xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp (revision 85868e8a1daeaae7a0e48effb2ea2310ae3b02c6)
1 //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the RegBankSelect class.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
17 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
18 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
19 #include "llvm/CodeGen/GlobalISel/Utils.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
22 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "llvm/CodeGen/TargetRegisterInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/BlockFrequency.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstdint>
45 #include <limits>
46 #include <memory>
47 #include <utility>
48 
49 #define DEBUG_TYPE "regbankselect"
50 
51 using namespace llvm;
52 
53 static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
54     cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
55     cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
56                           "Run the Fast mode (default mapping)"),
57                clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
58                           "Use the Greedy mode (best local mapping)")));
59 
60 char RegBankSelect::ID = 0;
61 
62 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
63                       "Assign register bank of generic virtual registers",
64                       false, false);
65 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
66 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
67 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
68 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
69                     "Assign register bank of generic virtual registers", false,
70                     false)
71 
72 RegBankSelect::RegBankSelect(Mode RunningMode)
73     : MachineFunctionPass(ID), OptMode(RunningMode) {
74   if (RegBankSelectMode.getNumOccurrences() != 0) {
75     OptMode = RegBankSelectMode;
76     if (RegBankSelectMode != RunningMode)
77       LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
78   }
79 }
80 
81 void RegBankSelect::init(MachineFunction &MF) {
82   RBI = MF.getSubtarget().getRegBankInfo();
83   assert(RBI && "Cannot work without RegisterBankInfo");
84   MRI = &MF.getRegInfo();
85   TRI = MF.getSubtarget().getRegisterInfo();
86   TPC = &getAnalysis<TargetPassConfig>();
87   if (OptMode != Mode::Fast) {
88     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
89     MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
90   } else {
91     MBFI = nullptr;
92     MBPI = nullptr;
93   }
94   MIRBuilder.setMF(MF);
95   MORE = std::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
96 }
97 
98 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
99   if (OptMode != Mode::Fast) {
100     // We could preserve the information from these two analysis but
101     // the APIs do not allow to do so yet.
102     AU.addRequired<MachineBlockFrequencyInfo>();
103     AU.addRequired<MachineBranchProbabilityInfo>();
104   }
105   AU.addRequired<TargetPassConfig>();
106   getSelectionDAGFallbackAnalysisUsage(AU);
107   MachineFunctionPass::getAnalysisUsage(AU);
108 }
109 
110 bool RegBankSelect::assignmentMatch(
111     Register Reg, const RegisterBankInfo::ValueMapping &ValMapping,
112     bool &OnlyAssign) const {
113   // By default we assume we will have to repair something.
114   OnlyAssign = false;
115   // Each part of a break down needs to end up in a different register.
116   // In other word, Reg assignment does not match.
117   if (ValMapping.NumBreakDowns != 1)
118     return false;
119 
120   const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
121   const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
122   // Reg is free of assignment, a simple assignment will make the
123   // register bank to match.
124   OnlyAssign = CurRegBank == nullptr;
125   LLVM_DEBUG(dbgs() << "Does assignment already match: ";
126              if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
127              dbgs() << " against ";
128              assert(DesiredRegBrank && "The mapping must be valid");
129              dbgs() << *DesiredRegBrank << '\n';);
130   return CurRegBank == DesiredRegBrank;
131 }
132 
133 bool RegBankSelect::repairReg(
134     MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
135     RegBankSelect::RepairingPlacement &RepairPt,
136     const iterator_range<SmallVectorImpl<Register>::const_iterator> &NewVRegs) {
137 
138   assert(ValMapping.NumBreakDowns == (unsigned)size(NewVRegs) &&
139          "need new vreg for each breakdown");
140 
141   // An empty range of new register means no repairing.
142   assert(!NewVRegs.empty() && "We should not have to repair");
143 
144   MachineInstr *MI;
145   if (ValMapping.NumBreakDowns == 1) {
146     // Assume we are repairing a use and thus, the original reg will be
147     // the source of the repairing.
148     Register Src = MO.getReg();
149     Register Dst = *NewVRegs.begin();
150 
151     // If we repair a definition, swap the source and destination for
152     // the repairing.
153     if (MO.isDef())
154       std::swap(Src, Dst);
155 
156     assert((RepairPt.getNumInsertPoints() == 1 ||
157             Register::isPhysicalRegister(Dst)) &&
158            "We are about to create several defs for Dst");
159 
160     // Build the instruction used to repair, then clone it at the right
161     // places. Avoiding buildCopy bypasses the check that Src and Dst have the
162     // same types because the type is a placeholder when this function is called.
