xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp (revision 8bcb0991864975618c09697b1aca10683346d9f0)
10b57cec5SDimitry Andric //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric /// \file
90b57cec5SDimitry Andric /// This file implements the RegBankSelect class.
100b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
110b57cec5SDimitry Andric 
120b57cec5SDimitry Andric #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
130b57cec5SDimitry Andric #include "llvm/ADT/PostOrderIterator.h"
140b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h"
150b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h"
160b57cec5SDimitry Andric #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
170b57cec5SDimitry Andric #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
180b57cec5SDimitry Andric #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
190b57cec5SDimitry Andric #include "llvm/CodeGen/GlobalISel/Utils.h"
200b57cec5SDimitry Andric #include "llvm/CodeGen/MachineBasicBlock.h"
210b57cec5SDimitry Andric #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
220b57cec5SDimitry Andric #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
230b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFunction.h"
240b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstr.h"
250b57cec5SDimitry Andric #include "llvm/CodeGen/MachineOperand.h"
260b57cec5SDimitry Andric #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
270b57cec5SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h"
280b57cec5SDimitry Andric #include "llvm/CodeGen/TargetOpcodes.h"
290b57cec5SDimitry Andric #include "llvm/CodeGen/TargetPassConfig.h"
300b57cec5SDimitry Andric #include "llvm/CodeGen/TargetRegisterInfo.h"
310b57cec5SDimitry Andric #include "llvm/CodeGen/TargetSubtargetInfo.h"
320b57cec5SDimitry Andric #include "llvm/Config/llvm-config.h"
330b57cec5SDimitry Andric #include "llvm/IR/Attributes.h"
340b57cec5SDimitry Andric #include "llvm/IR/Function.h"
350b57cec5SDimitry Andric #include "llvm/Pass.h"
360b57cec5SDimitry Andric #include "llvm/Support/BlockFrequency.h"
370b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h"
380b57cec5SDimitry Andric #include "llvm/Support/Compiler.h"
390b57cec5SDimitry Andric #include "llvm/Support/Debug.h"
400b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h"
410b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h"
420b57cec5SDimitry Andric #include <algorithm>
430b57cec5SDimitry Andric #include <cassert>
440b57cec5SDimitry Andric #include <cstdint>
450b57cec5SDimitry Andric #include <limits>
460b57cec5SDimitry Andric #include <memory>
470b57cec5SDimitry Andric #include <utility>
480b57cec5SDimitry Andric 
490b57cec5SDimitry Andric #define DEBUG_TYPE "regbankselect"
500b57cec5SDimitry Andric 
510b57cec5SDimitry Andric using namespace llvm;
520b57cec5SDimitry Andric 
530b57cec5SDimitry Andric static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
540b57cec5SDimitry Andric     cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
550b57cec5SDimitry Andric     cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
560b57cec5SDimitry Andric                           "Run the Fast mode (default mapping)"),
570b57cec5SDimitry Andric                clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
580b57cec5SDimitry Andric                           "Use the Greedy mode (best local mapping)")));
590b57cec5SDimitry Andric 
600b57cec5SDimitry Andric char RegBankSelect::ID = 0;
610b57cec5SDimitry Andric 
620b57cec5SDimitry Andric INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
630b57cec5SDimitry Andric                       "Assign register bank of generic virtual registers",
640b57cec5SDimitry Andric                       false, false);
650b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
660b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
670b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
680b57cec5SDimitry Andric INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
690b57cec5SDimitry Andric                     "Assign register bank of generic virtual registers", false,
700b57cec5SDimitry Andric                     false)
710b57cec5SDimitry Andric 
720b57cec5SDimitry Andric RegBankSelect::RegBankSelect(Mode RunningMode)
730b57cec5SDimitry Andric     : MachineFunctionPass(ID), OptMode(RunningMode) {
740b57cec5SDimitry Andric   if (RegBankSelectMode.getNumOccurrences() != 0) {
750b57cec5SDimitry Andric     OptMode = RegBankSelectMode;
760b57cec5SDimitry Andric     if (RegBankSelectMode != RunningMode)
770b57cec5SDimitry Andric       LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
780b57cec5SDimitry Andric   }
790b57cec5SDimitry Andric }
800b57cec5SDimitry Andric 
810b57cec5SDimitry Andric void RegBankSelect::init(MachineFunction &MF) {
820b57cec5SDimitry Andric   RBI = MF.getSubtarget().getRegBankInfo();
830b57cec5SDimitry Andric   assert(RBI && "Cannot work without RegisterBankInfo");
840b57cec5SDimitry Andric   MRI = &MF.getRegInfo();
850b57cec5SDimitry Andric   TRI = MF.getSubtarget().getRegisterInfo();
860b57cec5SDimitry Andric   TPC = &getAnalysis<TargetPassConfig>();
870b57cec5SDimitry Andric   if (OptMode != Mode::Fast) {
880b57cec5SDimitry Andric     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
890b57cec5SDimitry Andric     MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
900b57cec5SDimitry Andric   } else {
910b57cec5SDimitry Andric     MBFI = nullptr;
920b57cec5SDimitry Andric     MBPI = nullptr;
930b57cec5SDimitry Andric   }
940b57cec5SDimitry Andric   MIRBuilder.setMF(MF);
95*8bcb0991SDimitry Andric   MORE = std::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
960b57cec5SDimitry Andric }
970b57cec5SDimitry Andric 
980b57cec5SDimitry Andric void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
990b57cec5SDimitry Andric   if (OptMode != Mode::Fast) {
1000b57cec5SDimitry Andric     // We could preserve the information from these two analysis but
1010b57cec5SDimitry Andric     // the APIs do not allow to do so yet.
1020b57cec5SDimitry Andric     AU.addRequired<MachineBlockFrequencyInfo>();
1030b57cec5SDimitry Andric     AU.addRequired<MachineBranchProbabilityInfo>();
1040b57cec5SDimitry Andric   }
1050b57cec5SDimitry Andric   AU.addRequired<TargetPassConfig>();
1060b57cec5SDimitry Andric   getSelectionDAGFallbackAnalysisUsage(AU);
1070b57cec5SDimitry Andric   MachineFunctionPass::getAnalysisUsage(AU);
1080b57cec5SDimitry Andric }
1090b57cec5SDimitry Andric 
1100b57cec5SDimitry Andric bool RegBankSelect::assignmentMatch(
1110b57cec5SDimitry Andric     Register Reg, const RegisterBankInfo::ValueMapping &ValMapping,
1120b57cec5SDimitry Andric     bool &OnlyAssign) const {
1130b57cec5SDimitry Andric   // By default we assume we will have to repair something.
1140b57cec5SDimitry Andric   OnlyAssign = false;
1150b57cec5SDimitry Andric   // Each part of a break down needs to end up in a different register.
1160b57cec5SDimitry Andric   // In other word, Reg assignment does not match.
1170b57cec5SDimitry Andric   if (ValMapping.NumBreakDowns != 1)
1180b57cec5SDimitry Andric     return false;
1190b57cec5SDimitry Andric 
1200b57cec5SDimitry Andric   const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
1210b57cec5SDimitry Andric   const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
1220b57cec5SDimitry Andric   // Reg is free of assignment, a simple assignment will make the
1230b57cec5SDimitry Andric   // register bank to match.
1240b57cec5SDimitry Andric   OnlyAssign = CurRegBank == nullptr;
1250b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Does assignment already match: ";
1260b57cec5SDimitry Andric              if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
1270b57cec5SDimitry Andric              dbgs() << " against ";
1280b57cec5SDimitry Andric              assert(DesiredRegBrank && "The mapping must be valid");
1290b57cec5SDimitry Andric              dbgs() << *DesiredRegBrank << '\n';);
1300b57cec5SDimitry Andric   return CurRegBank == DesiredRegBrank;
1310b57cec5SDimitry Andric }
1320b57cec5SDimitry Andric 
1330b57cec5SDimitry Andric bool RegBankSelect::repairReg(
1340b57cec5SDimitry Andric     MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
1350b57cec5SDimitry Andric     RegBankSelect::RepairingPlacement &RepairPt,
1360b57cec5SDimitry Andric     const iterator_range<SmallVectorImpl<Register>::const_iterator> &NewVRegs) {
1370b57cec5SDimitry Andric 
1380b57cec5SDimitry Andric   assert(ValMapping.NumBreakDowns == (unsigned)size(NewVRegs) &&
1390b57cec5SDimitry Andric          "need new vreg for each breakdown");
1400b57cec5SDimitry Andric 
1410b57cec5SDimitry Andric   // An empty range of new register means no repairing.
142*8bcb0991SDimitry Andric   assert(!NewVRegs.empty() && "We should not have to repair");
1430b57cec5SDimitry Andric 
1440b57cec5SDimitry Andric   MachineInstr *MI;
1450b57cec5SDimitry Andric   if (ValMapping.NumBreakDowns == 1) {
1460b57cec5SDimitry Andric     // Assume we are repairing a use and thus, the original reg will be
1470b57cec5SDimitry Andric     // the source of the repairing.
