xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp (revision 61898cde69374d5a9994e2074605bc4101aff72d)
1 //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the RegBankSelect class.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
17 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
18 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
19 #include "llvm/CodeGen/GlobalISel/Utils.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
22 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "llvm/CodeGen/TargetRegisterInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/InitializePasses.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/BlockFrequency.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Compiler.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <cstdint>
46 #include <limits>
47 #include <memory>
48 #include <utility>
49 
50 #define DEBUG_TYPE "regbankselect"
51 
52 using namespace llvm;
53 
54 static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
55     cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
56     cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
57                           "Run the Fast mode (default mapping)"),
58                clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
59                           "Use the Greedy mode (best local mapping)")));
60 
61 char RegBankSelect::ID = 0;
62 
63 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
64                       "Assign register bank of generic virtual registers",
65                       false, false);
66 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
67 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
68 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
69 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
70                     "Assign register bank of generic virtual registers", false,
71                     false)
72 
73 RegBankSelect::RegBankSelect(Mode RunningMode)
74     : MachineFunctionPass(ID), OptMode(RunningMode) {
75   if (RegBankSelectMode.getNumOccurrences() != 0) {
76     OptMode = RegBankSelectMode;
77     if (RegBankSelectMode != RunningMode)
78       LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
79   }
80 }
81 
82 void RegBankSelect::init(MachineFunction &MF) {
83   RBI = MF.getSubtarget().getRegBankInfo();
84   assert(RBI && "Cannot work without RegisterBankInfo");
85   MRI = &MF.getRegInfo();
86   TRI = MF.getSubtarget().getRegisterInfo();
87   TPC = &getAnalysis<TargetPassConfig>();
88   if (OptMode != Mode::Fast) {
89     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
90     MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
91   } else {
92     MBFI = nullptr;
93     MBPI = nullptr;
94   }
95   MIRBuilder.setMF(MF);
96   MORE = std::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
97 }
98 
99 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
100   if (OptMode != Mode::Fast) {
101     // We could preserve the information from these two analysis but
102     // the APIs do not allow to do so yet.
103     AU.addRequired<MachineBlockFrequencyInfo>();
104     AU.addRequired<MachineBranchProbabilityInfo>();
105   }
106   AU.addRequired<TargetPassConfig>();
107   getSelectionDAGFallbackAnalysisUsage(AU);
108   MachineFunctionPass::getAnalysisUsage(AU);
109 }
110 
111 bool RegBankSelect::assignmentMatch(
112     Register Reg, const RegisterBankInfo::ValueMapping &ValMapping,
113     bool &OnlyAssign) const {
114   // By default we assume we will have to repair something.
115   OnlyAssign = false;
116   // Each part of a break down needs to end up in a different register.
117   // In other word, Reg assignment does not match.
118   if (ValMapping.NumBreakDowns != 1)
119     return false;
120 
121   const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
122   const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank;
123   // Reg is free of assignment, a simple assignment will make the
124   // register bank to match.
125   OnlyAssign = CurRegBank == nullptr;
126   LLVM_DEBUG(dbgs() << "Does assignment already match: ";
127              if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
128              dbgs() << " against ";
129              assert(DesiredRegBank && "The mapping must be valid");
130              dbgs() << *DesiredRegBank << '\n';);
131   return CurRegBank == DesiredRegBank;
132 }
133 
134 bool RegBankSelect::repairReg(
135     MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
136     RegBankSelect::RepairingPlacement &RepairPt,
137     const iterator_range<SmallVectorImpl<Register>::const_iterator> &NewVRegs) {
138 
139   assert(ValMapping.NumBreakDowns == (unsigned)size(NewVRegs) &&
140          "need new vreg for each breakdown");
141 
142   // An empty range of new register means no repairing.
143   assert(!NewVRegs.empty() && "We should not have to repair");
144 
145   MachineInstr *MI;
146   if (ValMapping.NumBreakDowns == 1) {
147     // Assume we are repairing a use and thus, the original reg will be
148     // the source of the repairing.
149     Register Src = MO.getReg();
150     Register Dst = *NewVRegs.begin();
151 
152     // If we repair a definition, swap the source and destination for
153     // the repairing.
154     if (MO.isDef())
155       std::swap(Src, Dst);
156 
157     assert((RepairPt.getNumInsertPoints() == 1 ||
158             Register::isPhysicalRegister(Dst)) &&
159            "We are about to create several defs for Dst");
160 
161     // Build the instruction used to repair, then clone it at the right
162     // places. Avoiding buildCopy bypasses the check that Src and Dst have the
163     // same types because the type is a placeholder when this function is called.