163     MI = MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY)
164       .addDef(Dst)
165       .addUse(Src);
166     LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst)
167                << '\n');
168   } else {
169     // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT
170     // sequence.
171     assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported");
172 
173     LLT RegTy = MRI->getType(MO.getReg());
174     if (MO.isDef()) {
175       unsigned MergeOp;
176       if (RegTy.isVector()) {
177         if (ValMapping.NumBreakDowns == RegTy.getNumElements())
178           MergeOp = TargetOpcode::G_BUILD_VECTOR;
179         else {
180           assert(
181               (ValMapping.BreakDown[0].Length * ValMapping.NumBreakDowns ==
182                RegTy.getSizeInBits()) &&
183               (ValMapping.BreakDown[0].Length % RegTy.getScalarSizeInBits() ==
184                0) &&
185               "don't understand this value breakdown");
186 
187           MergeOp = TargetOpcode::G_CONCAT_VECTORS;
188         }
189       } else
190         MergeOp = TargetOpcode::G_MERGE_VALUES;
191 
192       auto MergeBuilder =
193         MIRBuilder.buildInstrNoInsert(MergeOp)
194         .addDef(MO.getReg());
195 
196       for (Register SrcReg : NewVRegs)
197         MergeBuilder.addUse(SrcReg);
198 
199       MI = MergeBuilder;
200     } else {
201       MachineInstrBuilder UnMergeBuilder =
202         MIRBuilder.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES);
203       for (Register DefReg : NewVRegs)
204         UnMergeBuilder.addDef(DefReg);
205 
206       UnMergeBuilder.addUse(MO.getReg());
207       MI = UnMergeBuilder;
208     }
209   }
210 
211   if (RepairPt.getNumInsertPoints() != 1)
212     report_fatal_error("need testcase to support multiple insertion points");
213 
214   // TODO:
215   // Check if MI is legal. if not, we need to legalize all the
216   // instructions we are going to insert.
217   std::unique_ptr<MachineInstr *[]> NewInstrs(
218       new MachineInstr *[RepairPt.getNumInsertPoints()]);
219   bool IsFirst = true;
220   unsigned Idx = 0;
221   for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
222     MachineInstr *CurMI;
223     if (IsFirst)
224       CurMI = MI;
225     else
226       CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
227     InsertPt->insert(*CurMI);
228     NewInstrs[Idx++] = CurMI;
229     IsFirst = false;
230   }
231   // TODO:
232   // Legalize NewInstrs if need be.
233   return true;
234 }
235 
236 uint64_t RegBankSelect::getRepairCost(
237     const MachineOperand &MO,
238     const RegisterBankInfo::ValueMapping &ValMapping) const {
239   assert(MO.isReg() && "We should only repair register operand");
240   assert(ValMapping.NumBreakDowns && "Nothing to map??");
241 
242   bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
243   const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
244   // If MO does not have a register bank, we should have just been
245   // able to set one unless we have to break the value down.
246   assert(CurRegBank || MO.isDef());
247 
248   // Def: Val <- NewDefs
249   //     Same number of values: copy
250   //     Different number: Val = build_sequence Defs1, Defs2, ...
251   // Use: NewSources <- Val.
252   //     Same number of values: copy.
253   //     Different number: Src1, Src2, ... =
254   //           extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
255   // We should remember that this value is available somewhere else to
256   // coalesce the value.
257 
258   if (ValMapping.NumBreakDowns != 1)
259     return RBI->getBreakDownCost(ValMapping, CurRegBank);
260 
261   if (IsSameNumOfValues) {
262     const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
263     // If we repair a definition, swap the source and destination for
264     // the repairing.
265     if (MO.isDef())
266       std::swap(CurRegBank, DesiredRegBrank);
267     // TODO: It may be possible to actually avoid the copy.
268     // If we repair something where the source is defined by a copy
269     // and the source of that copy is on the right bank, we can reuse
270     // it for free.
271     // E.g.,
272     // RegToRepair<BankA> = copy AlternativeSrc<BankB>
273     // = op RegToRepair<BankA>
274     // We can simply propagate AlternativeSrc instead of copying RegToRepair
275     // into a new virtual register.
276     // We would also need to propagate this information in the
277     // repairing placement.
278     unsigned Cost = RBI->copyCost(*DesiredRegBrank, *CurRegBank,
279                                   RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
280     // TODO: use a dedicated constant for ImpossibleCost.
281     if (Cost != std::numeric_limits<unsigned>::max())
282       return Cost;
283     // Return the legalization cost of that repairing.
