1 //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the RegBankSelect class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 17 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 18 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 19 #include "llvm/CodeGen/GlobalISel/Utils.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 22 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineOperand.h" 26 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetOpcodes.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "llvm/CodeGen/TargetRegisterInfo.h" 31 #include "llvm/CodeGen/TargetSubtargetInfo.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/BlockFrequency.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Compiler.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <algorithm> 43 #include <cassert> 44 #include <cstdint> 45 #include <limits> 46 #include <memory> 47 #include <utility> 48 49 #define DEBUG_TYPE "regbankselect" 50 51 using namespace llvm; 52 53 static cl::opt<RegBankSelect::Mode> RegBankSelectMode( 54 cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional, 55 cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast", 56 "Run the Fast mode (default mapping)"), 57 clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy", 58 "Use the Greedy mode (best local mapping)"))); 59 60 char RegBankSelect::ID = 0; 61 62 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE, 63 "Assign register bank of generic virtual registers", 64 false, false); 65 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 66 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 67 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 68 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, 69 "Assign register bank of generic virtual registers", false, 70 false) 71 72 RegBankSelect::RegBankSelect(Mode RunningMode) 73 : MachineFunctionPass(ID), OptMode(RunningMode) { 74 if (RegBankSelectMode.getNumOccurrences() != 0) { 75 OptMode = RegBankSelectMode; 76 if (RegBankSelectMode != RunningMode) 77 LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n"); 78 } 79 } 80 81 void RegBankSelect::init(MachineFunction &MF) { 82 RBI = MF.getSubtarget().getRegBankInfo(); 83 assert(RBI && "Cannot work without RegisterBankInfo"); 84 MRI = &MF.getRegInfo(); 85 TRI = MF.getSubtarget().getRegisterInfo(); 86 TPC = &getAnalysis<TargetPassConfig>(); 87 if (OptMode != Mode::Fast) { 88 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 89 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 90 } else { 91 MBFI = nullptr; 92 MBPI = nullptr; 93 } 94 MIRBuilder.setMF(MF); 95 MORE = std::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI); 96 } 97 98 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const { 99 if (OptMode != Mode::Fast) { 100 // We could preserve the information from these two analysis but 101 // the APIs do not allow to do so yet. 102 AU.addRequired<MachineBlockFrequencyInfo>(); 103 AU.addRequired<MachineBranchProbabilityInfo>(); 104 } 105 AU.addRequired<TargetPassConfig>(); 106 getSelectionDAGFallbackAnalysisUsage(AU); 107 MachineFunctionPass::getAnalysisUsage(AU); 108 } 109 110 bool RegBankSelect::assignmentMatch( 111 Register Reg, const RegisterBankInfo::ValueMapping &ValMapping, 112 bool &OnlyAssign) const { 113 // By default we assume we will have to repair something. 114 OnlyAssign = false; 115 // Each part of a break down needs to end up in a different register. 116 // In other word, Reg assignment does not match. 117 if (ValMapping.NumBreakDowns != 1) 118 return false; 119 120 const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI); 121 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank; 122 // Reg is free of assignment, a simple assignment will make the 123 // register bank to match. 124 OnlyAssign = CurRegBank == nullptr; 125 LLVM_DEBUG(dbgs() << "Does assignment already match: "; 126 if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none"; 127 dbgs() << " against "; 128 assert(DesiredRegBrank && "The mapping must be valid"); 129 dbgs() << *DesiredRegBrank << '\n';); 130 return CurRegBank == DesiredRegBrank; 131 } 132 133 bool RegBankSelect::repairReg( 134 MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping, 135 RegBankSelect::RepairingPlacement &RepairPt, 136 const iterator_range<SmallVectorImpl<Register>::const_iterator> &NewVRegs) { 137 138 assert(ValMapping.NumBreakDowns == (unsigned)size(NewVRegs) && 139 "need new vreg for each breakdown"); 140 141 // An empty range of new register means no repairing. 142 assert(!NewVRegs.empty() && "We should not have to repair"); 143 144 MachineInstr *MI; 145 if (ValMapping.NumBreakDowns == 1) { 146 // Assume we are repairing a use and thus, the original reg will be 147 // the source of the repairing. 148 Register Src = MO.getReg(); 149 Register Dst = *NewVRegs.begin(); 150 151 // If we repair a definition, swap the source and destination for 152 // the repairing. 