xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the RegBankSelect class.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
17 #include "llvm/CodeGen/GlobalISel/Utils.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
20 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/RegisterBank.h"
27 #include "llvm/CodeGen/RegisterBankInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "llvm/CodeGen/TargetRegisterInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/InitializePasses.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/BlockFrequency.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstdint>
45 #include <limits>
46 #include <memory>
47 #include <utility>
48 
49 #define DEBUG_TYPE "regbankselect"
50 
51 using namespace llvm;
52 
53 static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
54     cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
55     cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
56                           "Run the Fast mode (default mapping)"),
57                clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
58                           "Use the Greedy mode (best local mapping)")));
59 
60 char RegBankSelect::ID = 0;
61 
62 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
63                       "Assign register bank of generic virtual registers",
64                       false, false);
65 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass)
66 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass)
67 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
68 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
69                     "Assign register bank of generic virtual registers", false,
70                     false)
71 
72 RegBankSelect::RegBankSelect(char &PassID, Mode RunningMode)
73     : MachineFunctionPass(PassID), OptMode(RunningMode) {
74   if (RegBankSelectMode.getNumOccurrences() != 0) {
75     OptMode = RegBankSelectMode;
76     if (RegBankSelectMode != RunningMode)
77       LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
78   }
79 }
80 
81 void RegBankSelect::init(MachineFunction &MF) {
82   RBI = MF.getSubtarget().getRegBankInfo();
83   assert(RBI && "Cannot work without RegisterBankInfo");
84   MRI = &MF.getRegInfo();
85   TRI = MF.getSubtarget().getRegisterInfo();
86   TPC = &getAnalysis<TargetPassConfig>();
87   if (OptMode != Mode::Fast) {
88     MBFI = &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI();
89     MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI();
90   } else {
91     MBFI = nullptr;
92     MBPI = nullptr;
93   }
94   MIRBuilder.setMF(MF);
95   MORE = std::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
96 }
97 
98 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
99   if (OptMode != Mode::Fast) {
100     // We could preserve the information from these two analysis but
101     // the APIs do not allow to do so yet.
102     AU.addRequired<MachineBlockFrequencyInfoWrapperPass>();
103     AU.addRequired<MachineBranchProbabilityInfoWrapperPass>();
104   }
105   AU.addRequired<TargetPassConfig>();
106   getSelectionDAGFallbackAnalysisUsage(AU);
107   MachineFunctionPass::getAnalysisUsage(AU);
108 }
109 
110 bool RegBankSelect::assignmentMatch(
111     Register Reg, const RegisterBankInfo::ValueMapping &ValMapping,
112     bool &OnlyAssign) const {
113   // By default we assume we will have to repair something.
114   OnlyAssign = false;
115   // Each part of a break down needs to end up in a different register.
116   // In other word, Reg assignment does not match.
117   if (ValMapping.NumBreakDowns != 1)
118     return false;
119 
120   const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
121   const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank;
122   // Reg is free of assignment, a simple assignment will make the
123   // register bank to match.
124   OnlyAssign = CurRegBank == nullptr;
125   LLVM_DEBUG(dbgs() << "Does assignment already match: ";
126              if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
127              dbgs() << " against ";
128              assert(DesiredRegBank && "The mapping must be valid");
129              dbgs() << *DesiredRegBank << '\n';);
130   return CurRegBank == DesiredRegBank;
131 }
132 
133 bool RegBankSelect::repairReg(
134     MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
135     RegBankSelect::RepairingPlacement &RepairPt,
136     const iterator_range<SmallVectorImpl<Register>::const_iterator> &NewVRegs) {
137 
138   assert(ValMapping.NumBreakDowns == (unsigned)size(NewVRegs) &&
139          "need new vreg for each breakdown");
140 
141   // An empty range of new register means no repairing.
142   assert(!NewVRegs.empty() && "We should not have to repair");
143 
144   MachineInstr *MI;
145   if (ValMapping.NumBreakDowns == 1) {
146     // Assume we are repairing a use and thus, the original reg will be
147     // the source of the repairing.
148     Register Src = MO.getReg();
149     Register Dst = *NewVRegs.begin();
150 
151     // If we repair a definition, swap the source and destination for
152     // the repairing.
153     if (MO.isDef())
154       std::swap(Src, Dst);
155 
156     assert((RepairPt.getNumInsertPoints() == 1 || Dst.isPhysical()) &&
157            "We are about to create several defs for Dst");
158 
159     // Build the instruction used to repair, then clone it at the right
160     // places. Avoiding buildCopy bypasses the check that Src and Dst have the
161     // same types because the type is a placeholder when this function is called.
162     MI = MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY)
163       .addDef(Dst)
164       .addUse(Src);
165     LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << ':'
166                       << printRegClassOrBank(Src, *MRI, TRI)
167                       << " to: " << printReg(Dst) << ':'
168                       << printRegClassOrBank(Dst, *MRI, TRI) << '\n');
169   } else {
170     // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT
171     // sequence.
