xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/Localizer.cpp (revision 85868e8a1daeaae7a0e48effb2ea2310ae3b02c6)
1 //===- Localizer.cpp ---------------------- Localize some instrs -*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the Localizer class.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/Localizer.h"
13 #include "llvm/Analysis/TargetTransformInfo.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/CodeGen/MachineRegisterInfo.h"
16 #include "llvm/Support/Debug.h"
17 
18 #define DEBUG_TYPE "localizer"
19 
20 using namespace llvm;
21 
22 char Localizer::ID = 0;
23 INITIALIZE_PASS_BEGIN(Localizer, DEBUG_TYPE,
24                       "Move/duplicate certain instructions close to their use",
25                       false, false)
26 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
27 INITIALIZE_PASS_END(Localizer, DEBUG_TYPE,
28                     "Move/duplicate certain instructions close to their use",
29                     false, false)
30 
31 Localizer::Localizer() : MachineFunctionPass(ID) { }
32 
33 void Localizer::init(MachineFunction &MF) {
34   MRI = &MF.getRegInfo();
35   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(MF.getFunction());
36 }
37 
38 bool Localizer::shouldLocalize(const MachineInstr &MI) {
39   // Assuming a spill and reload of a value has a cost of 1 instruction each,
40   // this helper function computes the maximum number of uses we should consider
41   // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
42   // break even in terms of code size when the original MI has 2 users vs
43   // choosing to potentially spill. Any more than 2 users we we have a net code
44   // size increase. This doesn't take into account register pressure though.
45   auto maxUses = [](unsigned RematCost) {
46     // A cost of 1 means remats are basically free.
47     if (RematCost == 1)
48       return UINT_MAX;
49     if (RematCost == 2)
50       return 2U;
51 
52     // Remat is too expensive, only sink if there's one user.
53     if (RematCost > 2)
54       return 1U;
55     llvm_unreachable("Unexpected remat cost");
56   };
57 
58   // Helper to walk through uses and terminate if we've reached a limit. Saves
59   // us spending time traversing uses if all we want to know is if it's >= min.
60   auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) {
61     unsigned NumUses = 0;
62     auto UI = MRI->use_instr_nodbg_begin(Reg), UE = MRI->use_instr_nodbg_end();
63     for (; UI != UE && NumUses < MaxUses; ++UI) {
64       NumUses++;
65     }
66     // If we haven't reached the end yet then there are more than MaxUses users.
67     return UI == UE;
68   };
69 
70   switch (MI.getOpcode()) {
71   default:
72     return false;
73   // Constants-like instructions should be close to their users.
74   // We don't want long live-ranges for them.
75   case TargetOpcode::G_CONSTANT:
76   case TargetOpcode::G_FCONSTANT:
77   case TargetOpcode::G_FRAME_INDEX:
78   case TargetOpcode::G_INTTOPTR:
79     return true;
80   case TargetOpcode::G_GLOBAL_VALUE: {
81     unsigned RematCost = TTI->getGISelRematGlobalCost();
82     Register Reg = MI.getOperand(0).getReg();
83     unsigned MaxUses = maxUses(RematCost);
84     if (MaxUses == UINT_MAX)
85       return true; // Remats are "free" so always localize.
86     bool B = isUsesAtMost(Reg, MaxUses);
87     return B;
88   }
89   }
90 }
91 
92 void Localizer::getAnalysisUsage(AnalysisUsage &AU) const {
93   AU.addRequired<TargetTransformInfoWrapperPass>();
94   getSelectionDAGFallbackAnalysisUsage(AU);
95   MachineFunctionPass::getAnalysisUsage(AU);
96 }
97 
98 bool Localizer::isLocalUse(MachineOperand &MOUse, const MachineInstr &Def,
99                            MachineBasicBlock *&InsertMBB) {
100   MachineInstr &MIUse = *MOUse.getParent();
101   InsertMBB = MIUse.getParent();
102   if (MIUse.isPHI())
103     InsertMBB = MIUse.getOperand(MIUse.getOperandNo(&MOUse) + 1).getMBB();
104   return InsertMBB == Def.getParent();
105 }
106 
107 bool Localizer::localizeInterBlock(MachineFunction &MF,
108                                    LocalizedSetVecT &LocalizedInstrs) {
109   bool Changed = false;
110   DenseMap<std::pair<MachineBasicBlock *, unsigned>, unsigned> MBBWithLocalDef;
111 
112   // Since the IRTranslator only emits constants into the entry block, and the
113   // rest of the GISel pipeline generally emits constants close to their users,
114   // we only localize instructions in the entry block here. This might change if
115   // we start doing CSE across blocks.