153 if (MO.isDef()) 154 std::swap(Src, Dst); 155 156 assert((RepairPt.getNumInsertPoints() == 1 || 157 Register::isPhysicalRegister(Dst)) && 158 "We are about to create several defs for Dst"); 159 160 // Build the instruction used to repair, then clone it at the right 161 // places. Avoiding buildCopy bypasses the check that Src and Dst have the 162 // same types because the type is a placeholder when this function is called. 163 MI = MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY) 164 .addDef(Dst) 165 .addUse(Src); 166 LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst) 167 << '\n'); 168 } else { 169 // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT 170 // sequence. 171 assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported"); 172 173 LLT RegTy = MRI->getType(MO.getReg()); 174 if (MO.isDef()) { 175 unsigned MergeOp; 176 if (RegTy.isVector()) { 177 if (ValMapping.NumBreakDowns == RegTy.getNumElements()) 178 MergeOp = TargetOpcode::G_BUILD_VECTOR; 179 else { 180 assert( 181 (ValMapping.BreakDown[0].Length * ValMapping.NumBreakDowns == 182 RegTy.getSizeInBits()) && 183 (ValMapping.BreakDown[0].Length % RegTy.getScalarSizeInBits() == 184 0) && 185 "don't understand this value breakdown"); 186 187 MergeOp = TargetOpcode::G_CONCAT_VECTORS; 188 } 189 } else 190 MergeOp = TargetOpcode::G_MERGE_VALUES; 191 192 auto MergeBuilder = 193 MIRBuilder.buildInstrNoInsert(MergeOp) 194 .addDef(MO.getReg()); 195 196 for (Register SrcReg : NewVRegs) 197 MergeBuilder.addUse(SrcReg); 198 199 MI = MergeBuilder; 200 } else { 201 MachineInstrBuilder UnMergeBuilder = 202 MIRBuilder.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES); 203 for (Register DefReg : NewVRegs) 204 UnMergeBuilder.addDef(DefReg); 205 206 UnMergeBuilder.addUse(MO.getReg()); 207 MI = UnMergeBuilder; 208 } 209 } 210 211 if (RepairPt.getNumInsertPoints() != 1) 212 report_fatal_error("need testcase to support multiple insertion points"); 213 214 // TODO: 215 // Check if MI is legal. if not, we need to legalize all the 216 // instructions we are going to insert. 217 std::unique_ptr<MachineInstr *[]> NewInstrs( 218 new MachineInstr *[RepairPt.getNumInsertPoints()]); 219 bool IsFirst = true; 220 unsigned Idx = 0; 221 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 222 MachineInstr *CurMI; 223 if (IsFirst) 224 CurMI = MI; 225 else 226 CurMI = MIRBuilder.getMF().CloneMachineInstr(MI); 227 InsertPt->insert(*CurMI); 228 NewInstrs[Idx++] = CurMI; 229 IsFirst = false; 230 } 231 // TODO: 232 // Legalize NewInstrs if need be. 233 return true; 234 } 235 236 uint64_t RegBankSelect::getRepairCost( 237 const MachineOperand &MO, 238 const RegisterBankInfo::ValueMapping &ValMapping) const { 239 assert(MO.isReg() && "We should only repair register operand"); 240 assert(ValMapping.NumBreakDowns && "Nothing to map??"); 241 242 bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1; 243 const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI); 244 // If MO does not have a register bank, we should have just been 245 // able to set one unless we have to break the value down. 246 assert(CurRegBank || MO.isDef()); 247 248 // Def: Val <- NewDefs 249 // Same number of values: copy 250 // Different number: Val = build_sequence Defs1, Defs2, ... 251 // Use: NewSources <- Val. 252 // Same number of values: copy. 253 // Different number: Src1, Src2, ... = 254 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ... 255 // We should remember that this value is available somewhere else to 256 // coalesce the value. 257 258 if (ValMapping.NumBreakDowns != 1) 259 return RBI->getBreakDownCost(ValMapping, CurRegBank); 260 261 if (IsSameNumOfValues) { 262 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank; 263 // If we repair a definition, swap the source and destination for 264 // the repairing. 265 if (MO.isDef()) 266 std::swap(CurRegBank, DesiredRegBrank); 267 // TODO: It may be possible to actually avoid the copy. 268 // If we repair something where the source is defined by a copy 269 // and the source of that copy is on the right bank, we can reuse 270 // it for free. 271 // E.g., 272 // RegToRepair<BankA> = copy AlternativeSrc<BankB> 273 // = op RegToRepair<BankA> 274 // We can simply propagate AlternativeSrc instead of copying RegToRepair 275 // into a new virtual register. 276 // We would also need to propagate this information in the 277 // repairing placement. 278 unsigned Cost = RBI->copyCost(*DesiredRegBrank, *CurRegBank, 279 RBI->getSizeInBits(MO.getReg(), *MRI, *TRI)); 280 // TODO: use a dedicated constant for ImpossibleCost. 281 if (Cost != std::numeric_limits<unsigned>::max()) 282 return Cost; 283 // Return the legalization cost of that repairing. 284 } 285 return std::numeric_limits<unsigned>::max(); 286 } 287 288 const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping( 289 MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings, 290 SmallVectorImpl<RepairingPlacement> &RepairPts) { 291 assert(!PossibleMappings.empty() && 292 "Do not know how to map this instruction"); 293 294 const RegisterBankInfo::InstructionMapping *BestMapping = nullptr; 295 MappingCost Cost = MappingCost::ImpossibleCost(); 296 SmallVector<RepairingPlacement, 4> LocalRepairPts; 297 for (const RegisterBankInfo::InstructionMapping *CurMapping : 298 PossibleMappings) { 299 MappingCost CurCost = 300 computeMapping(MI, *CurMapping, LocalRepairPts, &Cost); 301 if (CurCost < Cost) { 302 LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n'); 303 Cost = CurCost; 304 BestMapping = CurMapping; 305 RepairPts.clear(); 306 for (RepairingPlacement &RepairPt : LocalRepairPts) 307 RepairPts.emplace_back(std::move(RepairPt)); 308 } 309 } 310 if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) { 311 // If none of the mapping worked that means they are all impossible. 