1 //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the RegBankSelect class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 17 #include "llvm/CodeGen/GlobalISel/Utils.h" 18 #include "llvm/CodeGen/MachineBasicBlock.h" 19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 20 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineOperand.h" 24 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/RegisterBank.h" 27 #include "llvm/CodeGen/RegisterBankInfo.h" 28 #include "llvm/CodeGen/TargetOpcodes.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "llvm/CodeGen/TargetRegisterInfo.h" 31 #include "llvm/CodeGen/TargetSubtargetInfo.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/InitializePasses.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/BlockFrequency.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Compiler.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <algorithm> 43 #include <cassert> 44 #include <cstdint> 45 #include <limits> 46 #include <memory> 47 #include <utility> 48 49 #define DEBUG_TYPE "regbankselect" 50 51 using namespace llvm; 52 53 static cl::opt<RegBankSelect::Mode> RegBankSelectMode( 54 cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional, 55 cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast", 56 "Run the Fast mode (default mapping)"), 57 clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy", 58 "Use the Greedy mode (best local mapping)"))); 59 60 char RegBankSelect::ID = 0; 61 62 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE, 63 "Assign register bank of generic virtual registers", 64 false, false); 65 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 66 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 67 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 68 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, 69 "Assign register bank of generic virtual registers", false, 70 false) 71 72 RegBankSelect::RegBankSelect(char &PassID, Mode RunningMode) 73 : MachineFunctionPass(PassID), OptMode(RunningMode) { 74 if (RegBankSelectMode.getNumOccurrences() != 0) { 75 OptMode = RegBankSelectMode; 76 if (RegBankSelectMode != RunningMode) 77 LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n"); 78 } 79 } 80 81 void RegBankSelect::init(MachineFunction &MF) { 82 RBI = MF.getSubtarget().getRegBankInfo(); 83 assert(RBI && "Cannot work without RegisterBankInfo"); 84 MRI = &MF.getRegInfo(); 85 TRI = MF.getSubtarget().getRegisterInfo(); 86 TPC = &getAnalysis<TargetPassConfig>(); 87 if (OptMode != Mode::Fast) { 88 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 89 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 90 } else { 91 MBFI = nullptr; 92 MBPI = nullptr; 93 } 94 MIRBuilder.setMF(MF); 95 MORE = std::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI); 96 } 97 98 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const { 99 if (OptMode != Mode::Fast) { 100 // We could preserve the information from these two analysis but 101 // the APIs do not allow to do so yet. 102 AU.addRequired<MachineBlockFrequencyInfo>(); 103 AU.addRequired<MachineBranchProbabilityInfo>(); 104 } 105 AU.addRequired<TargetPassConfig>(); 106 getSelectionDAGFallbackAnalysisUsage(AU); 107 MachineFunctionPass::getAnalysisUsage(AU); 108 } 109 110 bool RegBankSelect::assignmentMatch( 111 Register Reg, const RegisterBankInfo::ValueMapping &ValMapping, 112 bool &OnlyAssign) const { 113 // By default we assume we will have to repair something. 114 OnlyAssign = false; 115 // Each part of a break down needs to end up in a different register. 116 // In other word, Reg assignment does not match. 117 if (ValMapping.NumBreakDowns != 1) 118 return false; 119 120 const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI); 121 const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank; 122 // Reg is free of assignment, a simple assignment will make the 123 // register bank to match. 124 OnlyAssign = CurRegBank == nullptr; 125 LLVM_DEBUG(dbgs() << "Does assignment already match: "; 126 if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none"; 127 dbgs() << " against "; 128 assert(DesiredRegBank && "The mapping must be valid"); 129 dbgs() << *DesiredRegBank << '\n';); 130 return CurRegBank == DesiredRegBank; 131 } 132 133 bool RegBankSelect::repairReg( 134 MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping, 135 RegBankSelect::RepairingPlacement &RepairPt, 136 const iterator_range<SmallVectorImpl<Register>::const_iterator> &NewVRegs) { 137 138 assert(ValMapping.NumBreakDowns == (unsigned)size(NewVRegs) && 139 "need new vreg for each breakdown"); 140 141 // An empty range of new register means no repairing. 142 assert(!NewVRegs.empty() && "We should not have to repair"); 143 144 MachineInstr *MI; 145 if (ValMapping.NumBreakDowns == 1) { 146 // Assume we are repairing a use and thus, the original reg will be 147 // the source of the repairing. 148 Register Src = MO.getReg(); 149 Register Dst = *NewVRegs.begin(); 150 151 // If we repair a definition, swap the source and destination for 152 // the repairing. 