1 //===- LoadStoreOpt.cpp ----------- Generic memory optimizations -*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the LoadStoreOpt optimization pass. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h" 13 #include "llvm/ADT/Statistic.h" 14 #include "llvm/Analysis/AliasAnalysis.h" 15 #include "llvm/Analysis/MemoryLocation.h" 16 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 17 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 20 #include "llvm/CodeGen/GlobalISel/Utils.h" 21 #include "llvm/CodeGen/LowLevelType.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Register.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetOpcodes.h" 31 #include "llvm/IR/DebugInfoMetadata.h" 32 #include "llvm/InitializePasses.h" 33 #include "llvm/Support/AtomicOrdering.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/MathExtras.h" 38 #include <algorithm> 39 40 #define DEBUG_TYPE "loadstore-opt" 41 42 using namespace llvm; 43 using namespace ore; 44 using namespace MIPatternMatch; 45 46 STATISTIC(NumStoresMerged, "Number of stores merged"); 47 48 const unsigned MaxStoreSizeToForm = 128; 49 50 char LoadStoreOpt::ID = 0; 51 INITIALIZE_PASS_BEGIN(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations", 52 false, false) 53 INITIALIZE_PASS_END(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations", 54 false, false) 55 56 LoadStoreOpt::LoadStoreOpt(std::function<bool(const MachineFunction &)> F) 57 : MachineFunctionPass(ID), DoNotRunPass(F) {} 58 59 LoadStoreOpt::LoadStoreOpt() 60 : LoadStoreOpt([](const MachineFunction &) { return false; }) {} 61 62 void LoadStoreOpt::init(MachineFunction &MF) { 63 this->MF = &MF; 64 MRI = &MF.getRegInfo(); 65 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 66 TLI = MF.getSubtarget().getTargetLowering(); 67 LI = MF.getSubtarget().getLegalizerInfo(); 68 Builder.setMF(MF); 69 IsPreLegalizer = !MF.getProperties().hasProperty( 70 MachineFunctionProperties::Property::Legalized); 71 InstsToErase.clear(); 72 } 73 74 void LoadStoreOpt::getAnalysisUsage(AnalysisUsage &AU) const { 75 AU.addRequired<AAResultsWrapperPass>(); 76 AU.setPreservesAll(); 77 getSelectionDAGFallbackAnalysisUsage(AU); 78 MachineFunctionPass::getAnalysisUsage(AU); 79 } 80 81 BaseIndexOffset GISelAddressing::getPointerInfo(Register Ptr, 82 MachineRegisterInfo &MRI) { 83 BaseIndexOffset Info; 84 Register PtrAddRHS; 85 if (!mi_match(Ptr, MRI, m_GPtrAdd(m_Reg(Info.BaseReg), m_Reg(PtrAddRHS)))) { 86 Info.BaseReg = Ptr; 87 Info.IndexReg = Register(); 88 Info.IsIndexSignExt = false; 89 return Info; 90 } 91 92 auto RHSCst = getIConstantVRegValWithLookThrough(PtrAddRHS, MRI); 93 if (RHSCst) 94 Info.Offset = RHSCst->Value.getSExtValue(); 95 96 // Just recognize a simple case for now. In future we'll need to match 97 // indexing patterns for base + index + constant. 98 Info.IndexReg = PtrAddRHS; 99 Info.IsIndexSignExt = false; 100 return Info; 101 } 102 103 bool GISelAddressing::aliasIsKnownForLoadStore(const MachineInstr &MI1, 104 const MachineInstr &MI2, 105 bool &IsAlias, 106 MachineRegisterInfo &MRI) { 107 auto *LdSt1 = dyn_cast<GLoadStore>(&MI1); 108 auto *LdSt2 = dyn_cast<GLoadStore>(&MI2); 109 if (!LdSt1 || !LdSt2) 110 return false; 111 112 BaseIndexOffset BasePtr0 = getPointerInfo(LdSt1->getPointerReg(), MRI); 113 BaseIndexOffset BasePtr1 = getPointerInfo(LdSt2->getPointerReg(), MRI); 114 115 if (!BasePtr0.BaseReg.isValid() || !BasePtr1.BaseReg.isValid()) 116 return false; 117 118 int64_t Size1 = LdSt1->getMemSize(); 119 int64_t Size2 = LdSt2->getMemSize(); 120 121 int64_t PtrDiff; 122 if (BasePtr0.BaseReg == BasePtr1.BaseReg) { 123 PtrDiff = BasePtr1.Offset - BasePtr0.Offset; 124 // If the size of memory access is unknown, do not use it to do analysis. 