172     assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported");
173 
174     LLT RegTy = MRI->getType(MO.getReg());
175     if (MO.isDef()) {
176       unsigned MergeOp;
177       if (RegTy.isVector()) {
178         if (ValMapping.NumBreakDowns == RegTy.getNumElements())
179           MergeOp = TargetOpcode::G_BUILD_VECTOR;
180         else {
181           assert(
182               (ValMapping.BreakDown[0].Length * ValMapping.NumBreakDowns ==
183                RegTy.getSizeInBits()) &&
184               (ValMapping.BreakDown[0].Length % RegTy.getScalarSizeInBits() ==
185                0) &&
186               "don't understand this value breakdown");
187 
188           MergeOp = TargetOpcode::G_CONCAT_VECTORS;
189         }
190       } else
191         MergeOp = TargetOpcode::G_MERGE_VALUES;
192 
193       auto MergeBuilder =
194         MIRBuilder.buildInstrNoInsert(MergeOp)
195         .addDef(MO.getReg());
196 
197       for (Register SrcReg : NewVRegs)
198         MergeBuilder.addUse(SrcReg);
199 
200       MI = MergeBuilder;
201     } else {
202       MachineInstrBuilder UnMergeBuilder =
203         MIRBuilder.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES);
204       for (Register DefReg : NewVRegs)
205         UnMergeBuilder.addDef(DefReg);
206 
207       UnMergeBuilder.addUse(MO.getReg());
208       MI = UnMergeBuilder;
209     }
210   }
211 
212   if (RepairPt.getNumInsertPoints() != 1)
213     report_fatal_error("need testcase to support multiple insertion points");
214 
215   // TODO:
216   // Check if MI is legal. if not, we need to legalize all the
217   // instructions we are going to insert.
218   std::unique_ptr<MachineInstr *[]> NewInstrs(
219       new MachineInstr *[RepairPt.getNumInsertPoints()]);
220   bool IsFirst = true;
221   unsigned Idx = 0;
222   for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
223     MachineInstr *CurMI;
224     if (IsFirst)
225       CurMI = MI;
226     else
227       CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
228     InsertPt->insert(*CurMI);
229     NewInstrs[Idx++] = CurMI;
230     IsFirst = false;
231   }
232   // TODO:
233   // Legalize NewInstrs if need be.
234   return true;
235 }
236 
237 uint64_t RegBankSelect::getRepairCost(
238     const MachineOperand &MO,
239     const RegisterBankInfo::ValueMapping &ValMapping) const {
240   assert(MO.isReg() && "We should only repair register operand");
241   assert(ValMapping.NumBreakDowns && "Nothing to map??");
242 
243   bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
244   const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
245   // If MO does not have a register bank, we should have just been
246   // able to set one unless we have to break the value down.
247   assert(CurRegBank || MO.isDef());
248 
249   // Def: Val <- NewDefs
250   //     Same number of values: copy
251   //     Different number: Val = build_sequence Defs1, Defs2, ...
252   // Use: NewSources <- Val.
253   //     Same number of values: copy.
254   //     Different number: Src1, Src2, ... =
255   //           extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
256   // We should remember that this value is available somewhere else to
257   // coalesce the value.
258 
259   if (ValMapping.NumBreakDowns != 1)
260     return RBI->getBreakDownCost(ValMapping, CurRegBank);
261 
262   if (IsSameNumOfValues) {
263     const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank;
264     // If we repair a definition, swap the source and destination for
265     // the repairing.
266     if (MO.isDef())
267       std::swap(CurRegBank, DesiredRegBank);
268     // TODO: It may be possible to actually avoid the copy.
269     // If we repair something where the source is defined by a copy
270     // and the source of that copy is on the right bank, we can reuse
271     // it for free.
272     // E.g.,
273     // RegToRepair<BankA> = copy AlternativeSrc<BankB>
274     // = op RegToRepair<BankA>
275     // We can simply propagate AlternativeSrc instead of copying RegToRepair
276     // into a new virtual register.
277     // We would also need to propagate this information in the
278     // repairing placement.
279     unsigned Cost = RBI->copyCost(*DesiredRegBank, *CurRegBank,
280                                   RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
281     // TODO: use a dedicated constant for ImpossibleCost.
282     if (Cost != std::numeric_limits<unsigned>::max())
283       return Cost;
284     // Return the legalization cost of that repairing.