153 if (MO.isDef()) 154 std::swap(Src, Dst); 155 156 assert((RepairPt.getNumInsertPoints() == 1 || Dst.isPhysical()) && 157 "We are about to create several defs for Dst"); 158 159 // Build the instruction used to repair, then clone it at the right 160 // places. Avoiding buildCopy bypasses the check that Src and Dst have the 161 // same types because the type is a placeholder when this function is called. 162 MI = MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY) 163 .addDef(Dst) 164 .addUse(Src); 165 LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << ':' 166 << printRegClassOrBank(Src, *MRI, TRI) 167 << " to: " << printReg(Dst) << ':' 168 << printRegClassOrBank(Dst, *MRI, TRI) << '\n'); 169 } else { 170 // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT 171 // sequence. 172 assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported"); 173 174 LLT RegTy = MRI->getType(MO.getReg()); 175 if (MO.isDef()) { 176 unsigned MergeOp; 177 if (RegTy.isVector()) { 178 if (ValMapping.NumBreakDowns == RegTy.getNumElements()) 179 MergeOp = TargetOpcode::G_BUILD_VECTOR; 180 else { 181 assert( 182 (ValMapping.BreakDown[0].Length * ValMapping.NumBreakDowns == 183 RegTy.getSizeInBits()) && 184 (ValMapping.BreakDown[0].Length % RegTy.getScalarSizeInBits() == 185 0) && 186 "don't understand this value breakdown"); 187 188 MergeOp = TargetOpcode::G_CONCAT_VECTORS; 189 } 190 } else 191 MergeOp = TargetOpcode::G_MERGE_VALUES; 192 193 auto MergeBuilder = 194 MIRBuilder.buildInstrNoInsert(MergeOp) 195 .addDef(MO.getReg()); 196 197 for (Register SrcReg : NewVRegs) 198 MergeBuilder.addUse(SrcReg); 199 200 MI = MergeBuilder; 201 } else { 202 MachineInstrBuilder UnMergeBuilder = 203 MIRBuilder.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES); 204 for (Register DefReg : NewVRegs) 205 UnMergeBuilder.addDef(DefReg); 206 207 UnMergeBuilder.addUse(MO.getReg()); 208 MI = UnMergeBuilder; 209 } 210 } 211 212 if (RepairPt.getNumInsertPoints() != 1) 213 report_fatal_error("need testcase to support multiple insertion points"); 214 215 // TODO: 216 // Check if MI is legal. if not, we need to legalize all the 217 // instructions we are going to insert. 218 std::unique_ptr<MachineInstr *[]> NewInstrs( 219 new MachineInstr *[RepairPt.getNumInsertPoints()]); 220 bool IsFirst = true; 221 unsigned Idx = 0; 222 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 223 MachineInstr *CurMI; 224 if (IsFirst) 225 CurMI = MI; 226 else 227 CurMI = MIRBuilder.getMF().CloneMachineInstr(MI); 228 InsertPt->insert(*CurMI); 229 NewInstrs[Idx++] = CurMI; 230 IsFirst = false; 231 } 232 // TODO: 233 // Legalize NewInstrs if need be. 234 return true; 235 } 236 237 uint64_t RegBankSelect::getRepairCost( 238 const MachineOperand &MO, 239 const RegisterBankInfo::ValueMapping &ValMapping) const { 240 assert(MO.isReg() && "We should only repair register operand"); 241 assert(ValMapping.NumBreakDowns && "Nothing to map??"); 242 243 bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1; 244 const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI); 245 // If MO does not have a register bank, we should have just been 246 // able to set one unless we have to break the value down. 247 assert(CurRegBank || MO.isDef()); 248 249 // Def: Val <- NewDefs 250 // Same number of values: copy 251 // Different number: Val = build_sequence Defs1, Defs2, ... 252 // Use: NewSources <- Val. 253 // Same number of values: copy. 254 // Different number: Src1, Src2, ... = 255 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ... 256 // We should remember that this value is available somewhere else to 257 // coalesce the value. 258 259 if (ValMapping.NumBreakDowns != 1) 260 return RBI->getBreakDownCost(ValMapping, CurRegBank); 261 262 if (IsSameNumOfValues) { 263 const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank; 264 // If we repair a definition, swap the source and destination for 265 // the repairing. 266 if (MO.isDef()) 267 std::swap(CurRegBank, DesiredRegBank); 268 // TODO: It may be possible to actually avoid the copy. 269 // If we repair something where the source is defined by a copy 270 // and the source of that copy is on the right bank, we can reuse 271 // it for free. 272 // E.g., 273 // RegToRepair<BankA> = copy AlternativeSrc<BankB> 274 // = op RegToRepair<BankA> 275 // We can simply propagate AlternativeSrc instead of copying RegToRepair 276 // into a new virtual register. 277 // We would also need to propagate this information in the 278 // repairing placement. 279 unsigned Cost = RBI->copyCost(*DesiredRegBank, *CurRegBank, 280 RBI->getSizeInBits(MO.getReg(), *MRI, *TRI)); 281 // TODO: use a dedicated constant for ImpossibleCost. 282 if (Cost != std::numeric_limits<unsigned>::max()) 283 return Cost; 284 // Return the legalization cost of that repairing. 285 } 286 return std::numeric_limits<unsigned>::max(); 287 } 288 289 const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping( 290 MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings, 291 SmallVectorImpl<RepairingPlacement> &RepairPts) { 292 assert(!PossibleMappings.empty() && 293 "Do not know how to map this instruction"); 294 295 const RegisterBankInfo::InstructionMapping *BestMapping = nullptr; 296 MappingCost Cost = MappingCost::ImpossibleCost(); 297 SmallVector<RepairingPlacement, 4> LocalRepairPts; 298 for (const RegisterBankInfo::InstructionMapping *CurMapping : 299 PossibleMappings) { 300 MappingCost CurCost = 301 computeMapping(MI, *CurMapping, LocalRepairPts, &Cost); 302 if (CurCost < Cost) { 303 LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n'); 304 Cost = CurCost; 305 BestMapping = CurMapping; 306 RepairPts.clear(); 307 for (RepairingPlacement &RepairPt : LocalRepairPts) 308 RepairPts.emplace_back(std::move(RepairPt)); 309 } 310 } 311 if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) { 312 // If none of the mapping worked that means they are all impossible. 