1480b57cec5SDimitry Andric     Register Src = MO.getReg();
1490b57cec5SDimitry Andric     Register Dst = *NewVRegs.begin();
1500b57cec5SDimitry Andric 
1510b57cec5SDimitry Andric     // If we repair a definition, swap the source and destination for
1520b57cec5SDimitry Andric     // the repairing.
1530b57cec5SDimitry Andric     if (MO.isDef())
1540b57cec5SDimitry Andric       std::swap(Src, Dst);
1550b57cec5SDimitry Andric 
1560b57cec5SDimitry Andric     assert((RepairPt.getNumInsertPoints() == 1 ||
157*8bcb0991SDimitry Andric             Register::isPhysicalRegister(Dst)) &&
1580b57cec5SDimitry Andric            "We are about to create several defs for Dst");
1590b57cec5SDimitry Andric 
1600b57cec5SDimitry Andric     // Build the instruction used to repair, then clone it at the right
1610b57cec5SDimitry Andric     // places. Avoiding buildCopy bypasses the check that Src and Dst have the
1620b57cec5SDimitry Andric     // same types because the type is a placeholder when this function is called.
1630b57cec5SDimitry Andric     MI = MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY)
1640b57cec5SDimitry Andric       .addDef(Dst)
1650b57cec5SDimitry Andric       .addUse(Src);
1660b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst)
1670b57cec5SDimitry Andric                << '\n');
1680b57cec5SDimitry Andric   } else {
1690b57cec5SDimitry Andric     // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT
1700b57cec5SDimitry Andric     // sequence.
1710b57cec5SDimitry Andric     assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported");
1720b57cec5SDimitry Andric 
1730b57cec5SDimitry Andric     LLT RegTy = MRI->getType(MO.getReg());
1740b57cec5SDimitry Andric     if (MO.isDef()) {
1750b57cec5SDimitry Andric       unsigned MergeOp;
1760b57cec5SDimitry Andric       if (RegTy.isVector()) {
1770b57cec5SDimitry Andric         if (ValMapping.NumBreakDowns == RegTy.getNumElements())
1780b57cec5SDimitry Andric           MergeOp = TargetOpcode::G_BUILD_VECTOR;
1790b57cec5SDimitry Andric         else {
1800b57cec5SDimitry Andric           assert(
1810b57cec5SDimitry Andric               (ValMapping.BreakDown[0].Length * ValMapping.NumBreakDowns ==
1820b57cec5SDimitry Andric                RegTy.getSizeInBits()) &&
1830b57cec5SDimitry Andric               (ValMapping.BreakDown[0].Length % RegTy.getScalarSizeInBits() ==
1840b57cec5SDimitry Andric                0) &&
1850b57cec5SDimitry Andric               "don't understand this value breakdown");
1860b57cec5SDimitry Andric 
1870b57cec5SDimitry Andric           MergeOp = TargetOpcode::G_CONCAT_VECTORS;
1880b57cec5SDimitry Andric         }
1890b57cec5SDimitry Andric       } else
1900b57cec5SDimitry Andric         MergeOp = TargetOpcode::G_MERGE_VALUES;
1910b57cec5SDimitry Andric 
1920b57cec5SDimitry Andric       auto MergeBuilder =
1930b57cec5SDimitry Andric         MIRBuilder.buildInstrNoInsert(MergeOp)
1940b57cec5SDimitry Andric         .addDef(MO.getReg());
1950b57cec5SDimitry Andric 
1960b57cec5SDimitry Andric       for (Register SrcReg : NewVRegs)
1970b57cec5SDimitry Andric         MergeBuilder.addUse(SrcReg);
1980b57cec5SDimitry Andric 
1990b57cec5SDimitry Andric       MI = MergeBuilder;
2000b57cec5SDimitry Andric     } else {
2010b57cec5SDimitry Andric       MachineInstrBuilder UnMergeBuilder =
2020b57cec5SDimitry Andric         MIRBuilder.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES);
2030b57cec5SDimitry Andric       for (Register DefReg : NewVRegs)
2040b57cec5SDimitry Andric         UnMergeBuilder.addDef(DefReg);
2050b57cec5SDimitry Andric 
2060b57cec5SDimitry Andric       UnMergeBuilder.addUse(MO.getReg());
2070b57cec5SDimitry Andric       MI = UnMergeBuilder;
2080b57cec5SDimitry Andric     }
2090b57cec5SDimitry Andric   }
2100b57cec5SDimitry Andric 
2110b57cec5SDimitry Andric   if (RepairPt.getNumInsertPoints() != 1)
2120b57cec5SDimitry Andric     report_fatal_error("need testcase to support multiple insertion points");
2130b57cec5SDimitry Andric 
2140b57cec5SDimitry Andric   // TODO:
2150b57cec5SDimitry Andric   // Check if MI is legal. if not, we need to legalize all the
2160b57cec5SDimitry Andric   // instructions we are going to insert.
2170b57cec5SDimitry Andric   std::unique_ptr<MachineInstr *[]> NewInstrs(
2180b57cec5SDimitry Andric       new MachineInstr *[RepairPt.getNumInsertPoints()]);
2190b57cec5SDimitry Andric   bool IsFirst = true;
2200b57cec5SDimitry Andric   unsigned Idx = 0;
2210b57cec5SDimitry Andric   for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
2220b57cec5SDimitry Andric     MachineInstr *CurMI;
2230b57cec5SDimitry Andric     if (IsFirst)
2240b57cec5SDimitry Andric       CurMI = MI;
2250b57cec5SDimitry Andric     else
2260b57cec5SDimitry Andric       CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
2270b57cec5SDimitry Andric     InsertPt->insert(*CurMI);
2280b57cec5SDimitry Andric     NewInstrs[Idx++] = CurMI;
2290b57cec5SDimitry Andric     IsFirst = false;
2300b57cec5SDimitry Andric   }
2310b57cec5SDimitry Andric   // TODO:
2320b57cec5SDimitry Andric   // Legalize NewInstrs if need be.
2330b57cec5SDimitry Andric   return true;
2340b57cec5SDimitry Andric }
2350b57cec5SDimitry Andric 
2360b57cec5SDimitry Andric uint64_t RegBankSelect::getRepairCost(
2370b57cec5SDimitry Andric     const MachineOperand &MO,
2380b57cec5SDimitry Andric     const RegisterBankInfo::ValueMapping &ValMapping) const {
2390b57cec5SDimitry Andric   assert(MO.isReg() && "We should only repair register operand");
2400b57cec5SDimitry Andric   assert(ValMapping.NumBreakDowns && "Nothing to map??");
2410b57cec5SDimitry Andric 
2420b57cec5SDimitry Andric   bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
2430b57cec5SDimitry Andric   const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
2440b57cec5SDimitry Andric   // If MO does not have a register bank, we should have just been
2450b57cec5SDimitry Andric   // able to set one unless we have to break the value down.
2460b57cec5SDimitry Andric   assert(CurRegBank || MO.isDef());
2470b57cec5SDimitry Andric 
2480b57cec5SDimitry Andric   // Def: Val <- NewDefs
2490b57cec5SDimitry Andric   //     Same number of values: copy
2500b57cec5SDimitry Andric   //     Different number: Val = build_sequence Defs1, Defs2, ...
2510b57cec5SDimitry Andric   // Use: NewSources <- Val.
2520b57cec5SDimitry Andric   //     Same number of values: copy.
2530b57cec5SDimitry Andric   //     Different number: Src1, Src2, ... =
2540b57cec5SDimitry Andric   //           extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
2550b57cec5SDimitry Andric   // We should remember that this value is available somewhere else to
2560b57cec5SDimitry Andric   // coalesce the value.
2570b57cec5SDimitry Andric 
2580b57cec5SDimitry Andric   if (ValMapping.NumBreakDowns != 1)
2590b57cec5SDimitry Andric     return RBI->getBreakDownCost(ValMapping, CurRegBank);
2600b57cec5SDimitry Andric 
2610b57cec5SDimitry Andric   if (IsSameNumOfValues) {
2620b57cec5SDimitry Andric     const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
2630b57cec5SDimitry Andric     // If we repair a definition, swap the source and destination for
2640b57cec5SDimitry Andric     // the repairing.
2650b57cec5SDimitry Andric     if (MO.isDef())
2660b57cec5SDimitry Andric       std::swap(CurRegBank, DesiredRegBrank);
2670b57cec5SDimitry Andric     // TODO: It may be possible to actually avoid the copy.
2680b57cec5SDimitry Andric     // If we repair something where the source is defined by a copy
2690b57cec5SDimitry Andric     // and the source of that copy is on the right bank, we can reuse
2700b57cec5SDimitry Andric     // it for free.
2710b57cec5SDimitry Andric     // E.g.,
2720b57cec5SDimitry Andric     // RegToRepair<BankA> = copy AlternativeSrc<BankB>
2730b57cec5SDimitry Andric     // = op RegToRepair<BankA>
2740b57cec5SDimitry Andric     // We can simply propagate AlternativeSrc instead of copying RegToRepair
2750b57cec5SDimitry Andric     // into a new virtual register.