285   }
286   return std::numeric_limits<unsigned>::max();
287 }
288 
289 const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
290     MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
291     SmallVectorImpl<RepairingPlacement> &RepairPts) {
292   assert(!PossibleMappings.empty() &&
293          "Do not know how to map this instruction");
294 
295   const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
296   MappingCost Cost = MappingCost::ImpossibleCost();
297   SmallVector<RepairingPlacement, 4> LocalRepairPts;
298   for (const RegisterBankInfo::InstructionMapping *CurMapping :
299        PossibleMappings) {
300     MappingCost CurCost =
301         computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
302     if (CurCost < Cost) {
303       LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');
304       Cost = CurCost;
305       BestMapping = CurMapping;
306       RepairPts.clear();
307       for (RepairingPlacement &RepairPt : LocalRepairPts)
308         RepairPts.emplace_back(std::move(RepairPt));
309     }
310   }
311   if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
312     // If none of the mapping worked that means they are all impossible.
313     // Thus, pick the first one and set an impossible repairing point.
314     // It will trigger the failed isel mode.
315     BestMapping = *PossibleMappings.begin();
316     RepairPts.emplace_back(
317         RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
318   } else
319     assert(BestMapping && "No suitable mapping for instruction");
320   return *BestMapping;
321 }
322 
323 void RegBankSelect::tryAvoidingSplit(
324     RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
325     const RegisterBankInfo::ValueMapping &ValMapping) const {
326   const MachineInstr &MI = *MO.getParent();
327   assert(RepairPt.hasSplit() && "We should not have to adjust for split");
328   // Splitting should only occur for PHIs or between terminators,
329   // because we only do local repairing.
330   assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
331 
332   assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
333          "Repairing placement does not match operand");
334 
335   // If we need splitting for phis, that means it is because we
336   // could not find an insertion point before the terminators of
337   // the predecessor block for this argument. In other words,
338   // the input value is defined by one of the terminators.
339   assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
340 
341   // We split to repair the use of a phi or a terminator.
342   if (!MO.isDef()) {
343     if (MI.isTerminator()) {
344       assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
345              "Need to split for the first terminator?!");
346     } else {
347       // For the PHI case, the split may not be actually required.
348       // In the copy case, a phi is already a copy on the incoming edge,
349       // therefore there is no need to split.
350       if (ValMapping.NumBreakDowns == 1)
351         // This is a already a copy, there is nothing to do.
352         RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
353     }
354     return;
355   }
356 
357   // At this point, we need to repair a defintion of a terminator.
358 
359   // Technically we need to fix the def of MI on all outgoing
360   // edges of MI to keep the repairing local. In other words, we
361   // will create several definitions of the same register. This
362   // does not work for SSA unless that definition is a physical
363   // register.
364   // However, there are other cases where we can get away with
365   // that while still keeping the repairing local.
366   assert(MI.isTerminator() && MO.isDef() &&
367          "This code is for the def of a terminator");
368 
369   // Since we use RPO traversal, if we need to repair a definition
370   // this means this definition could be:
371   // 1. Used by PHIs (i.e., this VReg has been visited as part of the
372   //    uses of a phi.), or
373   // 2. Part of a target specific instruction (i.e., the target applied
374   //    some register class constraints when creating the instruction.)
375   // If the constraints come for #2, the target said that another mapping
376   // is supported so we may just drop them. Indeed, if we do not change
377   // the number of registers holding that value, the uses will get fixed
378   // when we get to them.
379   // Uses in PHIs may have already been proceeded though.
380   // If the constraints come for #1, then, those are weak constraints and
381   // no actual uses may rely on them. However, the problem remains mainly
382   // the same as for #2. If the value stays in one register, we could
383   // just switch the register bank of the definition, but we would need to
384   // account for a repairing cost for each phi we silently change.
385   //
386   // In any case, if the value needs to be broken down into several
387   // registers, the repairing is not local anymore as we need to patch
388   // every uses to rebuild the value in just one register.
389   //
390   // To summarize:
391   // - If the value is in a physical register, we can do the split and
392   //   fix locally.
393   // Otherwise if the value is in a virtual register:
394   // - If the value remains in one register, we do not have to split
395   //   just switching the register bank would do, but we need to account
396   //   in the repairing cost all the phi we changed.
397   // - If the value spans several registers, then we cannot do a local
398   //   repairing.
399 
400   // Check if this is a physical or virtual register.
401   Register Reg = MO.getReg();
402   if (Reg.isPhysical()) {
403     // We are going to split every outgoing edges.
404     // Check that this is possible.
405     // FIXME: The machine representation is currently broken
406     // since it also several terminators in one basic block.
407     // Because of that we would technically need a way to get
408     // the targets of just one terminator to know which edges
409     // we have to split.
410     // Assert that we do not hit the ill-formed representation.
411 
412     // If there are other terminators before that one, some of
413     // the outgoing edges may not be dominated by this definition.
414     assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
415            "Do not know which outgoing edges are relevant");
416     const MachineInstr *Next = MI.getNextNode();
417     assert((!Next || Next->isUnconditionalBranch()) &&
418            "Do not know where each terminator ends up");
419     if (Next)
420       // If the next terminator uses Reg, this means we have
421       // to split right after MI and thus we need a way to ask
422       // which outgoing edges are affected.