125 // One example of unknown size memory access is to load/store scalable 126 // vector objects on the stack. 127 // BasePtr1 is PtrDiff away from BasePtr0. They alias if none of the 128 // following situations arise: 129 if (PtrDiff >= 0 && 130 Size1 != static_cast<int64_t>(MemoryLocation::UnknownSize)) { 131 // [----BasePtr0----] 132 // [---BasePtr1--] 133 // ========PtrDiff========> 134 IsAlias = !(Size1 <= PtrDiff); 135 return true; 136 } 137 if (PtrDiff < 0 && 138 Size2 != static_cast<int64_t>(MemoryLocation::UnknownSize)) { 139 // [----BasePtr0----] 140 // [---BasePtr1--] 141 // =====(-PtrDiff)====> 142 IsAlias = !((PtrDiff + Size2) <= 0); 143 return true; 144 } 145 return false; 146 } 147 148 // If both BasePtr0 and BasePtr1 are FrameIndexes, we will not be 149 // able to calculate their relative offset if at least one arises 150 // from an alloca. However, these allocas cannot overlap and we 151 // can infer there is no alias. 152 auto *Base0Def = getDefIgnoringCopies(BasePtr0.BaseReg, MRI); 153 auto *Base1Def = getDefIgnoringCopies(BasePtr1.BaseReg, MRI); 154 if (!Base0Def || !Base1Def) 155 return false; // Couldn't tell anything. 156 157 158 if (Base0Def->getOpcode() != Base1Def->getOpcode()) 159 return false; 160 161 if (Base0Def->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 162 MachineFrameInfo &MFI = Base0Def->getMF()->getFrameInfo(); 163 // If the bases have the same frame index but we couldn't find a 164 // constant offset, (indices are different) be conservative. 165 if (Base0Def != Base1Def && 166 (!MFI.isFixedObjectIndex(Base0Def->getOperand(1).getIndex()) || 167 !MFI.isFixedObjectIndex(Base1Def->getOperand(1).getIndex()))) { 168 IsAlias = false; 169 return true; 170 } 171 } 172 173 // This implementation is a lot more primitive than the SDAG one for now. 174 // FIXME: what about constant pools? 175 if (Base0Def->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) { 176 auto GV0 = Base0Def->getOperand(1).getGlobal(); 177 auto GV1 = Base1Def->getOperand(1).getGlobal(); 178 if (GV0 != GV1) { 179 IsAlias = false; 180 return true; 181 } 182 } 183 184 // Can't tell anything about aliasing. 185 return false; 186 } 187 188 bool GISelAddressing::instMayAlias(const MachineInstr &MI, 189 const MachineInstr &Other, 190 MachineRegisterInfo &MRI, 191 AliasAnalysis *AA) { 192 struct MemUseCharacteristics { 193 bool IsVolatile; 194 bool IsAtomic; 195 Register BasePtr; 196 int64_t Offset; 197 uint64_t NumBytes; 198 MachineMemOperand *MMO; 199 }; 200 201 auto getCharacteristics = 202 [&](const MachineInstr *MI) -> MemUseCharacteristics { 203 if (const auto *LS = dyn_cast<GLoadStore>(MI)) { 204 Register BaseReg; 205 int64_t Offset = 0; 206 // No pre/post-inc addressing modes are considered here, unlike in SDAG. 207 if (!mi_match(LS->getPointerReg(), MRI, 208 m_GPtrAdd(m_Reg(BaseReg), m_ICst(Offset)))) { 209 BaseReg = LS->getPointerReg(); 210 Offset = 0; 211 } 212 213 uint64_t Size = MemoryLocation::getSizeOrUnknown( 214 LS->getMMO().getMemoryType().getSizeInBytes()); 215 return {LS->isVolatile(), LS->isAtomic(), BaseReg, 216 Offset /*base offset*/, Size, &LS->getMMO()}; 217 } 218 // FIXME: support recognizing lifetime instructions. 219 // Default. 