164     MI = MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY)
165       .addDef(Dst)
166       .addUse(Src);
167     LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst)
168                << '\n');
169   } else {
170     // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT
171     // sequence.
172     assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported");
173 
174     LLT RegTy = MRI->getType(MO.getReg());
175     if (MO.isDef()) {
176       unsigned MergeOp;
177       if (RegTy.isVector()) {
178         if (ValMapping.NumBreakDowns == RegTy.getNumElements())
179           MergeOp = TargetOpcode::G_BUILD_VECTOR;
180         else {
181           assert(
182               (ValMapping.BreakDown[0].Length * ValMapping.NumBreakDowns ==
183                RegTy.getSizeInBits()) &&
184               (ValMapping.BreakDown[0].Length % RegTy.getScalarSizeInBits() ==
185                0) &&
186               "don't understand this value breakdown");
187 
188           MergeOp = TargetOpcode::G_CONCAT_VECTORS;
189         }
190       } else
191         MergeOp = TargetOpcode::G_MERGE_VALUES;
192 
193       auto MergeBuilder =
194         MIRBuilder.buildInstrNoInsert(MergeOp)
195         .addDef(MO.getReg());
196 
197       for (Register SrcReg : NewVRegs)
198         MergeBuilder.addUse(SrcReg);
199 
200       MI = MergeBuilder;
201     } else {
202       MachineInstrBuilder UnMergeBuilder =
203         MIRBuilder.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES);
204       for (Register DefReg : NewVRegs)
205         UnMergeBuilder.addDef(DefReg);
206 
207       UnMergeBuilder.addUse(MO.getReg());
208       MI = UnMergeBuilder;
209     }
210   }
211 
212   if (RepairPt.getNumInsertPoints() != 1)
213     report_fatal_error("need testcase to support multiple insertion points");
214 
215   // TODO:
216   // Check if MI is legal. if not, we need to legalize all the
217   // instructions we are going to insert.
218   std::unique_ptr<MachineInstr *[]> NewInstrs(
219       new MachineInstr *[RepairPt.getNumInsertPoints()]);
220   bool IsFirst = true;
221   unsigned Idx = 0;
222   for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
223     MachineInstr *CurMI;
224     if (IsFirst)
225       CurMI = MI;
226     else
227       CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
228     InsertPt->insert(*CurMI);
229     NewInstrs[Idx++] = CurMI;
230     IsFirst = false;
231   }
232   // TODO:
233   // Legalize NewInstrs if need be.
234   return true;
235 }
236 
237 uint64_t RegBankSelect::getRepairCost(
238     const MachineOperand &MO,
239     const RegisterBankInfo::ValueMapping &ValMapping) const {
240   assert(MO.isReg() && "We should only repair register operand");
241   assert(ValMapping.NumBreakDowns && "Nothing to map??");
242 
243   bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
244   const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
245   // If MO does not have a register bank, we should have just been
246   // able to set one unless we have to break the value down.
247   assert(CurRegBank || MO.isDef());
248 
249   // Def: Val <- NewDefs
250   //     Same number of values: copy
251   //     Different number: Val = build_sequence Defs1, Defs2, ...
252   // Use: NewSources <- Val.
253   //     Same number of values: copy.
254   //     Different number: Src1, Src2, ... =
255   //           extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
256   // We should remember that this value is available somewhere else to
257   // coalesce the value.
258 
259   if (ValMapping.NumBreakDowns != 1)
260     return RBI->getBreakDownCost(ValMapping, CurRegBank);
261 
262   if (IsSameNumOfValues) {
263     const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank;
264     // If we repair a definition, swap the source and destination for
265     // the repairing.
266     if (MO.isDef())
267       std::swap(CurRegBank, DesiredRegBank);
268     // TODO: It may be possible to actually avoid the copy.
269     // If we repair something where the source is defined by a copy
270     // and the source of that copy is on the right bank, we can reuse
271     // it for free.
272     // E.g.,
273     // RegToRepair<BankA> = copy AlternativeSrc<BankB>
274     // = op RegToRepair<BankA>
275     // We can simply propagate AlternativeSrc instead of copying RegToRepair
276     // into a new virtual register.
277     // We would also need to propagate this information in the
278     // repairing placement.
279     unsigned Cost = RBI->copyCost(*DesiredRegBank, *CurRegBank,
280                                   RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
281     // TODO: use a dedicated constant for ImpossibleCost.
282     if (Cost != std::numeric_limits<unsigned>::max())
283       return Cost;
284     // Return the legalization cost of that repairing.