284   }
285   return std::numeric_limits<unsigned>::max();
286 }
287 
288 const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
289     MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
290     SmallVectorImpl<RepairingPlacement> &RepairPts) {
291   assert(!PossibleMappings.empty() &&
292          "Do not know how to map this instruction");
293 
294   const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
295   MappingCost Cost = MappingCost::ImpossibleCost();
296   SmallVector<RepairingPlacement, 4> LocalRepairPts;
297   for (const RegisterBankInfo::InstructionMapping *CurMapping :
298        PossibleMappings) {
299     MappingCost CurCost =
300         computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
301     if (CurCost < Cost) {
302       LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');
303       Cost = CurCost;
304       BestMapping = CurMapping;
305       RepairPts.clear();
306       for (RepairingPlacement &RepairPt : LocalRepairPts)
307         RepairPts.emplace_back(std::move(RepairPt));
308     }
309   }
310   if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
311     // If none of the mapping worked that means they are all impossible.
312     // Thus, pick the first one and set an impossible repairing point.
313     // It will trigger the failed isel mode.
314     BestMapping = *PossibleMappings.begin();
315     RepairPts.emplace_back(
316         RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
317   } else
318     assert(BestMapping && "No suitable mapping for instruction");
319   return *BestMapping;
320 }
321 
322 void RegBankSelect::tryAvoidingSplit(
323     RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
324     const RegisterBankInfo::ValueMapping &ValMapping) const {
325   const MachineInstr &MI = *MO.getParent();
326   assert(RepairPt.hasSplit() && "We should not have to adjust for split");
327   // Splitting should only occur for PHIs or between terminators,
328   // because we only do local repairing.
329   assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
330 
331   assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
332          "Repairing placement does not match operand");
333 
334   // If we need splitting for phis, that means it is because we
335   // could not find an insertion point before the terminators of
336   // the predecessor block for this argument. In other words,
337   // the input value is defined by one of the terminators.
338   assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
339 
340   // We split to repair the use of a phi or a terminator.
341   if (!MO.isDef()) {
342     if (MI.isTerminator()) {
343       assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
344              "Need to split for the first terminator?!");
345     } else {
346       // For the PHI case, the split may not be actually required.
347       // In the copy case, a phi is already a copy on the incoming edge,
348       // therefore there is no need to split.
349       if (ValMapping.NumBreakDowns == 1)
350         // This is a already a copy, there is nothing to do.
351         RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
352     }
353     return;
354   }
355 
356   // At this point, we need to repair a defintion of a terminator.
357 
358   // Technically we need to fix the def of MI on all outgoing
359   // edges of MI to keep the repairing local. In other words, we
360   // will create several definitions of the same register. This
361   // does not work for SSA unless that definition is a physical
362   // register.
363   // However, there are other cases where we can get away with
364   // that while still keeping the repairing local.
365   assert(MI.isTerminator() && MO.isDef() &&
366          "This code is for the def of a terminator");
367 
368   // Since we use RPO traversal, if we need to repair a definition
369   // this means this definition could be:
370   // 1. Used by PHIs (i.e., this VReg has been visited as part of the
371   //    uses of a phi.), or
372   // 2. Part of a target specific instruction (i.e., the target applied
373   //    some register class constraints when creating the instruction.)
374   // If the constraints come for #2, the target said that another mapping
375   // is supported so we may just drop them. Indeed, if we do not change
376   // the number of registers holding that value, the uses will get fixed
377   // when we get to them.
378   // Uses in PHIs may have already been proceeded though.
379   // If the constraints come for #1, then, those are weak constraints and
380   // no actual uses may rely on them. However, the problem remains mainly
381   // the same as for #2. If the value stays in one register, we could
382   // just switch the register bank of the definition, but we would need to
383   // account for a repairing cost for each phi we silently change.
384   //
385   // In any case, if the value needs to be broken down into several
386   // registers, the repairing is not local anymore as we need to patch
387   // every uses to rebuild the value in just one register.
388   //
389   // To summarize:
390   // - If the value is in a physical register, we can do the split and
391   //   fix locally.
392   // Otherwise if the value is in a virtual register:
393   // - If the value remains in one register, we do not have to split
394   //   just switching the register bank would do, but we need to account
395   //   in the repairing cost all the phi we changed.
396   // - If the value spans several registers, then we cannot do a local
397   //   repairing.
398 
399   // Check if this is a physical or virtual register.
400   Register Reg = MO.getReg();
401   if (Register::isPhysicalRegister(Reg)) {
402     // We are going to split every outgoing edges.
403     // Check that this is possible.
404     // FIXME: The machine representation is currently broken
405     // since it also several terminators in one basic block.