220 return {false /*isvolatile*/, 221 /*isAtomic*/ false, Register(), 222 (int64_t)0 /*offset*/, 0 /*size*/, 223 (MachineMemOperand *)nullptr}; 224 }; 225 MemUseCharacteristics MUC0 = getCharacteristics(&MI), 226 MUC1 = getCharacteristics(&Other); 227 228 // If they are to the same address, then they must be aliases. 229 if (MUC0.BasePtr.isValid() && MUC0.BasePtr == MUC1.BasePtr && 230 MUC0.Offset == MUC1.Offset) 231 return true; 232 233 // If they are both volatile then they cannot be reordered. 234 if (MUC0.IsVolatile && MUC1.IsVolatile) 235 return true; 236 237 // Be conservative about atomics for the moment 238 // TODO: This is way overconservative for unordered atomics (see D66309) 239 if (MUC0.IsAtomic && MUC1.IsAtomic) 240 return true; 241 242 // If one operation reads from invariant memory, and the other may store, they 243 // cannot alias. 244 if (MUC0.MMO && MUC1.MMO) { 245 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || 246 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) 247 return false; 248 } 249 250 // Try to prove that there is aliasing, or that there is no aliasing. Either 251 // way, we can return now. If nothing can be proved, proceed with more tests. 252 bool IsAlias; 253 if (GISelAddressing::aliasIsKnownForLoadStore(MI, Other, IsAlias, MRI)) 254 return IsAlias; 255 256 // The following all rely on MMO0 and MMO1 being valid. 257 if (!MUC0.MMO || !MUC1.MMO) 258 return true; 259 260 // FIXME: port the alignment based alias analysis from SDAG's isAlias(). 261 int64_t SrcValOffset0 = MUC0.MMO->getOffset(); 262 int64_t SrcValOffset1 = MUC1.MMO->getOffset(); 263 uint64_t Size0 = MUC0.NumBytes; 264 uint64_t Size1 = MUC1.NumBytes; 265 if (AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() && 266 Size0 != MemoryLocation::UnknownSize && 267 Size1 != MemoryLocation::UnknownSize) { 268 // Use alias analysis information. 269 int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1); 270 int64_t Overlap0 = Size0 + SrcValOffset0 - MinOffset; 271 int64_t Overlap1 = Size1 + SrcValOffset1 - MinOffset; 272 if (AA->isNoAlias(MemoryLocation(MUC0.MMO->getValue(), Overlap0, 273 MUC0.MMO->getAAInfo()), 274 MemoryLocation(MUC1.MMO->getValue(), Overlap1, 275 MUC1.MMO->getAAInfo()))) 276 return false; 277 } 278 279 // Otherwise we have to assume they alias. 280 return true; 281 } 282 283 /// Returns true if the instruction creates an unavoidable hazard that 284 /// forces a boundary between store merge candidates. 285 static bool isInstHardMergeHazard(MachineInstr &MI) { 286 return MI.hasUnmodeledSideEffects() || MI.hasOrderedMemoryRef(); 287 } 288 289 bool LoadStoreOpt::mergeStores(SmallVectorImpl<GStore *> &StoresToMerge) { 290 // Try to merge all the stores in the vector, splitting into separate segments 291 // as necessary. 292 assert(StoresToMerge.size() > 1 && "Expected multiple stores to merge"); 293 LLT OrigTy = MRI->getType(StoresToMerge[0]->getValueReg()); 294 LLT PtrTy = MRI->getType(StoresToMerge[0]->getPointerReg()); 295 unsigned AS = PtrTy.getAddressSpace(); 296 // Ensure the legal store info is computed for this address space. 297 initializeStoreMergeTargetInfo(AS); 298 const auto &LegalSizes = LegalStoreSizes[AS]; 299 300 #ifndef NDEBUG 301 for (auto *StoreMI : StoresToMerge) 302 assert(MRI->getType(StoreMI->getValueReg()) == OrigTy); 303 #endif 304 305 const auto &DL = MF->getFunction().getParent()->getDataLayout(); 306 bool AnyMerged = false; 307 do { 308 unsigned NumPow2 = PowerOf2Floor(StoresToMerge.size()); 309 unsigned MaxSizeBits = NumPow2 * OrigTy.getSizeInBits().getFixedSize(); 310 // Compute the biggest store we can generate to handle the number of stores. 