312 // Thus, pick the first one and set an impossible repairing point. 313 // It will trigger the failed isel mode. 314 BestMapping = *PossibleMappings.begin(); 315 RepairPts.emplace_back( 316 RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible)); 317 } else 318 assert(BestMapping && "No suitable mapping for instruction"); 319 return *BestMapping; 320 } 321 322 void RegBankSelect::tryAvoidingSplit( 323 RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO, 324 const RegisterBankInfo::ValueMapping &ValMapping) const { 325 const MachineInstr &MI = *MO.getParent(); 326 assert(RepairPt.hasSplit() && "We should not have to adjust for split"); 327 // Splitting should only occur for PHIs or between terminators, 328 // because we only do local repairing. 329 assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?"); 330 331 assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO && 332 "Repairing placement does not match operand"); 333 334 // If we need splitting for phis, that means it is because we 335 // could not find an insertion point before the terminators of 336 // the predecessor block for this argument. In other words, 337 // the input value is defined by one of the terminators. 338 assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?"); 339 340 // We split to repair the use of a phi or a terminator. 341 if (!MO.isDef()) { 342 if (MI.isTerminator()) { 343 assert(&MI != &(*MI.getParent()->getFirstTerminator()) && 344 "Need to split for the first terminator?!"); 345 } else { 346 // For the PHI case, the split may not be actually required. 347 // In the copy case, a phi is already a copy on the incoming edge, 348 // therefore there is no need to split. 349 if (ValMapping.NumBreakDowns == 1) 350 // This is a already a copy, there is nothing to do. 351 RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign); 352 } 353 return; 354 } 355 356 // At this point, we need to repair a defintion of a terminator. 357 358 // Technically we need to fix the def of MI on all outgoing 359 // edges of MI to keep the repairing local. In other words, we 360 // will create several definitions of the same register. This 361 // does not work for SSA unless that definition is a physical 362 // register. 363 // However, there are other cases where we can get away with 364 // that while still keeping the repairing local. 365 assert(MI.isTerminator() && MO.isDef() && 366 "This code is for the def of a terminator"); 367 368 // Since we use RPO traversal, if we need to repair a definition 369 // this means this definition could be: 370 // 1. Used by PHIs (i.e., this VReg has been visited as part of the 371 // uses of a phi.), or 372 // 2. Part of a target specific instruction (i.e., the target applied 373 // some register class constraints when creating the instruction.) 374 // If the constraints come for #2, the target said that another mapping 375 // is supported so we may just drop them. Indeed, if we do not change 376 // the number of registers holding that value, the uses will get fixed 377 // when we get to them. 378 // Uses in PHIs may have already been proceeded though. 379 // If the constraints come for #1, then, those are weak constraints and 380 // no actual uses may rely on them. However, the problem remains mainly 381 // the same as for #2. If the value stays in one register, we could 382 // just switch the register bank of the definition, but we would need to 383 // account for a repairing cost for each phi we silently change. 384 // 385 // In any case, if the value needs to be broken down into several 386 // registers, the repairing is not local anymore as we need to patch 387 // every uses to rebuild the value in just one register. 388 // 389 // To summarize: 390 // - If the value is in a physical register, we can do the split and 391 // fix locally. 392 // Otherwise if the value is in a virtual register: 393 // - If the value remains in one register, we do not have to split 394 // just switching the register bank would do, but we need to account 395 // in the repairing cost all the phi we changed. 396 // - If the value spans several registers, then we cannot do a local 397 // repairing. 398 399 // Check if this is a physical or virtual register. 400 Register Reg = MO.getReg(); 401 if (Register::isPhysicalRegister(Reg)) { 402 // We are going to split every outgoing edges. 403 // Check that this is possible. 404 // FIXME: The machine representation is currently broken 405 // since it also several terminators in one basic block. 