2760b57cec5SDimitry Andric     // We would also need to propagate this information in the
2770b57cec5SDimitry Andric     // repairing placement.
2780b57cec5SDimitry Andric     unsigned Cost = RBI->copyCost(*DesiredRegBrank, *CurRegBank,
2790b57cec5SDimitry Andric                                   RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
2800b57cec5SDimitry Andric     // TODO: use a dedicated constant for ImpossibleCost.
2810b57cec5SDimitry Andric     if (Cost != std::numeric_limits<unsigned>::max())
2820b57cec5SDimitry Andric       return Cost;
2830b57cec5SDimitry Andric     // Return the legalization cost of that repairing.
2840b57cec5SDimitry Andric   }
2850b57cec5SDimitry Andric   return std::numeric_limits<unsigned>::max();
2860b57cec5SDimitry Andric }
2870b57cec5SDimitry Andric 
2880b57cec5SDimitry Andric const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
2890b57cec5SDimitry Andric     MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
2900b57cec5SDimitry Andric     SmallVectorImpl<RepairingPlacement> &RepairPts) {
2910b57cec5SDimitry Andric   assert(!PossibleMappings.empty() &&
2920b57cec5SDimitry Andric          "Do not know how to map this instruction");
2930b57cec5SDimitry Andric 
2940b57cec5SDimitry Andric   const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
2950b57cec5SDimitry Andric   MappingCost Cost = MappingCost::ImpossibleCost();
2960b57cec5SDimitry Andric   SmallVector<RepairingPlacement, 4> LocalRepairPts;
2970b57cec5SDimitry Andric   for (const RegisterBankInfo::InstructionMapping *CurMapping :
2980b57cec5SDimitry Andric        PossibleMappings) {
2990b57cec5SDimitry Andric     MappingCost CurCost =
3000b57cec5SDimitry Andric         computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
3010b57cec5SDimitry Andric     if (CurCost < Cost) {
3020b57cec5SDimitry Andric       LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');
3030b57cec5SDimitry Andric       Cost = CurCost;
3040b57cec5SDimitry Andric       BestMapping = CurMapping;
3050b57cec5SDimitry Andric       RepairPts.clear();
3060b57cec5SDimitry Andric       for (RepairingPlacement &RepairPt : LocalRepairPts)
3070b57cec5SDimitry Andric         RepairPts.emplace_back(std::move(RepairPt));
3080b57cec5SDimitry Andric     }
3090b57cec5SDimitry Andric   }
3100b57cec5SDimitry Andric   if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
3110b57cec5SDimitry Andric     // If none of the mapping worked that means they are all impossible.
3120b57cec5SDimitry Andric     // Thus, pick the first one and set an impossible repairing point.
3130b57cec5SDimitry Andric     // It will trigger the failed isel mode.
3140b57cec5SDimitry Andric     BestMapping = *PossibleMappings.begin();
3150b57cec5SDimitry Andric     RepairPts.emplace_back(
3160b57cec5SDimitry Andric         RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
3170b57cec5SDimitry Andric   } else
3180b57cec5SDimitry Andric     assert(BestMapping && "No suitable mapping for instruction");
3190b57cec5SDimitry Andric   return *BestMapping;
3200b57cec5SDimitry Andric }
3210b57cec5SDimitry Andric 
3220b57cec5SDimitry Andric void RegBankSelect::tryAvoidingSplit(
3230b57cec5SDimitry Andric     RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
3240b57cec5SDimitry Andric     const RegisterBankInfo::ValueMapping &ValMapping) const {
3250b57cec5SDimitry Andric   const MachineInstr &MI = *MO.getParent();
3260b57cec5SDimitry Andric   assert(RepairPt.hasSplit() && "We should not have to adjust for split");
3270b57cec5SDimitry Andric   // Splitting should only occur for PHIs or between terminators,
3280b57cec5SDimitry Andric   // because we only do local repairing.
3290b57cec5SDimitry Andric   assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
3300b57cec5SDimitry Andric 
3310b57cec5SDimitry Andric   assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
3320b57cec5SDimitry Andric          "Repairing placement does not match operand");
3330b57cec5SDimitry Andric 
3340b57cec5SDimitry Andric   // If we need splitting for phis, that means it is because we
3350b57cec5SDimitry Andric   // could not find an insertion point before the terminators of
3360b57cec5SDimitry Andric   // the predecessor block for this argument. In other words,
3370b57cec5SDimitry Andric   // the input value is defined by one of the terminators.
3380b57cec5SDimitry Andric   assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
3390b57cec5SDimitry Andric 
3400b57cec5SDimitry Andric   // We split to repair the use of a phi or a terminator.
3410b57cec5SDimitry Andric   if (!MO.isDef()) {
3420b57cec5SDimitry Andric     if (MI.isTerminator()) {
3430b57cec5SDimitry Andric       assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
3440b57cec5SDimitry Andric              "Need to split for the first terminator?!");
3450b57cec5SDimitry Andric     } else {
3460b57cec5SDimitry Andric       // For the PHI case, the split may not be actually required.
3470b57cec5SDimitry Andric       // In the copy case, a phi is already a copy on the incoming edge,
3480b57cec5SDimitry Andric       // therefore there is no need to split.
3490b57cec5SDimitry Andric       if (ValMapping.NumBreakDowns == 1)
3500b57cec5SDimitry Andric         // This is a already a copy, there is nothing to do.
3510b57cec5SDimitry Andric         RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
3520b57cec5SDimitry Andric     }
3530b57cec5SDimitry Andric     return;
3540b57cec5SDimitry Andric   }
3550b57cec5SDimitry Andric 
3560b57cec5SDimitry Andric   // At this point, we need to repair a defintion of a terminator.
3570b57cec5SDimitry Andric 
3580b57cec5SDimitry Andric   // Technically we need to fix the def of MI on all outgoing
3590b57cec5SDimitry Andric   // edges of MI to keep the repairing local. In other words, we
3600b57cec5SDimitry Andric   // will create several definitions of the same register. This
3610b57cec5SDimitry Andric   // does not work for SSA unless that definition is a physical
3620b57cec5SDimitry Andric   // register.
3630b57cec5SDimitry Andric   // However, there are other cases where we can get away with
3640b57cec5SDimitry Andric   // that while still keeping the repairing local.
3650b57cec5SDimitry Andric   assert(MI.isTerminator() && MO.isDef() &&
3660b57cec5SDimitry Andric          "This code is for the def of a terminator");
3670b57cec5SDimitry Andric 
3680b57cec5SDimitry Andric   // Since we use RPO traversal, if we need to repair a definition
3690b57cec5SDimitry Andric   // this means this definition could be:
3700b57cec5SDimitry Andric   // 1. Used by PHIs (i.e., this VReg has been visited as part of the
3710b57cec5SDimitry Andric   //    uses of a phi.), or
3720b57cec5SDimitry Andric   // 2. Part of a target specific instruction (i.e., the target applied
3730b57cec5SDimitry Andric   //    some register class constraints when creating the instruction.)
3740b57cec5SDimitry Andric   // If the constraints come for #2, the target said that another mapping
3750b57cec5SDimitry Andric   // is supported so we may just drop them. Indeed, if we do not change
3760b57cec5SDimitry Andric   // the number of registers holding that value, the uses will get fixed
3770b57cec5SDimitry Andric   // when we get to them.
3780b57cec5SDimitry Andric   // Uses in PHIs may have already been proceeded though.
3790b57cec5SDimitry Andric   // If the constraints come for #1, then, those are weak constraints and
3800b57cec5SDimitry Andric   // no actual uses may rely on them. However, the problem remains mainly
3810b57cec5SDimitry Andric   // the same as for #2. If the value stays in one register, we could
3820b57cec5SDimitry Andric   // just switch the register bank of the definition, but we would need to
3830b57cec5SDimitry Andric   // account for a repairing cost for each phi we silently change.
3840b57cec5SDimitry Andric   //
3850b57cec5SDimitry Andric   // In any case, if the value needs to be broken down into several
3860b57cec5SDimitry Andric   // registers, the repairing is not local anymore as we need to patch
3870b57cec5SDimitry Andric   // every uses to rebuild the value in just one register.
3880b57cec5SDimitry Andric   //
3890b57cec5SDimitry Andric   // To summarize:
3900b57cec5SDimitry Andric   // - If the value is in a physical register, we can do the split and
3910b57cec5SDimitry Andric   //   fix locally.
3920b57cec5SDimitry Andric   // Otherwise if the value is in a virtual register:
3930b57cec5SDimitry Andric   // - If the value remains in one register, we do not have to split
3940b57cec5SDimitry Andric   //   just switching the register bank would do, but we need to account
3950b57cec5SDimitry Andric   //   in the repairing cost all the phi we changed.
3960b57cec5SDimitry Andric   // - If the value spans several registers, then we cannot do a local
3970b57cec5SDimitry Andric   //   repairing.
3980b57cec5SDimitry Andric 
3990b57cec5SDimitry Andric   // Check if this is a physical or virtual register.