311 unsigned MergeSizeBits; 312 for (MergeSizeBits = MaxSizeBits; MergeSizeBits > 1; MergeSizeBits /= 2) { 313 LLT StoreTy = LLT::scalar(MergeSizeBits); 314 EVT StoreEVT = 315 getApproximateEVTForLLT(StoreTy, DL, MF->getFunction().getContext()); 316 if (LegalSizes.size() > MergeSizeBits && LegalSizes[MergeSizeBits] && 317 TLI->canMergeStoresTo(AS, StoreEVT, *MF) && 318 (TLI->isTypeLegal(StoreEVT))) 319 break; // We can generate a MergeSize bits store. 320 } 321 if (MergeSizeBits <= OrigTy.getSizeInBits()) 322 return AnyMerged; // No greater merge. 323 324 unsigned NumStoresToMerge = MergeSizeBits / OrigTy.getSizeInBits(); 325 // Perform the actual merging. 326 SmallVector<GStore *, 8> SingleMergeStores( 327 StoresToMerge.begin(), StoresToMerge.begin() + NumStoresToMerge); 328 AnyMerged |= doSingleStoreMerge(SingleMergeStores); 329 StoresToMerge.erase(StoresToMerge.begin(), 330 StoresToMerge.begin() + NumStoresToMerge); 331 } while (StoresToMerge.size() > 1); 332 return AnyMerged; 333 } 334 335 bool LoadStoreOpt::isLegalOrBeforeLegalizer(const LegalityQuery &Query, 336 MachineFunction &MF) const { 337 auto Action = LI->getAction(Query).Action; 338 // If the instruction is unsupported, it can't be legalized at all. 339 if (Action == LegalizeActions::Unsupported) 340 return false; 341 return IsPreLegalizer || Action == LegalizeAction::Legal; 342 } 343 344 bool LoadStoreOpt::doSingleStoreMerge(SmallVectorImpl<GStore *> &Stores) { 345 assert(Stores.size() > 1); 346 // We know that all the stores are consecutive and there are no aliasing 347 // operations in the range. However, the values that are being stored may be 348 // generated anywhere before each store. To ensure we have the values 349 // available, we materialize the wide value and new store at the place of the 350 // final store in the merge sequence. 351 GStore *FirstStore = Stores[0]; 352 const unsigned NumStores = Stores.size(); 353 LLT SmallTy = MRI->getType(FirstStore->getValueReg()); 354 LLT WideValueTy = 355 LLT::scalar(NumStores * SmallTy.getSizeInBits().getFixedSize()); 356 357 // For each store, compute pairwise merged debug locs. 358 DebugLoc MergedLoc; 359 for (unsigned AIdx = 0, BIdx = 1; BIdx < NumStores; ++AIdx, ++BIdx) 360 MergedLoc = DILocation::getMergedLocation(Stores[AIdx]->getDebugLoc(), 361 Stores[BIdx]->getDebugLoc()); 362 Builder.setInstr(*Stores.back()); 363 Builder.setDebugLoc(MergedLoc); 364 365 // If all of the store values are constants, then create a wide constant 366 // directly. Otherwise, we need to generate some instructions to merge the 367 // existing values together into a wider type. 368 SmallVector<APInt, 8> ConstantVals; 369 for (auto *Store : Stores) { 370 auto MaybeCst = 371 getIConstantVRegValWithLookThrough(Store->getValueReg(), *MRI); 372 if (!MaybeCst) { 373 ConstantVals.clear(); 374 break; 375 } 376 ConstantVals.emplace_back(MaybeCst->Value); 377 } 378 379 Register WideReg; 380 auto *WideMMO = 381 MF->getMachineMemOperand(&FirstStore->getMMO(), 0, WideValueTy); 382 if (ConstantVals.empty()) { 383 // Mimic the SDAG behaviour here and don't try to do anything for unknown 384 // values. In future, we should also support the cases of loads and 385 // extracted vector elements. 386 return false; 387 } 388 389 assert(ConstantVals.size() == NumStores); 390 // Check if our wide constant is legal. 