406 // Because of that we would technically need a way to get 407 // the targets of just one terminator to know which edges 408 // we have to split. 409 // Assert that we do not hit the ill-formed representation. 410 411 // If there are other terminators before that one, some of 412 // the outgoing edges may not be dominated by this definition. 413 assert(&MI == &(*MI.getParent()->getFirstTerminator()) && 414 "Do not know which outgoing edges are relevant"); 415 const MachineInstr *Next = MI.getNextNode(); 416 assert((!Next || Next->isUnconditionalBranch()) && 417 "Do not know where each terminator ends up"); 418 if (Next) 419 // If the next terminator uses Reg, this means we have 420 // to split right after MI and thus we need a way to ask 421 // which outgoing edges are affected. 422 assert(!Next->readsRegister(Reg) && "Need to split between terminators"); 423 // We will split all the edges and repair there. 424 } else { 425 // This is a virtual register defined by a terminator. 426 if (ValMapping.NumBreakDowns == 1) { 427 // There is nothing to repair, but we may actually lie on 428 // the repairing cost because of the PHIs already proceeded 429 // as already stated. 430 // Though the code will be correct. 431 assert(false && "Repairing cost may not be accurate"); 432 } else { 433 // We need to do non-local repairing. Basically, patch all 434 // the uses (i.e., phis) that we already proceeded. 435 // For now, just say this mapping is not possible. 436 RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible); 437 } 438 } 439 } 440 441 RegBankSelect::MappingCost RegBankSelect::computeMapping( 442 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 443 SmallVectorImpl<RepairingPlacement> &RepairPts, 444 const RegBankSelect::MappingCost *BestCost) { 445 assert((MBFI || !BestCost) && "Costs comparison require MBFI"); 446 447 if (!InstrMapping.isValid()) 448 return MappingCost::ImpossibleCost(); 449 450 // If mapped with InstrMapping, MI will have the recorded cost. 451 MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1); 452 bool Saturated = Cost.addLocalCost(InstrMapping.getCost()); 453 assert(!Saturated && "Possible mapping saturated the cost"); 454 LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI); 455 LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n'); 456 RepairPts.clear(); 457 if (BestCost && Cost > *BestCost) { 458 LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n"); 459 return Cost; 460 } 461 462 // Moreover, to realize this mapping, the register bank of each operand must 463 // match this mapping. In other words, we may need to locally reassign the 464 // register banks. Account for that repairing cost as well. 465 // In this context, local means in the surrounding of MI. 466 for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands(); 467 OpIdx != EndOpIdx; ++OpIdx) { 468 const MachineOperand &MO = MI.getOperand(OpIdx); 469 if (!MO.isReg()) 470 continue; 471 Register Reg = MO.getReg(); 472 if (!Reg) 473 continue; 474 LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n'); 475 const RegisterBankInfo::ValueMapping &ValMapping = 476 InstrMapping.getOperandMapping(OpIdx); 477 // If Reg is already properly mapped, this is free. 478 bool Assign; 479 if (assignmentMatch(Reg, ValMapping, Assign)) { 480 LLVM_DEBUG(dbgs() << "=> is free (match).\n"); 481 continue; 482 } 483 if (Assign) { 484 LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n"); 485 RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this, 486 RepairingPlacement::Reassign)); 487 continue; 488 } 489 490 // Find the insertion point for the repairing code. 491 RepairPts.emplace_back( 492 RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert)); 493 RepairingPlacement &RepairPt = RepairPts.back(); 494 495 // If we need to split a basic block to materialize this insertion point, 496 // we may give a higher cost to this mapping. 497 // Nevertheless, we may get away with the split, so try that first. 498 if (RepairPt.hasSplit()) 499 tryAvoidingSplit(RepairPt, MO, ValMapping); 500 501 // Check that the materialization of the repairing is possible. 502 if (!RepairPt.canMaterialize()) { 503 LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n"); 504 return MappingCost::ImpossibleCost(); 505 } 506 507 // Account for the split cost and repair cost. 508 // Unless the cost is already saturated or we do not care about the cost. 509 if (!BestCost || Saturated) 510 continue; 511 512 // To get accurate information we need MBFI and MBPI. 513 // Thus, if we end up here this information should be here. 514 assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI"); 515 516 // FIXME: We will have to rework the repairing cost model. 517 // The repairing cost depends on the register bank that MO has. 518 // However, when we break down the value into different values, 519 // MO may not have a register bank while still needing repairing. 520 // For the fast mode, we don't compute the cost so that is fine, 521 // but still for the repairing code, we will have to make a choice. 522 // For the greedy mode, we should choose greedily what is the best 523 // choice based on the next use of MO. 524 525 // Sums up the repairing cost of MO at each insertion point. 