4000b57cec5SDimitry Andric   Register Reg = MO.getReg();
401*8bcb0991SDimitry Andric   if (Register::isPhysicalRegister(Reg)) {
4020b57cec5SDimitry Andric     // We are going to split every outgoing edges.
4030b57cec5SDimitry Andric     // Check that this is possible.
4040b57cec5SDimitry Andric     // FIXME: The machine representation is currently broken
4050b57cec5SDimitry Andric     // since it also several terminators in one basic block.
4060b57cec5SDimitry Andric     // Because of that we would technically need a way to get
4070b57cec5SDimitry Andric     // the targets of just one terminator to know which edges
4080b57cec5SDimitry Andric     // we have to split.
4090b57cec5SDimitry Andric     // Assert that we do not hit the ill-formed representation.
4100b57cec5SDimitry Andric 
4110b57cec5SDimitry Andric     // If there are other terminators before that one, some of
4120b57cec5SDimitry Andric     // the outgoing edges may not be dominated by this definition.
4130b57cec5SDimitry Andric     assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
4140b57cec5SDimitry Andric            "Do not know which outgoing edges are relevant");
4150b57cec5SDimitry Andric     const MachineInstr *Next = MI.getNextNode();
4160b57cec5SDimitry Andric     assert((!Next || Next->isUnconditionalBranch()) &&
4170b57cec5SDimitry Andric            "Do not know where each terminator ends up");
4180b57cec5SDimitry Andric     if (Next)
4190b57cec5SDimitry Andric       // If the next terminator uses Reg, this means we have
4200b57cec5SDimitry Andric       // to split right after MI and thus we need a way to ask
4210b57cec5SDimitry Andric       // which outgoing edges are affected.
4220b57cec5SDimitry Andric       assert(!Next->readsRegister(Reg) && "Need to split between terminators");
4230b57cec5SDimitry Andric     // We will split all the edges and repair there.
4240b57cec5SDimitry Andric   } else {
4250b57cec5SDimitry Andric     // This is a virtual register defined by a terminator.
4260b57cec5SDimitry Andric     if (ValMapping.NumBreakDowns == 1) {
4270b57cec5SDimitry Andric       // There is nothing to repair, but we may actually lie on
4280b57cec5SDimitry Andric       // the repairing cost because of the PHIs already proceeded
4290b57cec5SDimitry Andric       // as already stated.
4300b57cec5SDimitry Andric       // Though the code will be correct.
4310b57cec5SDimitry Andric       assert(false && "Repairing cost may not be accurate");
4320b57cec5SDimitry Andric     } else {
4330b57cec5SDimitry Andric       // We need to do non-local repairing. Basically, patch all
4340b57cec5SDimitry Andric       // the uses (i.e., phis) that we already proceeded.
4350b57cec5SDimitry Andric       // For now, just say this mapping is not possible.
4360b57cec5SDimitry Andric       RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
4370b57cec5SDimitry Andric     }
4380b57cec5SDimitry Andric   }
4390b57cec5SDimitry Andric }
4400b57cec5SDimitry Andric 
4410b57cec5SDimitry Andric RegBankSelect::MappingCost RegBankSelect::computeMapping(
4420b57cec5SDimitry Andric     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
4430b57cec5SDimitry Andric     SmallVectorImpl<RepairingPlacement> &RepairPts,
4440b57cec5SDimitry Andric     const RegBankSelect::MappingCost *BestCost) {
4450b57cec5SDimitry Andric   assert((MBFI || !BestCost) && "Costs comparison require MBFI");
4460b57cec5SDimitry Andric 
4470b57cec5SDimitry Andric   if (!InstrMapping.isValid())
4480b57cec5SDimitry Andric     return MappingCost::ImpossibleCost();
4490b57cec5SDimitry Andric 
4500b57cec5SDimitry Andric   // If mapped with InstrMapping, MI will have the recorded cost.
4510b57cec5SDimitry Andric   MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
4520b57cec5SDimitry Andric   bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
4530b57cec5SDimitry Andric   assert(!Saturated && "Possible mapping saturated the cost");
4540b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
4550b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');
4560b57cec5SDimitry Andric   RepairPts.clear();
4570b57cec5SDimitry Andric   if (BestCost && Cost > *BestCost) {
4580b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
4590b57cec5SDimitry Andric     return Cost;
4600b57cec5SDimitry Andric   }
4610b57cec5SDimitry Andric 
4620b57cec5SDimitry Andric   // Moreover, to realize this mapping, the register bank of each operand must
4630b57cec5SDimitry Andric   // match this mapping. In other words, we may need to locally reassign the
4640b57cec5SDimitry Andric   // register banks. Account for that repairing cost as well.
4650b57cec5SDimitry Andric   // In this context, local means in the surrounding of MI.
4660b57cec5SDimitry Andric   for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
4670b57cec5SDimitry Andric        OpIdx != EndOpIdx; ++OpIdx) {
4680b57cec5SDimitry Andric     const MachineOperand &MO = MI.getOperand(OpIdx);
4690b57cec5SDimitry Andric     if (!MO.isReg())
4700b57cec5SDimitry Andric       continue;
4710b57cec5SDimitry Andric     Register Reg = MO.getReg();
4720b57cec5SDimitry Andric     if (!Reg)
4730b57cec5SDimitry Andric       continue;
4740b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n');
4750b57cec5SDimitry Andric     const RegisterBankInfo::ValueMapping &ValMapping =
4760b57cec5SDimitry Andric         InstrMapping.getOperandMapping(OpIdx);
4770b57cec5SDimitry Andric     // If Reg is already properly mapped, this is free.
4780b57cec5SDimitry Andric     bool Assign;
4790b57cec5SDimitry Andric     if (assignmentMatch(Reg, ValMapping, Assign)) {
4800b57cec5SDimitry Andric       LLVM_DEBUG(dbgs() << "=> is free (match).\n");
4810b57cec5SDimitry Andric       continue;
4820b57cec5SDimitry Andric     }
4830b57cec5SDimitry Andric     if (Assign) {
4840b57cec5SDimitry Andric       LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
4850b57cec5SDimitry Andric       RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
4860b57cec5SDimitry Andric                                                 RepairingPlacement::Reassign));
4870b57cec5SDimitry Andric       continue;
4880b57cec5SDimitry Andric     }
4890b57cec5SDimitry Andric 
4900b57cec5SDimitry Andric     // Find the insertion point for the repairing code.
4910b57cec5SDimitry Andric     RepairPts.emplace_back(
4920b57cec5SDimitry Andric         RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
4930b57cec5SDimitry Andric     RepairingPlacement &RepairPt = RepairPts.back();
4940b57cec5SDimitry Andric 
4950b57cec5SDimitry Andric     // If we need to split a basic block to materialize this insertion point,
4960b57cec5SDimitry Andric     // we may give a higher cost to this mapping.
4970b57cec5SDimitry Andric     // Nevertheless, we may get away with the split, so try that first.
4980b57cec5SDimitry Andric     if (RepairPt.hasSplit())
4990b57cec5SDimitry Andric       tryAvoidingSplit(RepairPt, MO, ValMapping);
5000b57cec5SDimitry Andric 
5010b57cec5SDimitry Andric     // Check that the materialization of the repairing is possible.
5020b57cec5SDimitry Andric     if (!RepairPt.canMaterialize()) {
5030b57cec5SDimitry Andric       LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
5040b57cec5SDimitry Andric       return MappingCost::ImpossibleCost();
5050b57cec5SDimitry Andric     }
5060b57cec5SDimitry Andric 
5070b57cec5SDimitry Andric     // Account for the split cost and repair cost.
5080b57cec5SDimitry Andric     // Unless the cost is already saturated or we do not care about the cost.
5090b57cec5SDimitry Andric     if (!BestCost || Saturated)
5100b57cec5SDimitry Andric       continue;
5110b57cec5SDimitry Andric 
5120b57cec5SDimitry Andric     // To get accurate information we need MBFI and MBPI.
5130b57cec5SDimitry Andric     // Thus, if we end up here this information should be here.
5140b57cec5SDimitry Andric     assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
5150b57cec5SDimitry Andric 
5160b57cec5SDimitry Andric     // FIXME: We will have to rework the repairing cost model.
5170b57cec5SDimitry Andric     // The repairing cost depends on the register bank that MO has.
5180b57cec5SDimitry Andric     // However, when we break down the value into different values,
5190b57cec5SDimitry Andric     // MO may not have a register bank while still needing repairing.
5200b57cec5SDimitry Andric     // For the fast mode, we don't compute the cost so that is fine,
5210b57cec5SDimitry Andric     // but still for the repairing code, we will have to make a choice.
5220b57cec5SDimitry Andric     // For the greedy mode, we should choose greedily what is the best
5230b57cec5SDimitry Andric     // choice based on the next use of MO.
5240b57cec5SDimitry Andric 
5250b57cec5SDimitry Andric     // Sums up the repairing cost of MO at each insertion point.
5260b57cec5SDimitry Andric     uint64_t RepairCost = getRepairCost(MO, ValMapping);
5270b57cec5SDimitry Andric 
5280b57cec5SDimitry Andric     // This is an impossible to repair cost.