391 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {WideValueTy}}, *MF)) 392 return false; 393 APInt WideConst(WideValueTy.getSizeInBits(), 0); 394 for (unsigned Idx = 0; Idx < ConstantVals.size(); ++Idx) { 395 // Insert the smaller constant into the corresponding position in the 396 // wider one. 397 WideConst.insertBits(ConstantVals[Idx], Idx * SmallTy.getSizeInBits()); 398 } 399 WideReg = Builder.buildConstant(WideValueTy, WideConst).getReg(0); 400 auto NewStore = 401 Builder.buildStore(WideReg, FirstStore->getPointerReg(), *WideMMO); 402 (void) NewStore; 403 LLVM_DEBUG(dbgs() << "Created merged store: " << *NewStore); 404 NumStoresMerged += Stores.size(); 405 406 MachineOptimizationRemarkEmitter MORE(*MF, nullptr); 407 MORE.emit([&]() { 408 MachineOptimizationRemark R(DEBUG_TYPE, "MergedStore", 409 FirstStore->getDebugLoc(), 410 FirstStore->getParent()); 411 R << "Merged " << NV("NumMerged", Stores.size()) << " stores of " 412 << NV("OrigWidth", SmallTy.getSizeInBytes()) 413 << " bytes into a single store of " 414 << NV("NewWidth", WideValueTy.getSizeInBytes()) << " bytes"; 415 return R; 416 }); 417 418 for (auto *MI : Stores) 419 InstsToErase.insert(MI); 420 return true; 421 } 422 423 bool LoadStoreOpt::processMergeCandidate(StoreMergeCandidate &C) { 424 if (C.Stores.size() < 2) { 425 C.reset(); 426 return false; 427 } 428 429 LLVM_DEBUG(dbgs() << "Checking store merge candidate with " << C.Stores.size() 430 << " stores, starting with " << *C.Stores[0]); 431 // We know that the stores in the candidate are adjacent. 432 // Now we need to check if any potential aliasing instructions recorded 433 // during the search alias with load/stores added to the candidate after. 434 // For example, if we have the candidate: 435 // C.Stores = [ST1, ST2, ST3, ST4] 436 // and after seeing ST2 we saw a load LD1, which did not alias with ST1 or 437 // ST2, then we would have recorded it into the PotentialAliases structure 438 // with the associated index value of "1". Then we see ST3 and ST4 and add 439 // them to the candidate group. We know that LD1 does not alias with ST1 or 440 // ST2, since we already did that check. However we don't yet know if it 441 // may alias ST3 and ST4, so we perform those checks now. 442 SmallVector<GStore *> StoresToMerge; 443 444 auto DoesStoreAliasWithPotential = [&](unsigned Idx, GStore &CheckStore) { 445 for (auto AliasInfo : reverse(C.PotentialAliases)) { 446 MachineInstr *PotentialAliasOp = AliasInfo.first; 447 unsigned PreCheckedIdx = AliasInfo.second; 448 if (static_cast<unsigned>(Idx) > PreCheckedIdx) { 449 // Need to check this alias. 450 if (GISelAddressing::instMayAlias(CheckStore, *PotentialAliasOp, *MRI, 451 AA)) { 452 LLVM_DEBUG(dbgs() << "Potential alias " << *PotentialAliasOp 453 << " detected\n"); 454 return true; 455 } 456 } else { 457 // Once our store index is lower than the index associated with the 458 // potential alias, we know that we've already checked for this alias 459 // and all of the earlier potential aliases too. 460 return false; 461 } 462 } 463 return false; 464 }; 465 // Start from the last store in the group, and check if it aliases with any 466 // of the potential aliasing operations in the list. 467 for (int StoreIdx = C.Stores.size() - 1; StoreIdx >= 0; --StoreIdx) { 468 auto *CheckStore = C.Stores[StoreIdx]; 469 if (DoesStoreAliasWithPotential(StoreIdx, *CheckStore)) 470 continue; 471 StoresToMerge.emplace_back(CheckStore); 472 } 473 474 LLVM_DEBUG(dbgs() << StoresToMerge.size() 475 << " stores remaining after alias checks. Merging...