526 uint64_t RepairCost = getRepairCost(MO, ValMapping); 527 528 // This is an impossible to repair cost. 529 if (RepairCost == std::numeric_limits<unsigned>::max()) 530 return MappingCost::ImpossibleCost(); 531 532 // Bias used for splitting: 5%. 533 const uint64_t PercentageForBias = 5; 534 uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100; 535 // We should not need more than a couple of instructions to repair 536 // an assignment. In other words, the computation should not 537 // overflow because the repairing cost is free of basic block 538 // frequency. 539 assert(((RepairCost < RepairCost * PercentageForBias) && 540 (RepairCost * PercentageForBias < 541 RepairCost * PercentageForBias + 99)) && 542 "Repairing involves more than a billion of instructions?!"); 543 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 544 assert(InsertPt->canMaterialize() && "We should not have made it here"); 545 // We will applied some basic block frequency and those uses uint64_t. 546 if (!InsertPt->isSplit()) 547 Saturated = Cost.addLocalCost(RepairCost); 548 else { 549 uint64_t CostForInsertPt = RepairCost; 550 // Again we shouldn't overflow here givent that 551 // CostForInsertPt is frequency free at this point. 552 assert(CostForInsertPt + Bias > CostForInsertPt && 553 "Repairing + split bias overflows"); 554 CostForInsertPt += Bias; 555 uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt; 556 // Check if we just overflowed. 557 if ((Saturated = PtCost < CostForInsertPt)) 558 Cost.saturate(); 559 else 560 Saturated = Cost.addNonLocalCost(PtCost); 561 } 562 563 // Stop looking into what it takes to repair, this is already 564 // too expensive. 565 if (BestCost && Cost > *BestCost) { 566 LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n"); 567 return Cost; 568 } 569 570 // No need to accumulate more cost information. 571 // We need to still gather the repairing information though. 572 if (Saturated) 573 break; 574 } 575 } 576 LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n"); 577 return Cost; 578 } 579 580 bool RegBankSelect::applyMapping( 581 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 582 SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) { 583 // OpdMapper will hold all the information needed for the rewriting. 584 RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI); 585 586 // First, place the repairing code. 587 for (RepairingPlacement &RepairPt : RepairPts) { 588 if (!RepairPt.canMaterialize() || 589 RepairPt.getKind() == RepairingPlacement::Impossible) 590 return false; 591 assert(RepairPt.getKind() != RepairingPlacement::None && 592 "This should not make its way in the list"); 593 unsigned OpIdx = RepairPt.getOpIdx(); 594 MachineOperand &MO = MI.getOperand(OpIdx); 595 const RegisterBankInfo::ValueMapping &ValMapping = 596 InstrMapping.getOperandMapping(OpIdx); 597 Register Reg = MO.getReg(); 598 599 switch (RepairPt.getKind()) { 600 case RepairingPlacement::Reassign: 601 assert(ValMapping.NumBreakDowns == 1 && 602 "Reassignment should only be for simple mapping"); 603 MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank); 604 break; 605 case RepairingPlacement::Insert: 606 OpdMapper.createVRegs(OpIdx); 607 if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx))) 608 return false; 609 break; 610 default: 611 llvm_unreachable("Other kind should not happen"); 612 } 613 } 614 615 // Second, rewrite the instruction. 616 LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n'); 617 RBI->applyMapping(OpdMapper); 618 619 return true; 620 } 621 622 bool RegBankSelect::assignInstr(MachineInstr &MI) { 623 LLVM_DEBUG(dbgs() << "Assign: " << MI); 624 // Remember the repairing placement for all the operands. 625 SmallVector<RepairingPlacement, 4> RepairPts; 626 627 const RegisterBankInfo::InstructionMapping *BestMapping; 628 if (OptMode == RegBankSelect::Mode::Fast) { 629 BestMapping = &RBI->getInstrMapping(MI); 630 MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts); 631 (void)DefaultCost; 632 if (DefaultCost == MappingCost::ImpossibleCost()) 633 return false; 634 } else { 635 RegisterBankInfo::InstructionMappings PossibleMappings = 636 RBI->getInstrPossibleMappings(MI); 637 if (PossibleMappings.empty()) 638 return false; 639 BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts); 640 } 641 // Make sure the mapping is valid for MI. 642 assert(BestMapping->verify(MI) && "Invalid instruction mapping"); 643 644 LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n'); 645 646 // After this call, MI may not be valid anymore. 647 // Do not use it. 648 return applyMapping(MI, *BestMapping, RepairPts); 649 } 650 651 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) { 652 // If the ISel pipeline failed, do not bother running that pass. 653 if (MF.getProperties().hasProperty( 654 MachineFunctionProperties::Property::FailedISel)) 655 return false; 656 657 LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n'); 658 const Function &F = MF.getFunction(); 659 Mode SaveOptMode = OptMode; 660 if (F.hasOptNone()) 661 OptMode = Mode::Fast; 662 init(MF); 663 664 #ifndef NDEBUG 665 // Check that our input is fully legal: we require the function to have the 666 // Legalized property, so it should be. 667 // FIXME: This should be in the MachineVerifier. 