285   }
286   return std::numeric_limits<unsigned>::max();
287 }
288 
289 const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
290     MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
291     SmallVectorImpl<RepairingPlacement> &RepairPts) {
292   assert(!PossibleMappings.empty() &&
293          "Do not know how to map this instruction");
294 
295   const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
296   MappingCost Cost = MappingCost::ImpossibleCost();
297   SmallVector<RepairingPlacement, 4> LocalRepairPts;
298   for (const RegisterBankInfo::InstructionMapping *CurMapping :
299        PossibleMappings) {
300     MappingCost CurCost =
301         computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
302     if (CurCost < Cost) {
303       LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');
304       Cost = CurCost;
305       BestMapping = CurMapping;
306       RepairPts.clear();
307       for (RepairingPlacement &RepairPt : LocalRepairPts)
308         RepairPts.emplace_back(std::move(RepairPt));
309     }
310   }
311   if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
312     // If none of the mapping worked that means they are all impossible.
313     // Thus, pick the first one and set an impossible repairing point.
314     // It will trigger the failed isel mode.
315     BestMapping = *PossibleMappings.begin();
316     RepairPts.emplace_back(
317         RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
318   } else
319     assert(BestMapping && "No suitable mapping for instruction");
320   return *BestMapping;
321 }
322 
323 void RegBankSelect::tryAvoidingSplit(
324     RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
325     const RegisterBankInfo::ValueMapping &ValMapping) const {
326   const MachineInstr &MI = *MO.getParent();
327   assert(RepairPt.hasSplit() && "We should not have to adjust for split");
328   // Splitting should only occur for PHIs or between terminators,
329   // because we only do local repairing.
330   assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
331 
332   assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
333          "Repairing placement does not match operand");
334 
335   // If we need splitting for phis, that means it is because we
336   // could not find an insertion point before the terminators of
337   // the predecessor block for this argument. In other words,
338   // the input value is defined by one of the terminators.
339   assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
340 
341   // We split to repair the use of a phi or a terminator.
342   if (!MO.isDef()) {
343     if (MI.isTerminator()) {
344       assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
345              "Need to split for the first terminator?!");
346     } else {
347       // For the PHI case, the split may not be actually required.
348       // In the copy case, a phi is already a copy on the incoming edge,
349       // therefore there is no need to split.
350       if (ValMapping.NumBreakDowns == 1)
351         // This is a already a copy, there is nothing to do.
352         RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
353     }
354     return;
355   }
356 
357   // At this point, we need to repair a defintion of a terminator.
358 
359   // Technically we need to fix the def of MI on all outgoing
360   // edges of MI to keep the repairing local. In other words, we
361   // will create several definitions of the same register. This
362   // does not work for SSA unless that definition is a physical
363   // register.
364   // However, there are other cases where we can get away with
365   // that while still keeping the repairing local.
366   assert(MI.isTerminator() && MO.isDef() &&
367          "This code is for the def of a terminator");
368 
369   // Since we use RPO traversal, if we need to repair a definition
370   // this means this definition could be:
371   // 1. Used by PHIs (i.e., this VReg has been visited as part of the
372   //    uses of a phi.), or
373   // 2. Part of a target specific instruction (i.e., the target applied
374   //    some register class constraints when creating the instruction.)
375   // If the constraints come for #2, the target said that another mapping
376   // is supported so we may just drop them. Indeed, if we do not change
377   // the number of registers holding that value, the uses will get fixed
378   // when we get to them.
379   // Uses in PHIs may have already been proceeded though.
380   // If the constraints come for #1, then, those are weak constraints and
381   // no actual uses may rely on them. However, the problem remains mainly
382   // the same as for #2. If the value stays in one register, we could
383   // just switch the register bank of the definition, but we would need to
384   // account for a repairing cost for each phi we silently change.
385   //
386   // In any case, if the value needs to be broken down into several
387   // registers, the repairing is not local anymore as we need to patch
388   // every uses to rebuild the value in just one register.
389   //
390   // To summarize:
391   // - If the value is in a physical register, we can do the split and
392   //   fix locally.
393   // Otherwise if the value is in a virtual register:
394   // - If the value remains in one register, we do not have to split
395   //   just switching the register bank would do, but we need to account
396   //   in the repairing cost all the phi we changed.
397   // - If the value spans several registers, then we cannot do a local
398   //   repairing.
399 
400   // Check if this is a physical or virtual register.
401   Register Reg = MO.getReg();
402   if (Register::isPhysicalRegister(Reg)) {
403     // We are going to split every outgoing edges.
404     // Check that this is possible.