\n"); 476 477 // Now we've checked for aliasing hazards, merge any stores left. 478 C.reset(); 479 if (StoresToMerge.size() < 2) 480 return false; 481 return mergeStores(StoresToMerge); 482 } 483 484 bool LoadStoreOpt::operationAliasesWithCandidate(MachineInstr &MI, 485 StoreMergeCandidate &C) { 486 if (C.Stores.empty()) 487 return false; 488 return llvm::any_of(C.Stores, [&](MachineInstr *OtherMI) { 489 return instMayAlias(MI, *OtherMI, *MRI, AA); 490 }); 491 } 492 493 void LoadStoreOpt::StoreMergeCandidate::addPotentialAlias(MachineInstr &MI) { 494 PotentialAliases.emplace_back(std::make_pair(&MI, Stores.size() - 1)); 495 } 496 497 bool LoadStoreOpt::addStoreToCandidate(GStore &StoreMI, 498 StoreMergeCandidate &C) { 499 // Check if the given store writes to an adjacent address, and other 500 // requirements. 501 LLT ValueTy = MRI->getType(StoreMI.getValueReg()); 502 LLT PtrTy = MRI->getType(StoreMI.getPointerReg()); 503 504 // Only handle scalars. 505 if (!ValueTy.isScalar()) 506 return false; 507 508 // Don't allow truncating stores for now. 509 if (StoreMI.getMemSizeInBits() != ValueTy.getSizeInBits()) 510 return false; 511 512 // Avoid adding volatile or ordered stores to the candidate. We already have a 513 // check for this in instMayAlias() but that only get's called later between 514 // potential aliasing hazards. 515 if (!StoreMI.isSimple()) 516 return false; 517 518 Register StoreAddr = StoreMI.getPointerReg(); 519 auto BIO = getPointerInfo(StoreAddr, *MRI); 520 Register StoreBase = BIO.BaseReg; 521 uint64_t StoreOffCst = BIO.Offset; 522 if (C.Stores.empty()) { 523 // This is the first store of the candidate. 524 // If the offset can't possibly allow for a lower addressed store with the 525 // same base, don't bother adding it. 526 if (StoreOffCst < ValueTy.getSizeInBytes()) 527 return false; 528 C.BasePtr = StoreBase; 529 C.CurrentLowestOffset = StoreOffCst; 530 C.Stores.emplace_back(&StoreMI); 531 LLVM_DEBUG(dbgs() << "Starting a new merge candidate group with: " 532 << StoreMI); 533 return true; 534 } 535 536 // Check the store is the same size as the existing ones in the candidate. 537 if (MRI->getType(C.Stores[0]->getValueReg()).getSizeInBits() != 538 ValueTy.getSizeInBits()) 539 return false; 540 541 if (MRI->getType(C.Stores[0]->getPointerReg()).getAddressSpace() != 542 PtrTy.getAddressSpace()) 543 return false; 544 545 // There are other stores in the candidate. Check that the store address 546 // writes to the next lowest adjacent address. 547 if (C.BasePtr != StoreBase) 548 return false; 549 if ((C.CurrentLowestOffset - ValueTy.getSizeInBytes()) != 550 static_cast<uint64_t>(StoreOffCst)) 551 return false; 552 553 // This writes to an adjacent address. Allow it. 554 C.Stores.emplace_back(&StoreMI); 555 C.CurrentLowestOffset = C.CurrentLowestOffset - ValueTy.getSizeInBytes(); 556 LLVM_DEBUG(dbgs() << "Candidate added store: " << StoreMI); 557 return true; 558 } 559 560 bool LoadStoreOpt::mergeBlockStores(MachineBasicBlock &MBB) { 561 bool Changed = false; 562 // Walk through the block bottom-up, looking for merging candidates. 563 StoreMergeCandidate Candidate; 564 for (MachineInstr &MI : llvm::reverse(MBB)) { 565 if (InstsToErase.contains(&MI)) 566 continue; 567 568 if (auto *StoreMI = dyn_cast<GStore>(&MI)) { 569 // We have a G_STORE. Add it to the candidate if it writes to an adjacent 570 // address. 571 if (!addStoreToCandidate(*StoreMI, Candidate)) { 572 // Store wasn't eligible to be added. May need to record it as a 573 // potential alias. 