668 if (!DisableGISelLegalityCheck) 669 if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) { 670 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", 671 "instruction is not legal", *MI); 672 return false; 673 } 674 #endif 675 676 // Walk the function and assign register banks to all operands. 677 // Use a RPOT to make sure all registers are assigned before we choose 678 // the best mapping of the current instruction. 679 ReversePostOrderTraversal<MachineFunction*> RPOT(&MF); 680 for (MachineBasicBlock *MBB : RPOT) { 681 // Set a sensible insertion point so that subsequent calls to 682 // MIRBuilder. 683 MIRBuilder.setMBB(*MBB); 684 for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end(); 685 MII != End;) { 686 // MI might be invalidated by the assignment, so move the 687 // iterator before hand. 688 MachineInstr &MI = *MII++; 689 690 // Ignore target-specific post-isel instructions: they should use proper 691 // regclasses. 692 if (isTargetSpecificOpcode(MI.getOpcode()) && !MI.isPreISelOpcode()) 693 continue; 694 695 if (!assignInstr(MI)) { 696 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", 697 "unable to map instruction", MI); 698 return false; 699 } 700 701 // It's possible the mapping changed control flow, and moved the following 702 // instruction to a new block, so figure out the new parent. 703 if (MII != End) { 704 MachineBasicBlock *NextInstBB = MII->getParent(); 705 if (NextInstBB != MBB) { 706 LLVM_DEBUG(dbgs() << "Instruction mapping changed control flow\n"); 707 MBB = NextInstBB; 708 MIRBuilder.setMBB(*MBB); 709 End = MBB->end(); 710 } 711 } 712 } 713 } 714 715 OptMode = SaveOptMode; 716 return false; 717 } 718 719 //------------------------------------------------------------------------------ 720 // Helper Classes Implementation 721 //------------------------------------------------------------------------------ 722 RegBankSelect::RepairingPlacement::RepairingPlacement( 723 MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P, 724 RepairingPlacement::RepairingKind Kind) 725 // Default is, we are going to insert code to repair OpIdx. 726 : Kind(Kind), OpIdx(OpIdx), 727 CanMaterialize(Kind != RepairingKind::Impossible), P(P) { 728 const MachineOperand &MO = MI.getOperand(OpIdx); 729 assert(MO.isReg() && "Trying to repair a non-reg operand"); 730 731 if (Kind != RepairingKind::Insert) 732 return; 733 734 // Repairings for definitions happen after MI, uses happen before. 735 bool Before = !MO.isDef(); 736 737 // Check if we are done with MI. 738 if (!MI.isPHI() && !MI.isTerminator()) { 739 addInsertPoint(MI, Before); 740 // We are done with the initialization. 741 return; 742 } 743 744 // Now, look for the special cases. 745 if (MI.isPHI()) { 746 // - PHI must be the first instructions: 747 // * Before, we have to split the related incoming edge. 748 // * After, move the insertion point past the last phi. 749 if (!Before) { 750 MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI(); 751 if (It != MI.getParent()->end()) 752 addInsertPoint(*It, /*Before*/ true); 753 else 754 addInsertPoint(*(--It), /*Before*/ false); 755 return; 756 } 757 // We repair a use of a phi, we may need to split the related edge. 758 MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB(); 759 // Check if we can move the insertion point prior to the 760 // terminators of the predecessor. 761 Register Reg = MO.getReg(); 762 MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr(); 763 for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It) 764 if (It->modifiesRegister(Reg, &TRI)) { 765 // We cannot hoist the repairing code in the predecessor. 766 // Split the edge. 767 addInsertPoint(Pred, *MI.getParent()); 768 return; 769 } 770 // At this point, we can insert in Pred. 771 772 // - If It is invalid, Pred is empty and we can insert in Pred 773 // wherever we want. 774 // - If It is valid, It is the first non-terminator, insert after It. 775 if (It == Pred.end()) 776 addInsertPoint(Pred, /*Beginning*/ false); 777 else 778 addInsertPoint(*It, /*Before*/ false); 779 } else { 780 // - Terminators must be the last instructions: 781 // * Before, move the insert point before the first terminator. 782 // * After, we have to split the outcoming edges. 783 if (Before) { 784 // Check whether Reg is defined by any terminator. 785 MachineBasicBlock::reverse_iterator It = MI; 786 auto REnd = MI.getParent()->rend(); 787 788 for (; It != REnd && It->isTerminator(); ++It) { 789 assert(!It->modifiesRegister(MO.getReg(), &TRI) && 790 "copy insertion in middle of terminators not handled"); 791 } 792 793 if (It == REnd) { 794 addInsertPoint(*MI.getParent()->begin(), true); 795 return; 796 } 797 798 // We are sure to be right before the first terminator. 799 addInsertPoint(*It, /*Before*/ false); 800 return; 801 } 802 // Make sure Reg is not redefined by other terminators, otherwise 803 // we do not know how to split. 