405     // FIXME: The machine representation is currently broken
406     // since it also several terminators in one basic block.
407     // Because of that we would technically need a way to get
408     // the targets of just one terminator to know which edges
409     // we have to split.
410     // Assert that we do not hit the ill-formed representation.
411 
412     // If there are other terminators before that one, some of
413     // the outgoing edges may not be dominated by this definition.
414     assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
415            "Do not know which outgoing edges are relevant");
416     const MachineInstr *Next = MI.getNextNode();
417     assert((!Next || Next->isUnconditionalBranch()) &&
418            "Do not know where each terminator ends up");
419     if (Next)
420       // If the next terminator uses Reg, this means we have
421       // to split right after MI and thus we need a way to ask
422       // which outgoing edges are affected.
423       assert(!Next->readsRegister(Reg) && "Need to split between terminators");
424     // We will split all the edges and repair there.
425   } else {
426     // This is a virtual register defined by a terminator.
427     if (ValMapping.NumBreakDowns == 1) {
428       // There is nothing to repair, but we may actually lie on
429       // the repairing cost because of the PHIs already proceeded
430       // as already stated.
431       // Though the code will be correct.
432       assert(false && "Repairing cost may not be accurate");
433     } else {
434       // We need to do non-local repairing. Basically, patch all
435       // the uses (i.e., phis) that we already proceeded.
436       // For now, just say this mapping is not possible.
437       RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
438     }
439   }
440 }
441 
442 RegBankSelect::MappingCost RegBankSelect::computeMapping(
443     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
444     SmallVectorImpl<RepairingPlacement> &RepairPts,
445     const RegBankSelect::MappingCost *BestCost) {
446   assert((MBFI || !BestCost) && "Costs comparison require MBFI");
447 
448   if (!InstrMapping.isValid())
449     return MappingCost::ImpossibleCost();
450 
451   // If mapped with InstrMapping, MI will have the recorded cost.
452   MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
453   bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
454   assert(!Saturated && "Possible mapping saturated the cost");
455   LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
456   LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');
457   RepairPts.clear();
458   if (BestCost && Cost > *BestCost) {
459     LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
460     return Cost;
461   }
462 
463   // Moreover, to realize this mapping, the register bank of each operand must
464   // match this mapping. In other words, we may need to locally reassign the
465   // register banks. Account for that repairing cost as well.
466   // In this context, local means in the surrounding of MI.
467   for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
468        OpIdx != EndOpIdx; ++OpIdx) {
469     const MachineOperand &MO = MI.getOperand(OpIdx);
470     if (!MO.isReg())
471       continue;
472     Register Reg = MO.getReg();
473     if (!Reg)
474       continue;
475     LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n');
476     const RegisterBankInfo::ValueMapping &ValMapping =
477         InstrMapping.getOperandMapping(OpIdx);
478     // If Reg is already properly mapped, this is free.
479     bool Assign;
480     if (assignmentMatch(Reg, ValMapping, Assign)) {
481       LLVM_DEBUG(dbgs() << "=> is free (match).\n");
482       continue;
483     }
484     if (Assign) {
485       LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
486       RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
487                                                 RepairingPlacement::Reassign));
488       continue;
489     }
490 
491     // Find the insertion point for the repairing code.
492     RepairPts.emplace_back(
493         RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
494     RepairingPlacement &RepairPt = RepairPts.back();
495 
496     // If we need to split a basic block to materialize this insertion point,
497     // we may give a higher cost to this mapping.
498     // Nevertheless, we may get away with the split, so try that first.
499     if (RepairPt.hasSplit())
500       tryAvoidingSplit(RepairPt, MO, ValMapping);
501 
502     // Check that the materialization of the repairing is possible.
503     if (!RepairPt.canMaterialize()) {
504       LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
505       return MappingCost::ImpossibleCost();
506     }
507 
508     // Account for the split cost and repair cost.
509     // Unless the cost is already saturated or we do not care about the cost.
510     if (!BestCost || Saturated)
511       continue;
512 
513     // To get accurate information we need MBFI and MBPI.
514     // Thus, if we end up here this information should be here.
515     assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
516 
517     // FIXME: We will have to rework the repairing cost model.
518     // The repairing cost depends on the register bank that MO has.
519     // However, when we break down the value into different values,
520     // MO may not have a register bank while still needing repairing.
521     // For the fast mode, we don't compute the cost so that is fine,
522     // but still for the repairing code, we will have to make a choice.
523     // For the greedy mode, we should choose greedily what is the best
524     // choice based on the next use of MO.
525 
526     // Sums up the repairing cost of MO at each insertion point.