423       assert(!Next->readsRegister(Reg, /*TRI=*/nullptr) &&
424              "Need to split between terminators");
425     // We will split all the edges and repair there.
426   } else {
427     // This is a virtual register defined by a terminator.
428     if (ValMapping.NumBreakDowns == 1) {
429       // There is nothing to repair, but we may actually lie on
430       // the repairing cost because of the PHIs already proceeded
431       // as already stated.
432       // Though the code will be correct.
433       assert(false && "Repairing cost may not be accurate");
434     } else {
435       // We need to do non-local repairing. Basically, patch all
436       // the uses (i.e., phis) that we already proceeded.
437       // For now, just say this mapping is not possible.
438       RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
439     }
440   }
441 }
442 
443 RegBankSelect::MappingCost RegBankSelect::computeMapping(
444     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
445     SmallVectorImpl<RepairingPlacement> &RepairPts,
446     const RegBankSelect::MappingCost *BestCost) {
447   assert((MBFI || !BestCost) && "Costs comparison require MBFI");
448 
449   if (!InstrMapping.isValid())
450     return MappingCost::ImpossibleCost();
451 
452   // If mapped with InstrMapping, MI will have the recorded cost.
453   MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent())
454                         : BlockFrequency(1));
455   bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
456   assert(!Saturated && "Possible mapping saturated the cost");
457   LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
458   LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');
459   RepairPts.clear();
460   if (BestCost && Cost > *BestCost) {
461     LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
462     return Cost;
463   }
464   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
465 
466   // Moreover, to realize this mapping, the register bank of each operand must
467   // match this mapping. In other words, we may need to locally reassign the
468   // register banks. Account for that repairing cost as well.
469   // In this context, local means in the surrounding of MI.
470   for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
471        OpIdx != EndOpIdx; ++OpIdx) {
472     const MachineOperand &MO = MI.getOperand(OpIdx);
473     if (!MO.isReg())
474       continue;
475     Register Reg = MO.getReg();
476     if (!Reg)
477       continue;
478     LLT Ty = MRI.getType(Reg);
479     if (!Ty.isValid())
480       continue;
481 
482     LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n');
483     const RegisterBankInfo::ValueMapping &ValMapping =
484         InstrMapping.getOperandMapping(OpIdx);
485     // If Reg is already properly mapped, this is free.
486     bool Assign;
487     if (assignmentMatch(Reg, ValMapping, Assign)) {
488       LLVM_DEBUG(dbgs() << "=> is free (match).\n");
489       continue;
490     }
491     if (Assign) {
492       LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
493       RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
494                                                 RepairingPlacement::Reassign));
495       continue;
496     }
497 
498     // Find the insertion point for the repairing code.
499     RepairPts.emplace_back(
500         RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
501     RepairingPlacement &RepairPt = RepairPts.back();
502 
503     // If we need to split a basic block to materialize this insertion point,
504     // we may give a higher cost to this mapping.
505     // Nevertheless, we may get away with the split, so try that first.
506     if (RepairPt.hasSplit())
507       tryAvoidingSplit(RepairPt, MO, ValMapping);
508 
509     // Check that the materialization of the repairing is possible.
510     if (!RepairPt.canMaterialize()) {
511       LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
512       return MappingCost::ImpossibleCost();
513     }
514 
515     // Account for the split cost and repair cost.
516     // Unless the cost is already saturated or we do not care about the cost.
517     if (!BestCost || Saturated)
518       continue;
519 
520     // To get accurate information we need MBFI and MBPI.
521     // Thus, if we end up here this information should be here.
522     assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
523 
524     // FIXME: We will have to rework the repairing cost model.
525     // The repairing cost depends on the register bank that MO has.
526     // However, when we break down the value into different values,
527     // MO may not have a register bank while still needing repairing.
528     // For the fast mode, we don't compute the cost so that is fine,
529     // but still for the repairing code, we will have to make a choice.
530     // For the greedy mode, we should choose greedily what is the best
531     // choice based on the next use of MO.
532 
533     // Sums up the repairing cost of MO at each insertion point.
534     uint64_t RepairCost = getRepairCost(MO, ValMapping);
535 
536     // This is an impossible to repair cost.
537     if (RepairCost == std::numeric_limits<unsigned>::max())
538       return MappingCost::ImpossibleCost();
539 
540     // Bias used for splitting: 5%.
541     const uint64_t PercentageForBias = 5;
542     uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
543     // We should not need more than a couple of instructions to repair
544     // an assignment. In other words, the computation should not
545     // overflow because the repairing cost is free of basic block
546     // frequency.
547     assert(((RepairCost < RepairCost * PercentageForBias) &&
548             (RepairCost * PercentageForBias <
549              RepairCost * PercentageForBias + 99)) &&
550            "Repairing involves more than a billion of instructions?!");
551     for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
552       assert(InsertPt->canMaterialize() && "We should not have made it here");
553       // We will applied some basic block frequency and those uses uint64_t.