406     // Because of that we would technically need a way to get
407     // the targets of just one terminator to know which edges
408     // we have to split.
409     // Assert that we do not hit the ill-formed representation.
410 
411     // If there are other terminators before that one, some of
412     // the outgoing edges may not be dominated by this definition.
413     assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
414            "Do not know which outgoing edges are relevant");
415     const MachineInstr *Next = MI.getNextNode();
416     assert((!Next || Next->isUnconditionalBranch()) &&
417            "Do not know where each terminator ends up");
418     if (Next)
419       // If the next terminator uses Reg, this means we have
420       // to split right after MI and thus we need a way to ask
421       // which outgoing edges are affected.
422       assert(!Next->readsRegister(Reg) && "Need to split between terminators");
423     // We will split all the edges and repair there.
424   } else {
425     // This is a virtual register defined by a terminator.
426     if (ValMapping.NumBreakDowns == 1) {
427       // There is nothing to repair, but we may actually lie on
428       // the repairing cost because of the PHIs already proceeded
429       // as already stated.
430       // Though the code will be correct.
431       assert(false && "Repairing cost may not be accurate");
432     } else {
433       // We need to do non-local repairing. Basically, patch all
434       // the uses (i.e., phis) that we already proceeded.
435       // For now, just say this mapping is not possible.
436       RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
437     }
438   }
439 }
440 
441 RegBankSelect::MappingCost RegBankSelect::computeMapping(
442     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
443     SmallVectorImpl<RepairingPlacement> &RepairPts,
444     const RegBankSelect::MappingCost *BestCost) {
445   assert((MBFI || !BestCost) && "Costs comparison require MBFI");
446 
447   if (!InstrMapping.isValid())
448     return MappingCost::ImpossibleCost();
449 
450   // If mapped with InstrMapping, MI will have the recorded cost.
451   MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
452   bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
453   assert(!Saturated && "Possible mapping saturated the cost");
454   LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
455   LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');
456   RepairPts.clear();
457   if (BestCost && Cost > *BestCost) {
458     LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
459     return Cost;
460   }
461 
462   // Moreover, to realize this mapping, the register bank of each operand must
463   // match this mapping. In other words, we may need to locally reassign the
464   // register banks. Account for that repairing cost as well.
465   // In this context, local means in the surrounding of MI.
466   for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
467        OpIdx != EndOpIdx; ++OpIdx) {
468     const MachineOperand &MO = MI.getOperand(OpIdx);
469     if (!MO.isReg())
470       continue;
471     Register Reg = MO.getReg();
472     if (!Reg)
473       continue;
474     LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n');
475     const RegisterBankInfo::ValueMapping &ValMapping =
476         InstrMapping.getOperandMapping(OpIdx);
477     // If Reg is already properly mapped, this is free.
478     bool Assign;
479     if (assignmentMatch(Reg, ValMapping, Assign)) {
480       LLVM_DEBUG(dbgs() << "=> is free (match).\n");
481       continue;
482     }
483     if (Assign) {
484       LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
485       RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
486                                                 RepairingPlacement::Reassign));
487       continue;
488     }
489 
490     // Find the insertion point for the repairing code.
491     RepairPts.emplace_back(
492         RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
493     RepairingPlacement &RepairPt = RepairPts.back();
494 
495     // If we need to split a basic block to materialize this insertion point,
496     // we may give a higher cost to this mapping.
497     // Nevertheless, we may get away with the split, so try that first.
498     if (RepairPt.hasSplit())
499       tryAvoidingSplit(RepairPt, MO, ValMapping);
500 
501     // Check that the materialization of the repairing is possible.
502     if (!RepairPt.canMaterialize()) {
503       LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
504       return MappingCost::ImpossibleCost();
505     }
506 
507     // Account for the split cost and repair cost.
508     // Unless the cost is already saturated or we do not care about the cost.
509     if (!BestCost || Saturated)
510       continue;
511 
512     // To get accurate information we need MBFI and MBPI.
513     // Thus, if we end up here this information should be here.
514     assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
515 
516     // FIXME: We will have to rework the repairing cost model.
517     // The repairing cost depends on the register bank that MO has.
518     // However, when we break down the value into different values,
519     // MO may not have a register bank while still needing repairing.
520     // For the fast mode, we don't compute the cost so that is fine,
521     // but still for the repairing code, we will have to make a choice.
522     // For the greedy mode, we should choose greedily what is the best
523     // choice based on the next use of MO.
524 
525     // Sums up the repairing cost of MO at each insertion point.