527     uint64_t RepairCost = getRepairCost(MO, ValMapping);
528 
529     // This is an impossible to repair cost.
530     if (RepairCost == std::numeric_limits<unsigned>::max())
531       return MappingCost::ImpossibleCost();
532 
533     // Bias used for splitting: 5%.
534     const uint64_t PercentageForBias = 5;
535     uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
536     // We should not need more than a couple of instructions to repair
537     // an assignment. In other words, the computation should not
538     // overflow because the repairing cost is free of basic block
539     // frequency.
540     assert(((RepairCost < RepairCost * PercentageForBias) &&
541             (RepairCost * PercentageForBias <
542              RepairCost * PercentageForBias + 99)) &&
543            "Repairing involves more than a billion of instructions?!");
544     for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
545       assert(InsertPt->canMaterialize() && "We should not have made it here");
546       // We will applied some basic block frequency and those uses uint64_t.
547       if (!InsertPt->isSplit())
548         Saturated = Cost.addLocalCost(RepairCost);
549       else {
550         uint64_t CostForInsertPt = RepairCost;
551         // Again we shouldn't overflow here givent that
552         // CostForInsertPt is frequency free at this point.
553         assert(CostForInsertPt + Bias > CostForInsertPt &&
554                "Repairing + split bias overflows");
555         CostForInsertPt += Bias;
556         uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
557         // Check if we just overflowed.
558         if ((Saturated = PtCost < CostForInsertPt))
559           Cost.saturate();
560         else
561           Saturated = Cost.addNonLocalCost(PtCost);
562       }
563 
564       // Stop looking into what it takes to repair, this is already
565       // too expensive.
566       if (BestCost && Cost > *BestCost) {
567         LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
568         return Cost;
569       }
570 
571       // No need to accumulate more cost information.
572       // We need to still gather the repairing information though.
573       if (Saturated)
574         break;
575     }
576   }
577   LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
578   return Cost;
579 }
580 
581 bool RegBankSelect::applyMapping(
582     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
583     SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
584   // OpdMapper will hold all the information needed for the rewriting.
585   RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
586 
587   // First, place the repairing code.
588   for (RepairingPlacement &RepairPt : RepairPts) {
589     if (!RepairPt.canMaterialize() ||
590         RepairPt.getKind() == RepairingPlacement::Impossible)
591       return false;
592     assert(RepairPt.getKind() != RepairingPlacement::None &&
593            "This should not make its way in the list");
594     unsigned OpIdx = RepairPt.getOpIdx();
595     MachineOperand &MO = MI.getOperand(OpIdx);
596     const RegisterBankInfo::ValueMapping &ValMapping =
597         InstrMapping.getOperandMapping(OpIdx);
598     Register Reg = MO.getReg();
599 
600     switch (RepairPt.getKind()) {
601     case RepairingPlacement::Reassign:
602       assert(ValMapping.NumBreakDowns == 1 &&
603              "Reassignment should only be for simple mapping");
604       MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
605       break;
606     case RepairingPlacement::Insert:
607       OpdMapper.createVRegs(OpIdx);
608       if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
609         return false;
610       break;
611     default:
612       llvm_unreachable("Other kind should not happen");
613     }
614   }
615 
616   // Second, rewrite the instruction.
617   LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
618   RBI->applyMapping(OpdMapper);
619 
620   return true;
621 }
622 
623 bool RegBankSelect::assignInstr(MachineInstr &MI) {
624   LLVM_DEBUG(dbgs() << "Assign: " << MI);
625   // Remember the repairing placement for all the operands.
626   SmallVector<RepairingPlacement, 4> RepairPts;
627 
628   const RegisterBankInfo::InstructionMapping *BestMapping;
629   if (OptMode == RegBankSelect::Mode::Fast) {
630     BestMapping = &RBI->getInstrMapping(MI);
631     MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
632     (void)DefaultCost;
633     if (DefaultCost == MappingCost::ImpossibleCost())
634       return false;
635   } else {
636     RegisterBankInfo::InstructionMappings PossibleMappings =
637         RBI->getInstrPossibleMappings(MI);
638     if (PossibleMappings.empty())
639       return false;
640     BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
641   }
642   // Make sure the mapping is valid for MI.
643   assert(BestMapping->verify(MI) && "Invalid instruction mapping");
644 
645   LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
646 
647   // After this call, MI may not be valid anymore.
648   // Do not use it.
649   return applyMapping(MI, *BestMapping, RepairPts);
650 }
651 
652 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
653   // If the ISel pipeline failed, do not bother running that pass.