554       if (!InsertPt->isSplit())
555         Saturated = Cost.addLocalCost(RepairCost);
556       else {
557         uint64_t CostForInsertPt = RepairCost;
558         // Again we shouldn't overflow here givent that
559         // CostForInsertPt is frequency free at this point.
560         assert(CostForInsertPt + Bias > CostForInsertPt &&
561                "Repairing + split bias overflows");
562         CostForInsertPt += Bias;
563         uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
564         // Check if we just overflowed.
565         if ((Saturated = PtCost < CostForInsertPt))
566           Cost.saturate();
567         else
568           Saturated = Cost.addNonLocalCost(PtCost);
569       }
570 
571       // Stop looking into what it takes to repair, this is already
572       // too expensive.
573       if (BestCost && Cost > *BestCost) {
574         LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
575         return Cost;
576       }
577 
578       // No need to accumulate more cost information.
579       // We need to still gather the repairing information though.
580       if (Saturated)
581         break;
582     }
583   }
584   LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
585   return Cost;
586 }
587 
588 bool RegBankSelect::applyMapping(
589     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
590     SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
591   // OpdMapper will hold all the information needed for the rewriting.
592   RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
593 
594   // First, place the repairing code.
595   for (RepairingPlacement &RepairPt : RepairPts) {
596     if (!RepairPt.canMaterialize() ||
597         RepairPt.getKind() == RepairingPlacement::Impossible)
598       return false;
599     assert(RepairPt.getKind() != RepairingPlacement::None &&
600            "This should not make its way in the list");
601     unsigned OpIdx = RepairPt.getOpIdx();
602     MachineOperand &MO = MI.getOperand(OpIdx);
603     const RegisterBankInfo::ValueMapping &ValMapping =
604         InstrMapping.getOperandMapping(OpIdx);
605     Register Reg = MO.getReg();
606 
607     switch (RepairPt.getKind()) {
608     case RepairingPlacement::Reassign:
609       assert(ValMapping.NumBreakDowns == 1 &&
610              "Reassignment should only be for simple mapping");
611       MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
612       break;
613     case RepairingPlacement::Insert:
614       // Don't insert additional instruction for debug instruction.
615       if (MI.isDebugInstr())
616         break;
617       OpdMapper.createVRegs(OpIdx);
618       if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
619         return false;
620       break;
621     default:
622       llvm_unreachable("Other kind should not happen");
623     }
624   }
625 
626   // Second, rewrite the instruction.
627   LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
628   RBI->applyMapping(MIRBuilder, OpdMapper);
629 
630   return true;
631 }
632 
633 bool RegBankSelect::assignInstr(MachineInstr &MI) {
634   LLVM_DEBUG(dbgs() << "Assign: " << MI);
635 
636   unsigned Opc = MI.getOpcode();
637   if (isPreISelGenericOptimizationHint(Opc)) {
638     assert((Opc == TargetOpcode::G_ASSERT_ZEXT ||
639             Opc == TargetOpcode::G_ASSERT_SEXT ||
640             Opc == TargetOpcode::G_ASSERT_ALIGN) &&
641            "Unexpected hint opcode!");
642     // The only correct mapping for these is to always use the source register
643     // bank.
644     const RegisterBank *RB =
645         RBI->getRegBank(MI.getOperand(1).getReg(), *MRI, *TRI);
646     // We can assume every instruction above this one has a selected register
647     // bank.
648     assert(RB && "Expected source register to have a register bank?");
649     LLVM_DEBUG(dbgs() << "... Hint always uses source's register bank.\n");
650     MRI->setRegBank(MI.getOperand(0).getReg(), *RB);
651     return true;
652   }
653 
654   // Remember the repairing placement for all the operands.
655   SmallVector<RepairingPlacement, 4> RepairPts;
656 
657   const RegisterBankInfo::InstructionMapping *BestMapping;
658   if (OptMode == RegBankSelect::Mode::Fast) {
659     BestMapping = &RBI->getInstrMapping(MI);
660     MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
661     (void)DefaultCost;
662     if (DefaultCost == MappingCost::ImpossibleCost())
663       return false;
664   } else {
665     RegisterBankInfo::InstructionMappings PossibleMappings =
666         RBI->getInstrPossibleMappings(MI);
667     if (PossibleMappings.empty())
668       return false;
669     BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
670   }
671   // Make sure the mapping is valid for MI.
672   assert(BestMapping->verify(MI) && "Invalid instruction mapping");
673 
674   LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
675 
676   // After this call, MI may not be valid anymore.
677   // Do not use it.
678   return applyMapping(MI, *BestMapping, RepairPts);
679 }
680 
681 bool RegBankSelect::assignRegisterBanks(MachineFunction &MF) {
682   // Walk the function and assign register banks to all operands.