5290b57cec5SDimitry Andric     if (RepairCost == std::numeric_limits<unsigned>::max())
5300b57cec5SDimitry Andric       return MappingCost::ImpossibleCost();
5310b57cec5SDimitry Andric 
5320b57cec5SDimitry Andric     // Bias used for splitting: 5%.
5330b57cec5SDimitry Andric     const uint64_t PercentageForBias = 5;
5340b57cec5SDimitry Andric     uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
5350b57cec5SDimitry Andric     // We should not need more than a couple of instructions to repair
5360b57cec5SDimitry Andric     // an assignment. In other words, the computation should not
5370b57cec5SDimitry Andric     // overflow because the repairing cost is free of basic block
5380b57cec5SDimitry Andric     // frequency.
5390b57cec5SDimitry Andric     assert(((RepairCost < RepairCost * PercentageForBias) &&
5400b57cec5SDimitry Andric             (RepairCost * PercentageForBias <
5410b57cec5SDimitry Andric              RepairCost * PercentageForBias + 99)) &&
5420b57cec5SDimitry Andric            "Repairing involves more than a billion of instructions?!");
5430b57cec5SDimitry Andric     for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
5440b57cec5SDimitry Andric       assert(InsertPt->canMaterialize() && "We should not have made it here");
5450b57cec5SDimitry Andric       // We will applied some basic block frequency and those uses uint64_t.
5460b57cec5SDimitry Andric       if (!InsertPt->isSplit())
5470b57cec5SDimitry Andric         Saturated = Cost.addLocalCost(RepairCost);
5480b57cec5SDimitry Andric       else {
5490b57cec5SDimitry Andric         uint64_t CostForInsertPt = RepairCost;
5500b57cec5SDimitry Andric         // Again we shouldn't overflow here givent that
5510b57cec5SDimitry Andric         // CostForInsertPt is frequency free at this point.
5520b57cec5SDimitry Andric         assert(CostForInsertPt + Bias > CostForInsertPt &&
5530b57cec5SDimitry Andric                "Repairing + split bias overflows");
5540b57cec5SDimitry Andric         CostForInsertPt += Bias;
5550b57cec5SDimitry Andric         uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
5560b57cec5SDimitry Andric         // Check if we just overflowed.
5570b57cec5SDimitry Andric         if ((Saturated = PtCost < CostForInsertPt))
5580b57cec5SDimitry Andric           Cost.saturate();
5590b57cec5SDimitry Andric         else
5600b57cec5SDimitry Andric           Saturated = Cost.addNonLocalCost(PtCost);
5610b57cec5SDimitry Andric       }
5620b57cec5SDimitry Andric 
5630b57cec5SDimitry Andric       // Stop looking into what it takes to repair, this is already
5640b57cec5SDimitry Andric       // too expensive.
5650b57cec5SDimitry Andric       if (BestCost && Cost > *BestCost) {
5660b57cec5SDimitry Andric         LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
5670b57cec5SDimitry Andric         return Cost;
5680b57cec5SDimitry Andric       }
5690b57cec5SDimitry Andric 
5700b57cec5SDimitry Andric       // No need to accumulate more cost information.
5710b57cec5SDimitry Andric       // We need to still gather the repairing information though.
5720b57cec5SDimitry Andric       if (Saturated)
5730b57cec5SDimitry Andric         break;
5740b57cec5SDimitry Andric     }
5750b57cec5SDimitry Andric   }
5760b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
5770b57cec5SDimitry Andric   return Cost;
5780b57cec5SDimitry Andric }
5790b57cec5SDimitry Andric 
5800b57cec5SDimitry Andric bool RegBankSelect::applyMapping(
5810b57cec5SDimitry Andric     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
5820b57cec5SDimitry Andric     SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
5830b57cec5SDimitry Andric   // OpdMapper will hold all the information needed for the rewriting.
5840b57cec5SDimitry Andric   RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
5850b57cec5SDimitry Andric 
5860b57cec5SDimitry Andric   // First, place the repairing code.
5870b57cec5SDimitry Andric   for (RepairingPlacement &RepairPt : RepairPts) {
5880b57cec5SDimitry Andric     if (!RepairPt.canMaterialize() ||
5890b57cec5SDimitry Andric         RepairPt.getKind() == RepairingPlacement::Impossible)
5900b57cec5SDimitry Andric       return false;
5910b57cec5SDimitry Andric     assert(RepairPt.getKind() != RepairingPlacement::None &&
5920b57cec5SDimitry Andric            "This should not make its way in the list");
5930b57cec5SDimitry Andric     unsigned OpIdx = RepairPt.getOpIdx();
5940b57cec5SDimitry Andric     MachineOperand &MO = MI.getOperand(OpIdx);
5950b57cec5SDimitry Andric     const RegisterBankInfo::ValueMapping &ValMapping =
5960b57cec5SDimitry Andric         InstrMapping.getOperandMapping(OpIdx);
5970b57cec5SDimitry Andric     Register Reg = MO.getReg();
5980b57cec5SDimitry Andric 
5990b57cec5SDimitry Andric     switch (RepairPt.getKind()) {
6000b57cec5SDimitry Andric     case RepairingPlacement::Reassign:
6010b57cec5SDimitry Andric       assert(ValMapping.NumBreakDowns == 1 &&
6020b57cec5SDimitry Andric              "Reassignment should only be for simple mapping");
6030b57cec5SDimitry Andric       MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
6040b57cec5SDimitry Andric       break;
6050b57cec5SDimitry Andric     case RepairingPlacement::Insert:
6060b57cec5SDimitry Andric       OpdMapper.createVRegs(OpIdx);
6070b57cec5SDimitry Andric       if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
6080b57cec5SDimitry Andric         return false;
6090b57cec5SDimitry Andric       break;
6100b57cec5SDimitry Andric     default:
6110b57cec5SDimitry Andric       llvm_unreachable("Other kind should not happen");
6120b57cec5SDimitry Andric     }
6130b57cec5SDimitry Andric   }
6140b57cec5SDimitry Andric 
6150b57cec5SDimitry Andric   // Second, rewrite the instruction.
6160b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
6170b57cec5SDimitry Andric   RBI->applyMapping(OpdMapper);
6180b57cec5SDimitry Andric 
6190b57cec5SDimitry Andric   return true;
6200b57cec5SDimitry Andric }
6210b57cec5SDimitry Andric 
6220b57cec5SDimitry Andric bool RegBankSelect::assignInstr(MachineInstr &MI) {
6230b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Assign: " << MI);
6240b57cec5SDimitry Andric   // Remember the repairing placement for all the operands.
6250b57cec5SDimitry Andric   SmallVector<RepairingPlacement, 4> RepairPts;
6260b57cec5SDimitry Andric 
6270b57cec5SDimitry Andric   const RegisterBankInfo::InstructionMapping *BestMapping;
6280b57cec5SDimitry Andric   if (OptMode == RegBankSelect::Mode::Fast) {
6290b57cec5SDimitry Andric     BestMapping = &RBI->getInstrMapping(MI);
6300b57cec5SDimitry Andric     MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
6310b57cec5SDimitry Andric     (void)DefaultCost;
6320b57cec5SDimitry Andric     if (DefaultCost == MappingCost::ImpossibleCost())
6330b57cec5SDimitry Andric       return false;
6340b57cec5SDimitry Andric   } else {
6350b57cec5SDimitry Andric     RegisterBankInfo::InstructionMappings PossibleMappings =
6360b57cec5SDimitry Andric         RBI->getInstrPossibleMappings(MI);
6370b57cec5SDimitry Andric     if (PossibleMappings.empty())
6380b57cec5SDimitry Andric       return false;
6390b57cec5SDimitry Andric     BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
6400b57cec5SDimitry Andric   }
6410b57cec5SDimitry Andric   // Make sure the mapping is valid for MI.
6420b57cec5SDimitry Andric   assert(BestMapping->verify(MI) && "Invalid instruction mapping");
6430b57cec5SDimitry Andric 
6440b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
6450b57cec5SDimitry Andric 
6460b57cec5SDimitry Andric   // After this call, MI may not be valid anymore.
6470b57cec5SDimitry Andric   // Do not use it.
6480b57cec5SDimitry Andric   return applyMapping(MI, *BestMapping, RepairPts);
6490b57cec5SDimitry Andric }
6500b57cec5SDimitry Andric 
6510b57cec5SDimitry Andric bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
6520b57cec5SDimitry Andric   // If the ISel pipeline failed, do not bother running that pass.
6530b57cec5SDimitry Andric   if (MF.getProperties().hasProperty(
6540b57cec5SDimitry Andric           MachineFunctionProperties::Property::FailedISel))
6550b57cec5SDimitry Andric     return false;
6560b57cec5SDimitry Andric 
6570b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
6580b57cec5SDimitry Andric   const Function &F = MF.getFunction();
6590b57cec5SDimitry Andric   Mode SaveOptMode = OptMode;
6600b57cec5SDimitry Andric   if (F.hasOptNone())
6610b57cec5SDimitry Andric     OptMode = Mode::Fast;
6620b57cec5SDimitry Andric   init(MF);
6630b57cec5SDimitry Andric 
6640b57cec5SDimitry Andric #ifndef NDEBUG
6650b57cec5SDimitry Andric   // Check that our input is fully legal: we require the function to have the
6660b57cec5SDimitry Andric   // Legalized property, so it should be.