654   if (MF.getProperties().hasProperty(
655           MachineFunctionProperties::Property::FailedISel))
656     return false;
657 
658   LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
659   const Function &F = MF.getFunction();
660   Mode SaveOptMode = OptMode;
661   if (F.hasOptNone())
662     OptMode = Mode::Fast;
663   init(MF);
664 
665 #ifndef NDEBUG
666   // Check that our input is fully legal: we require the function to have the
667   // Legalized property, so it should be.
668   // FIXME: This should be in the MachineVerifier.
669   if (!DisableGISelLegalityCheck)
670     if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
671       reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
672                          "instruction is not legal", *MI);
673       return false;
674     }
675 #endif
676 
677   // Walk the function and assign register banks to all operands.
678   // Use a RPOT to make sure all registers are assigned before we choose
679   // the best mapping of the current instruction.
680   ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
681   for (MachineBasicBlock *MBB : RPOT) {
682     // Set a sensible insertion point so that subsequent calls to
683     // MIRBuilder.
684     MIRBuilder.setMBB(*MBB);
685     for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end();
686          MII != End;) {
687       // MI might be invalidated by the assignment, so move the
688       // iterator before hand.
689       MachineInstr &MI = *MII++;
690 
691       // Ignore target-specific post-isel instructions: they should use proper
692       // regclasses.
693       if (isTargetSpecificOpcode(MI.getOpcode()) && !MI.isPreISelOpcode())
694         continue;
695 
696       if (!assignInstr(MI)) {
697         reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
698                            "unable to map instruction", MI);
699         return false;
700       }
701 
702       // It's possible the mapping changed control flow, and moved the following
703       // instruction to a new block, so figure out the new parent.
704       if (MII != End) {
705         MachineBasicBlock *NextInstBB = MII->getParent();
706         if (NextInstBB != MBB) {
707           LLVM_DEBUG(dbgs() << "Instruction mapping changed control flow\n");
708           MBB = NextInstBB;
709           MIRBuilder.setMBB(*MBB);
710           End = MBB->end();
711         }
712       }
713     }
714   }
715 
716   OptMode = SaveOptMode;
717   return false;
718 }
719 
720 //------------------------------------------------------------------------------
721 //                  Helper Classes Implementation
722 //------------------------------------------------------------------------------
723 RegBankSelect::RepairingPlacement::RepairingPlacement(
724     MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
725     RepairingPlacement::RepairingKind Kind)
726     // Default is, we are going to insert code to repair OpIdx.
727     : Kind(Kind), OpIdx(OpIdx),
728       CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
729   const MachineOperand &MO = MI.getOperand(OpIdx);
730   assert(MO.isReg() && "Trying to repair a non-reg operand");
731 
732   if (Kind != RepairingKind::Insert)
733     return;
734 
735   // Repairings for definitions happen after MI, uses happen before.
736   bool Before = !MO.isDef();
737 
738   // Check if we are done with MI.
739   if (!MI.isPHI() && !MI.isTerminator()) {
740     addInsertPoint(MI, Before);
741     // We are done with the initialization.
742     return;
743   }
744 
745   // Now, look for the special cases.
746   if (MI.isPHI()) {
747     // - PHI must be the first instructions:
748     //   * Before, we have to split the related incoming edge.
749     //   * After, move the insertion point past the last phi.
750     if (!Before) {
751       MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
752       if (It != MI.getParent()->end())
753         addInsertPoint(*It, /*Before*/ true);
754       else
755         addInsertPoint(*(--It), /*Before*/ false);
756       return;
757     }
758     // We repair a use of a phi, we may need to split the related edge.
759     MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
760     // Check if we can move the insertion point prior to the
761     // terminators of the predecessor.
762     Register Reg = MO.getReg();
763     MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
764     for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
765       if (It->modifiesRegister(Reg, &TRI)) {
766         // We cannot hoist the repairing code in the predecessor.
767         // Split the edge.
768         addInsertPoint(Pred, *MI.getParent());
769         return;
770       }
771     // At this point, we can insert in Pred.
772 
773     // - If It is invalid, Pred is empty and we can insert in Pred
774     //   wherever we want.
775     // - If It is valid, It is the first non-terminator, insert after It.
776     if (It == Pred.end())
777       addInsertPoint(Pred, /*Beginning*/ false);
778     else
779       addInsertPoint(*It, /*Before*/ false);
780   } else {
781     // - Terminators must be the last instructions:
782     //   * Before, move the insert point before the first terminator.
783     //   * After, we have to split the outcoming edges.
784     if (Before) {
785       // Check whether Reg is defined by any terminator.