313 // Thus, pick the first one and set an impossible repairing point. 314 // It will trigger the failed isel mode. 315 BestMapping = *PossibleMappings.begin(); 316 RepairPts.emplace_back( 317 RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible)); 318 } else 319 assert(BestMapping && "No suitable mapping for instruction"); 320 return *BestMapping; 321 } 322 323 void RegBankSelect::tryAvoidingSplit( 324 RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO, 325 const RegisterBankInfo::ValueMapping &ValMapping) const { 326 const MachineInstr &MI = *MO.getParent(); 327 assert(RepairPt.hasSplit() && "We should not have to adjust for split"); 328 // Splitting should only occur for PHIs or between terminators, 329 // because we only do local repairing. 330 assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?"); 331 332 assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO && 333 "Repairing placement does not match operand"); 334 335 // If we need splitting for phis, that means it is because we 336 // could not find an insertion point before the terminators of 337 // the predecessor block for this argument. In other words, 338 // the input value is defined by one of the terminators. 339 assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?"); 340 341 // We split to repair the use of a phi or a terminator. 342 if (!MO.isDef()) { 343 if (MI.isTerminator()) { 344 assert(&MI != &(*MI.getParent()->getFirstTerminator()) && 345 "Need to split for the first terminator?!"); 346 } else { 347 // For the PHI case, the split may not be actually required. 348 // In the copy case, a phi is already a copy on the incoming edge, 349 // therefore there is no need to split. 350 if (ValMapping.NumBreakDowns == 1) 351 // This is a already a copy, there is nothing to do. 352 RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign); 353 } 354 return; 355 } 356 357 // At this point, we need to repair a defintion of a terminator. 358 359 // Technically we need to fix the def of MI on all outgoing 360 // edges of MI to keep the repairing local. In other words, we 361 // will create several definitions of the same register. This 362 // does not work for SSA unless that definition is a physical 363 // register. 364 // However, there are other cases where we can get away with 365 // that while still keeping the repairing local. 366 assert(MI.isTerminator() && MO.isDef() && 367 "This code is for the def of a terminator"); 368 369 // Since we use RPO traversal, if we need to repair a definition 370 // this means this definition could be: 371 // 1. Used by PHIs (i.e., this VReg has been visited as part of the 372 // uses of a phi.), or 373 // 2. Part of a target specific instruction (i.e., the target applied 374 // some register class constraints when creating the instruction.) 375 // If the constraints come for #2, the target said that another mapping 376 // is supported so we may just drop them. Indeed, if we do not change 377 // the number of registers holding that value, the uses will get fixed 378 // when we get to them. 379 // Uses in PHIs may have already been proceeded though. 380 // If the constraints come for #1, then, those are weak constraints and 381 // no actual uses may rely on them. However, the problem remains mainly 382 // the same as for #2. If the value stays in one register, we could 383 // just switch the register bank of the definition, but we would need to 384 // account for a repairing cost for each phi we silently change. 385 // 386 // In any case, if the value needs to be broken down into several 387 // registers, the repairing is not local anymore as we need to patch 388 // every uses to rebuild the value in just one register. 389 // 390 // To summarize: 391 // - If the value is in a physical register, we can do the split and 392 // fix locally. 393 // Otherwise if the value is in a virtual register: 394 // - If the value remains in one register, we do not have to split 395 // just switching the register bank would do, but we need to account 396 // in the repairing cost all the phi we changed. 397 // - If the value spans several registers, then we cannot do a local 398 // repairing. 399 400 // Check if this is a physical or virtual register. 401 Register Reg = MO.getReg(); 402 if (Reg.isPhysical()) { 403 // We are going to split every outgoing edges. 404 // Check that this is possible. 405 // FIXME: The machine representation is currently broken 406 // since it also several terminators in one basic block. 407 // Because of that we would technically need a way to get 408 // the targets of just one terminator to know which edges 409 // we have to split. 410 // Assert that we do not hit the ill-formed representation. 411 412 // If there are other terminators before that one, some of 413 // the outgoing edges may not be dominated by this definition. 