6670b57cec5SDimitry Andric   // FIXME: This should be in the MachineVerifier.
6680b57cec5SDimitry Andric   if (!DisableGISelLegalityCheck)
6690b57cec5SDimitry Andric     if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
6700b57cec5SDimitry Andric       reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
6710b57cec5SDimitry Andric                          "instruction is not legal", *MI);
6720b57cec5SDimitry Andric       return false;
6730b57cec5SDimitry Andric     }
6740b57cec5SDimitry Andric #endif
6750b57cec5SDimitry Andric 
6760b57cec5SDimitry Andric   // Walk the function and assign register banks to all operands.
6770b57cec5SDimitry Andric   // Use a RPOT to make sure all registers are assigned before we choose
6780b57cec5SDimitry Andric   // the best mapping of the current instruction.
6790b57cec5SDimitry Andric   ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
6800b57cec5SDimitry Andric   for (MachineBasicBlock *MBB : RPOT) {
6810b57cec5SDimitry Andric     // Set a sensible insertion point so that subsequent calls to
6820b57cec5SDimitry Andric     // MIRBuilder.
6830b57cec5SDimitry Andric     MIRBuilder.setMBB(*MBB);
6840b57cec5SDimitry Andric     for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end();
6850b57cec5SDimitry Andric          MII != End;) {
6860b57cec5SDimitry Andric       // MI might be invalidated by the assignment, so move the
6870b57cec5SDimitry Andric       // iterator before hand.
6880b57cec5SDimitry Andric       MachineInstr &MI = *MII++;
6890b57cec5SDimitry Andric 
690*8bcb0991SDimitry Andric       // Ignore target-specific post-isel instructions: they should use proper
691*8bcb0991SDimitry Andric       // regclasses.
692*8bcb0991SDimitry Andric       if (isTargetSpecificOpcode(MI.getOpcode()) && !MI.isPreISelOpcode())
6930b57cec5SDimitry Andric         continue;
6940b57cec5SDimitry Andric 
6950b57cec5SDimitry Andric       if (!assignInstr(MI)) {
6960b57cec5SDimitry Andric         reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
6970b57cec5SDimitry Andric                            "unable to map instruction", MI);
6980b57cec5SDimitry Andric         return false;
6990b57cec5SDimitry Andric       }
7000b57cec5SDimitry Andric 
7010b57cec5SDimitry Andric       // It's possible the mapping changed control flow, and moved the following
7020b57cec5SDimitry Andric       // instruction to a new block, so figure out the new parent.
7030b57cec5SDimitry Andric       if (MII != End) {
7040b57cec5SDimitry Andric         MachineBasicBlock *NextInstBB = MII->getParent();
7050b57cec5SDimitry Andric         if (NextInstBB != MBB) {
7060b57cec5SDimitry Andric           LLVM_DEBUG(dbgs() << "Instruction mapping changed control flow\n");
7070b57cec5SDimitry Andric           MBB = NextInstBB;
7080b57cec5SDimitry Andric           MIRBuilder.setMBB(*MBB);
7090b57cec5SDimitry Andric           End = MBB->end();
7100b57cec5SDimitry Andric         }
7110b57cec5SDimitry Andric       }
7120b57cec5SDimitry Andric     }
7130b57cec5SDimitry Andric   }
7140b57cec5SDimitry Andric 
7150b57cec5SDimitry Andric   OptMode = SaveOptMode;
7160b57cec5SDimitry Andric   return false;
7170b57cec5SDimitry Andric }
7180b57cec5SDimitry Andric 
7190b57cec5SDimitry Andric //------------------------------------------------------------------------------
7200b57cec5SDimitry Andric //                  Helper Classes Implementation
7210b57cec5SDimitry Andric //------------------------------------------------------------------------------
7220b57cec5SDimitry Andric RegBankSelect::RepairingPlacement::RepairingPlacement(
7230b57cec5SDimitry Andric     MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
7240b57cec5SDimitry Andric     RepairingPlacement::RepairingKind Kind)
7250b57cec5SDimitry Andric     // Default is, we are going to insert code to repair OpIdx.
7260b57cec5SDimitry Andric     : Kind(Kind), OpIdx(OpIdx),
7270b57cec5SDimitry Andric       CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
7280b57cec5SDimitry Andric   const MachineOperand &MO = MI.getOperand(OpIdx);
7290b57cec5SDimitry Andric   assert(MO.isReg() && "Trying to repair a non-reg operand");
7300b57cec5SDimitry Andric 
7310b57cec5SDimitry Andric   if (Kind != RepairingKind::Insert)
7320b57cec5SDimitry Andric     return;
7330b57cec5SDimitry Andric 
7340b57cec5SDimitry Andric   // Repairings for definitions happen after MI, uses happen before.
7350b57cec5SDimitry Andric   bool Before = !MO.isDef();
7360b57cec5SDimitry Andric 
7370b57cec5SDimitry Andric   // Check if we are done with MI.
7380b57cec5SDimitry Andric   if (!MI.isPHI() && !MI.isTerminator()) {
7390b57cec5SDimitry Andric     addInsertPoint(MI, Before);
7400b57cec5SDimitry Andric     // We are done with the initialization.
7410b57cec5SDimitry Andric     return;
7420b57cec5SDimitry Andric   }
7430b57cec5SDimitry Andric 
7440b57cec5SDimitry Andric   // Now, look for the special cases.
7450b57cec5SDimitry Andric   if (MI.isPHI()) {
7460b57cec5SDimitry Andric     // - PHI must be the first instructions:
7470b57cec5SDimitry Andric     //   * Before, we have to split the related incoming edge.
7480b57cec5SDimitry Andric     //   * After, move the insertion point past the last phi.
7490b57cec5SDimitry Andric     if (!Before) {
7500b57cec5SDimitry Andric       MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
7510b57cec5SDimitry Andric       if (It != MI.getParent()->end())
7520b57cec5SDimitry Andric         addInsertPoint(*It, /*Before*/ true);
7530b57cec5SDimitry Andric       else
7540b57cec5SDimitry Andric         addInsertPoint(*(--It), /*Before*/ false);
7550b57cec5SDimitry Andric       return;
7560b57cec5SDimitry Andric     }
7570b57cec5SDimitry Andric     // We repair a use of a phi, we may need to split the related edge.
7580b57cec5SDimitry Andric     MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
7590b57cec5SDimitry Andric     // Check if we can move the insertion point prior to the
7600b57cec5SDimitry Andric     // terminators of the predecessor.
7610b57cec5SDimitry Andric     Register Reg = MO.getReg();
7620b57cec5SDimitry Andric     MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
7630b57cec5SDimitry Andric     for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
7640b57cec5SDimitry Andric       if (It->modifiesRegister(Reg, &TRI)) {
7650b57cec5SDimitry Andric         // We cannot hoist the repairing code in the predecessor.
7660b57cec5SDimitry Andric         // Split the edge.
7670b57cec5SDimitry Andric         addInsertPoint(Pred, *MI.getParent());
7680b57cec5SDimitry Andric         return;
7690b57cec5SDimitry Andric       }
7700b57cec5SDimitry Andric     // At this point, we can insert in Pred.
7710b57cec5SDimitry Andric 
7720b57cec5SDimitry Andric     // - If It is invalid, Pred is empty and we can insert in Pred
7730b57cec5SDimitry Andric     //   wherever we want.
7740b57cec5SDimitry Andric     // - If It is valid, It is the first non-terminator, insert after It.
7750b57cec5SDimitry Andric     if (It == Pred.end())
7760b57cec5SDimitry Andric       addInsertPoint(Pred, /*Beginning*/ false);
7770b57cec5SDimitry Andric     else
7780b57cec5SDimitry Andric       addInsertPoint(*It, /*Before*/ false);
7790b57cec5SDimitry Andric   } else {
7800b57cec5SDimitry Andric     // - Terminators must be the last instructions:
7810b57cec5SDimitry Andric     //   * Before, move the insert point before the first terminator.
7820b57cec5SDimitry Andric     //   * After, we have to split the outcoming edges.
7830b57cec5SDimitry Andric     if (Before) {
7840b57cec5SDimitry Andric       // Check whether Reg is defined by any terminator.
7850b57cec5SDimitry Andric       MachineBasicBlock::reverse_iterator It = MI;
7860b57cec5SDimitry Andric       auto REnd = MI.getParent()->rend();
7870b57cec5SDimitry Andric 
7880b57cec5SDimitry Andric       for (; It != REnd && It->isTerminator(); ++It) {
7890b57cec5SDimitry Andric         assert(!It->modifiesRegister(MO.getReg(), &TRI) &&
7900b57cec5SDimitry Andric                "copy insertion in middle of terminators not handled");
7910b57cec5SDimitry Andric       }
7920b57cec5SDimitry Andric 
7930b57cec5SDimitry Andric       if (It == REnd) {
7940b57cec5SDimitry Andric         addInsertPoint(*MI.getParent()->begin(), true);
7950b57cec5SDimitry Andric         return;
7960b57cec5SDimitry Andric       }
7970b57cec5SDimitry Andric 
7980b57cec5SDimitry Andric       // We are sure to be right before the first terminator.