683   // Use a RPOT to make sure all registers are assigned before we choose
684   // the best mapping of the current instruction.
685   ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
686   for (MachineBasicBlock *MBB : RPOT) {
687     // Set a sensible insertion point so that subsequent calls to
688     // MIRBuilder.
689     MIRBuilder.setMBB(*MBB);
690     SmallVector<MachineInstr *> WorkList(
691         make_pointer_range(reverse(MBB->instrs())));
692 
693     while (!WorkList.empty()) {
694       MachineInstr &MI = *WorkList.pop_back_val();
695 
696       // Ignore target-specific post-isel instructions: they should use proper
697       // regclasses.
698       if (isTargetSpecificOpcode(MI.getOpcode()) && !MI.isPreISelOpcode())
699         continue;
700 
701       // Ignore inline asm instructions: they should use physical
702       // registers/regclasses
703       if (MI.isInlineAsm())
704         continue;
705 
706       // Ignore IMPLICIT_DEF which must have a regclass.
707       if (MI.isImplicitDef())
708         continue;
709 
710       if (!assignInstr(MI)) {
711         reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
712                            "unable to map instruction", MI);
713         return false;
714       }
715     }
716   }
717 
718   return true;
719 }
720 
721 bool RegBankSelect::checkFunctionIsLegal(MachineFunction &MF) const {
722 #ifndef NDEBUG
723   if (!DisableGISelLegalityCheck) {
724     if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
725       reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
726                          "instruction is not legal", *MI);
727       return false;
728     }
729   }
730 #endif
731   return true;
732 }
733 
734 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
735   // If the ISel pipeline failed, do not bother running that pass.
736   if (MF.getProperties().hasProperty(
737           MachineFunctionProperties::Property::FailedISel))
738     return false;
739 
740   LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
741   const Function &F = MF.getFunction();
742   Mode SaveOptMode = OptMode;
743   if (F.hasOptNone())
744     OptMode = Mode::Fast;
745   init(MF);
746 
747 #ifndef NDEBUG
748   if (!checkFunctionIsLegal(MF))
749     return false;
750 #endif
751 
752   assignRegisterBanks(MF);
753 
754   OptMode = SaveOptMode;
755   return false;
756 }
757 
758 //------------------------------------------------------------------------------
759 //                  Helper Classes Implementation
760 //------------------------------------------------------------------------------
761 RegBankSelect::RepairingPlacement::RepairingPlacement(
762     MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
763     RepairingPlacement::RepairingKind Kind)
764     // Default is, we are going to insert code to repair OpIdx.
765     : Kind(Kind), OpIdx(OpIdx),
766       CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
767   const MachineOperand &MO = MI.getOperand(OpIdx);
768   assert(MO.isReg() && "Trying to repair a non-reg operand");
769 
770   if (Kind != RepairingKind::Insert)
771     return;
772 
773   // Repairings for definitions happen after MI, uses happen before.
774   bool Before = !MO.isDef();
775 
776   // Check if we are done with MI.
777   if (!MI.isPHI() && !MI.isTerminator()) {
778     addInsertPoint(MI, Before);
779     // We are done with the initialization.
780     return;
781   }
782 
783   // Now, look for the special cases.
784   if (MI.isPHI()) {
785     // - PHI must be the first instructions:
786     //   * Before, we have to split the related incoming edge.
787     //   * After, move the insertion point past the last phi.
788     if (!Before) {
789       MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
790       if (It != MI.getParent()->end())
791         addInsertPoint(*It, /*Before*/ true);
792       else
793         addInsertPoint(*(--It), /*Before*/ false);
794       return;
795     }
796     // We repair a use of a phi, we may need to split the related edge.
797     MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
798     // Check if we can move the insertion point prior to the
799     // terminators of the predecessor.
800     Register Reg = MO.getReg();
801     MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
802     for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
803       if (It->modifiesRegister(Reg, &TRI)) {
804         // We cannot hoist the repairing code in the predecessor.
805         // Split the edge.
806         addInsertPoint(Pred, *MI.getParent());
807         return;
808       }
809     // At this point, we can insert in Pred.
810 
811     // - If It is invalid, Pred is empty and we can insert in Pred
812     //   wherever we want.
813     // - If It is valid, It is the first non-terminator, insert after It.
814     if (It == Pred.end())
815       addInsertPoint(Pred, /*Beginning*/ false);
816     else
817       addInsertPoint(*It, /*Before*/ false);
818   } else {
819     // - Terminators must be the last instructions:
820     //   * Before, move the insert point before the first terminator.
821     //   * After, we have to split the outcoming edges.
822     if (Before) {
823       // Check whether Reg is defined by any terminator.
824       MachineBasicBlock::reverse_iterator It = MI;
825       auto REnd = MI.getParent()->rend();
826 
827       for (; It != REnd && It->isTerminator(); ++It) {
828         assert(!It->modifiesRegister(MO.getReg(), &TRI) &&
829                "copy insertion in middle of terminators not handled");
830       }
831 
832       if (It == REnd) {
833         addInsertPoint(*MI.getParent()->begin(), true);
834         return;
835       }
836 
837       // We are sure to be right before the first terminator.