526     uint64_t RepairCost = getRepairCost(MO, ValMapping);
527 
528     // This is an impossible to repair cost.
529     if (RepairCost == std::numeric_limits<unsigned>::max())
530       return MappingCost::ImpossibleCost();
531 
532     // Bias used for splitting: 5%.
533     const uint64_t PercentageForBias = 5;
534     uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
535     // We should not need more than a couple of instructions to repair
536     // an assignment. In other words, the computation should not
537     // overflow because the repairing cost is free of basic block
538     // frequency.
539     assert(((RepairCost < RepairCost * PercentageForBias) &&
540             (RepairCost * PercentageForBias <
541              RepairCost * PercentageForBias + 99)) &&
542            "Repairing involves more than a billion of instructions?!");
543     for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
544       assert(InsertPt->canMaterialize() && "We should not have made it here");
545       // We will applied some basic block frequency and those uses uint64_t.
546       if (!InsertPt->isSplit())
547         Saturated = Cost.addLocalCost(RepairCost);
548       else {
549         uint64_t CostForInsertPt = RepairCost;
550         // Again we shouldn't overflow here givent that
551         // CostForInsertPt is frequency free at this point.
552         assert(CostForInsertPt + Bias > CostForInsertPt &&
553                "Repairing + split bias overflows");
554         CostForInsertPt += Bias;
555         uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
556         // Check if we just overflowed.
557         if ((Saturated = PtCost < CostForInsertPt))
558           Cost.saturate();
559         else
560           Saturated = Cost.addNonLocalCost(PtCost);
561       }
562 
563       // Stop looking into what it takes to repair, this is already
564       // too expensive.
565       if (BestCost && Cost > *BestCost) {
566         LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
567         return Cost;
568       }
569 
570       // No need to accumulate more cost information.
571       // We need to still gather the repairing information though.
572       if (Saturated)
573         break;
574     }
575   }
576   LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
577   return Cost;
578 }
579 
580 bool RegBankSelect::applyMapping(
581     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
582     SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
583   // OpdMapper will hold all the information needed for the rewriting.
584   RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
585 
586   // First, place the repairing code.
587   for (RepairingPlacement &RepairPt : RepairPts) {
588     if (!RepairPt.canMaterialize() ||
589         RepairPt.getKind() == RepairingPlacement::Impossible)
590       return false;
591     assert(RepairPt.getKind() != RepairingPlacement::None &&
592            "This should not make its way in the list");
593     unsigned OpIdx = RepairPt.getOpIdx();
594     MachineOperand &MO = MI.getOperand(OpIdx);
595     const RegisterBankInfo::ValueMapping &ValMapping =
596         InstrMapping.getOperandMapping(OpIdx);
597     Register Reg = MO.getReg();
598 
599     switch (RepairPt.getKind()) {
600     case RepairingPlacement::Reassign:
601       assert(ValMapping.NumBreakDowns == 1 &&
602              "Reassignment should only be for simple mapping");
603       MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
604       break;
605     case RepairingPlacement::Insert:
606       OpdMapper.createVRegs(OpIdx);
607       if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
608         return false;
609       break;
610     default:
611       llvm_unreachable("Other kind should not happen");
612     }
613   }
614 
615   // Second, rewrite the instruction.
616   LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
617   RBI->applyMapping(OpdMapper);
618 
619   return true;
620 }
621 
622 bool RegBankSelect::assignInstr(MachineInstr &MI) {
623   LLVM_DEBUG(dbgs() << "Assign: " << MI);
624   // Remember the repairing placement for all the operands.
625   SmallVector<RepairingPlacement, 4> RepairPts;
626 
627   const RegisterBankInfo::InstructionMapping *BestMapping;
628   if (OptMode == RegBankSelect::Mode::Fast) {
629     BestMapping = &RBI->getInstrMapping(MI);
630     MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
631     (void)DefaultCost;
632     if (DefaultCost == MappingCost::ImpossibleCost())
633       return false;
634   } else {
635     RegisterBankInfo::InstructionMappings PossibleMappings =
636         RBI->getInstrPossibleMappings(MI);
637     if (PossibleMappings.empty())
638       return false;
639     BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
640   }
641   // Make sure the mapping is valid for MI.
642   assert(BestMapping->verify(MI) && "Invalid instruction mapping");
643 
644   LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
645 
646   // After this call, MI may not be valid anymore.
647   // Do not use it.
648   return applyMapping(MI, *BestMapping, RepairPts);
649 }
650 
651 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
652   // If the ISel pipeline failed, do not bother running that pass.