7990b57cec5SDimitry Andric       addInsertPoint(*It, /*Before*/ false);
8000b57cec5SDimitry Andric       return;
8010b57cec5SDimitry Andric     }
8020b57cec5SDimitry Andric     // Make sure Reg is not redefined by other terminators, otherwise
8030b57cec5SDimitry Andric     // we do not know how to split.
8040b57cec5SDimitry Andric     for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
8050b57cec5SDimitry Andric          ++It != End;)
8060b57cec5SDimitry Andric       // The machine verifier should reject this kind of code.
8070b57cec5SDimitry Andric       assert(It->modifiesRegister(MO.getReg(), &TRI) &&
8080b57cec5SDimitry Andric              "Do not know where to split");
8090b57cec5SDimitry Andric     // Split each outcoming edges.
8100b57cec5SDimitry Andric     MachineBasicBlock &Src = *MI.getParent();
8110b57cec5SDimitry Andric     for (auto &Succ : Src.successors())
8120b57cec5SDimitry Andric       addInsertPoint(Src, Succ);
8130b57cec5SDimitry Andric   }
8140b57cec5SDimitry Andric }
8150b57cec5SDimitry Andric 
8160b57cec5SDimitry Andric void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
8170b57cec5SDimitry Andric                                                        bool Before) {
8180b57cec5SDimitry Andric   addInsertPoint(*new InstrInsertPoint(MI, Before));
8190b57cec5SDimitry Andric }
8200b57cec5SDimitry Andric 
8210b57cec5SDimitry Andric void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
8220b57cec5SDimitry Andric                                                        bool Beginning) {
8230b57cec5SDimitry Andric   addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
8240b57cec5SDimitry Andric }
8250b57cec5SDimitry Andric 
8260b57cec5SDimitry Andric void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
8270b57cec5SDimitry Andric                                                        MachineBasicBlock &Dst) {
8280b57cec5SDimitry Andric   addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
8290b57cec5SDimitry Andric }
8300b57cec5SDimitry Andric 
8310b57cec5SDimitry Andric void RegBankSelect::RepairingPlacement::addInsertPoint(
8320b57cec5SDimitry Andric     RegBankSelect::InsertPoint &Point) {
8330b57cec5SDimitry Andric   CanMaterialize &= Point.canMaterialize();
8340b57cec5SDimitry Andric   HasSplit |= Point.isSplit();
8350b57cec5SDimitry Andric   InsertPoints.emplace_back(&Point);
8360b57cec5SDimitry Andric }
8370b57cec5SDimitry Andric 
8380b57cec5SDimitry Andric RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
8390b57cec5SDimitry Andric                                                   bool Before)
8400b57cec5SDimitry Andric     : InsertPoint(), Instr(Instr), Before(Before) {
8410b57cec5SDimitry Andric   // Since we do not support splitting, we do not need to update
8420b57cec5SDimitry Andric   // liveness and such, so do not do anything with P.
8430b57cec5SDimitry Andric   assert((!Before || !Instr.isPHI()) &&
8440b57cec5SDimitry Andric          "Splitting before phis requires more points");
8450b57cec5SDimitry Andric   assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
8460b57cec5SDimitry Andric          "Splitting between phis does not make sense");
8470b57cec5SDimitry Andric }
8480b57cec5SDimitry Andric 
8490b57cec5SDimitry Andric void RegBankSelect::InstrInsertPoint::materialize() {
8500b57cec5SDimitry Andric   if (isSplit()) {
8510b57cec5SDimitry Andric     // Slice and return the beginning of the new block.
8520b57cec5SDimitry Andric     // If we need to split between the terminators, we theoritically
8530b57cec5SDimitry Andric     // need to know where the first and second set of terminators end
8540b57cec5SDimitry Andric     // to update the successors properly.
8550b57cec5SDimitry Andric     // Now, in pratice, we should have a maximum of 2 branch
8560b57cec5SDimitry Andric     // instructions; one conditional and one unconditional. Therefore
8570b57cec5SDimitry Andric     // we know how to update the successor by looking at the target of
8580b57cec5SDimitry Andric     // the unconditional branch.
8590b57cec5SDimitry Andric     // If we end up splitting at some point, then, we should update
8600b57cec5SDimitry Andric     // the liveness information and such. I.e., we would need to
8610b57cec5SDimitry Andric     // access P here.
8620b57cec5SDimitry Andric     // The machine verifier should actually make sure such cases
8630b57cec5SDimitry Andric     // cannot happen.
8640b57cec5SDimitry Andric     llvm_unreachable("Not yet implemented");
8650b57cec5SDimitry Andric   }
8660b57cec5SDimitry Andric   // Otherwise the insertion point is just the current or next
8670b57cec5SDimitry Andric   // instruction depending on Before. I.e., there is nothing to do
8680b57cec5SDimitry Andric   // here.
8690b57cec5SDimitry Andric }
8700b57cec5SDimitry Andric 
8710b57cec5SDimitry Andric bool RegBankSelect::InstrInsertPoint::isSplit() const {
8720b57cec5SDimitry Andric   // If the insertion point is after a terminator, we need to split.
8730b57cec5SDimitry Andric   if (!Before)
8740b57cec5SDimitry Andric     return Instr.isTerminator();
8750b57cec5SDimitry Andric   // If we insert before an instruction that is after a terminator,
8760b57cec5SDimitry Andric   // we are still after a terminator.
8770b57cec5SDimitry Andric   return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
8780b57cec5SDimitry Andric }
8790b57cec5SDimitry Andric 
8800b57cec5SDimitry Andric uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
8810b57cec5SDimitry Andric   // Even if we need to split, because we insert between terminators,
8820b57cec5SDimitry Andric   // this split has actually the same frequency as the instruction.
8830b57cec5SDimitry Andric   const MachineBlockFrequencyInfo *MBFI =
8840b57cec5SDimitry Andric       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
8850b57cec5SDimitry Andric   if (!MBFI)
8860b57cec5SDimitry Andric     return 1;
8870b57cec5SDimitry Andric   return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
8880b57cec5SDimitry Andric }
8890b57cec5SDimitry Andric 
8900b57cec5SDimitry Andric uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
8910b57cec5SDimitry Andric   const MachineBlockFrequencyInfo *MBFI =
8920b57cec5SDimitry Andric       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
8930b57cec5SDimitry Andric   if (!MBFI)
8940b57cec5SDimitry Andric     return 1;
8950b57cec5SDimitry Andric   return MBFI->getBlockFreq(&MBB).getFrequency();
8960b57cec5SDimitry Andric }
8970b57cec5SDimitry Andric 
8980b57cec5SDimitry Andric void RegBankSelect::EdgeInsertPoint::materialize() {
8990b57cec5SDimitry Andric   // If we end up repairing twice at the same place before materializing the
9000b57cec5SDimitry Andric   // insertion point, we may think we have to split an edge twice.
9010b57cec5SDimitry Andric   // We should have a factory for the insert point such that identical points
9020b57cec5SDimitry Andric   // are the same instance.
9030b57cec5SDimitry Andric   assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
9040b57cec5SDimitry Andric          "This point has already been split");
9050b57cec5SDimitry Andric   MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
9060b57cec5SDimitry Andric   assert(NewBB && "Invalid call to materialize");
9070b57cec5SDimitry Andric   // We reuse the destination block to hold the information of the new block.
9080b57cec5SDimitry Andric   DstOrSplit = NewBB;
9090b57cec5SDimitry Andric }
9100b57cec5SDimitry Andric 
9110b57cec5SDimitry Andric uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
9120b57cec5SDimitry Andric   const MachineBlockFrequencyInfo *MBFI =
9130b57cec5SDimitry Andric       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
9140b57cec5SDimitry Andric   if (!MBFI)
9150b57cec5SDimitry Andric     return 1;
9160b57cec5SDimitry Andric   if (WasMaterialized)
9170b57cec5SDimitry Andric     return MBFI->getBlockFreq(DstOrSplit).getFrequency();
9180b57cec5SDimitry Andric 
9190b57cec5SDimitry Andric   const MachineBranchProbabilityInfo *MBPI =
9200b57cec5SDimitry Andric       P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
9210b57cec5SDimitry Andric   if (!MBPI)
9220b57cec5SDimitry Andric     return 1;
9230b57cec5SDimitry Andric   // The basic block will be on the edge.
9240b57cec5SDimitry Andric   return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
9250b57cec5SDimitry Andric       .getFrequency();
9260b57cec5SDimitry Andric }
9270b57cec5SDimitry Andric 
9280b57cec5SDimitry Andric bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
9290b57cec5SDimitry Andric   // If this is not a critical edge, we should not have used this insert
9300b57cec5SDimitry Andric   // point. Indeed, either the successor or the predecessor should
9310b57cec5SDimitry Andric   // have do.