414 assert(&MI == &(*MI.getParent()->getFirstTerminator()) && 415 "Do not know which outgoing edges are relevant"); 416 const MachineInstr *Next = MI.getNextNode(); 417 assert((!Next || Next->isUnconditionalBranch()) && 418 "Do not know where each terminator ends up"); 419 if (Next) 420 // If the next terminator uses Reg, this means we have 421 // to split right after MI and thus we need a way to ask 422 // which outgoing edges are affected. 423 assert(!Next->readsRegister(Reg) && "Need to split between terminators"); 424 // We will split all the edges and repair there. 425 } else { 426 // This is a virtual register defined by a terminator. 427 if (ValMapping.NumBreakDowns == 1) { 428 // There is nothing to repair, but we may actually lie on 429 // the repairing cost because of the PHIs already proceeded 430 // as already stated. 431 // Though the code will be correct. 432 assert(false && "Repairing cost may not be accurate"); 433 } else { 434 // We need to do non-local repairing. Basically, patch all 435 // the uses (i.e., phis) that we already proceeded. 436 // For now, just say this mapping is not possible. 437 RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible); 438 } 439 } 440 } 441 442 RegBankSelect::MappingCost RegBankSelect::computeMapping( 443 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 444 SmallVectorImpl<RepairingPlacement> &RepairPts, 445 const RegBankSelect::MappingCost *BestCost) { 446 assert((MBFI || !BestCost) && "Costs comparison require MBFI"); 447 448 if (!InstrMapping.isValid()) 449 return MappingCost::ImpossibleCost(); 450 451 // If mapped with InstrMapping, MI will have the recorded cost. 452 MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) 453 : BlockFrequency(1)); 454 bool Saturated = Cost.addLocalCost(InstrMapping.getCost()); 455 assert(!Saturated && "Possible mapping saturated the cost"); 456 LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI); 457 LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n'); 458 RepairPts.clear(); 459 if (BestCost && Cost > *BestCost) { 460 LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n"); 461 return Cost; 462 } 463 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 464 465 // Moreover, to realize this mapping, the register bank of each operand must 466 // match this mapping. In other words, we may need to locally reassign the 467 // register banks. Account for that repairing cost as well. 468 // In this context, local means in the surrounding of MI. 469 for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands(); 470 OpIdx != EndOpIdx; ++OpIdx) { 471 const MachineOperand &MO = MI.getOperand(OpIdx); 472 if (!MO.isReg()) 473 continue; 474 Register Reg = MO.getReg(); 475 if (!Reg) 476 continue; 477 LLT Ty = MRI.getType(Reg); 478 if (!Ty.isValid()) 479 continue; 480 481 LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n'); 482 const RegisterBankInfo::ValueMapping &ValMapping = 483 InstrMapping.getOperandMapping(OpIdx); 484 // If Reg is already properly mapped, this is free. 485 bool Assign; 486 if (assignmentMatch(Reg, ValMapping, Assign)) { 487 LLVM_DEBUG(dbgs() << "=> is free (match).\n"); 488 continue; 489 } 490 if (Assign) { 491 LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n"); 492 RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this, 493 RepairingPlacement::Reassign)); 494 continue; 495 } 496 497 // Find the insertion point for the repairing code. 498 RepairPts.emplace_back( 499 RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert)); 500 RepairingPlacement &RepairPt = RepairPts.back(); 501 502 // If we need to split a basic block to materialize this insertion point, 503 // we may give a higher cost to this mapping. 504 // Nevertheless, we may get away with the split, so try that first. 505 if (RepairPt.hasSplit()) 506 tryAvoidingSplit(RepairPt, MO, ValMapping); 507 508 // Check that the materialization of the repairing is possible. 509 if (!RepairPt.canMaterialize()) { 510 LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n"); 511 return MappingCost::ImpossibleCost(); 512 } 513 514 // Account for the split cost and repair cost. 515 // Unless the cost is already saturated or we do not care about the cost. 516 if (!BestCost || Saturated) 517 continue; 518 519 // To get accurate information we need MBFI and MBPI. 520 // Thus, if we end up here this information should be here. 521 assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI"); 522 523 // FIXME: We will have to rework the repairing cost model. 524 // The repairing cost depends on the register bank that MO has. 525 // However, when we break down the value into different values, 526 // MO may not have a register bank while still needing repairing. 527 // For the fast mode, we don't compute the cost so that is fine, 528 // but still for the repairing code, we will have to make a choice. 529 // For the greedy mode, we should choose greedily what is the best 530 // choice based on the next use of MO. 531 532 // Sums up the repairing cost of MO at each insertion point. 533 uint64_t RepairCost = getRepairCost(MO, ValMapping); 534 535 // This is an impossible to repair cost. 536 if (RepairCost == std::numeric_limits<unsigned>::max()) 537 return MappingCost::ImpossibleCost(); 538 539 // Bias used for splitting: 5%. 