653   if (MF.getProperties().hasProperty(
654           MachineFunctionProperties::Property::FailedISel))
655     return false;
656 
657   LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
658   const Function &F = MF.getFunction();
659   Mode SaveOptMode = OptMode;
660   if (F.hasOptNone())
661     OptMode = Mode::Fast;
662   init(MF);
663 
664 #ifndef NDEBUG
665   // Check that our input is fully legal: we require the function to have the
666   // Legalized property, so it should be.
667   // FIXME: This should be in the MachineVerifier.
668   if (!DisableGISelLegalityCheck)
669     if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
670       reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
671                          "instruction is not legal", *MI);
672       return false;
673     }
674 #endif
675 
676   // Walk the function and assign register banks to all operands.
677   // Use a RPOT to make sure all registers are assigned before we choose
678   // the best mapping of the current instruction.
679   ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
680   for (MachineBasicBlock *MBB : RPOT) {
681     // Set a sensible insertion point so that subsequent calls to
682     // MIRBuilder.
683     MIRBuilder.setMBB(*MBB);
684     for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end();
685          MII != End;) {
686       // MI might be invalidated by the assignment, so move the
687       // iterator before hand.
688       MachineInstr &MI = *MII++;
689 
690       // Ignore target-specific post-isel instructions: they should use proper
691       // regclasses.
692       if (isTargetSpecificOpcode(MI.getOpcode()) && !MI.isPreISelOpcode())
693         continue;
694 
695       if (!assignInstr(MI)) {
696         reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
697                            "unable to map instruction", MI);
698         return false;
699       }
700 
701       // It's possible the mapping changed control flow, and moved the following
702       // instruction to a new block, so figure out the new parent.
703       if (MII != End) {
704         MachineBasicBlock *NextInstBB = MII->getParent();
705         if (NextInstBB != MBB) {
706           LLVM_DEBUG(dbgs() << "Instruction mapping changed control flow\n");
707           MBB = NextInstBB;
708           MIRBuilder.setMBB(*MBB);
709           End = MBB->end();
710         }
711       }
712     }
713   }
714 
715   OptMode = SaveOptMode;
716   return false;
717 }
718 
719 //------------------------------------------------------------------------------
720 //                  Helper Classes Implementation
721 //------------------------------------------------------------------------------
722 RegBankSelect::RepairingPlacement::RepairingPlacement(
723     MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
724     RepairingPlacement::RepairingKind Kind)
725     // Default is, we are going to insert code to repair OpIdx.
726     : Kind(Kind), OpIdx(OpIdx),
727       CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
728   const MachineOperand &MO = MI.getOperand(OpIdx);
729   assert(MO.isReg() && "Trying to repair a non-reg operand");
730 
731   if (Kind != RepairingKind::Insert)
732     return;
733 
734   // Repairings for definitions happen after MI, uses happen before.
735   bool Before = !MO.isDef();
736 
737   // Check if we are done with MI.
738   if (!MI.isPHI() && !MI.isTerminator()) {
739     addInsertPoint(MI, Before);
740     // We are done with the initialization.
741     return;
742   }
743 
744   // Now, look for the special cases.
745   if (MI.isPHI()) {
746     // - PHI must be the first instructions:
747     //   * Before, we have to split the related incoming edge.
748     //   * After, move the insertion point past the last phi.
749     if (!Before) {
750       MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
751       if (It != MI.getParent()->end())
752         addInsertPoint(*It, /*Before*/ true);
753       else
754         addInsertPoint(*(--It), /*Before*/ false);
755       return;
756     }
757     // We repair a use of a phi, we may need to split the related edge.
758     MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
759     // Check if we can move the insertion point prior to the
760     // terminators of the predecessor.
761     Register Reg = MO.getReg();
762     MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
763     for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
764       if (It->modifiesRegister(Reg, &TRI)) {
765         // We cannot hoist the repairing code in the predecessor.
766         // Split the edge.
767         addInsertPoint(Pred, *MI.getParent());
768         return;
769       }
770     // At this point, we can insert in Pred.
771 
772     // - If It is invalid, Pred is empty and we can insert in Pred
773     //   wherever we want.
774     // - If It is valid, It is the first non-terminator, insert after It.
775     if (It == Pred.end())
776       addInsertPoint(Pred, /*Beginning*/ false);
777     else
778       addInsertPoint(*It, /*Before*/ false);
779   } else {
780     // - Terminators must be the last instructions:
781     //   * Before, move the insert point before the first terminator.
782     //   * After, we have to split the outcoming edges.
783     if (Before) {
784       // Check whether Reg is defined by any terminator.
