) { 1100 OS << "impossible"; 1101 return; 1102 } 1103 if (isSaturated()) { 1104 OS << "saturated"; 1105 return; 1106 } 1107 OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost; 1108 } 1109