540 const uint64_t PercentageForBias = 5; 541 uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100; 542 // We should not need more than a couple of instructions to repair 543 // an assignment. In other words, the computation should not 544 // overflow because the repairing cost is free of basic block 545 // frequency. 546 assert(((RepairCost < RepairCost * PercentageForBias) && 547 (RepairCost * PercentageForBias < 548 RepairCost * PercentageForBias + 99)) && 549 "Repairing involves more than a billion of instructions?!"); 550 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { 551 assert(InsertPt->canMaterialize() && "We should not have made it here"); 552 // We will applied some basic block frequency and those uses uint64_t. 553 if (!InsertPt->isSplit()) 554 Saturated = Cost.addLocalCost(RepairCost); 555 else { 556 uint64_t CostForInsertPt = RepairCost; 557 // Again we shouldn't overflow here givent that 558 // CostForInsertPt is frequency free at this point. 559 assert(CostForInsertPt + Bias > CostForInsertPt && 560 "Repairing + split bias overflows"); 561 CostForInsertPt += Bias; 562 uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt; 563 // Check if we just overflowed. 564 if ((Saturated = PtCost < CostForInsertPt)) 565 Cost.saturate(); 566 else 567 Saturated = Cost.addNonLocalCost(PtCost); 568 } 569 570 // Stop looking into what it takes to repair, this is already 571 // too expensive. 572 if (BestCost && Cost > *BestCost) { 573 LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n"); 574 return Cost; 575 } 576 577 // No need to accumulate more cost information. 578 // We need to still gather the repairing information though. 579 if (Saturated) 580 break; 581 } 582 } 583 LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n"); 584 return Cost; 585 } 586 587 bool RegBankSelect::applyMapping( 588 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, 589 SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) { 590 // OpdMapper will hold all the information needed for the rewriting. 591 RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI); 592 593 // First, place the repairing code. 594 for (RepairingPlacement &RepairPt : RepairPts) { 595 if (!RepairPt.canMaterialize() || 596 RepairPt.getKind() == RepairingPlacement::Impossible) 597 return false; 598 assert(RepairPt.getKind() != RepairingPlacement::None && 599 "This should not make its way in the list"); 600 unsigned OpIdx = RepairPt.getOpIdx(); 601 MachineOperand &MO = MI.getOperand(OpIdx); 602 const RegisterBankInfo::ValueMapping &ValMapping = 603 InstrMapping.getOperandMapping(OpIdx); 604 Register Reg = MO.getReg(); 605 606 switch (RepairPt.getKind()) { 607 case RepairingPlacement::Reassign: 608 assert(ValMapping.NumBreakDowns == 1 && 609 "Reassignment should only be for simple mapping"); 610 MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank); 611 break; 612 case RepairingPlacement::Insert: 613 // Don't insert additional instruction for debug instruction. 614 if (MI.isDebugInstr()) 615 break; 616 OpdMapper.createVRegs(OpIdx); 617 if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx))) 618 return false; 619 break; 620 default: 621 llvm_unreachable("Other kind should not happen"); 622 } 623 } 624 625 // Second, rewrite the instruction. 626 LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n'); 627 RBI->applyMapping(MIRBuilder, OpdMapper); 628 629 return true; 630 } 631 632 bool RegBankSelect::assignInstr(MachineInstr &MI) { 633 LLVM_DEBUG(dbgs() << "Assign: " << MI); 634 635 unsigned Opc = MI.getOpcode(); 636 if (isPreISelGenericOptimizationHint(Opc)) { 637 assert((Opc == TargetOpcode::G_ASSERT_ZEXT || 638 Opc == TargetOpcode::G_ASSERT_SEXT || 639 Opc == TargetOpcode::G_ASSERT_ALIGN) && 640 "Unexpected hint opcode!"); 641 // The only correct mapping for these is to always use the source register 642 // bank. 643 const RegisterBank *RB = 644 RBI->getRegBank(MI.getOperand(1).getReg(), *MRI, *TRI); 645 // We can assume every instruction above this one has a selected register 646 // bank. 647 assert(RB && "Expected source register to have a register bank?"); 648 LLVM_DEBUG(dbgs() << "... Hint always uses source's register bank.\n"); 649 MRI->setRegBank(MI.getOperand(0).getReg(), *RB); 650 return true; 651 } 652 653 // Remember the repairing placement for all the operands. 654 SmallVector<RepairingPlacement, 4> RepairPts; 655 656 const RegisterBankInfo::InstructionMapping *BestMapping; 657 if (OptMode == RegBankSelect::Mode::Fast) { 658 BestMapping = &RBI->getInstrMapping(MI); 659 MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts); 660 (void)DefaultCost; 661 if (DefaultCost == MappingCost::ImpossibleCost()) 662 return false; 663 } else { 664 RegisterBankInfo::InstructionMappings PossibleMappings = 665 RBI->getInstrPossibleMappings(MI); 666 if (PossibleMappings.empty()) 667 return false; 668 BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts); 669 } 670 // Make sure the mapping is valid for MI. 671 assert(BestMapping->verify(MI) && "Invalid instruction mapping"); 672 673 LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n'); 674 675 // After this call, MI may not be valid anymore. 