785       MachineBasicBlock::reverse_iterator It = MI;
786       auto REnd = MI.getParent()->rend();
787 
788       for (; It != REnd && It->isTerminator(); ++It) {
789         assert(!It->modifiesRegister(MO.getReg(), &TRI) &&
790                "copy insertion in middle of terminators not handled");
791       }
792 
793       if (It == REnd) {
794         addInsertPoint(*MI.getParent()->begin(), true);
795         return;
796       }
797 
798       // We are sure to be right before the first terminator.
799       addInsertPoint(*It, /*Before*/ false);
800       return;
801     }
802     // Make sure Reg is not redefined by other terminators, otherwise
803     // we do not know how to split.
804     for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
805          ++It != End;)
806       // The machine verifier should reject this kind of code.
807       assert(It->modifiesRegister(MO.getReg(), &TRI) &&
808              "Do not know where to split");
809     // Split each outcoming edges.
810     MachineBasicBlock &Src = *MI.getParent();
811     for (auto &Succ : Src.successors())
812       addInsertPoint(Src, Succ);
813   }
814 }
815 
816 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
817                                                        bool Before) {
818   addInsertPoint(*new InstrInsertPoint(MI, Before));
819 }
820 
821 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
822                                                        bool Beginning) {
823   addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
824 }
825 
826 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
827                                                        MachineBasicBlock &Dst) {
828   addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
829 }
830 
831 void RegBankSelect::RepairingPlacement::addInsertPoint(
832     RegBankSelect::InsertPoint &Point) {
833   CanMaterialize &= Point.canMaterialize();
834   HasSplit |= Point.isSplit();
835   InsertPoints.emplace_back(&Point);
836 }
837 
838 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
839                                                   bool Before)
840     : InsertPoint(), Instr(Instr), Before(Before) {
841   // Since we do not support splitting, we do not need to update
842   // liveness and such, so do not do anything with P.
843   assert((!Before || !Instr.isPHI()) &&
844          "Splitting before phis requires more points");
845   assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
846          "Splitting between phis does not make sense");
847 }
848 
849 void RegBankSelect::InstrInsertPoint::materialize() {
850   if (isSplit()) {
851     // Slice and return the beginning of the new block.
852     // If we need to split between the terminators, we theoritically
853     // need to know where the first and second set of terminators end
854     // to update the successors properly.
855     // Now, in pratice, we should have a maximum of 2 branch
856     // instructions; one conditional and one unconditional. Therefore
857     // we know how to update the successor by looking at the target of
858     // the unconditional branch.
859     // If we end up splitting at some point, then, we should update
860     // the liveness information and such. I.e., we would need to
861     // access P here.
862     // The machine verifier should actually make sure such cases
863     // cannot happen.
864     llvm_unreachable("Not yet implemented");
865   }
866   // Otherwise the insertion point is just the current or next
867   // instruction depending on Before. I.e., there is nothing to do
868   // here.
869 }
870 
871 bool RegBankSelect::InstrInsertPoint::isSplit() const {
872   // If the insertion point is after a terminator, we need to split.
873   if (!Before)
874     return Instr.isTerminator();
875   // If we insert before an instruction that is after a terminator,
876   // we are still after a terminator.
877   return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
878 }
879 
880 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
881   // Even if we need to split, because we insert between terminators,
882   // this split has actually the same frequency as the instruction.
883   const MachineBlockFrequencyInfo *MBFI =
884       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
885   if (!MBFI)
886     return 1;
887   return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
888 }
889 
890 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
891   const MachineBlockFrequencyInfo *MBFI =
892       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
893   if (!MBFI)
894     return 1;
895   return MBFI->getBlockFreq(&MBB).getFrequency();
896 }
897 
898 void RegBankSelect::EdgeInsertPoint::materialize() {
899   // If we end up repairing twice at the same place before materializing the
900   // insertion point, we may think we have to split an edge twice.
901   // We should have a factory for the insert point such that identical points
902   // are the same instance.
903   assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
904          "This point has already been split");
905   MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
906   assert(NewBB && "Invalid call to materialize");
907   // We reuse the destination block to hold the information of the new block.
908   DstOrSplit = NewBB;
909 }
910 
911 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
912   const MachineBlockFrequencyInfo *MBFI =
913       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
914   if (!MBFI)
915     return 1;
916   if (WasMaterialized)
917     return MBFI->getBlockFreq(DstOrSplit).getFrequency();
918 
919   const MachineBranchProbabilityInfo *MBPI =
920       P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
921   if (!MBPI)
922     return 1;
923   // The basic block will be on the edge.