838       addInsertPoint(*It, /*Before*/ false);
839       return;
840     }
841     // Make sure Reg is not redefined by other terminators, otherwise
842     // we do not know how to split.
843     for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
844          ++It != End;)
845       // The machine verifier should reject this kind of code.
846       assert(It->modifiesRegister(MO.getReg(), &TRI) &&
847              "Do not know where to split");
848     // Split each outcoming edges.
849     MachineBasicBlock &Src = *MI.getParent();
850     for (auto &Succ : Src.successors())
851       addInsertPoint(Src, Succ);
852   }
853 }
854 
855 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
856                                                        bool Before) {
857   addInsertPoint(*new InstrInsertPoint(MI, Before));
858 }
859 
860 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
861                                                        bool Beginning) {
862   addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
863 }
864 
865 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
866                                                        MachineBasicBlock &Dst) {
867   addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
868 }
869 
870 void RegBankSelect::RepairingPlacement::addInsertPoint(
871     RegBankSelect::InsertPoint &Point) {
872   CanMaterialize &= Point.canMaterialize();
873   HasSplit |= Point.isSplit();
874   InsertPoints.emplace_back(&Point);
875 }
876 
877 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
878                                                   bool Before)
879     : Instr(Instr), Before(Before) {
880   // Since we do not support splitting, we do not need to update
881   // liveness and such, so do not do anything with P.
882   assert((!Before || !Instr.isPHI()) &&
883          "Splitting before phis requires more points");
884   assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
885          "Splitting between phis does not make sense");
886 }
887 
888 void RegBankSelect::InstrInsertPoint::materialize() {
889   if (isSplit()) {
890     // Slice and return the beginning of the new block.
891     // If we need to split between the terminators, we theoritically
892     // need to know where the first and second set of terminators end
893     // to update the successors properly.
894     // Now, in pratice, we should have a maximum of 2 branch
895     // instructions; one conditional and one unconditional. Therefore
896     // we know how to update the successor by looking at the target of
897     // the unconditional branch.
898     // If we end up splitting at some point, then, we should update
899     // the liveness information and such. I.e., we would need to
900     // access P here.
901     // The machine verifier should actually make sure such cases
902     // cannot happen.
903     llvm_unreachable("Not yet implemented");
904   }
905   // Otherwise the insertion point is just the current or next
906   // instruction depending on Before. I.e., there is nothing to do
907   // here.
908 }
909 
910 bool RegBankSelect::InstrInsertPoint::isSplit() const {
911   // If the insertion point is after a terminator, we need to split.
912   if (!Before)
913     return Instr.isTerminator();
914   // If we insert before an instruction that is after a terminator,
915   // we are still after a terminator.
916   return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
917 }
918 
919 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
920   // Even if we need to split, because we insert between terminators,
921   // this split has actually the same frequency as the instruction.
922   const auto *MBFIWrapper =
923       P.getAnalysisIfAvailable<MachineBlockFrequencyInfoWrapperPass>();
924   if (!MBFIWrapper)
925     return 1;
926   return MBFIWrapper->getMBFI().getBlockFreq(Instr.getParent()).getFrequency();
927 }
928 
929 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
930   const auto *MBFIWrapper =
931       P.getAnalysisIfAvailable<MachineBlockFrequencyInfoWrapperPass>();
932   if (!MBFIWrapper)
933     return 1;
934   return MBFIWrapper->getMBFI().getBlockFreq(&MBB).getFrequency();
935 }
936 
937 void RegBankSelect::EdgeInsertPoint::materialize() {
938   // If we end up repairing twice at the same place before materializing the
939   // insertion point, we may think we have to split an edge twice.
940   // We should have a factory for the insert point such that identical points
941   // are the same instance.
942   assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
943          "This point has already been split");
944   MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
945   assert(NewBB && "Invalid call to materialize");
946   // We reuse the destination block to hold the information of the new block.
947   DstOrSplit = NewBB;
948 }
949 
950 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
951   const auto *MBFIWrapper =
952       P.getAnalysisIfAvailable<MachineBlockFrequencyInfoWrapperPass>();
953   if (!MBFIWrapper)
954     return 1;
955   const auto *MBFI = &MBFIWrapper->getMBFI();
956   if (WasMaterialized)
957     return MBFI->getBlockFreq(DstOrSplit).getFrequency();
958 
959   auto *MBPIWrapper =
960       P.getAnalysisIfAvailable<MachineBranchProbabilityInfoWrapperPass>();
961   const MachineBranchProbabilityInfo *MBPI =
962       MBPIWrapper ? &MBPIWrapper->getMBPI() : nullptr;
963   if (!MBPI)
964     return 1;
965   // The basic block will be on the edge.