676 // Do not use it. 677 return applyMapping(MI, *BestMapping, RepairPts); 678 } 679 680 bool RegBankSelect::assignRegisterBanks(MachineFunction &MF) { 681 // Walk the function and assign register banks to all operands. 682 // Use a RPOT to make sure all registers are assigned before we choose 683 // the best mapping of the current instruction. 684 ReversePostOrderTraversal<MachineFunction*> RPOT(&MF); 685 for (MachineBasicBlock *MBB : RPOT) { 686 // Set a sensible insertion point so that subsequent calls to 687 // MIRBuilder. 688 MIRBuilder.setMBB(*MBB); 689 SmallVector<MachineInstr *> WorkList( 690 make_pointer_range(reverse(MBB->instrs()))); 691 692 while (!WorkList.empty()) { 693 MachineInstr &MI = *WorkList.pop_back_val(); 694 695 // Ignore target-specific post-isel instructions: they should use proper 696 // regclasses. 697 if (isTargetSpecificOpcode(MI.getOpcode()) && !MI.isPreISelOpcode()) 698 continue; 699 700 // Ignore inline asm instructions: they should use physical 701 // registers/regclasses 702 if (MI.isInlineAsm()) 703 continue; 704 705 // Ignore IMPLICIT_DEF which must have a regclass. 706 if (MI.isImplicitDef()) 707 continue; 708 709 if (!assignInstr(MI)) { 710 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", 711 "unable to map instruction", MI); 712 return false; 713 } 714 } 715 } 716 717 return true; 718 } 719 720 bool RegBankSelect::checkFunctionIsLegal(MachineFunction &MF) const { 721 #ifndef NDEBUG 722 if (!DisableGISelLegalityCheck) { 723 if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) { 724 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", 725 "instruction is not legal", *MI); 726 return false; 727 } 728 } 729 #endif 730 return true; 731 } 732 733 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) { 734 // If the ISel pipeline failed, do not bother running that pass. 735 if (MF.getProperties().hasProperty( 736 MachineFunctionProperties::Property::FailedISel)) 737 return false; 738 739 LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n'); 740 const Function &F = MF.getFunction(); 741 Mode SaveOptMode = OptMode; 742 if (F.hasOptNone()) 743 OptMode = Mode::Fast; 744 init(MF); 745 746 #ifndef NDEBUG 747 if (!checkFunctionIsLegal(MF)) 748 return false; 749 #endif 750 751 assignRegisterBanks(MF); 752 753 OptMode = SaveOptMode; 754 return false; 755 } 756 757 //------------------------------------------------------------------------------ 758 // Helper Classes Implementation 759 //------------------------------------------------------------------------------ 760 RegBankSelect::RepairingPlacement::RepairingPlacement( 761 MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P, 762 RepairingPlacement::RepairingKind Kind) 763 // Default is, we are going to insert code to repair OpIdx. 764 : Kind(Kind), OpIdx(OpIdx), 765 CanMaterialize(Kind != RepairingKind::Impossible), P(P) { 766 const MachineOperand &MO = MI.getOperand(OpIdx); 767 assert(MO.isReg() && "Trying to repair a non-reg operand"); 768 769 if (Kind != RepairingKind::Insert) 770 return; 771 772 // Repairings for definitions happen after MI, uses happen before. 773 bool Before = !MO.isDef(); 774 775 // Check if we are done with MI. 776 if (!MI.isPHI() && !MI.isTerminator()) { 777 addInsertPoint(MI, Before); 778 // We are done with the initialization. 779 return; 780 } 781 782 // Now, look for the special cases. 783 if (MI.isPHI()) { 784 // - PHI must be the first instructions: 785 // * Before, we have to split the related incoming edge. 786 // * After, move the insertion point past the last phi. 787 if (!Before) { 788 MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI(); 789 if (It != MI.getParent()->end()) 790 addInsertPoint(*It, /*Before*/ true); 791 else 792 addInsertPoint(*(--It), /*Before*/ false); 793 return; 794 } 795 // We repair a use of a phi, we may need to split the related edge. 796 MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB(); 797 // Check if we can move the insertion point prior to the 798 // terminators of the predecessor. 799 Register Reg = MO.getReg(); 800 MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr(); 801 for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It) 802 if (It->modifiesRegister(Reg, &TRI)) { 803 // We cannot hoist the repairing code in the predecessor. 804 // Split the edge. 805 addInsertPoint(Pred, *MI.getParent()); 806 return; 807 } 808 // At this point, we can insert in Pred. 809 810 // - If It is invalid, Pred is empty and we can insert in Pred 811 // wherever we want. 812 // - If It is valid, It is the first non-terminator, insert after It. 813 if (It == Pred.end()) 814 addInsertPoint(Pred, /*Beginning*/ false); 815 else 816 addInsertPoint(*It, /*Before*/ false); 817 } else { 818 // - Terminators must be the last instructions: 819 // * Before, move the insert point before the first terminator. 820 // * After, we have to split the outcoming edges. 821 if (Before) { 822 // Check whether Reg is defined by any terminator. 823 MachineBasicBlock::reverse_iterator It = MI; 824 auto REnd = MI.getParent()->rend(); 825 826 for (; It != REnd && It->isTerminator(); ++It) { 827 assert(!It->modifiesRegister(MO.getReg(), &TRI) && 828 "copy insertion in middle of terminators not handled"); 829 } 830 831 if (It == REnd) { 832 addInsertPoint(*MI.getParent()->begin(), true); 833 return; 834 } 835 836 // We are sure to be right before the first terminator. 