116   auto &MBB = MF.front();
117   for (auto RI = MBB.rbegin(), RE = MBB.rend(); RI != RE; ++RI) {
118     MachineInstr &MI = *RI;
119     if (!shouldLocalize(MI))
120       continue;
121     LLVM_DEBUG(dbgs() << "Should localize: " << MI);
122     assert(MI.getDesc().getNumDefs() == 1 &&
123            "More than one definition not supported yet");
124     Register Reg = MI.getOperand(0).getReg();
125     // Check if all the users of MI are local.
126     // We are going to invalidation the list of use operands, so we
127     // can't use range iterator.
128     for (auto MOIt = MRI->use_begin(Reg), MOItEnd = MRI->use_end();
129          MOIt != MOItEnd;) {
130       MachineOperand &MOUse = *MOIt++;
131       // Check if the use is already local.
132       MachineBasicBlock *InsertMBB;
133       LLVM_DEBUG(MachineInstr &MIUse = *MOUse.getParent();
134                  dbgs() << "Checking use: " << MIUse
135                         << " #Opd: " << MIUse.getOperandNo(&MOUse) << '\n');
136       if (isLocalUse(MOUse, MI, InsertMBB))
137         continue;
138       LLVM_DEBUG(dbgs() << "Fixing non-local use\n");
139       Changed = true;
140       auto MBBAndReg = std::make_pair(InsertMBB, Reg);
141       auto NewVRegIt = MBBWithLocalDef.find(MBBAndReg);
142       if (NewVRegIt == MBBWithLocalDef.end()) {
143         // Create the localized instruction.
144         MachineInstr *LocalizedMI = MF.CloneMachineInstr(&MI);
145         LocalizedInstrs.insert(LocalizedMI);
146         MachineInstr &UseMI = *MOUse.getParent();
147         if (MRI->hasOneUse(Reg) && !UseMI.isPHI())
148           InsertMBB->insert(InsertMBB->SkipPHIsAndLabels(UseMI), LocalizedMI);
149         else
150           InsertMBB->insert(InsertMBB->SkipPHIsAndLabels(InsertMBB->begin()),
151                             LocalizedMI);
152 
153         // Set a new register for the definition.
154         Register NewReg = MRI->createGenericVirtualRegister(MRI->getType(Reg));
155         MRI->setRegClassOrRegBank(NewReg, MRI->getRegClassOrRegBank(Reg));
156         LocalizedMI->getOperand(0).setReg(NewReg);
157         NewVRegIt =
158             MBBWithLocalDef.insert(std::make_pair(MBBAndReg, NewReg)).first;
159         LLVM_DEBUG(dbgs() << "Inserted: " << *LocalizedMI);
160       }
161       LLVM_DEBUG(dbgs() << "Update use with: " << printReg(NewVRegIt->second)
162                         << '\n');
163       // Update the user reg.
164       MOUse.setReg(NewVRegIt->second);
165     }
166   }
167   return Changed;
168 }
169 
170 bool Localizer::localizeIntraBlock(LocalizedSetVecT &LocalizedInstrs) {
171   bool Changed = false;
172 
173   // For each already-localized instruction which has multiple users, then we
174   // scan the block top down from the current position until we hit one of them.
175 
176   // FIXME: Consider doing inst duplication if live ranges are very long due to
177   // many users, but this case may be better served by regalloc improvements.
178 
179   for (MachineInstr *MI : LocalizedInstrs) {
180     Register Reg = MI->getOperand(0).getReg();
181     MachineBasicBlock &MBB = *MI->getParent();
182     // All of the user MIs of this reg.
183     SmallPtrSet<MachineInstr *, 32> Users;
184     for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
185       if (!UseMI.isPHI())
186         Users.insert(&UseMI);
187     }
188     // If all the users were PHIs then they're not going to be in our block,
189     // don't try to move this instruction.
190     if (Users.empty())
191       continue;
192 
193     MachineBasicBlock::iterator II(MI);
194     ++II;
195     while (II != MBB.end() && !Users.count(&*II))
196       ++II;
197 
198     LLVM_DEBUG(dbgs() << "Intra-block: moving " << *MI << " before " << *&*II
199                       << "\n");
200     assert(II != MBB.end() && "Didn't find the user in the MBB");
201     MI->removeFromParent();
202     MBB.insert(II, MI);
203     Changed = true;
204   }
205   return Changed;
206 }
207 
208 bool Localizer::runOnMachineFunction(MachineFunction &MF) {
209   // If the ISel pipeline failed, do not bother running that pass.
210   if (MF.getProperties().hasProperty(
211           MachineFunctionProperties::Property::FailedISel))
212     return false;
213 
214   LLVM_DEBUG(dbgs() << "Localize instructions for: " << MF.getName() << '\n');
215 
216   init(MF);
217 
218   // Keep track of the instructions we localized. We'll do a second pass of
219   // intra-block localization to further reduce live ranges.
220   LocalizedSetVecT LocalizedInstrs;
221 
222   bool Changed = localizeInterBlock(MF, LocalizedInstrs);
223   Changed |= localizeIntraBlock(LocalizedInstrs);
224   return Changed;
225 }
226