574 if (operationAliasesWithCandidate(*StoreMI, Candidate)) { 575 Changed |= processMergeCandidate(Candidate); 576 continue; 577 } 578 Candidate.addPotentialAlias(*StoreMI); 579 } 580 continue; 581 } 582 583 // If we don't have any stores yet, this instruction can't pose a problem. 584 if (Candidate.Stores.empty()) 585 continue; 586 587 // We're dealing with some other kind of instruction. 588 if (isInstHardMergeHazard(MI)) { 589 Changed |= processMergeCandidate(Candidate); 590 Candidate.Stores.clear(); 591 continue; 592 } 593 594 if (!MI.mayLoadOrStore()) 595 continue; 596 597 if (operationAliasesWithCandidate(MI, Candidate)) { 598 // We have a potential alias, so process the current candidate if we can 599 // and then continue looking for a new candidate. 600 Changed |= processMergeCandidate(Candidate); 601 continue; 602 } 603 604 // Record this instruction as a potential alias for future stores that are 605 // added to the candidate. 606 Candidate.addPotentialAlias(MI); 607 } 608 609 // Process any candidate left after finishing searching the entire block. 610 Changed |= processMergeCandidate(Candidate); 611 612 // Erase instructions now that we're no longer iterating over the block. 613 for (auto *MI : InstsToErase) 614 MI->eraseFromParent(); 615 InstsToErase.clear(); 616 return Changed; 617 } 618 619 bool LoadStoreOpt::mergeFunctionStores(MachineFunction &MF) { 620 bool Changed = false; 621 for (auto &BB : MF) { 622 Changed |= mergeBlockStores(BB); 623 } 624 return Changed; 625 } 626 627 void LoadStoreOpt::initializeStoreMergeTargetInfo(unsigned AddrSpace) { 628 // Query the legalizer info to record what store types are legal. 629 // We record this because we don't want to bother trying to merge stores into 630 // illegal ones, which would just result in being split again. 631 632 if (LegalStoreSizes.count(AddrSpace)) { 633 assert(LegalStoreSizes[AddrSpace].any()); 634 return; // Already cached sizes for this address space. 635 } 636 637 // Need to reserve at least MaxStoreSizeToForm + 1 bits. 638 BitVector LegalSizes(MaxStoreSizeToForm * 2); 639 const auto &LI = *MF->getSubtarget().getLegalizerInfo(); 640 const auto &DL = MF->getFunction().getParent()->getDataLayout(); 641 Type *IntPtrIRTy = 642 DL.getIntPtrType(MF->getFunction().getContext(), AddrSpace); 643 LLT PtrTy = getLLTForType(*IntPtrIRTy->getPointerTo(AddrSpace), DL); 644 // We assume that we're not going to be generating any stores wider than 645 // MaxStoreSizeToForm bits for now. 646 for (unsigned Size = 2; Size <= MaxStoreSizeToForm; Size *= 2) { 647 LLT Ty = LLT::scalar(Size); 648 SmallVector<LegalityQuery::MemDesc, 2> MemDescrs( 649 {{Ty, Ty.getSizeInBits(), AtomicOrdering::NotAtomic}}); 650 SmallVector<LLT> StoreTys({Ty, PtrTy}); 651 LegalityQuery Q(TargetOpcode::G_STORE, StoreTys, MemDescrs); 652 LegalizeActionStep ActionStep = LI.getAction(Q); 653 if (ActionStep.Action == LegalizeActions::Legal) 654 LegalSizes.set(Size); 655 } 656 assert(LegalSizes.any() && "Expected some store sizes to be legal!"); 657 LegalStoreSizes[AddrSpace] = LegalSizes; 658 } 659 660 bool LoadStoreOpt::runOnMachineFunction(MachineFunction &MF) { 661 // If the ISel pipeline failed, do not bother running that pass. 662 if (MF.getProperties().hasProperty( 663 MachineFunctionProperties::Property::FailedISel)) 664 return false; 665 666 LLVM_DEBUG(dbgs() << "Begin memory optimizations for: " << MF.getName() 667 << '\n'); 668 669 init(MF); 670 bool Changed = false; 671 Changed |= mergeFunctionStores(MF); 672 673 LegalStoreSizes.clear(); 674 return Changed; 675 } 676