837 addInsertPoint(*It, /*Before*/ false); 838 return; 839 } 840 // Make sure Reg is not redefined by other terminators, otherwise 841 // we do not know how to split. 842 for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end(); 843 ++It != End;) 844 // The machine verifier should reject this kind of code. 845 assert(It->modifiesRegister(MO.getReg(), &TRI) && 846 "Do not know where to split"); 847 // Split each outcoming edges. 848 MachineBasicBlock &Src = *MI.getParent(); 849 for (auto &Succ : Src.successors()) 850 addInsertPoint(Src, Succ); 851 } 852 } 853 854 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI, 855 bool Before) { 856 addInsertPoint(*new InstrInsertPoint(MI, Before)); 857 } 858 859 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB, 860 bool Beginning) { 861 addInsertPoint(*new MBBInsertPoint(MBB, Beginning)); 862 } 863 864 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src, 865 MachineBasicBlock &Dst) { 866 addInsertPoint(*new EdgeInsertPoint(Src, Dst, P)); 867 } 868 869 void RegBankSelect::RepairingPlacement::addInsertPoint( 870 RegBankSelect::InsertPoint &Point) { 871 CanMaterialize &= Point.canMaterialize(); 872 HasSplit |= Point.isSplit(); 873 InsertPoints.emplace_back(&Point); 874 } 875 876 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr, 877 bool Before) 878 : Instr(Instr), Before(Before) { 879 // Since we do not support splitting, we do not need to update 880 // liveness and such, so do not do anything with P. 881 assert((!Before || !Instr.isPHI()) && 882 "Splitting before phis requires more points"); 883 assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) && 884 "Splitting between phis does not make sense"); 885 } 886 887 void RegBankSelect::InstrInsertPoint::materialize() { 888 if (isSplit()) { 889 // Slice and return the beginning of the new block. 890 // If we need to split between the terminators, we theoritically 891 // need to know where the first and second set of terminators end 892 // to update the successors properly. 893 // Now, in pratice, we should have a maximum of 2 branch 894 // instructions; one conditional and one unconditional. Therefore 895 // we know how to update the successor by looking at the target of 896 // the unconditional branch. 897 // If we end up splitting at some point, then, we should update 898 // the liveness information and such. I.e., we would need to 899 // access P here. 900 // The machine verifier should actually make sure such cases 901 // cannot happen. 902 llvm_unreachable("Not yet implemented"); 903 } 904 // Otherwise the insertion point is just the current or next 905 // instruction depending on Before. I.e., there is nothing to do 906 // here. 907 } 908 909 bool RegBankSelect::InstrInsertPoint::isSplit() const { 910 // If the insertion point is after a terminator, we need to split. 911 if (!Before) 912 return Instr.isTerminator(); 913 // If we insert before an instruction that is after a terminator, 914 // we are still after a terminator. 915 return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator(); 916 } 917 918 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const { 919 // Even if we need to split, because we insert between terminators, 920 // this split has actually the same frequency as the instruction. 921 const MachineBlockFrequencyInfo *MBFI = 922 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 923 if (!MBFI) 924 return 1; 925 return MBFI->getBlockFreq(Instr.getParent()).getFrequency(); 926 } 927 928 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const { 929 const MachineBlockFrequencyInfo *MBFI = 930 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 931 if (!MBFI) 932 return 1; 933 return MBFI->getBlockFreq(&MBB).getFrequency(); 934 } 935 936 void RegBankSelect::EdgeInsertPoint::materialize() { 937 // If we end up repairing twice at the same place before materializing the 938 // insertion point, we may think we have to split an edge twice. 939 // We should have a factory for the insert point such that identical points 940 // are the same instance. 941 assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) && 942 "This point has already been split"); 943 MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P); 944 assert(NewBB && "Invalid call to materialize"); 945 // We reuse the destination block to hold the information of the new block. 946 DstOrSplit = NewBB; 947 } 948 949 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const { 950 const MachineBlockFrequencyInfo *MBFI = 951 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); 952 if (!MBFI) 953 return 1; 954 if (WasMaterialized) 955 return MBFI->getBlockFreq(DstOrSplit).getFrequency(); 956 957 const MachineBranchProbabilityInfo *MBPI = 958 P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>(); 959 if (!MBPI) 960 return 1; 961 // The basic block will be on the edge. 962 return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit)) 963 .getFrequency(); 964 } 965 966 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const { 967 // If this is not a critical edge, we should not have used this insert 968 // point. Indeed, either the successor or the predecessor should 969 // have do. 970 assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 && 971 "Edge is not critical"); 972 return Src.canSplitCriticalEdge(DstOrSplit); 973 } 974 975 RegBankSelect::MappingCost::MappingCost(BlockFrequency LocalFreq) 976 : LocalFreq(LocalFreq.getFrequency()) {} 977 978 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) { 979 // Check if this overflows. 