786       MachineBasicBlock::reverse_iterator It = MI;
787       auto REnd = MI.getParent()->rend();
788 
789       for (; It != REnd && It->isTerminator(); ++It) {
790         assert(!It->modifiesRegister(MO.getReg(), &TRI) &&
791                "copy insertion in middle of terminators not handled");
792       }
793 
794       if (It == REnd) {
795         addInsertPoint(*MI.getParent()->begin(), true);
796         return;
797       }
798 
799       // We are sure to be right before the first terminator.
800       addInsertPoint(*It, /*Before*/ false);
801       return;
802     }
803     // Make sure Reg is not redefined by other terminators, otherwise
804     // we do not know how to split.
805     for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
806          ++It != End;)
807       // The machine verifier should reject this kind of code.
808       assert(It->modifiesRegister(MO.getReg(), &TRI) &&
809              "Do not know where to split");
810     // Split each outcoming edges.
811     MachineBasicBlock &Src = *MI.getParent();
812     for (auto &Succ : Src.successors())
813       addInsertPoint(Src, Succ);
814   }
815 }
816 
817 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
818                                                        bool Before) {
819   addInsertPoint(*new InstrInsertPoint(MI, Before));
820 }
821 
822 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
823                                                        bool Beginning) {
824   addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
825 }
826 
827 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
828                                                        MachineBasicBlock &Dst) {
829   addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
830 }
831 
832 void RegBankSelect::RepairingPlacement::addInsertPoint(
833     RegBankSelect::InsertPoint &Point) {
834   CanMaterialize &= Point.canMaterialize();
835   HasSplit |= Point.isSplit();
836   InsertPoints.emplace_back(&Point);
837 }
838 
839 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
840                                                   bool Before)
841     : InsertPoint(), Instr(Instr), Before(Before) {
842   // Since we do not support splitting, we do not need to update
843   // liveness and such, so do not do anything with P.
844   assert((!Before || !Instr.isPHI()) &&
845          "Splitting before phis requires more points");
846   assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
847          "Splitting between phis does not make sense");
848 }
849 
850 void RegBankSelect::InstrInsertPoint::materialize() {
851   if (isSplit()) {
852     // Slice and return the beginning of the new block.
853     // If we need to split between the terminators, we theoritically
854     // need to know where the first and second set of terminators end
855     // to update the successors properly.
856     // Now, in pratice, we should have a maximum of 2 branch
857     // instructions; one conditional and one unconditional. Therefore
858     // we know how to update the successor by looking at the target of
859     // the unconditional branch.
860     // If we end up splitting at some point, then, we should update
861     // the liveness information and such. I.e., we would need to
862     // access P here.
863     // The machine verifier should actually make sure such cases
864     // cannot happen.
865     llvm_unreachable("Not yet implemented");
866   }
867   // Otherwise the insertion point is just the current or next
868   // instruction depending on Before. I.e., there is nothing to do
869   // here.
870 }
871 
872 bool RegBankSelect::InstrInsertPoint::isSplit() const {
873   // If the insertion point is after a terminator, we need to split.
874   if (!Before)
875     return Instr.isTerminator();
876   // If we insert before an instruction that is after a terminator,
877   // we are still after a terminator.
878   return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
879 }
880 
881 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
882   // Even if we need to split, because we insert between terminators,
883   // this split has actually the same frequency as the instruction.
884   const MachineBlockFrequencyInfo *MBFI =
885       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
886   if (!MBFI)
887     return 1;
888   return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
889 }
890 
891 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
892   const MachineBlockFrequencyInfo *MBFI =
893       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
894   if (!MBFI)
895     return 1;
896   return MBFI->getBlockFreq(&MBB).getFrequency();
897 }
898 
899 void RegBankSelect::EdgeInsertPoint::materialize() {
900   // If we end up repairing twice at the same place before materializing the
901   // insertion point, we may think we have to split an edge twice.
902   // We should have a factory for the insert point such that identical points
903   // are the same instance.
904   assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
905          "This point has already been split");
906   MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
907   assert(NewBB && "Invalid call to materialize");
908   // We reuse the destination block to hold the information of the new block.
909   DstOrSplit = NewBB;
910 }
911 
912 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
913   const MachineBlockFrequencyInfo *MBFI =
914       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
915   if (!MBFI)
916     return 1;
917   if (WasMaterialized)
918     return MBFI->getBlockFreq(DstOrSplit).getFrequency();
919 
920   const MachineBranchProbabilityInfo *MBPI =
921       P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
922   if (!MBPI)
923     return 1;
924   // The basic block will be on the edge.