924   return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
925       .getFrequency();
926 }
927 
928 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
929   // If this is not a critical edge, we should not have used this insert
930   // point. Indeed, either the successor or the predecessor should
931   // have do.
932   assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
933          "Edge is not critical");
934   return Src.canSplitCriticalEdge(DstOrSplit);
935 }
936 
937 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
938     : LocalFreq(LocalFreq.getFrequency()) {}
939 
940 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
941   // Check if this overflows.
942   if (LocalCost + Cost < LocalCost) {
943     saturate();
944     return true;
945   }
946   LocalCost += Cost;
947   return isSaturated();
948 }
949 
950 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
951   // Check if this overflows.
952   if (NonLocalCost + Cost < NonLocalCost) {
953     saturate();
954     return true;
955   }
956   NonLocalCost += Cost;
957   return isSaturated();
958 }
959 
960 bool RegBankSelect::MappingCost::isSaturated() const {
961   return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
962          LocalFreq == UINT64_MAX;
963 }
964 
965 void RegBankSelect::MappingCost::saturate() {
966   *this = ImpossibleCost();
967   --LocalCost;
968 }
969 
970 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
971   return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
972 }
973 
974 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
975   // Sort out the easy cases.
976   if (*this == Cost)
977     return false;
978   // If one is impossible to realize the other is cheaper unless it is
979   // impossible as well.
980   if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
981     return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
982   // If one is saturated the other is cheaper, unless it is saturated
983   // as well.
984   if (isSaturated() || Cost.isSaturated())
985     return isSaturated() < Cost.isSaturated();
986   // At this point we know both costs hold sensible values.
987 
988   // If both values have a different base frequency, there is no much
989   // we can do but to scale everything.
990   // However, if they have the same base frequency we can avoid making
991   // complicated computation.
992   uint64_t ThisLocalAdjust;
993   uint64_t OtherLocalAdjust;
994   if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
995 
996     // At this point, we know the local costs are comparable.
997     // Do the case that do not involve potential overflow first.
998     if (NonLocalCost == Cost.NonLocalCost)
999       // Since the non-local costs do not discriminate on the result,
1000       // just compare the local costs.
1001       return LocalCost < Cost.LocalCost;
1002 
1003     // The base costs are comparable so we may only keep the relative
1004     // value to increase our chances of avoiding overflows.
1005     ThisLocalAdjust = 0;
1006     OtherLocalAdjust = 0;
1007     if (LocalCost < Cost.LocalCost)
1008       OtherLocalAdjust = Cost.LocalCost - LocalCost;
1009     else
1010       ThisLocalAdjust = LocalCost - Cost.LocalCost;
1011   } else {
1012     ThisLocalAdjust = LocalCost;
1013     OtherLocalAdjust = Cost.LocalCost;
1014   }
1015 
1016   // The non-local costs are comparable, just keep the relative value.
1017   uint64_t ThisNonLocalAdjust = 0;
1018   uint64_t OtherNonLocalAdjust = 0;
1019   if (NonLocalCost < Cost.NonLocalCost)
1020     OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
1021   else
1022     ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
1023   // Scale everything to make them comparable.
1024   uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
1025   // Check for overflow on that operation.
1026   bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
1027                                            ThisScaledCost < LocalFreq);
1028   uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
1029   // Check for overflow on the last operation.
1030   bool OtherOverflows =
1031       OtherLocalAdjust &&
1032       (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
1033   // Add the non-local costs.
1034   ThisOverflows |= ThisNonLocalAdjust &&
1035                    ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
1036   ThisScaledCost += ThisNonLocalAdjust;
1037   OtherOverflows |= OtherNonLocalAdjust &&
1038                     OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
1039   OtherScaledCost += OtherNonLocalAdjust;
1040   // If both overflows, we cannot compare without additional
1041   // precision, e.g., APInt. Just give up on that case.
1042   if (ThisOverflows && OtherOverflows)
1043     return false;
1044   // If one overflows but not the other, we can still compare.
1045   if (ThisOverflows || OtherOverflows)
1046     return ThisOverflows < OtherOverflows;
1047   // Otherwise, just compare the values.
1048   return ThisScaledCost < OtherScaledCost;
1049 }
1050 
1051 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
1052   return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
1053          LocalFreq == Cost.LocalFreq;
1054 }
1055 
1056 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1057 LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
1058   print(dbgs());
1059   dbgs() << '\n';
1060 }
1061 #endif
1062 
1063 void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
1064   if (*this == ImpossibleCost()) {
1065     OS << "impossible";
1066     return;
1067   }
1068   if (isSaturated()) {
1069     OS << "saturated";
1070     return;
1071   }
1072   OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;
1073 }
1074