980 if (LocalCost + Cost < LocalCost) { 981 saturate(); 982 return true; 983 } 984 LocalCost += Cost; 985 return isSaturated(); 986 } 987 988 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) { 989 // Check if this overflows. 990 if (NonLocalCost + Cost < NonLocalCost) { 991 saturate(); 992 return true; 993 } 994 NonLocalCost += Cost; 995 return isSaturated(); 996 } 997 998 bool RegBankSelect::MappingCost::isSaturated() const { 999 return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX && 1000 LocalFreq == UINT64_MAX; 1001 } 1002 1003 void RegBankSelect::MappingCost::saturate() { 1004 *this = ImpossibleCost(); 1005 --LocalCost; 1006 } 1007 1008 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() { 1009 return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX); 1010 } 1011 1012 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const { 1013 // Sort out the easy cases. 1014 if (*this == Cost) 1015 return false; 1016 // If one is impossible to realize the other is cheaper unless it is 1017 // impossible as well. 1018 if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost())) 1019 return (*this == ImpossibleCost()) < (Cost == ImpossibleCost()); 1020 // If one is saturated the other is cheaper, unless it is saturated 1021 // as well. 1022 if (isSaturated() || Cost.isSaturated()) 1023 return isSaturated() < Cost.isSaturated(); 1024 // At this point we know both costs hold sensible values. 1025 1026 // If both values have a different base frequency, there is no much 1027 // we can do but to scale everything. 1028 // However, if they have the same base frequency we can avoid making 1029 // complicated computation. 1030 uint64_t ThisLocalAdjust; 1031 uint64_t OtherLocalAdjust; 1032 if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) { 1033 1034 // At this point, we know the local costs are comparable. 1035 // Do the case that do not involve potential overflow first. 1036 if (NonLocalCost == Cost.NonLocalCost) 1037 // Since the non-local costs do not discriminate on the result, 1038 // just compare the local costs. 1039 return LocalCost < Cost.LocalCost; 1040 1041 // The base costs are comparable so we may only keep the relative 1042 // value to increase our chances of avoiding overflows. 1043 ThisLocalAdjust = 0; 1044 OtherLocalAdjust = 0; 1045 if (LocalCost < Cost.LocalCost) 1046 OtherLocalAdjust = Cost.LocalCost - LocalCost; 1047 else 1048 ThisLocalAdjust = LocalCost - Cost.LocalCost; 1049 } else { 1050 ThisLocalAdjust = LocalCost; 1051 OtherLocalAdjust = Cost.LocalCost; 1052 } 1053 1054 // The non-local costs are comparable, just keep the relative value. 1055 uint64_t ThisNonLocalAdjust = 0; 1056 uint64_t OtherNonLocalAdjust = 0; 1057 if (NonLocalCost < Cost.NonLocalCost) 1058 OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost; 1059 else 1060 ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost; 1061 // Scale everything to make them comparable. 1062 uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq; 1063 // Check for overflow on that operation. 1064 bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust || 1065 ThisScaledCost < LocalFreq); 1066 uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq; 1067 // Check for overflow on the last operation. 1068 bool OtherOverflows = 1069 OtherLocalAdjust && 1070 (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq); 1071 // Add the non-local costs. 1072 ThisOverflows |= ThisNonLocalAdjust && 1073 ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust; 1074 ThisScaledCost += ThisNonLocalAdjust; 1075 OtherOverflows |= OtherNonLocalAdjust && 1076 OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust; 1077 OtherScaledCost += OtherNonLocalAdjust; 1078 // If both overflows, we cannot compare without additional 1079 // precision, e.g., APInt. Just give up on that case. 1080 if (ThisOverflows && OtherOverflows) 1081 return false; 1082 // If one overflows but not the other, we can still compare. 1083 if (ThisOverflows || OtherOverflows) 1084 return ThisOverflows < OtherOverflows; 1085 // Otherwise, just compare the values. 1086 return ThisScaledCost < OtherScaledCost; 1087 } 1088 1089 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const { 1090 return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost && 1091 LocalFreq == Cost.LocalFreq; 1092 } 1093 1094 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1095 LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const { 1096 print(dbgs()); 1097 dbgs() << '\n'; 1098 } 1099 #endif 1100 1101 void RegBankSelect::MappingCost::print(raw_ostream &OS) const { 1102 if (*this == ImpossibleCost()) { 1103 OS << "impossible"; 1104 return; 1105 } 1106 if (isSaturated()) { 1107 OS << "saturated"; 1108 return; 1109 } 1110 OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost; 1111 } 1112