804 for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end(); 805 ++It != End;) 806 // The machine verifier should reject this kind of code. 807 assert(It->modifiesRegister(MO.getReg(), &TRI) && 808 "Do not know where to split"); 809 // Split each outcoming edges. 810 MachineBasicBlock &Src = *MI.getParent(); 811 for (auto &Succ : Src.successors()) 812 addInsertPoint(Src, Succ); 813 } 814 } 815 816 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI, 817 bool Before) { 818 addInsertPoint(*new InstrInsertPoint(MI, Before)); 819 } 820 821 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB, 822 bool Beginning) { 823 addInsertPoint(*new MBBInsertPoint(MBB, Beginning)); 824 } 825 826 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src, 827 MachineBasicBlock &Dst) { 828 addInsertPoint(*new EdgeInsertPoint(Src, Dst, P)); 829 } 830 831 void RegBankSelect::RepairingPlacement::addInsertPoint( 832 RegBankSelect::InsertPoint &Point) { 833 CanMaterialize &= Point.canMaterialize(); 834 HasSplit |= Point.isSplit(); 835 InsertPoints.emplace_back(&Point); 836 } 837 838 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr, 839 bool Before) 840 : InsertPoint(), Instr(Instr), Before(Before) { 841 // Since we do not support splitting, we do not need to update 842 // liveness and such, so do not do anything with P. 843 assert((!Before || !Instr.isPHI()) && 844 "Splitting before phis requires more points"); 845 assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) && 846 "Splitting between phis does not make sense"); 847 } 848 849 void RegBankSelect::InstrInsertPoint::materialize() { 850 if (isSplit()) { 851 // Slice and return the beginning of the new block. 852 // If we need to split between the terminators, we theoritically 853 // need to know where the first and second set of terminators end 854 // to update the successors properly. 855 // Now, in pratice, we should have a maximum of 2 branch 856 // instructions; one conditional and one unconditional. Therefore 857 // we know how to update the successor by looking at the target of 858 // the unconditional branch. 859 // If we end up splitting at some point, then, we should update 860 // the liveness information and such. I.e., we would need to 861 // access P here. 862 // The machine verifier should actually make sure such cases 863 // cannot happen. 864 llvm_unreachable("Not yet implemented"); 865 } 866 // Otherwise the insertion point is just the current or next 867 // instruction depending on Before. I.e., there is nothing to do 868 // here. 869 } 870 871 bool RegBankSelect::InstrInsertPoint::isSplit() const { 872 // If the insertion point is after a terminator, we need to split. 873 if (!Before) 874 return Instr.isTerminator(); 875 // If we insert before an instruction that is after a terminator, 876 // we are still after a terminator. 877 return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator(); 878 } 879 880 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const { 881 // Even if we need to split, because we insert between terminators, 882 // this split has actually the same frequency as the instruction. 883 const MachineBlockFrequencyInfo *MBFI = 884 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 885 if (!MBFI) 886 return 1; 887 return MBFI->getBlockFreq(Instr.getParent()).getFrequency(); 888 } 889 890 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const { 891 const MachineBlockFrequencyInfo *MBFI = 892 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 893 if (!MBFI) 894 return 1; 895 return MBFI->getBlockFreq(&MBB).getFrequency(); 896 } 897 898 void RegBankSelect::EdgeInsertPoint::materialize() { 899 // If we end up repairing twice at the same place before materializing the 900 // insertion point, we may think we have to split an edge twice. 901 // We should have a factory for the insert point such that identical points 902 // are the same instance. 903 assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) && 904 "This point has already been split"); 905 MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P); 906 assert(NewBB && "Invalid call to materialize"); 907 // We reuse the destination block to hold the information of the new block. 908 DstOrSplit = NewBB; 909 } 910 911 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const { 912 const MachineBlockFrequencyInfo *MBFI = 913 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 914 if (!MBFI) 915 return 1; 916 if (WasMaterialized) 917 return MBFI->getBlockFreq(DstOrSplit).getFrequency(); 918 919 const MachineBranchProbabilityInfo *MBPI = 920 P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>(); 921 if (!MBPI) 922 return 1; 923 // The basic block will be on the edge. 924 return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit)) 925 .getFrequency(); 926 } 927 928 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const { 929 // If this is not a critical edge, we should not have used this insert 930 // point. Indeed, either the successor or the predecessor should 931 // have do. 932 assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 && 933 "Edge is not critical"); 934 return Src.canSplitCriticalEdge(DstOrSplit); 935 } 936 937 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq) 938 : LocalFreq(LocalFreq.getFrequency()) {} 939 940 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) { 941 // Check if this overflows. 