966   return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
967       .getFrequency();
968 }
969 
970 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
971   // If this is not a critical edge, we should not have used this insert
972   // point. Indeed, either the successor or the predecessor should
973   // have do.
974   assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
975          "Edge is not critical");
976   return Src.canSplitCriticalEdge(DstOrSplit);
977 }
978 
979 RegBankSelect::MappingCost::MappingCost(BlockFrequency LocalFreq)
980     : LocalFreq(LocalFreq.getFrequency()) {}
981 
982 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
983   // Check if this overflows.
984   if (LocalCost + Cost < LocalCost) {
985     saturate();
986     return true;
987   }
988   LocalCost += Cost;
989   return isSaturated();
990 }
991 
992 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
993   // Check if this overflows.
994   if (NonLocalCost + Cost < NonLocalCost) {
995     saturate();
996     return true;
997   }
998   NonLocalCost += Cost;
999   return isSaturated();
1000 }
1001 
1002 bool RegBankSelect::MappingCost::isSaturated() const {
1003   return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
1004          LocalFreq == UINT64_MAX;
1005 }
1006 
1007 void RegBankSelect::MappingCost::saturate() {
1008   *this = ImpossibleCost();
1009   --LocalCost;
1010 }
1011 
1012 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
1013   return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
1014 }
1015 
1016 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
1017   // Sort out the easy cases.
1018   if (*this == Cost)
1019     return false;
1020   // If one is impossible to realize the other is cheaper unless it is
1021   // impossible as well.
1022   if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
1023     return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
1024   // If one is saturated the other is cheaper, unless it is saturated
1025   // as well.
1026   if (isSaturated() || Cost.isSaturated())
1027     return isSaturated() < Cost.isSaturated();
1028   // At this point we know both costs hold sensible values.
1029 
1030   // If both values have a different base frequency, there is no much
1031   // we can do but to scale everything.
1032   // However, if they have the same base frequency we can avoid making
1033   // complicated computation.
1034   uint64_t ThisLocalAdjust;
1035   uint64_t OtherLocalAdjust;
1036   if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
1037 
1038     // At this point, we know the local costs are comparable.
1039     // Do the case that do not involve potential overflow first.
1040     if (NonLocalCost == Cost.NonLocalCost)
1041       // Since the non-local costs do not discriminate on the result,
1042       // just compare the local costs.
1043       return LocalCost < Cost.LocalCost;
1044 
1045     // The base costs are comparable so we may only keep the relative
1046     // value to increase our chances of avoiding overflows.
1047     ThisLocalAdjust = 0;
1048     OtherLocalAdjust = 0;
1049     if (LocalCost < Cost.LocalCost)
1050       OtherLocalAdjust = Cost.LocalCost - LocalCost;
1051     else
1052       ThisLocalAdjust = LocalCost - Cost.LocalCost;
1053   } else {
1054     ThisLocalAdjust = LocalCost;
1055     OtherLocalAdjust = Cost.LocalCost;
1056   }
1057 
1058   // The non-local costs are comparable, just keep the relative value.
1059   uint64_t ThisNonLocalAdjust = 0;
1060   uint64_t OtherNonLocalAdjust = 0;
1061   if (NonLocalCost < Cost.NonLocalCost)
1062     OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
1063   else
1064     ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
1065   // Scale everything to make them comparable.
1066   uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
1067   // Check for overflow on that operation.
1068   bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
1069                                            ThisScaledCost < LocalFreq);
1070   uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
1071   // Check for overflow on the last operation.
1072   bool OtherOverflows =
1073       OtherLocalAdjust &&
1074       (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
1075   // Add the non-local costs.
1076   ThisOverflows |= ThisNonLocalAdjust &&
1077                    ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
1078   ThisScaledCost += ThisNonLocalAdjust;
1079   OtherOverflows |= OtherNonLocalAdjust &&
1080                     OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
1081   OtherScaledCost += OtherNonLocalAdjust;
1082   // If both overflows, we cannot compare without additional
1083   // precision, e.g., APInt. Just give up on that case.
1084   if (ThisOverflows && OtherOverflows)
1085     return false;
1086   // If one overflows but not the other, we can still compare.
1087   if (ThisOverflows || OtherOverflows)
1088     return ThisOverflows < OtherOverflows;
1089   // Otherwise, just compare the values.
1090   return ThisScaledCost < OtherScaledCost;
1091 }
1092 
1093 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
1094   return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
1095          LocalFreq == Cost.LocalFreq;
1096 }
1097 
1098 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1099 LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
1100   print(dbgs());
1101   dbgs() << '\n';
1102 }
1103 #endif
1104 
1105 void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
1106   if (*this == ImpossibleCost()) {
1107     OS << "impossible";
1108     return;
1109   }
1110   if (isSaturated()) {
1111     OS << "saturated";
1112     return;
1113   }
1114   OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;
1115 }
1116