9320b57cec5SDimitry Andric   assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
9330b57cec5SDimitry Andric          "Edge is not critical");
9340b57cec5SDimitry Andric   return Src.canSplitCriticalEdge(DstOrSplit);
9350b57cec5SDimitry Andric }
9360b57cec5SDimitry Andric 
9370b57cec5SDimitry Andric RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
9380b57cec5SDimitry Andric     : LocalFreq(LocalFreq.getFrequency()) {}
9390b57cec5SDimitry Andric 
9400b57cec5SDimitry Andric bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
9410b57cec5SDimitry Andric   // Check if this overflows.
9420b57cec5SDimitry Andric   if (LocalCost + Cost < LocalCost) {
9430b57cec5SDimitry Andric     saturate();
9440b57cec5SDimitry Andric     return true;
9450b57cec5SDimitry Andric   }
9460b57cec5SDimitry Andric   LocalCost += Cost;
9470b57cec5SDimitry Andric   return isSaturated();
9480b57cec5SDimitry Andric }
9490b57cec5SDimitry Andric 
9500b57cec5SDimitry Andric bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
9510b57cec5SDimitry Andric   // Check if this overflows.
9520b57cec5SDimitry Andric   if (NonLocalCost + Cost < NonLocalCost) {
9530b57cec5SDimitry Andric     saturate();
9540b57cec5SDimitry Andric     return true;
9550b57cec5SDimitry Andric   }
9560b57cec5SDimitry Andric   NonLocalCost += Cost;
9570b57cec5SDimitry Andric   return isSaturated();
9580b57cec5SDimitry Andric }
9590b57cec5SDimitry Andric 
9600b57cec5SDimitry Andric bool RegBankSelect::MappingCost::isSaturated() const {
9610b57cec5SDimitry Andric   return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
9620b57cec5SDimitry Andric          LocalFreq == UINT64_MAX;
9630b57cec5SDimitry Andric }
9640b57cec5SDimitry Andric 
9650b57cec5SDimitry Andric void RegBankSelect::MappingCost::saturate() {
9660b57cec5SDimitry Andric   *this = ImpossibleCost();
9670b57cec5SDimitry Andric   --LocalCost;
9680b57cec5SDimitry Andric }
9690b57cec5SDimitry Andric 
9700b57cec5SDimitry Andric RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
9710b57cec5SDimitry Andric   return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
9720b57cec5SDimitry Andric }
9730b57cec5SDimitry Andric 
9740b57cec5SDimitry Andric bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
9750b57cec5SDimitry Andric   // Sort out the easy cases.
9760b57cec5SDimitry Andric   if (*this == Cost)
9770b57cec5SDimitry Andric     return false;
9780b57cec5SDimitry Andric   // If one is impossible to realize the other is cheaper unless it is
9790b57cec5SDimitry Andric   // impossible as well.
9800b57cec5SDimitry Andric   if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
9810b57cec5SDimitry Andric     return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
9820b57cec5SDimitry Andric   // If one is saturated the other is cheaper, unless it is saturated
9830b57cec5SDimitry Andric   // as well.
9840b57cec5SDimitry Andric   if (isSaturated() || Cost.isSaturated())
9850b57cec5SDimitry Andric     return isSaturated() < Cost.isSaturated();
9860b57cec5SDimitry Andric   // At this point we know both costs hold sensible values.
9870b57cec5SDimitry Andric 
9880b57cec5SDimitry Andric   // If both values have a different base frequency, there is no much
9890b57cec5SDimitry Andric   // we can do but to scale everything.
9900b57cec5SDimitry Andric   // However, if they have the same base frequency we can avoid making
9910b57cec5SDimitry Andric   // complicated computation.
9920b57cec5SDimitry Andric   uint64_t ThisLocalAdjust;
9930b57cec5SDimitry Andric   uint64_t OtherLocalAdjust;
9940b57cec5SDimitry Andric   if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
9950b57cec5SDimitry Andric 
9960b57cec5SDimitry Andric     // At this point, we know the local costs are comparable.
9970b57cec5SDimitry Andric     // Do the case that do not involve potential overflow first.
9980b57cec5SDimitry Andric     if (NonLocalCost == Cost.NonLocalCost)
9990b57cec5SDimitry Andric       // Since the non-local costs do not discriminate on the result,
10000b57cec5SDimitry Andric       // just compare the local costs.
10010b57cec5SDimitry Andric       return LocalCost < Cost.LocalCost;
10020b57cec5SDimitry Andric 
10030b57cec5SDimitry Andric     // The base costs are comparable so we may only keep the relative
10040b57cec5SDimitry Andric     // value to increase our chances of avoiding overflows.
10050b57cec5SDimitry Andric     ThisLocalAdjust = 0;
10060b57cec5SDimitry Andric     OtherLocalAdjust = 0;
10070b57cec5SDimitry Andric     if (LocalCost < Cost.LocalCost)
10080b57cec5SDimitry Andric       OtherLocalAdjust = Cost.LocalCost - LocalCost;
10090b57cec5SDimitry Andric     else
10100b57cec5SDimitry Andric       ThisLocalAdjust = LocalCost - Cost.LocalCost;
10110b57cec5SDimitry Andric   } else {
10120b57cec5SDimitry Andric     ThisLocalAdjust = LocalCost;
10130b57cec5SDimitry Andric     OtherLocalAdjust = Cost.LocalCost;
10140b57cec5SDimitry Andric   }
10150b57cec5SDimitry Andric 
10160b57cec5SDimitry Andric   // The non-local costs are comparable, just keep the relative value.
10170b57cec5SDimitry Andric   uint64_t ThisNonLocalAdjust = 0;
10180b57cec5SDimitry Andric   uint64_t OtherNonLocalAdjust = 0;
10190b57cec5SDimitry Andric   if (NonLocalCost < Cost.NonLocalCost)
10200b57cec5SDimitry Andric     OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
10210b57cec5SDimitry Andric   else
10220b57cec5SDimitry Andric     ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
10230b57cec5SDimitry Andric   // Scale everything to make them comparable.
10240b57cec5SDimitry Andric   uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
10250b57cec5SDimitry Andric   // Check for overflow on that operation.
10260b57cec5SDimitry Andric   bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
10270b57cec5SDimitry Andric                                            ThisScaledCost < LocalFreq);
10280b57cec5SDimitry Andric   uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
10290b57cec5SDimitry Andric   // Check for overflow on the last operation.
10300b57cec5SDimitry Andric   bool OtherOverflows =
10310b57cec5SDimitry Andric       OtherLocalAdjust &&
10320b57cec5SDimitry Andric       (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
10330b57cec5SDimitry Andric   // Add the non-local costs.
10340b57cec5SDimitry Andric   ThisOverflows |= ThisNonLocalAdjust &&
10350b57cec5SDimitry Andric                    ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
10360b57cec5SDimitry Andric   ThisScaledCost += ThisNonLocalAdjust;
10370b57cec5SDimitry Andric   OtherOverflows |= OtherNonLocalAdjust &&
10380b57cec5SDimitry Andric                     OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
10390b57cec5SDimitry Andric   OtherScaledCost += OtherNonLocalAdjust;
10400b57cec5SDimitry Andric   // If both overflows, we cannot compare without additional
10410b57cec5SDimitry Andric   // precision, e.g., APInt. Just give up on that case.
10420b57cec5SDimitry Andric   if (ThisOverflows && OtherOverflows)
10430b57cec5SDimitry Andric     return false;
10440b57cec5SDimitry Andric   // If one overflows but not the other, we can still compare.
10450b57cec5SDimitry Andric   if (ThisOverflows || OtherOverflows)
10460b57cec5SDimitry Andric     return ThisOverflows < OtherOverflows;
10470b57cec5SDimitry Andric   // Otherwise, just compare the values.
10480b57cec5SDimitry Andric   return ThisScaledCost < OtherScaledCost;
10490b57cec5SDimitry Andric }
10500b57cec5SDimitry Andric 
10510b57cec5SDimitry Andric bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
10520b57cec5SDimitry Andric   return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
10530b57cec5SDimitry Andric          LocalFreq == Cost.LocalFreq;
10540b57cec5SDimitry Andric }
10550b57cec5SDimitry Andric 
10560b57cec5SDimitry Andric #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
10570b57cec5SDimitry Andric LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
10580b57cec5SDimitry Andric   print(dbgs());
10590b57cec5SDimitry Andric   dbgs() << '\n';
10600b57cec5SDimitry Andric }
10610b57cec5SDimitry Andric #endif
10620b57cec5SDimitry Andric 
10630b57cec5SDimitry Andric void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
10640b57cec5SDimitry Andric   if (*this == ImpossibleCost()) {
10650b57cec5SDimitry Andric     OS << "impossible";
10660b57cec5SDimitry Andric     return;
10670b57cec5SDimitry Andric   }
10680b57cec5SDimitry Andric   if (isSaturated()) {
10690b57cec5SDimitry Andric     OS << "saturated";
10700b57cec5SDimitry Andric     return;
10710b57cec5SDimitry Andric   }
10720b57cec5SDimitry Andric   OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;
10730b57cec5SDimitry Andric }
1074