942 if (LocalCost + Cost < LocalCost) { 943 saturate(); 944 return true; 945 } 946 LocalCost += Cost; 947 return isSaturated(); 948 } 949 950 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) { 951 // Check if this overflows. 952 if (NonLocalCost + Cost < NonLocalCost) { 953 saturate(); 954 return true; 955 } 956 NonLocalCost += Cost; 957 return isSaturated(); 958 } 959 960 bool RegBankSelect::MappingCost::isSaturated() const { 961 return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX && 962 LocalFreq == UINT64_MAX; 963 } 964 965 void RegBankSelect::MappingCost::saturate() { 966 *this = ImpossibleCost(); 967 --LocalCost; 968 } 969 970 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() { 971 return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX); 972 } 973 974 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const { 975 // Sort out the easy cases. 976 if (*this == Cost) 977 return false; 978 // If one is impossible to realize the other is cheaper unless it is 979 // impossible as well. 980 if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost())) 981 return (*this == ImpossibleCost()) < (Cost == ImpossibleCost()); 982 // If one is saturated the other is cheaper, unless it is saturated 983 // as well. 984 if (isSaturated() || Cost.isSaturated()) 985 return isSaturated() < Cost.isSaturated(); 986 // At this point we know both costs hold sensible values. 987 988 // If both values have a different base frequency, there is no much 989 // we can do but to scale everything. 990 // However, if they have the same base frequency we can avoid making 991 // complicated computation. 992 uint64_t ThisLocalAdjust; 993 uint64_t OtherLocalAdjust; 994 if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) { 995 996 // At this point, we know the local costs are comparable. 997 // Do the case that do not involve potential overflow first. 998 if (NonLocalCost == Cost.NonLocalCost) 999 // Since the non-local costs do not discriminate on the result, 1000 // just compare the local costs. 1001 return LocalCost < Cost.LocalCost; 1002 1003 // The base costs are comparable so we may only keep the relative 1004 // value to increase our chances of avoiding overflows. 1005 ThisLocalAdjust = 0; 1006 OtherLocalAdjust = 0; 1007 if (LocalCost < Cost.LocalCost) 1008 OtherLocalAdjust = Cost.LocalCost - LocalCost; 1009 else 1010 ThisLocalAdjust = LocalCost - Cost.LocalCost; 1011 } else { 1012 ThisLocalAdjust = LocalCost; 1013 OtherLocalAdjust = Cost.LocalCost; 1014 } 1015 1016 // The non-local costs are comparable, just keep the relative value. 1017 uint64_t ThisNonLocalAdjust = 0; 1018 uint64_t OtherNonLocalAdjust = 0; 1019 if (NonLocalCost < Cost.NonLocalCost) 1020 OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost; 1021 else 1022 ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost; 1023 // Scale everything to make them comparable. 1024 uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq; 1025 // Check for overflow on that operation. 1026 bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust || 1027 ThisScaledCost < LocalFreq); 1028 uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq; 1029 // Check for overflow on the last operation. 1030 bool OtherOverflows = 1031 OtherLocalAdjust && 1032 (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq); 1033 // Add the non-local costs. 1034 ThisOverflows |= ThisNonLocalAdjust && 1035 ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust; 1036 ThisScaledCost += ThisNonLocalAdjust; 1037 OtherOverflows |= OtherNonLocalAdjust && 1038 OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust; 1039 OtherScaledCost += OtherNonLocalAdjust; 1040 // If both overflows, we cannot compare without additional 1041 // precision, e.g., APInt. Just give up on that case. 1042 if (ThisOverflows && OtherOverflows) 1043 return false; 1044 // If one overflows but not the other, we can still compare. 1045 if (ThisOverflows || OtherOverflows) 1046 return ThisOverflows < OtherOverflows; 1047 // Otherwise, just compare the values. 1048 return ThisScaledCost < OtherScaledCost; 1049 } 1050 1051 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const { 1052 return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost && 1053 LocalFreq == Cost.LocalFreq; 1054 } 1055 1056 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1057 LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const { 1058 print(dbgs()); 1059 dbgs() << '\n'; 1060 } 1061 #endif 1062 1063 void RegBankSelect::MappingCost::print(raw_ostream &OS) const { 1064 if (*this == ImpossibleCost()) { 1065 OS << "impossible"; 1066 return; 1067 } 1068 if (isSaturated()) { 1069 OS << "saturated"; 1070 return; 1071 } 1072 OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost; 1073 } 1074