925   return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
926       .getFrequency();
927 }
928 
929 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
930   // If this is not a critical edge, we should not have used this insert
931   // point. Indeed, either the successor or the predecessor should
932   // have do.
933   assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
934          "Edge is not critical");
935   return Src.canSplitCriticalEdge(DstOrSplit);
936 }
937 
938 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
939     : LocalFreq(LocalFreq.getFrequency()) {}
940 
941 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
942   // Check if this overflows.
943   if (LocalCost + Cost < LocalCost) {
944     saturate();
945     return true;
946   }
947   LocalCost += Cost;
948   return isSaturated();
949 }
950 
951 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
952   // Check if this overflows.
953   if (NonLocalCost + Cost < NonLocalCost) {
954     saturate();
955     return true;
956   }
957   NonLocalCost += Cost;
958   return isSaturated();
959 }
960 
961 bool RegBankSelect::MappingCost::isSaturated() const {
962   return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
963          LocalFreq == UINT64_MAX;
964 }
965 
966 void RegBankSelect::MappingCost::saturate() {
967   *this = ImpossibleCost();
968   --LocalCost;
969 }
970 
971 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
972   return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
973 }
974 
975 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
976   // Sort out the easy cases.
977   if (*this == Cost)
978     return false;
979   // If one is impossible to realize the other is cheaper unless it is
980   // impossible as well.
981   if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
982     return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
983   // If one is saturated the other is cheaper, unless it is saturated
984   // as well.
985   if (isSaturated() || Cost.isSaturated())
986     return isSaturated() < Cost.isSaturated();
987   // At this point we know both costs hold sensible values.
988 
989   // If both values have a different base frequency, there is no much
990   // we can do but to scale everything.
991   // However, if they have the same base frequency we can avoid making
992   // complicated computation.
993   uint64_t ThisLocalAdjust;
994   uint64_t OtherLocalAdjust;
995   if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
996 
997     // At this point, we know the local costs are comparable.
998     // Do the case that do not involve potential overflow first.
999     if (NonLocalCost == Cost.NonLocalCost)
1000       // Since the non-local costs do not discriminate on the result,
1001       // just compare the local costs.
1002       return LocalCost < Cost.LocalCost;
1003 
1004     // The base costs are comparable so we may only keep the relative
1005     // value to increase our chances of avoiding overflows.
1006     ThisLocalAdjust = 0;
1007     OtherLocalAdjust = 0;
1008     if (LocalCost < Cost.LocalCost)
1009       OtherLocalAdjust = Cost.LocalCost - LocalCost;
1010     else
1011       ThisLocalAdjust = LocalCost - Cost.LocalCost;
1012   } else {
1013     ThisLocalAdjust = LocalCost;
1014     OtherLocalAdjust = Cost.LocalCost;
1015   }
1016 
1017   // The non-local costs are comparable, just keep the relative value.
1018   uint64_t ThisNonLocalAdjust = 0;
1019   uint64_t OtherNonLocalAdjust = 0;
1020   if (NonLocalCost < Cost.NonLocalCost)
1021     OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
1022   else
1023     ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
1024   // Scale everything to make them comparable.
1025   uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
1026   // Check for overflow on that operation.
1027   bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
1028                                            ThisScaledCost < LocalFreq);
1029   uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
1030   // Check for overflow on the last operation.
1031   bool OtherOverflows =
1032       OtherLocalAdjust &&
1033       (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
1034   // Add the non-local costs.
1035   ThisOverflows |= ThisNonLocalAdjust &&
1036                    ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
1037   ThisScaledCost += ThisNonLocalAdjust;
1038   OtherOverflows |= OtherNonLocalAdjust &&
1039                     OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
1040   OtherScaledCost += OtherNonLocalAdjust;
1041   // If both overflows, we cannot compare without additional
1042   // precision, e.g., APInt. Just give up on that case.
1043   if (ThisOverflows && OtherOverflows)
1044     return false;
1045   // If one overflows but not the other, we can still compare.
1046   if (ThisOverflows || OtherOverflows)
1047     return ThisOverflows < OtherOverflows;
1048   // Otherwise, just compare the values.
1049   return ThisScaledCost < OtherScaledCost;
1050 }
1051 
1052 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
1053   return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
1054          LocalFreq == Cost.LocalFreq;
1055 }
1056 
1057 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1058 LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
1059   print(dbgs());
1060   dbgs() << '\n';
1061 }
1062 #endif
1063 
1064 void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
1065   if (*this == ImpossibleCost()) {
1066     OS << "impossible";
1067     return;
1068   }
1069   if (isSaturated()) {
1070     OS << "saturated";
1071     return;
1072   }
1073   OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;
1074 }
1075